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Abstract. Vision transformers (ViTs) have emerged as strong alter-
natives to conventional convolutional neural networks (CNNs), owing
to their scalability, enhanced generalization, and superior performance
in out-of-distribution (OOD) scenarios. Despite their strengths, ViTs
are prone to significant overfitting with scarce training data. This issue
severely limits their reliability in critical applications, such as biomedi-
cal image analysis, where accurate uncertainty estimation is crucial. The
challenge lies in the inherent lack of insight into the transformer net-
work’s confidence and uncertainty levels. To tackle this issue, we propose
a novel stochastic vision transformer characterized by three components:
1) Stochastic elliptical Gaussian embedding which encodes uncertainty
into the embedding of image patches, 2) a Fréchet Inception Distance
(FID)-based attention mechanism for the Gaussian embeddings and 3) a
FID-based regularization term, which imposes distance and uncertainty
awareness into the learning of stochastic representations. We demon-
strate the effectiveness of our method for in-distribution calibration and
OOD detection experiments on the skin cancer dataset ISIC2019.
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1 Introduction

Recently, vision transformers (ViTs) [3] have emerged as a competitive alterna-
tive to Convolutional Neural Networks (CNNs), owing to their scalability and
generalization ability when trained with large-scale natural image datasets [22].
Nevertheless, training ViTs with scarcely available medical datasets proves to
be challenging, as a significant number of training samples is important for
the performance of ViTs [18]. The tendency of overfitting and inferring unre-
liable, overconfident predictions severely hinders wide-scale applications of ViTs
in safety-critical downstream applications. The development of reliable neural
networks, which are robust against potential real-life distribution shifts, is thus
important.
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A key application with potential for broad adoption is the detection of skin
cancer, which could be facilitated by everyday devices such as smartphones,
allowing for patient-initiated screenings. According to a 2018 report by the
WHO |[21], over 14 million new cases of cancer were identified worldwide, lead-
ing to more than 9.6 million fatalities [12]. These figures underscore cancer as
a predominant cause of mortality globally. Skin cancer, in particular, begins in
the epidermis, the skin’s outermost layer, making it visible to the naked eye
and, therefore, one of the more detectable cancers. It remains a significant fac-
tor in global mortality rates. The accuracy and reliability of automated tests are
paramount; early detection can be lifesaving, yet a high rate of false positives
could cause undue anxiety and overwhelm healthcare systems with unnecessary
consultations. However, to enable widely used automated tests, robust machine
learning models are indispensable

Despite the availability of many available methods for enhancing neural net-
works’ robustness, direct application of these methods on large transformer ar-
chitectures with millions of parameters is challenging. Uncertainty estimation
methods such as Deep Ensembles [11] and Bayesian Neural Networks [13] neces-
sitate rigorous training procedures, which, combined with the large ViT archi-
tecture and the higher embedding dimensions of image modalities, render them
computationally infeasible. One simple solution is to directly inject stochasticity
into the model’s parameters, thereby yielding diverse sets of solutions in place of
the conventional deterministic point solutions, encouraging robust, uncertainty-
aware training.

In this paper, we formalize a comprehensive method for robust, uncertainty-
aware stochastic vision transformer encoders. Our contributions can be sum-
marised as:

1. We propose a stochastic ViT encoder backbone featuring distributional Gaus-
sian embeddings. Our approach ensures that stochasticity is propagated
throughout all layers of the encoder, thereby encoding uncertainty at every
stage. The interaction between the stochastic embeddings is assessed using
an attention mechanism based on the Fréchet Inception Distance (FID).

2. We incorporate a novel regularization term based on FID into our model’s
training approach. This term is designed to foster uncertainty- and distance-
awareness, compelling the network to embed similar embedding representa-
tions closer together. This addition not only enhances the model’s ability
to discern and represent the underlying data structure but also significantly
improves its robustness by embedding a deeper understanding of the data’s
inherent variability and uncertainty.

3. We conduct comprehensive experiments to validate our method’s capacity.
We evaluate predictive accuracy and uncertainty quantification across three
distinct scenarios: 1) In-distribution detection; 2) Out-of-distribution detec-
tion; 3) Few-shot detection; Our approach demonstrates a practicable trade-
off between predictive performance and uncertainty estimation compared to
the other baselines.
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2 Method
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Fig. 1: Overview of the stochastic vision transformer training pipeline. The input
sample batch X is split into patches z;,,, undergoing subsequent augmentations.
The original non-augmented copy of the patches from the same input batch is
taken as the positive examples y, . Negative example batch y_ is obtained from
sampling from the other classes.

2.1 Stochastic Gaussian Embedding

Conventional transformers embed input tokens into deterministic vector points.
Alternatively, the input tokens can also be embedded as Gaussian distributions
[20, 16, 5], leveraging uncertainty into the embedding representations of the data.
Motivated by this, we embed each image patch as an elliptical Gaussian distri-
bution with mean p and variance o vectors. In addition, we introduce separate
positional encoding vectors for the mean p and variance o vectors. We formalize
the stochastic Gaussian embeddings as 2, ..., 25 and 20, ..., 2%, The stochastic
embeddings are passed into our specialized stochastic encoder blocks, consisting
of normalization layers, stochastic Fréchet Inception Distance attention layers,
and a projection head. In this manner, we instill distributional uncertainty in-
formation throughout the whole architecture.

2.2 Fréchet Inception Distance Attention

The attention mechanism facilitates transformers to evaluate contextual corre-
lations between the embedded vector components within each batch. In vision
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transformers, the input image is tokenized into tokens with the embedded di-
mension d and the sequence length . The tokens are subsequently linearly pro-
jected into the query vectors Q € R! th%, key K € RIxhx4 vectors, and value
V € RIXPX# vectors. The self-attention matrix between the vectors is evaluated
as follows:

QK™
Attention(Q, K, V') = softmax < ) V (1)
Vd
Q=Wox, K = Wgz,V = Wyz; Wq, Wi, Wy € R (2)

The vanilla attention mechanism returns a single dot vector output and, thus
is deterministic and provides no further insights into the uncertainty of the trans-
formers. Our proposed Fréchet inception distance-based attention mechanism
accommodates effective attending of the stochastic Gaussian embeddings. The
stochastic embeddings are passed through linear layers of the projection head,
maintaining information on the uncertainty through the Gaussian Q(Query),
K(Key), and V(Value) representations zgry, ~ N (lgkv, Ogkv), formulated as fol-
lows,

_ ©
Hako = ZHqu'v

3
ogkw = ELU(diag(z,W,)) + 1. ®)

The ELU activation enforces the positive definiteness of the covariance vec-
tors. In place of the dot-product operation used in conventional deterministic
transformers, the attention scores of the distributional embeddings @@ and K
embeddings are correspondingly calculated from the negative Fréchet Inception
Distance between the embeddings. The Fréchet inception distance is a formula-
tion of the 2-Wasserstein distance between Gaussian distributions [4][14][10][8].
This is formulated as follows:

2
Agx = ~(WE(Q, K)) = —(||ug — ux|” + Tr(q + Zx — 285> £q 2/ *)V?)),

A, = softmax (A\C;’EK) .
(4)

for Gaussian distributional embeddings of @ ~ N (u1, X1) and K ~ N (2, X2)
on R?. T'r represents the trace operator of the covariance matrices. The final at-
tention scores for both the mean and value embeddings are evaluated by multi-
plying the attention scores with the value embeddings denoted in Equation 5 and
Equation 6. This operation is iterated through the block depth, thus promoting
effective learning of the spatial correlations between the embedded distributions.

A=AV, (5)
A, = A2V, (6)
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2.3 Fréchet Inception Distance Regularization

The training objective is divided into two primary elements: the deterministic
component and the stochastic component. The deterministic component enforces
the standard classification performance, while the novel stochastic component
encourages the transformer to encode the image patches into distinct, robust rep-
resentations through a Fréchet inception distance-based regularization. Unaug-
mented image patches are taken as the positive example images, while images
from the other classes are considered as the negative example images. We con-
sider one mini-batch of the output embeddings z,ut ~ N (Lout, Oout ), the trained
stochastic encoder function f,, the positive example y*, and the negative exam-
ple y~. The resulting learning objective is denoted as follows:

Lf = £CE - )\lll (zouta y+a y_) + /\2l2(zout7 y+7 y_)a (7)

whereby the distributional regularization terms [, and [, are given as follows:

ll(zout7 y+, yi) = 1Og(U(W22(Zouta fz(er)) - W22(zout7 fz(yi))))a (8)

b (Zout, y,y7) = W3 (Zour, £2(y") = W3 (f2(y™), f2(y7 )]+ (9)

Lcp denotes the deterministic cross-entropy classification loss term, [z]+ =
max(x,0) denotes the hinge loss operator, y* and y~ denote the positive and
negative examples. The regularization terms are tuned by the parameters A\; and
Ao, with the former regulating the distance between the stochastic embeddings of
the input images and the examples, and the latter encouraging more distinctive
embedding space separation between the positive and negative examples.

3 Experimental Settings

Network architecture. We conduct all our experiments with the ViT-B back-
bone, using the default ViT-B model parameters while optimizing the training
hyperparameters through grid search. We train the network with a batch size of
256, a learning rate of 1 x 1073, and the stochastic regularization terms \; of 0.1
and Ao of 0.01. The input images are resized to 224 x 224 and augmented with
the following operations: horizontal and vertical flips, color jitters, and rotation.
In addition, we perform further augmentation with AugMix [9]. We pre-train
our models with the ImageNet-1k dataset.

Data. We finetune our models with the skin lesion ISIC2019 dataset [19][2][1],
consisting of eight distinct classes. We split the ISIC2019 dataset into the ID
dataset and the near OOD dataset by allocating images from two classes with
the least number of samples as the near OOD set. Images from the remaining
six classes are allocated into the ID set. We perform 5-fold validations of our
experiments, with a train-validation split of 80% training and 20% validation. We
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assess the performance of our method in two distinct tasks. In the first task, we
evaluate the model’s ID calibration and uncertainty quantification performance
together with the OOD inference performance. In the second task, we perform
few-shot training with respectively 1% and 10% of the training data available
and investigate the ID calibration performance of our model. We performed
further experiments with the DermaMNIST dataset with results summarized in
the Appendix.

Evaluation metrics We report the performance metrics using the following
notation: upward arrows signify that higher values are considered more optimal
while downward arrows indicate the opposite. Selective accuracy 1: Selec-
tive prediction allows the model to reject samples during inference, specifically
samples with confidence levels below a specified confidence rejection threshold.
The accuracy values are accumulated over the area under the curve for varying
threshold values. A larger selective accuracy denotes the model’s ability to per-
form confident uncertainty-aware inference in real-life safety-critical tasks. ECE
J: Expected calibration error denotes the sum of the differences in the model’s
accuracy and confidence values for differing bin values. A lower ECE value de-
notes a more well-calibrated model that returns higher accuracy predictions
with higher confidence. NLL |: Negative log likelihood between the predicted
logit distribution and ground truth targets. A lower NLL value implies that the
model returns logit distributions closer to the targets. We evaluate the near
Out-of-Distribution robustness of our method with the AUROC 1 metric: Area
Under Receiver Operating Characteristic curve. This metric assesses the model’s
ability to discriminate positive and negative classes across various thresholds. A
higher OOD AUROC value signifies the model’s increased capacity to perform
robust inference in OOD inference cases.

Compared methods For comparison, we perform experiments with the fol-
lowing baselines: 1) conventional ViT-B [3], 2) Deep ensembles of ViT-B with
k=10 ensemble members [11], 3) MC-Dropout of ViT-B with a dropout rate
of 0.1 [7], 4) Evidence Reconciled Neural Network (ERNN) for OOD detection
[6], 5) Function Space Empirical Bayes (FSEB) [17]. Deep ensembles and MC-
Dropout are considered state-of-the-art methods for uncertainty quantification,
whereby stochasticity is induced from the ensemble inference for the former and
from multiple inference runs with dropout for the latter. ERNN introduces a
novel Evidence Reconciled Block in place of the conventional Softmax normal-
ization at the output of the ResNet-18 encoders. FSEB incorporates function
and parameter space regularization into the training of ResNet-18 encoders.

4 Results and Discussions

Qualitative analysis. To illustrate the quality of our embedding, we investi-
gate the embedding representation quality of our method with the Two Moons
dataset [15]. Figure 2 shows the uncertainty heat maps of the conventional ViT-
B, deep ensembles, and our method trained on this dataset. Our method embeds
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uncertainty following the expectation that the model’s uncertainty increases with
increasing distance from the trained data points. While deep ensembles improve
the uncertainty-awareness of the model in comparison to the ViT-B, the model
still possesses low uncertainty at regions far away from the trained data points.

(a) ViT-B (b) Deep Ensembles (¢) Our method

Fig.2: The uncertainty heat map plots of the conventional ViT-B, deep ensem-
bles, and our method on the Two-Moons dataset. The blue regions denote higher
uncertainty, while yellow regions depict lower uncertainty.

In-Distribution (IND) and Out-Of-Distribution (OOD) performance.
We trained the networks to an equivalent predictive performance and investi-
gated their corresponding in-distribution calibration and out-of-distribution per-
formance. For a fair comparison, we picked the predictive performance threshold
of 75% top-1 accuracy, considering the compute requirements and specific hy-
perparameters required for the differing networks and baseline methods to reach
their potential maximum accuracy values. We summarize our findings in Table 1.
Our method achieves superior selective accuracy and calibration metrics values,
showcasing the benefit of explicitly imparting uncertainty during training to the
model’s capability to reject predictions with higher estimated uncertainty. Our
method also outperforms the other baseline methods in the OOD detection tasks
for both datasets, emphasizing the significance of incorporating stochasticity and
distance-awareness into ViTs.

Table 1: Results of In-Distribution predictive performance and calibration error
for the ISIC2019 dataset. The best score for each metric is shown in bold.
Sel. acc. () NLL(J) ECE(/) OOD AUROC (1)

ViT-B 90.32210.010 0.83410.003 0.106+0.003 61.2710.33
Ensembles ViT-B  90.82540.015 0.755+0.002  0.0984+0.002 62.37+0.27
MC-Dropout 89.501+0.013 0.760+0.002  0.100+0.003 60.2340.31
ERNN 90.579i0,014 1.328i0002 0.450i0.002 61.78io_19
FSEB 88.021+0.010 0.905+0.001  0.115+0.002 59.3240.23

Our method 90.97610.012 0.72410.001 0.09310.001 63.52.10.25
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Few-Shot Learning. To evaluate few-shot learning performance, we trained
the models with 1% and 10% of the available training data, thereby emulating
possible real-life scenarios of training data scarcity. The predictive and confidence
calibration results from Table 2 highlight the enhanced training robustness of
our method in the low data regime.

Table 2: Results of In-Distribution predictive performance and calibration error
for few-shot learning with 1% and 10% of the ISIC2019 training data available.
The best score for each metric is shown in bold.

1% training data 10% training data
Sel. Acc. ECE NLL Sel.Acc ECE NLL

ViT-B 70.383+0.032 0.061+0.007 1.317+0.006 82.990+0.012 0.076+0.003 0.9361+0.003
Ensembles 71.297+0.021 0.0514+0.003 1.246+0.003 83.058+0.005 0.060+0.002 0.922+0.002
Ours 73.14610.025 0.056i04005 1-193i0.004 83.196i0,010 0-052i0.002 0.9174+0.002

Ablation study. We performed experiments with varying stochasticity degrees,
incorporating combinations of: Gaussian Embedding(GE), FID-Attention(FID-
A), and FID-Regularization(FID-R) into the conventional ViT-B. The results in
Table 4 highlight the importance of the combinations of the three components
to the training procedure of ViTs. Furthermore, we investigated the influence
of the FID regularization coefficients A\; and As. Our findings in Table 3 show
that the optimal regularization rate hyperparameter combinations ensure the
balance of the deterministic main learning objective and the uncertainty-aware
regularization effect.

Table 3: Performance of our stochas- Table 4: Performance of our
tic transformers with differing FID stochastic transformer with varying
regularization parameters. stochasticity level.

A1 )2 Sel. Acc.(t) ECE (])  GE FID-A FID-R Sel. Acc.(1) ECE (/)

le7! 1e72  90.976 0.093 - - - 90.322 0.106
le ! 17! 85.724 0.090 v - - 90.283 0.104
le=2 1e72  90.655 0.095 v Y - 90.107 0.103
le™® 1le™*  90.283 0.097 v - v 85.502 0.108
le7® 1e7° 90.115 0.101 v v 90.976 0.093

5 Conclusion

In this paper, we introduced a novel stochastic ViT with stochastic Gaussian
embeddings and the associated FID-based attention mechanism, propagating
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uncertainty and diverse embedding representations throughout the whole archi-
tecture. We incorporated the FID-based regularization term to imbue distance-
and uncertainty-awareness into the learning process, thereby encouraging robust
performance. Our findings from the in-distribution calibration, OOD detection,
and few-shot learning studies reveal the potential of our stochastic ViT imple-
mentation by providing reliable downstream performance in safety-critical do-
mains such as biomedical imaging diagnosis.In the future we will explore further
possibilities to optimize the stochastic learning process with other distributional
distance metrics and other possible embedding distributions.
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