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Abstract

Large language models (LLMs) can handle001
multilingual and cross-lingual text within a sin-002
gle input; however, previous works leveraging003
multilingualism in LLMs primarily focus on004
using English as the pivot language to enhance005
language understanding and reasoning. Given006
that multiple languages are a compensation for007
the losses caused by a single language’s lim-008
itations, it’s a natural next step to enrich the009
model’s learning context through the integra-010
tion of the original input with its multiple trans-011
lations. In this paper, we start by revealing012
that LLMs learn from Parallel Multilingual013
Input (PMI). Our comprehensive evaluation014
shows that PMI enhances the model’s compre-015
hension of the input, achieving superior perfor-016
mance than conventional in-context learning017
(ICL). Furthermore, to explore how multilin-018
gual processing affects prediction, we examine019
the activated neurons in LLMs. Surprisingly,020
involving more languages in the input activates021
fewer neurons, leading to more focused and022
effective neural activation patterns. Also, this023
neural reaction coincidently mirrors the neuro-024
science insight about synaptic pruning, high-025
lighting a similarity between artificial and bio-026
logical ‘brains’.027

1 Introduction028

Many of the recent large language models (LLMs)029

are multilingual. Unlike language-specific NLP030

systems, such as machine translation systems spe-031

cialized to a given language pair, these models032

are generally trained on large-scale multilingual033

datasets, using a unified vocabulary. Because of034

this training approach, it is possible to learn a uni-035

versal representation of texts across different lan-036

guages. Therefore, the resulting models can be di-037

rectly applied to a variety of multilingual and cross-038

lingual tasks. For example, most commercialized039

LLMs can respond to user queries in different lan-040

guages, without needing to specify what languages041
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Figure 1: Comparing the effectiveness of our PMI
versus direct and pivot translation on the Qwen-14B
model and the FLORES-200 dataset. We also provide
the results of ChatGPT in Table 1.

are used. More recently, the multilingual capabili- 042

ties of these models have been shown to help cross- 043

lingual in-context learning (ICL). By providing 044

simple prompts involving cross-lingual thinking 045

and reasoning, LLMs can understand and generate 046

text in languages that were less represented in the 047

training data (Qin et al., 2023; Huang et al., 2023; 048

Zhang et al., 2023; Nguyen et al., 2023). 049

Despite the apparent usefulness of multilingual- 050

ism in LLMs, previous work has primarily focused 051

on using English as the pivot language in language 052

understanding and reasoning. It is a natural next 053

step to incorporate more languages and investigate 054

how these languages are simultaneously processed 055

in LLMs. In this paper we explore methods that 056

make use of parallel multilingual input (PMI) in 057

ICL and explain how neurons are activated in this 058

processing. There are two major findings. 059

• LLMs can benefit from receiving parallel in- 060

put in multiple languages. By transforming 061

single-language input into multi-language in- 062

put, we build a multi-source LLM that uses 063

contexts from all these languages to make pre- 064

dictions. On the FLORES-200 machine trans- 065

lation benchmark, it achieves improvements 066

of 11.3 BLEU points and 1.52 COMET points 067

over the baseline. 068
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• Somewhat surprisingly, as more languages are069

involved in the input, fewer neurons are acti-070

vated in the LLMs, facilitating more targeted071

and effective neuron activation patterns. This072

result links multilingual representation learn-073

ing to synaptic pruning in neuroscience (Hut-074

tenlocher et al., 1979; Huttenlocher, 1990): as075

a brain develops, some neural connections are076

strengthened, while others are deemed redun-077

dant and eliminated, making the transmission078

of neural signals more efficient.079

More specifically, we find that in addition to080

the performance improvements from incorporating081

more languages, LLMs can gain advantages from082

extensive languages even involving ones that do not083

surpass baseline performances. With the help of084

high-quality machine translation, we efficiently ac-085

quire abundant parallel input, enabling us to apply086

this method to various tasks. Experimental results087

across 7 datasets, 7 languages, and 9 LLMs further088

demonstrate the effectiveness and applicability of089

PMI.090

Since previous neuron activation statistics are091

primarily designed for the vanilla transformer092

model (Zhang et al., 2022; Li et al., 2023), we093

have extended these methods to analyze more ad-094

vanced LLM architectures. When LLMs receive095

PMI, we observe simultaneous performance im-096

provements and neuron inhibition. In addition,097

PMI selectively activates only a small portion of the098

most commonly used neurons while inhibiting the099

rest. Further analysis reveals that few-shot learn-100

ing produces a similar effect on neuron activation,101

and integrating it with PMI enhances this neural102

reaction. These findings are consistently sustained103

across different models and tasks.104

We introduce our PMI and evaluate it with hu-105

man translation in Section 2.1. Subsequently, we106

comprehensively analyze the performance gains107

brought by PMI in Section 2.2 and explain its effec-108

tiveness from a view of neuron activation in Section109

3. Moreover, we apply PMI to various tasks under110

real scenario setups in Section 4.111

2 Parallel Multilingual Input112

2.1 LLMs benefit from PMI113

Given an input X of a task and a template f(·) to114

transform the input to an instruction, the conven-115

tional ICL can be expressed as follows:116

Y = argmax P (yt|f(X)) (1)117

Activated Neuron Inhibited Neuron

Translate into English.
German: Die Ware hat unter 20 Euro gekostet.
English:

Translate into English.
German: Die Ware hat unter 20 Euro gekostet.
Russian: Товар стоил менее 20 евро.
French: La marchandise a coûté moins de 20 euros.
Ukrainian: Ціна цього товару становить менше 
20 євро.
Italian: Questo articolo costa meno di 20 euro.
Spanish: La mercancía costó menos de 20 euros.
English:

Conventional In-Context Learning:

PMI:

Figure 2: Compared to conventional ICL, PMI inhibits
neurons and promotes more precise activation (i.e., the
thickened line). Other prompts are shown in Table 20.

where Y denotes the target output of the task and 118

yt denotes the token generated at moment t. PMI 119

extends beyond the conventional ICL approach of 120

feeding LLMs solely with inputs in one language. 121

Instead, it encompasses providing input in multiple 122

languages, translated by professional human trans- 123

lators or sophisticated machine translation (MT) 124

systems. The PMI can be shown as: 125

Y = argmax P (yt|f(M,X)) (2) 126

where M = {m1,m2, ...,mk} is a parallel lan- 127

guage set containing k translations of the input. 128

The template f(·) we used is neutral for both the 129

input X and its translations M, making LLMs can- 130

not distinguish them. Figure 2 shows the difference 131

between the conventional ICL and our PMI when 132

translating De → En. 133

Three aspects should be considered when con- 134

structing a PMI prompt, including the choice of 135

languages, the choice of translators, and the dis- 136

play order of languages. As shown in Appendix 137

D.1, our preliminary experiments suggest that: (1) 138

choosing the language that LLMs understand better 139

is crucial; (2) higher translation quality can lead to 140

larger improvements; (3) it is preferable to place 141

languages better understood at head and tail of the 142

input sequence. 143

Experimental Settings. We conducted trans- 144

lation experiments on the FLORES-200 which 145

allowed us to probe the upper bound of the 146

performance by constructing PMI using human- 147

translated parallel sentences. Direct and pivot 148

translation were our baselines. We utilized 149

two powerful multilingual LLMs, including 150

ChatGPT (gpt-3.5-turbo-0613) and Qwen-14B 151
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Method Input
ChatGPT Qwen-14B

BLEU COMET BLEU COMET
German → English

Direct De 44.3 89.8 45.2 89.5

Pivot Fr 45.6 89.6 47.2 89.6
Ru 35.2 87.0 37.1 86.9

PMI-1 De + Ru 46.2 90.0 47.9 90.0
PMI-3 De + Ru + Fr + Uk 49.2 90.4 56.2 90.9
PMI-5 De + Ru + Fr + Uk + It + Es 50.2 90.6 56.5 91.0

English → German
Direct En 40.5 88.8 35.0 87.2

Pivot Fr 30.4 86.5 25.9 84.7
Ru 25.8 85.2 22.6 83.4

PMI-1 En + Ru 40.1 88.8 34.4 87.2
PMI-3 En + Ru + Fr + Uk 40.3 88.8 34.8 87.4
PMI-5 En + Ru + Fr + Uk + It + Es 40.5 88.9 34.6 87.5

German → French
Direct De 37.2 86.2 35.2 85.3

Pivot Ro 39.6 87.4 37.2 86.2
Ru 29.5 84.0 30.7 83.6

PMI-1 De + Ru 39.3 86.7 36.6 85.7
PMI-3 De + Ru + Ro + Uk 41.4 87.1 40.7 86.5
PMI-5 De + Ru + Ro + Uk + It + Es 42.4 87.3 42.3 86.9

Table 1: Experiments of PMI, direct and pivot transla-
tion on the FLORES-200. We provide k parallel lan-
guages denoted as PMI-k. Pivot row reports the best
performance among all pivot translations in the first line
and the performance of Russian in the second line.

(Qwen-14B-Chat) (Bai et al., 2023) 1. ChatGPT152

was prompted with one-shot for baseline and153

PMI prompts. While Qwen-14B exhibited con-154

fusion when processing PMI prompts, so we made155

some instruction training data of PMI and baseline156

prompts, and employed the LoRA technique (Hu157

et al., 2022) to fine-tune Qwen-14B. More details158

can be found in Appendix E. The translation per-159

formance was evaluated in terms of SacreBLEU160

(Post, 2018) and COMET-22 (wmt22-comet-da)161

(Rei et al., 2022).162

Results and Analyses. Table 1 delineates the163

performance of direct translation (Direct), pivot164

translation (Pivot), and PMI in three translation165

directions. We see, first of all, PMI achieves the166

best result among all the baselines especially when167

more parallel languages are used. Despite that the168

COMET score of some baselines reaches as high as169

90, PMI still beats both direct and pivot translation170

with significant improvements. Furthermore, we171

find that PMI even benefits from parallel languages172

which perform worse than direct translation. For173

example, integrating Russian into PMI achieves bet-174

ter performance than the baseline. Besides, when175

English becomes the original input, PMI leads to176

a small performance increase. We attribute this to177

the fact that LLMs have shown great success in178

1We also tried Bloomz (Muennighoff et al., 2023), how-
ever, compared to the performance on WMT, it showed deviant
high performance on FLORES-200 indicating a data leakage,
which is also reported by Zhu et al. (2023).

understanding English input, leaving little room for 179

improvement. 180

2.2 Multiple Languages or Information 181

Sources? 182

Due to the parallel languages being translated by 183

numerous human experts in the above experiments, 184

one may argue that the improvement of PMI results 185

from multiple information sources rather than lan- 186

guages. Specifically, multiple information sources 187

can bring different perspectives of the original in- 188

put, and translating inputs derived from human 189

experts is like doing ensemble learning based on 190

various strong translation systems. To separately 191

quantify the effects of multiple languages and infor- 192

mation sources, we decompose the PMI based on 193

the human translations (PMIGT ) into three prompt- 194

ing strategies: 195

• Mono-source and monolingual: The origi- 196

nal input is paraphrased into different versions 197

without changing the semantics. We denote 198

this prompt as PMIPA. 199

• Multi-source but monolingual: The human 200

translation texts used in PMI are translated 201

into the language of the original input by one 202

translator. This prompt integrates different 203

information sources but expresses in one lan- 204

guage, e.g., we provide “De + De (Ru) + De 205

(Fr) + De (Uk) + De (It) + De (Es)” to LLMs 206

where the language in parentheses represents 207

the human translation text. We call it PMIMS . 208

• Multilingual but mono-source: The original 209

input is translated into different parallel lan- 210

guages by one translator. The source of this 211

prompt is only the original input whereas the 212

expression holds a multilingual form, like “De 213

+ Ru (De) + Fr (De) + Uk (De) + It (De) + Es 214

(De)”, which is represented by PMIML. We 215

also illustrate these prompts in Figure 6. 216

Experimental Settings. With access to Qwen- 217

14B, ChatGPT and GPT-4 (gpt-4-0613), we con- 218

ducted experiments on two translation directions 219

of FLORES-200. The translation system used by 220

both PMIMS and PMIML prompt was the NLLB- 221

54B model (Costa-jussà et al., 2022). We derived 222

the paraphrased sentences by requesting ChatGPT. 223

Notably, Qwen-14B used in this experiment is dif- 224

ferent from the one in the previous experiment, as 225

we have to fine-tune Qwen-14B with extra training 226

data based on the PMIMS prompt for fairness. 227
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Figure 3: The impact of ReLU-like activation functions on neurons during the forward process of transformer
models. Figure (a) shows that activation function σ(·) like ReLU and some of its variants, when encountering
negative inputs, saturate to zero and weaken the values multiplied by their outputs. Figure (b) details the equivalence
between artificial neurons and the linear-transform matrix of MLPs. Figure (c) illustrates that ReLU-like activation
functions inhibit neurons in Wup and some weights of Wdown when the input is negative.

System BLEU COMET BLEU COMET
Direction De → En De → Fr

ChatGPT

Direct 44.3 89.8 37.2 86.2
PMIPA 36.4↓7.9 88.6↓1.1 34.8↓2.4 85.5↓0.7

PMIMS 42.6↓1.7 89.4↓0.3 37.1↓0.1 86.0↓0.2

PMIML 44.1↓0.2 89.7↓0.1 39.7↑2.5 86.6↑0.4

PMIGT 50.2 90.6 42.4 87.3

Qwen-14b

Direct 45.5 89.6 35.4 85.4
PMIPA 40.4↓5.1 89.0↓0.6 31.8↓3.6 84.6↓0.8

PMIMS 46.6↑1.1 90.0↑0.4 36.5↑1.1 86.1↑0.7

PMIML 44.9↓0.6 89.6↑0.0 37.6↑2.2 86.0↑0.6

PMIGT 56.3 91.1 42.8 87.0

GPT-4

Direct 44.9 89.9 39.0 86.5
PMIMS 43.6↓1.3 89.8↓0.1 39.6↑0.6 87.0↑0.5

PMIML 45.4↑0.5 89.7↓0.1 40.1↑1.1 86.8↑0.2

PMIGT 52.9 90.9 45.9 88.1

Table 2: The ablation study of the mono-source and
monolingual (PMIPA), multi-source but monolingual
(PMIMS), multilingual but mono-source (PMIML),
multi-source and multilingual (PMIGT ) prompts on the
FLORES-200. The best results are in bold among all
the prompts except for PMIGT .

Results and Analyses. From Table 2, we can see228

that both PMIMS and PMIML prompt achieve im-229

provement most of the time, while none of them230

can reach the same performance as the PMIGT231

prompt. In addition, the PMIML prompt far outper-232

forms the PMIPA prompt, which demonstrates that233

multilingual input helps LLMs again. Also, we see234

that despite the similar baseline performance, GPT-235

4 always outperforms ChatGPT significantly when236

being armed with PMI, suggesting that stronger237

LLMs benefit more from the PMI.238

3 PMI Can Help: From a View of Neuron239

Activation240

Although LLMs benefit from PMI, there is still241

no idea about how this mechanism works. Con-242

sidering that knowledge is memorized in different 243

neurons in transformer models (Dai et al., 2022), 244

hence a straightforward hypothesis is that giving 245

the input in multiple languages may increase the 246

number of activated neurons in the inference pro- 247

cess. To quantify how many neurons in transformer 248

models are activated during inference, some works 249

propose to make statistics of the nonzero values in 250

the intermediate output of multi-layer perceptrons 251

(MLPs) after a ReLU activation function (Zhang 252

et al., 2022; Li et al., 2023). This is based on the 253

idea that, in matrix multiplication, zero can be omit- 254

ted; therefore, neurons that output zero are consid- 255

ered inhibited while others are activated. Next, we 256

will explain this statistical method. 257

3.1 Method of Counting Activated Neurons 258

ReLU controls the life and death of neurons. 259

In transformer models, the activation function σ(·) 260

lays in the middle of the two-layer MLPs, like this: 261

Y = σ (XWup)Wdown (3) 262

where X and Y stand for input and output, respec- 263

tively. Wup and Wdown represent different MLP 264

layers containing artificial neurons. The vanilla 265

transformer uses ReLU as the activation function 266

(Vaswani et al., 2017), i.e., max(x, 0). In Fig- 267

ure 3 (b) and (c), ReLU outputs zero value means 268

two aspects: the neuron in Wup is inhibited and 269

stripped from the whole neural network; the weight 270

in Wdown that accepts the zero value is inhibited. 271

Counting activated neurons in MLPs with ReLU 272

variants. Despite the success of ReLU, recent 273

works find that making a ReLU-like non-linearity 274
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Figure 4: The COMET score and the activation proportion of Qwen-14B armed with different prompts on FLORES-
200. Notably, whether a method inhibits or activates neurons depends on its activation proportion being below
or above the baseline level. Thus, a point on the curves suggests inhibition ⃝ if it falls below the first point, and
activation △ if it exceeds the first point. ∗ and † indicates the model used in Section 2.1 and 2.2, respectively.
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Figure 5: The distribution of the top 1% of activated
neurons in Qwen-14B on FLORES-200 De → En. The
horizontal axis represents different neurons arranged in
descending order of the number of times being activated.

to output negative values can increase training275

speed (Clevert et al., 2016; Hendrycks and Gimpel,276

2016). Hence, as shown in Table 8, these variants277

of ReLU become popular among LLMs. We draw278

ReLU, GELU and SiLU in Figure 3 (a). We see de-279

spite both GELU and SiLU performing as smooth280

ReLU, they remain the basic character, i.e., saturat-281

ing to zero at negative input values and protecting282

positive input values. In other words, these ReLU283

variants significantly reduce the absolute value of284

any negative input to a level that is close to or equal285

to zero. As a result, some neurons and weights286

are inhibited as before. This motivates us to make287

statistics of activated neurons in MLPs with ReLU288

variants by counting the output values of the acti-289

vation function that are greater than zero.290

Other works combine GELU and SiLU with the291

gated linear units (Shazeer, 2020) like this:292

Y = (σ (XWup)⊙ (XVup))Wdown (4)293

where ⊙ is the element-wise product and a new294

matrix Vup is introduced to perform the gate. If we295

transform the formula into this:296

Y = σ (XWup)
(
XVup ⊙Wdown

⊤
)⊤

(5)297

then we can consider XVup⊙Wdown
⊤ as a whole,298

and both inhibiting neurons and weights happen as299

before. Thus, our statistical method of activated 300

neurons remains unchanged. 301

3.2 Experiments and Results 302

Figure 4 shows performances and the proportion 303

of activated neurons2 on Qwen-14B models. From 304

the results, we get the following observations: 305

Activated neurons are far fewer than inhib- 306

ited ones. Despite performing dense computa- 307

tions, only a small number of neurons around 27% 308

are activated in Qwen-14B during the inference 309

stage, which is similar to the sparse activation phe- 310

nomenon observed by Li et al. (2023). Besides, the 311

differences in the proportion of activated neurons 312

are small in numerical terms, we attribute this to 313

the finding that few parameters are in charge of 314

linguistic competence in LLMs (Zhao et al., 2023). 315

More languages, more inhibited neurons, more 316

performance gain. As shown in Figure 4 (a) and 317

(b), if we add more parallel languages in PMI, then 318

the proportion of activated neurons becomes small 319

meanwhile LLM yields better translations, indi- 320

cating a consistent correlation between inhibiting 321

neurons and performance improvements. 322

Multilingual input inhibits neurons whereas 323

monolingual input activates neurons. Figure 324

4 (c) and (d) show the proportion of activated neu- 325

rons caused by monolingual and multilingual input. 326

We see that, compared to direct translation, though 327

monolingual and multilingual input can achieve bet- 328

ter performance, their influence on neurons is the 329

opposite, i.e., monolingual input activates neurons 330

whereas multilingual input inhibits neurons. More- 331

2Note that the proportion mentioned is derived by aver-
aging the percentages of activated neurons for each token
generated by an LLM across the dataset. We discuss this
implementation in detail in Appendix B.
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System BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Direction De → En Zh → En De → Fr En → De En → Zh Is → En

Parallel Languages Es Ru Fr Zh Ja Cs Es Ru Fr Ja Cs De En Ru Es Zh It Cs Es Ru Fr Zh Ja Cs Es Ru Fr Ja Cs De Es Ru Fr It Cs De

ChatGPT∗

Direct 29.8 82.7 24.7 81.9 38.6 84.1 34.5 87.2 43.8 87.2 35.6 84.5
Pivot 28.5 84.0 21.6 81.9 40.4 84.0 30.0 86.4 40.3 86.0 35.0 85.6
PMI-1 32.4 85.3 24.6 82.8 40.9 84.5 34.0 87.3 41.8 86.5 38.0 86.4
PMI-3 32.1 85.4 23.4 82.6 41.1 84.5 34.5 87.5 41.7 86.9 38.2 86.6
PMI-6 31.6 85.5 18.6 82.4 41.3 84.5 34.5 87.6 41.7 86.9 38.5 86.7

LLaMA3-8B∗

Direct 30.4 84.0 21.4 80.2 29.2 79.8 27.3 83.2 35.8 83.7 22.1 76.7
Pivot 27.4 83.4 21.3 81.4 31.7 80.8 22.8 81.8 29.3 81.7 31.0 84.6
PMI-1 30.3 85.0 23.2 82.1 33.4 81.5 26.1 83.4 32.5 82.8 34.7 85.2
PMI-3 30.1 85.1 23.4 82.4 33.9 82.3 27.4 84.6 35.1 83.5 36.6 86.0
PMI-6 29.9 85.1 24.1 82.7 34.5 82.5 27.3 84.9 34.1 84.1 36.0 85.8

Qwen-14B†

Direct 30.4 84.4 23.7 80.8 34.2 81.9 29.6 85.3 45.2 87.6 18.4 69.7
Pivot 28.2 84.0 22.4 81.8 37.4 82.7 26.9 84.7 41.2 86.3 34.1 85.4
PMI-1 31.3 84.8 24.3 82.0 38.0 83.1 29.7 85.4 45.1 87.6 35.6 85.1
PMI-3 31.6 84.9 23.5 82.0 37.7 83.4 30.0 85.8 44.9 87.6 37.2 85.6
PMI-6 31.0 84.9 22.0 81.3 38.4 83.4 29.9 85.5 45.2 87.6 37.9 85.7

ALMA-13B†

Direct 28.1 83.8 21.6 79.6 27.1 79.2 29.6 85.5 36.9 85.8 34.0 85.8
Pivot 26.0 83.3 21.7 81.2 29.9 80.3 26.4 84.8 32.3 84.6 32.7 85.2
PMI-1 29.9 84.6 23.8 81.8 31.1 80.8 29.7 85.3 36.9 85.9 37.0 86.3
PMI-3 30.8 85.0 22.9 81.8 33.3 81.5 29.9 86.0 36.9 86.0 38.3 86.5
PMI-6 30.0 84.9 18.1 79.5 33.3 81.5 29.9 85.9 37.2 86.0 38.2 86.3

mT0-13B∗

Direct 25.1 82.2 13.7 76.2 27.9 78.5 17.6 77.3 26.0 83.1 29.9 83.9
Pivot 24.5 82.5 19.3 80.7 30.5 80.0 17.4 78.5 23.8 82.1 30.8 84.6
PMI-1 27.0 83.4 18.3 79.9 29.9 79.4 17.4 76.5 25.5 82.4 33.0 84.9
PMI-3 27.6 83.5 19.6 80.7 32.4 80.4 16.0 74.4 27.5 82.9 33.8 85.4
PMI-6 26.8 83.3 19.5 80.5 32.2 80.4 15.5 74.5 28.5 83.3 33.9 85.3

Bloomz-176B∗

Direct 24.0 78.4 16.0 76.4 27.3 77.1 13.0 70.7 29.5 83.9 5.6 53.8
Pivot 25.0 82.8 20.8 81.3 34.6 82.1 9.5 66.2 27.6 82.6 31.5 84.6
PMI-1 25.4 80.7 17.3 77.6 33.1 80.4 11.9 70.0 28.0 82.4 23.5 75.8
PMI-3 28.2 83.9 21.1 81.2 35.7 82.2 16.0 73.9 31.7 83.8 31.8 83.7
PMI-6 28.3 83.8 21.7 81.4 36.6 82.9 15.0 73.5 32.4 84.7 34.0 84.2

Table 3: Experiments on the WMT dataset. Note that the pivot row displays the maximum scores among all pivot
prompts, and the order of the parallel languages indicates the priority when being integrated into PMI-k prompts. †
and ∗ represent the model is fine-tuned or not respectively.

over, PMIGT inhibits more neurons than PMIML332

and PMIMS activates more neurons than PMIPA.333

PMI simulates one-off synaptic pruning. Dur-334

ing the maturation of biological brains, synaptic335

pruning is a necessary process that removes less336

commonly used neural connections, thus making337

frequently-used neural pathways more powerful338

and efficient (Huttenlocher et al., 1979; Hutten-339

locher, 1990). In other words, the brain benefits340

from little and precise neuron activation. We show341

that PMI simulates one-off synaptic pruning during342

the inference from two aspects: (1) as demonstrated343

above, PMI inhibits neurons; (2) PMI promotes344

more precise neuron activation. Figure 5 records345

the activation state of the most commonly used346

neurons. It shows that compared to the baseline347

prompt, PMI promotes the activation of the top348

1% of neurons commonly used. Meanwhile, other349

neurons rarely used are activated fewer times to350

achieve an overall effect of inhibition, as shown351

in Figure 7. This indicates that more targeted and352

effective neuron activation patterns—where some353

important neurons are activated more while others354

less often—could be facilitated by PMI. Notably, 355

as more languages are used, both neuron inhibition 356

and precise activation are enhanced, potentially 357

leading to more remarkable synaptic pruning. 358

4 Wide Evaluation of PMI Without 359

Human Translations 360

Next, we focus on evaluating PMI method without 361

human translation across sentence and paragraph 362

levels, natural language understanding (NLU), and 363

generation (NLG) tasks. 364

4.1 Tasks and Evaluation 365

We totally evaluated PMI on five tasks. (1) Ma- 366

chine Translation: We conducted experiments 367

on five high-resource directions of WMT22 and 368

one low-resource direction of WMT21. (2) Na- 369

ture Language Inference: We chose RTE (Wang 370

et al., 2019) and three languages in XNLI (Con- 371

neau et al., 2018). The metric was accuracy. (3) 372

Reading Comprehension: We did evaluation on 373

this long sequence task using BoolQ3 (Clark et al., 374

3This dataset is also leaked to Bloomz-176B.
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System
Accuracy

RTE XNLI BoolQ
Source Language En Fr De Zh En

Parallel Languages Es Fr De Es Ru De Es Ru Fr Es Fr De Es

Qwen-7B†
Direct 91.3 79.9 76.7 78.2 86.0
Pivot 86.6 78.9 80.2 74.2 83.3
PMI 91.7 80.7 80.6 80.7 86.7

Qwen-14B†
Direct 91.3 81.5 78.2 80.6 88.5
Pivot 90.6 80.5 79.8 74.2 86.0
PMI 92.4 81.6 80.7 80.7 89.0

Qwen-72B†
Direct 91.7 86.4 84.4 84.6 91.2
Pivot 92.4 85.8 85.5 80.6 89.1
PMI 92.4 86.4 85.6 84.6 91.9

ALMA-13B†
Direct 89.5 82.1 79.3 77.5 86.5
Pivot 84.5 82.0 80.8 75.9 81.1
PMI 90.3 83.8 81.9 78.8 87.4

Yi-34B†
Direct 92.1 70.0 66.8 72.0 89.6
Pivot 85.9 71.5 72.6 68.1 86.8
PMI 93.1 73.1 73.7 72.6 90.2

Bloomz-176B∗
Direct 76.5 53.9 50.5 53.9 -
Pivot 77.6 53.1 53.3 53.7 -
PMI 82.0 57.3 52.5 54.9 -

Table 4: Experiments on NLU tasks. We apply PMI-
3 across all tasks, with the exception of the reading
comprehension task, for which we apply PMI-1.

2019). Our metric was accuracy. (4) Text Simpli-375

fication: We used Wiki-auto (Jiang et al., 2020),376

and SARI (Alva-Manchego et al., 2020) was cho-377

sen as the metric. (5) Abstractive Summariza-378

tion: For this paragraph-level task, we mainly re-379

ported the performance on two languages in XL-380

Sum (Hasan et al., 2021). The metric was F1-381

Rouge (Lin, 2004). To streamline computation,382

we reconstructed our test set by randomly selecting383

1000 samples from BoolQ, Wiki-auto, and XLSum,384

along with 3000 samples from XNLI, leaving other385

tasks unchanged.386

4.2 Models387

The experiment was conducted on 9 instruction-388

tuned commonly used multilingual LLMs whose389

parameters range from 7B to 176B, including Chat-390

GPT, LLaMA3-8B (AI@Meta, 2024), Bloomz-391

176B (Muennighoff et al., 2023), Qwen-7B, -14B,392

-72B (Bai et al., 2023), ALMA-13B (Xu et al.,393

2023), Yi-34B (01-ai, 2023) and mT0-13B (Scao394

et al., 2022). All of them are pre-trained with395

multilingual corpus except for ALMA-13B which396

is specially fine-tuned for the MT task based on397

LLaMA2-13B (Touvron et al., 2023). Other details398

about models, training, and decoding setups can be399

found in Appendix E.400

4.3 Baselines401

Direct Prompt means that given the original in-402

put, LLMs accomplish the task directly. Here, we403

report the results of one-shot on ChatGPT while404

zero-shot on others for the best performance.405

System
SARI R2 / RL

Wiki-Auto XLSum
Source Language En Es Ru

Parallel Languages Es Fr De Fr Es

Qwen-7B†
Direct 45.6 10.7 / 23.5 45.4 / 41.6
Pivot 43.2 9.4 / 22.7 41.1 / 38.6
PMI 47.6 11.0 / 23.6 45.3 / 41.1

Qwen-14B†
Direct 46.2 12.2 / 24.7 46.6 / 42.7
Pivot 43.8 9.0 / 21.4 40.2 / 38.3
PMI 48.9 12.7 / 25.4 47.9 / 43.1

ALMA-13B†
Direct 45.7 12.1 / 24.8 47.7 / 43.5
Pivot 43.2 10.4 / 22.9 44.3 / 41.2
PMI 47.5 11.5 / 24.5 47.7 / 43.9

Yi-34B†
Direct 45.4 11.8 / 24.6 45.4 / 41.5
Pivot 43.5 10.6 / 23.3 41.7 / 38.8
PMI 47.2 12.0 / 24.6 45.5 / 41.8

Table 5: Experiments on other NLG tasks. We employ
PMI-3 and PMI-1 for the text simplification and ab-
stractive summarization task respectively.

Pivot Prompt indicates that the original input 406

is translated into a parallel language, and LLMs 407

are fed with the translation to accomplish the task. 408

To ensure the high-quality of translations and the 409

reproducibility of our study, we utilized publicly 410

and easily accessible GPT-4 to translate the source 411

sentence of WMT and ChatGPT to translate other 412

datasets. We display the maximum scores of pivot 413

prompts, see Appendix F for full results. 414

4.4 Results and Analyses 415

PMI effectively pushes the boundaries across 416

various tasks and languages. Table 3 suggests 417

that PMI achieves superior results across 6 trans- 418

lation directions including high-resource and low- 419

resource source languages. Additionally, Tables 4 420

and 5 show PMI’s competitive edge against base- 421

lines in various tasks, irrespective of text length. 422

Furthermore, in Table 11, we see PMI outper- 423

forms few-shot learning, especially in terms of the 424

COMET score. 425

Weak model augments strong model. Table 6 426

shows that when we utilize parallel multilingual 427

translations from GPT-4 to augment a stronger 428

LLM like GPT-4o, the performance of GPT- 429

4o+PMI surpasses two exceptional baselines, in- 430

cluding GPT-4 and GPT-4o. It underscores the 431

necessity of using PMI instead of relying solely on 432

a remarkable MT system. Also, this demonstrates 433

that PMI still yields better performance when the 434

parallel translations come from a weak model, fur- 435

ther validating its effectiveness and practicality. 436

Automatic translation triggers learning from 437

PMI. Since the lack of high-quality human trans- 438

lation, all the translations used in experiments come 439
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System BLEU COMET BLEU COMET
Direction De → Fr Zh → En

GPT-4 39.0 84.3 23.2 81.6

GPT-4o Direct 39.2 83.1 23.1 82.4
PMI 42.5 84.8 23.6 82.4

Direction En → De En → Zh

GPT-4 35.5 87.2 42.5 86.4

GPT-4o Direct 36.8 87.5 44.5 87.6
PMI 36.3 88.0 45.5 87.7

Table 6: Experiments of GPT-4o on WMT. We report
the best performance among PMI-1, PMI-3, and PMI-6
in the PMI lines.

from GPT-4 or ChatGPT. We see, on the one hand,440

PMI powered by MT outperforms pivot prompts.441

Even though some pivot prompts have inferior per-442

formance than the direct prompt, integrating these443

languages into PMI still boosts the comprehension444

of LLMs. On the other hand, Figure 11 shows445

that PMI armed with MT achieves improvements446

by inhibiting neurons and promoting more precise447

activation.448

Few-shot learning performs similarly as PMI.449

Table 7 and Figure 7 suggest that few-shot learning450

also inhibits neurons and facilitates more precise451

activation, and combining few-shot learning and452

PMI further enhances this neuron reaction.453

Superiority of PMI remains when English is the454

original or parallel language. Despite the sub-455

tle improvements on FLORES-200 En → De in456

Section 2.1, results of RTE, BoolQ, and WMT De457

→ Fr show that PMI not only achieves prime per-458

formance on English-source inputs but also outper-459

forms all pivot prompts when we choose English460

as one of the parallel languages.461

We discuss the fine-tuning demands of PMI in462

Appendix D.3, self-augmentation in Appendix D.4,463

and the trade-off between the inference speed and464

improvements in Appendix D.5.465

5 Related Work466

Multi-way Neural Machine Translation. Multi-467

way input is a successful method to enhance mul-468

tilingual neural machine translation (MNMT) sys-469

tems by providing the source language and its trans-470

lations in different languages (Och and Ney, 2001).471

In the inference stage, most works rely on high-472

quality translations from human experts (Zoph and473

Knight, 2016; Firat et al., 2016; Nishimura et al.,474

2018; Choi et al., 2018). However, this ground475

truth multilingual data is scarce in reality, limiting476

the application of multi-way input. Different from477

Qwen-14B Bloomz-176B
XNLI (De) Wiki-Auto RTE

Direct PMI-3 Direct PMI-3 Direct PMI-3 5-shot 5-shot
+ PMI-3

Accuracy SARI Accuracy
78.2 80.7 46.2 49.0 76.5 82.0 80.1 81.2

Activation Proportion (%) Activation Proportion (%)
29.5 29.3 28.7 28.4 4.4 4.3 4.1 3.9

Table 7: The performance and activation proportion of
conventional ICL and PMI on NLU and NLG tasks.

multi-way MNMT, we find that LLMs benefit from 478

PMI even when parallel multilingual input is de- 479

rived from automatic MT systems, enabling us to 480

apply PMI on a wide range of tasks. 481

Statistics of Activated Neurons in Transformer 482

Models. Recently, statistics of activated neurons 483

in transformer models by counting nonzero values 484

in the output of ReLU is introduced by Zhang et al. 485

(2022). Moreover, Li et al. (2023) show that the 486

sparse activation of neurons is a ubiquitous phe- 487

nomenon. In this work, we extend the statistical 488

method to advanced transformer architectures. We 489

hope this effort can help deepen our insights into 490

the learning mechanism behind LLMs. 491

Cross-lingual In-context Learning. Several 492

works have investigated cross-lingual prompts 493

(Wang et al., 2023; Shi et al., 2023). One line of re- 494

search requests LLMs to address the input problem 495

in multiple languages orderly, then emphasizes self- 496

consistency by aligning results of these languages 497

to improve performance on reasoning tasks (Qin 498

et al., 2023). To augment LLMs’ performance with 499

multilingual input, other works encourage LLMs 500

to rephrase the input in English and then perform 501

step-by-step analysis, indeed turning English into 502

a pivot language (Huang et al., 2023; Zhang et al., 503

2023; Nguyen et al., 2023). Our work, in contrast, 504

explores the behavior of LLMs that learns from 505

parallel input in multiple languages simultaneously, 506

revealing a new ICL capability. 507

6 Conclusions 508

We reveal that LLMs can learn from parallel multi- 509

lingual input. Firstly, comprehensive experiments 510

across 7 typical datasets, 9 commonly used mul- 511

tilingual LLMs, and 7 languages demonstrate the 512

effectiveness and applicability of PMI. Secondly, 513

statistics of activated neurons indicate that PMI 514

optimizes performance by inhibiting neurons and 515

promoting more precise neuron activation, which 516

performs like one-off synaptic pruning. 517
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7 Limitations518

In fact, during the inference, LLMs will inevitably519

refer to the semantics of the translation in PMI520

to understand the input comprehensively. As a re-521

sult, though our extensive experiments have demon-522

strated that LLMs can benefit from PMI, the quality523

of translation will influence the final performance.524

On the other hand, we do not discuss the effect of525

cross-language such as code-switch multilingual526

prompts because it deviates from the intention of527

PMI, i.e., providing parallel input. However, it is528

still a potential direction and we leave it for future529

work.530
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De Ru Fr Uk It EsPMI𝐺𝑇 =

De De De De De DePMI𝑃𝐴 =

De

Paraphrase

De De De De De DePMI𝑀𝑆 =

De

PMI𝑀𝐿 =

De

Translate to different 

languages

De Ru Fr Uk It Es

Ru Fr Uk It Es

Translate to German

Figure 6: An illustration of different strategies for con-
structing parallel inputs in Section 2.2. Taking De → En
translation as an example, PMIGT consists of multilin-
gual human translations from several experts; PMIPA

is made up of monolingual sentences paraphrased from
the original German input; PMIMS is composed of Ger-
man translations where their source language texts are
from different experts; and PMIML includes multilin-
gual translations of the original German input derived
from a single translator.
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Figure 7: Distribution of all activated neurons in
Bloomz-176B on RTE. The horizontal axis of the figure
(a) represents different neurons arranged in descending
order of the number of times being activated, and the
horizontal axis of the figure (b) stands for the number
of transformer layers.

B More Details About Statistical Method 855

of Activated Neurons 856

Implementation of Counting Activated Neurons. 857

During the inference stage, each time LLMs calcu- 858

late the representation of a token including input 859

and output, the intermediate result of MLPs stands 860

for an activation state of neurons. It is essential to 861

note that we only make statistics of activated neu- 862

rons based on the intermediate result correspond- 863

ing to the output tokens. This implementation is 864

based on two concerns: (1) only the activation state 865

of neurons corresponding to the output tokens di- 866

rectly contributes to the model-generated results. 867

(2) since different prompting strategies differ in 868

the length of input significantly, if the statistics are 869

made based on both input and output tokens, then 870

the results will be disturbed by the factor of length 871

but not the actual impact of prompts, resulting in 872

misdirected conclusions. 873

Activation Functions Used in LLMs. Table 8 874

records some popular LLMs and the activation 875

functions they used. 876

C Supplementary Results About Neuron 877

Activation 878

In Figure 7 (a), we can see that: (1) in the inter- 879

val from 0 to 200000, the curves of PMI, few-shot 880

learning and their combination are above that of 881
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Activation Function Formula Model

ReLU max (x, 0) Vanilla Transformer
GELU 0.5x

(
1 + erf

(
x/

√
2
))

Bloom, Falcon
SiLU x/

(
1 + e−x

)
\

GEGLU GELU (XWup)⊙ (XVup) mT0
SwiGLU SiLU (XWup)⊙ (XVup) LLaMA, Qwen, ALMA, Yi

Table 8: The activation functions of some commonly used multilingual LLMs. In GELU, the erf(·) stands for the
Gauss Error Function. Note that our extended statistical method can be applied to all LLMs shown in this table.
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Figure 8: The distribution of the top 1% of activated
neurons in Bloomz-176B on RTE.

baseline (i.e., Direct), indicating that they activate882

top 200,000 commonly used neurons; (2) beyond883

the 200,000 mark, these curves are below the curve884

of baseline, demonstrating that these prompts per-885

form inhibiting other less used neurons. Further-886

more, in Figure 7 (b), we can see that the inhib-887

ited neurons concentrate in the back two-thirds of888

model layers. Figures 10 and 8 report the distribu-889

tion of the top 1% of activated neurons in Bloomz-890

176B where PMI shows a clear impact of activation891

on most commonly used neurons.892

To visualize the activation happening in each893

neuron, in Figure 9, we draw heat maps of Qwen-894

14B and Bloomz-176B when using the PMI-5 to895

translate De → En in the FLORES-200 and WMT896

dataset, respectively. It suggests that the neurons of897

Qwen-14B are more active while those of Bloomz-898

176B seem lazy and are activated fewer times. Fur-899

thermore, in each model, there are significant dif-900

ferences in the number of times being activated901

among different layers.902

In Figure 11, we also make statistics of activated903

neurons in Bloomz-176B and Qwen-14B during904

the inference on the WMT dataset.905

Table 9 shows the results of few-shot learning,906

which suggests that it also inhibits neurons and907

more neurons are inhibited after the LLM is fine-908

tuned.909

Method COMET AP COMET AP
Direction De → En De → Fr

w/o FT 0-shot 89.0 28.7 84.8 27.7
5-shot 89.3 28.5 85.0 27.6

w/ FT 0-shot 89.5 28.1 85.3 27.2
5-shot 89.3 27.8 84.9 27.1

Table 9: The translation performance and activation
proportion (AP) of zero-shot and few-shot on Qwen-
14B w/ or w/o fine-tuning (FT).

D More Analyses 910

D.1 Preliminary Experiments of Constructing 911

PMI 912

Choose the parallel language that LLMs can un- 913

derstand. We test the impact of selecting parallel 914

languages on the PMI-1 translating De → En of 915

the FLORES-200, where Zh, Fr, Uk, and It are 916

selected as the parallel languages. By comparing 917

the results of translating them to English, we exam- 918

ine the model’s understanding of these languages. 919

In Figure 12, experimental results show that PMI- 920

1 achieves better performance when the score of 921

pivot translation is high and returns worse results 922

when the score of pivot translation is low. This 923

suggests that choosing parallel languages that the 924

model comprehends better can bring more benefits 925

for PMI. 926

Provide the highest quality translations as far as 927

you can. Here, we utilize some translation sys- 928

tems with different performances to construct the 929

parallel input of PMI in various qualities, including 930

NLLB-1.3B, NLLB-54B, Qwen-14B, ChatGPT, 931

and GPT-4. Experiments are conducted on both 932

Qwen-14B and ChatGPT. In Figure 13, translation 933

systems are arranged in the ascending order of their 934

translation performance according to the curve, and 935

the results show that higher quality of translations 936

can result in larger improvements. 937

Place better understood language at the head 938

and tail of the input sequence. We test the per- 939

formance of PMI prompts with identical parallel 940

13



(a) Qwen-14B (b) Bloomz-176B

Figure 9: The heat maps of activated neurons in MLPs of Qwen-14B and Bloomz-176B when using the PMI-5
to translate De → En in the FLORES-200 and WMT dataset, respectively. The horizontal axis represents the
dimension of the middle outputs in MLPs (i.e., each neuron). The vertical axis represents the number of layers in
the model. And each element in the map stands for the number of times of was activated during the inference stage.
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Figure 10: The distribution of the top 1% of activated
neurons in Bloomz-176B on WMT22 De → En. The
horizontal axis represents different neurons arranged in
descending order of the number of times being activated.

Method Input COMET

Direct

De 89.5
Es 87.4
Ru 86.9
Zh 86.9

German → English

PMI-3
De + Zh + Ru + Es 90.5
De + Zh + Es + Ru 90.4
De + Ru + Es + Zh 90.3

Chinese → English

PMI-3
Zh + Ru + De + Es 90.3
Zh + Ru + Es + De 90.2
Zh + Es + De + Ru 90.0

Table 10: Examining the factor of language order for
PMI. The experiment is conducted on FLORES-200
and Qwen-14B.

texts but in different language order, and conduct941

experiments on De → En and Zh → En of the942

FLORES-200 using Qwen-14B. Results in Table943

10 show that an LLM yields superior results when944

German is placed at the beginning and Spanish is945

placed at the end. Considering German and Span-946

ish achieve higher score than other languages, we947

can infer that it is better to place the language better 948

understood by the model at both ends of the input 949

sequence. 950

D.2 Comparing the Performance Between 951

Few-shot Learning and PMI 952

To further evaluate the effectiveness of our PMI, 953

here we compare the results of PMI with those of 954

few-shot learning. Notably, since our fine-tuning 955

data is constructed by zero-shot instructions, which 956

hurts the performance of few-shot learning evalu- 957

ated on these fine-tuned models (Alves et al., 2023), 958

hence we conduct experiments of few-shot learn- 959

ing on original models, i.e., the officially released 960

weights without being fine-tuned. As shown in 961

Table 11, PMI also outperforms few-shot learning. 962

D.3 Effectiveness of PMI on more modern 963

LLMs 964

As LLMs develop further, we anticipate that more 965

and more LLMs will benefit from PMI in the future. 966

Here, we make experiments on Qwen1.5-14B, a 967

successor of Qwen-14B. The latter is fine-tuned 968

with PMI prompts in our paper, while the former is 969

the original official version. From Table 13, we can 970

see that Qwen1.5-14B responds to PMI prompts 971

without prior fine-tuning and exhibits performance 972

enhancements due to PMI. 973

D.4 Self-augmentation 974

In Table 14, we report the experimental results of 975

prompting Qwen-14B with PMI while the parallel 976

sentence pairs are translated by Qwen-14B itself. 977

Although the improvements resulting from PMI are 978
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Figure 11: The translation performance and the activation proportion of different prompts on WMT dataset. ∗ and †
stand for Bloomz-176B and Qwen-14B, respectively.

System BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Direction De → En Zh → En De → Fr En → De En → Zh Is → En

Parallel Languages Es Ru Fr Zh Ja Cs Es Ru Fr Ja Cs De En Ru Es Zh It Cs Es Ru Fr Zh Ja Cs Es Ru Fr Ja Cs De Es Ru Fr it Cs De

ChatGPT
Direct (1-shot) ∗ 29.8 82.7 24.7 81.9 38.6 84.1 34.5 87.2 43.8 87.2 35.6 84.5
Direct (5-shot) ∗ 32.9 85.6 25.4 82.6 40.5 84.5 34.7 87.4 44.4 87.4 37.9 85.9
PMI (5-shot) ∗ 32.8 85.7 24.9 82.9 41.5 84.7 34.8 87.6 45.1 87.3 39.3 86.7

Qwen-14B
Direct (0-shot) † 30.4 84.4 23.7 80.8 34.2 81.9 29.6 85.3 45.2 87.6 18.4 69.7
Direct (5-shot) ∗ 31.5 84.7 24.0 80.8 33.0 81.8 29.3 84.9 45.4 87.3 19.6 71.9
PMI (0-shot) † 31.6 84.9 24.3 82.0 38.4 83.4 30.0 85.8 45.1 87.6 37.9 85.7

ALMA-13B
Direct (0-shot) † 28.1 83.8 21.6 79.6 27.1 79.2 29.6 85.5 36.9 85.8 34.0 85.8
Paper Reported ∗ 30.7 84.4 24.7 79.9 - - 31.4 85.5 39.1 85.8 36.5 86.3
PMI (0-shot) † 30.8 85.0 23.8 81.8 33.3 81.5 29.9 86.0 36.9 86.0 38.3 86.5

Bloomz-176B
Direct (0-shot) ∗ 24.0 78.4 16.0 76.4 27.3 77.1 13.0 70.7 29.5 83.9 5.6 53.8
Direct (5-shot) ∗ 23.1 79.7 14.5 77.3 25.9 77.2 16.1 74.1 33.5 85.2 5.1 56.1
PMI (0-shot) ∗ 28.2 83.9 21.7 81.4 36.6 82.9 16.0 73.9 32.4 84.7 34.0 84.2

Table 11: Comparing the performance of few-shot and PMI. In fairness, the results of few-shot come from models
without fine-tuning, i.e., the official release. † and ∗ represent whether the prompt is fed to a model that has been
fine-tuned or not, respectively.
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Figure 12: Examining the factor of selecting parallel
languages for PMI. The experiment is conducted on
FLORES-200 De → En in PMI-1.
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Figure 13: Examining the factor of translation quality
for PMI. This experiment is conducted on FLORES-200
De → En in PMI-3. Each point on the red line represents
the average COMET score of translating German to
the three parallel languages by a translation system,
reflecting the different translation qualities of parallel
languages.
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Method Time Cost Increase
Rate (%) BLEU Increase

Rate (%)

Direct 189.4s - 45.2 -
PMI-1 249.7s 31.8 47.9 5.9
PMI-3 397.9s 110.1 56.2 24.3
PMI-5 507.3s 167.8 56.5 25.0

Table 12: The inference speed and performance gain of
PMI with different amount of parallel languages.

System BLEU COMET BLEU COMET
Direction De → En Zh → En

Direct 24.8 83.0 12.1 76.8
Pivot 23.4 83.4 17.2 80.7
PMI 25.2 84.4 17.0 81.1
Direction En → De En → Zh

Direct 22.9 81.5 36.1 85.9
Pivot 21.0 82.1 35.7 85.2
PMI 23.2 83.4 39.8 86.5

Table 13: Experiments of Qwen1.5-14B on the WMT
dataset.

System BLEU COMET BLEU COMET
Direction Zh → En De → Fr

Direct 23.7 80.8 34.2 81.9
Pivot 15.9 78.7 36.2 81.3
PMI 22.1 80.9 37.6 82.7
Direction En → De En → Zh

Direct 29.6 85.3 45.2 87.6
Pivot 25.8 83.5 39.7 86.2
PMI 29.6 85.5 45.4 87.7

Table 14: Augmenting Qwen-14B by the translations
from Qwen-14B itself on the WMT dataset.

not as large as those reported in Table 3, PMI still979

outperforms baselines, especially at the COMET980

score. This further demonstrates the applicability981

of PMI. We attribute the diminished performance982

gains to the lower quality of translations produced983

by Qwen-14B compared to those from GPT-4.984

D.5 Inference Speed985

Since the inference speed of LLMs inevitably slows986

down as the input sequence lengthens, we also987

focus on the trade-off between performance and988

inference speed when increasing the number of989

parallel languages in the PMI. Here, we conduct990

experiments on the FLORES-200 De → En and991

Qwen-14B model. Table 12 indicates that for every992

additional parallel language integrated into the PMI993

input, there is an approximate 30% increase of time994

cost, along with a 5% improvement of performance.995

Notably, when the number of parallel languages996

reaches three, the improvement can reach up to997

24.34%. Despite the increased inference cost, it is998

reasonable and acceptable considering the substan-999

System BLEU COMET BLEU COMET
Direction Fr → De Fr → Es

ChatGPT

Direct 30.4 86.5 25.3 86.3
PMIPA 26.0↓4.4 85.7↓0.8 24.7↓0.6 86.0↓0.3

PMIMS 30.0↓0.4 85.6↓0.9 26.1↑0.8 86.2↓0.1

PMIML 30.4↑0.0 86.3↓0.2 25.5↑0.2 86.3↑0.0

PMIGT 32.4 86.9 27.0 86.8

Qwen-14b

Direct 25.9 84.8 24.0 85.6
PMIPA 28.1↑2.2 86.0↑1.2 23.5↓0.5 85.5↓0.1

PMIMS 27.6↑1.7 85.5↑0.7 25.4↑1.4 86.0↑0.4

PMIML 26.8↑0.9 85.0↑0.2 24.1↑0.1 85.8↑0.2

PMIGT 29.6 86.0 27.3 86.4

GPT-4

Direct 30.4 86.5 25.6 86.4
PMIMS 32.1↑1.7 87.1↑0.5 26.3↑0.7 87.0↑0.6

PMIML 32.1↑1.7 86.7↑0.2 25.9↑0.3 86.5↑0.1

PMIGT 35.8 87.7 28.4 87.3

Table 15: Supplement results of the ablation study.

tial performance gain. 1000

E Details of Experiment Setups 1001

E.1 Downstream tasks 1002

We introduce the details of the downstream tasks 1003

we used here: 1004

Machine Translation In this task, a source lan- 1005

guage text is input into the model, which then trans- 1006

lates it into a target language. 1007

Nature Language Inference This task involves 1008

inputting a pair of sentences into the model, which 1009

then determines and outputs their relational status, 1010

such as contradiction, entailment, or neutrality. 1011

Reading Comprehension This task give a pas- 1012

sage and a question to the model, and then the 1013

model answers the question with a ‘Yes’ or ‘No’ 1014

based on its comprehension. 1015

Text Simplification This task is to input a com- 1016

plex sentence into the model, and then the model 1017

generates a simplified version of the sentence with- 1018

out losing important information or altering its orig- 1019

inal intent. 1020

Abstractive Summarization In this task, a long 1021

text is input into the model, which then produces a 1022

summary in one or two sentences that captures the 1023

essence and most critical information of the text. 1024

E.2 Multilingual LLMs 1025

Here, we introduce the multilingual LLMs used in 1026

our main experiment. 1027

ChatGPT: the most capable GPT-3.5 model 1028

which performs impressively on rich-resource lan- 1029

guages. We use the gpt-3.5-turbo-0613 API. 1030
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Model Task
Training Super Parameters Training Data

Batch Size Epoch Learning Rate Ratio Size

Qwen-7B

Machine Translation 16 1 2e-5 1:9 4985
Nature Language Inference 16 2 5e-5 1:7 2000
Reading Comprehension 16 8 8e-5 1:5 2000
Text Simplification 16 7 7e-5 1:5 2000
Abstractive Summarization 16 4 1e-5 1:9 1200

Qwen-14B

Machine Translation 16 1 2e-5 1:9 4985
Nature Language Inference 16 1 5e-5 1:7 2000
Reading Comprehension 16 9 8e-5 1:7 2000
Text Simplification 16 7 7e-5 1:5 2000
Abstractive Summarization 16 4 7e-5 1:7 1200

ALMA-13B

Machine Translation 16 1 5e-5 1:9 4985
Nature Language Inference 16 6 5e-5 1:7 2000
Reading Comprehension 16 6 8e-5 1:7 2000
Text Simplification 16 8 7e-5 1:9 2000
Abstractive Summarization 16 3 2e-4 1:9 1200

Yi-34B

Nature Language Inference 16 3 1e-5 1:7 2000
Reading Comprehension 16 7 8e-5 1:9 2000
Text Simplification 16 7 5e-5 1:9 2000
Abstractive Summarization 16 5 7e-5 1:9 1200

Qwen-72B Nature Language Inference 16 8 1e-5 1:7 2000
Reading Comprehension 16 5 6e-5 1:7 2000

Table 16: Our training setups. Each model is trained to ensure optimal performance for both the baseline and PMI.

Model
WikiAuto XLSum

En Es Ru
Pivot SARI Pivot R2/RL Pivot R2/RL

Qwen-7B
Fr 43.2 Fr 9.4/22.7 Es 41.1/38.5
De 43.1 - - - -
Es 43.0 - - - -

Qwen-14B
Fr 43.6 Fr 9.0/21.4 Es 40.2/38.3
De 43.1 - - - -
Es 43.8 - - - -

ALMA-13B
Fr 43.1 Fr 10.4/23.0 Es 44.3/41.2
De 43.2 - - - -
Es 43.2 - - - -

Yi-34B
Fr 43.5 Fr 10.6/23.3 Es 41.7/38.8
De 43.3 - - - -
Es 42.4 - - - -

Table 17: Full experimental results of pivot prompts on
WikiAuto and XLSum dataset. The best results of each
group are in bold.

LLaMA3: a latest open-source multilingual 1031

LLM which is pre-trained with 15 trillion tokens 1032

and demonstrated superior performance across mul- 1033

tiple benchmarks (AI@Meta, 2024). 1034

Bloomz: a fine-tuned version of Bloom (Scao 1035

et al., 2022), and we conduct experiments on the 1036

largest bloomz containing 176B parameters. 1037

Qwen: open-source models which are trained 1038

up to 3 trillion tokens of multilingual data with 1039

competitive performance on various tasks (Bai 1040

et al., 2023). We do evaluations on three 1041

models, including Qwen-7B (Qwen-7B-Chat), 1042

Qwen-14B (Qwen-14B-Chat) and Qwen-72B 1043

(Qwen-72B-Chat). 1044

ALMA: a multilingual LLaMA-2 (Touvron et al., 1045

2023) produced by continually pre-training and spe- 1046

cially instruction-tuning on the MT task (Xu et al., 1047

2023). We conduct experiments on ALMA-13B. 1048

Yi: an open-source model which is mainly 1049

trained on English and Chinese corpus achieving 1050

competitive performance on multilingual tasks (01- 1051

ai, 2023). We assess the effectiveness of PMI on 1052

Yi-34B (Yi-34B-Chat). 1053

mT0: an instruction-tuned version of mT5 (Xue 1054

et al., 2021), we choose the mT0-13B (mt0-xxl) 1055

as it supports 46 languages. 1056
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E.3 Training Setups1057

Limited by parameters and training data, it might1058

be a challenge for every LLM to understand PMI1059

prompts inherently. To address this, we conducted1060

training data and fine-tuned the models which1061

seemed confused when facing the PMI prompt.1062

Specifically, we leveraged LLaMA-Factory4 (hiy-1063

ouga, 2023) and the LoRA technology to train mod-1064

els, where we set the LoRA-rank to 8, LoRA-alpha1065

to 32 and dropout to 0.1. Since the different amount1066

of trainable parameters in the LoRA module, we1067

applied different training strategies to ensure that1068

every model can adequately understand prompts of1069

various tasks. These settings are detailed in Table1070

16.1071

E.4 Details of the Fine-tuning Datasets1072

We constructed our fine-tuning dataset based on the1073

training or development datasets of these tasks for1074

both conventional and PMI prompts in zero-shot1075

style. There are two factors, including the ratio of1076

baseline to PMI data and the size of the training1077

dataset, which are detailed in Table 16.1078

E.5 Decoding Setups1079

We kept consistent super parameters during the1080

inference stage of every LLM, i.e., we set the de-1081

coding batch size to 4 and the temperature to 0.011082

in order to ensure the reproducibility of the results.1083

F Full Experimental Results of Pivot1084

Prompts1085

We have reported the results of pivot prompts with1086

the highest score in the table of the main experi-1087

ment. In Tables 17, 18 and 19, we list all the results1088

of the pivot prompts.1089

4https://github.com/hiyouga/LLaMA-Factory
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Model Pivot BLEU COMET Pivot BLEU COMET Pivot BLEU COMET Pivot BLEU COMET Pivot BLEU COMET Pivot BLEU COMET
Direction De → En Zh → En De → Fr En → De En → Zh Is → En

ChatGPT

Es 28.5 84.0 Es 21.6 81.9 En 40.4 84.0 Es 30.0 85.6 Es 40.3 86.0 Es 34.6 85.4
Ru 25.2 83.6 Ru 18.4 80.7 Ru 33.1 82.6 Ru 27.4 86.2 Ru 35.9 85.6 Ru 30.5 84.6
Fr 27.3 82.6 Fr 16.3 76.9 Es 37.0 83.3 Fr 30.0 86.4 Fr 36.9 85.1 Fr 31.2 84.1
Zh 19.5 82.4 Ja 18.5 80.1 Zh 25.0 80.9 Zh 21.7 85.0 Ja 33.4 85.0 It 33.0 85.0
Ja 19.5 81.7 Cs 18.6 80.2 It 37.3 83.3 Ja 20.4 84.8 Cs 37.2 85.4 Cs 27.7 81.9
Cs 25.6 81.8 De 20.1 81.0 Cs 34.8 82.5 Cs 29.0 86.1 De 37.9 85.9 De 35.0 85.6

LLaMA3-8B

Es 26.4 83.3 Es 21.3 81.4 En 31.7 80.8 Es 22.8 81.8 Es 30.2 79.9 Es 32.5 84.9
Ru 23.3 82.7 Ru 17.8 79.9 Ru 24.3 79.6 Ru 19.6 82.1 Ru 26.4 81.0 Ru 27.6 83.5
Fr 27.4 83.4 Fr 20 80.9 Es 30.7 80.5 Fr 24 83.3 Fr 28.8 81.0 Fr 32.2 85.0
Zh 18.1 81.2 Ja 17.1 79.2 Zh 18.1 77.3 Zh 14.2 80.7 Ja 25.2 80.4 It 31 84.6
Ja 16.6 80.2 Cs 18.2 79.7 It 31.5 80.7 Ja 13.5 80.5 Cs 28.2 81.1 Cs 27.9 83.4
Cs 25.5 82.4 De 19.8 80.7 Cs 27.5 78.8 Cs 21.7 82.5 De 29.3 81.7 De 32.4 84.8

Qwen-14B

Es 28.1 83.8 Es 22.4 81.8 En 37.4 82.7 Es 26.5 83.7 Es 41.2 86.3 Es 33.7 85.2
Ru 25.0 82.9 Ru 19.8 80.6 Ru 29.8 81.2 Ru 23.5 84.1 Ru 38.7 86.3 Ru 30.3 84.1
Fr 28.2 84.0 Fr 21.5 81.5 Es 34.5 82.1 Fr 26.9 84.7 Fr 40.4 86.6 Fr 34.1 85.4
Zh 20.5 82.1 Ja 19.1 79.8 Zh 24.7 79.9 Zh 20.5 83.2 Ja 35.6 85.5 It 33.0 85.0
Ja 19.2 81.3 Cs 19.6 80.2 It 34.3 82.1 Ja 17.5 82.5 Cs 38.5 85.5 Cs 29.9 84.1
Cs 25.1 82.6 De 20.7 81.2 Cs 30.5 80.3 Cs 24.3 83.8 De 39.1 86.3 De 33.8 85.2

ALMA-13B

Es 25.5 83.0 Es 21.7 81.2 En 29.9 80.3 Es 26.2 83.7 Es 32.3 83.9 Es 32.7 85.2
Ru 22.8 82.5 Ru 18.9 80.1 Ru 24.8 78.8 Ru 24.6 84.8 Ru 31.4 84.5 Ru 28.1 84.1
Fr 26.0 83.3 Fr 20.9 80.9 Es 29.4 79.9 Fr 26.4 84.8 Fr 32.3 84.5 Fr 31.7 85.0
Zh 18.1 81.0 Ja 16.7 78.4 Zh 18.0 76.6 Zh 18.8 82.9 Ja 28.0 82.5 It 31.3 84.7
Ja 16.3 79.9 Cs 19.0 79.8 It 30.2 80.0 Ja 15.8 81.2 Cs 32.2 84.4 Cs 28.5 84.0
Cs 24.0 82.6 De 20.2 80.9 Cs 25.7 78.2 Cs 25.4 84.6 De 32.3 84.6 De 31.8 85.1

mT0-13B

Es 24.5 82.5 Es 19.3 80.7 En 30.9 79.8 Es 17.2 77.1 Es 23.4 81.9 Es 30.8 84.6
Ru 21.3 81.5 Ru 16.0 79.1 Ru 25.7 78.6 Ru 15.6 77.5 Ru 23.1 82.3 Ru 25.9 82.9
Fr 24.5 82.4 Fr 18.5 80.2 Es 30.5 80.1 Fr 16.8 77.2 Fr 23.1 82.1 Fr 29.3 84.0
Zh 16.6 79.8 Ja 12.9 76.8 Zh 18.8 76.3 Zh 12.2 75.8 Ja 22.3 81.9 It 29.6 84.1
Ja 15.6 79.3 Cs 16.5 79.1 It 30.3 80.0 Ja 12.1 76.4 Cs 22.9 81.6 Cs 27.1 83.5
Cs 22.7 81.5 De 17.4 79.7 Cs 26.6 78.2 Cs 17.4 78.5 De 23.8 82.1 De 29.8 84.0

Bloomz-176B

Es 25.0 82.8 Es 20.8 80.9 En 34.6 82.1 Es 6.1 63.6 Es 27.3 82.8 Es 31.5 84.6
Ru 17.5 76.0 Ru 14.8 75.2 Ru 22.2 75.1 Ru 9.5 66.2 Ru 22.2 79.1 Ru 20.4 77.5
Fr 24.9 82.6 Fr 19.7 80.2 Es 33.5 81.5 Fr 8.9 67.1 Fr 27.6 82.6 Fr 29.9 84.3
Zh 17.1 79.2 Ja 13.2 74.5 Zh 21.0 78.0 Zh 7.3 66.3 Ja 17.2 78.9 It 28.9 82.4
Ja 13.0 74.3 Cs 10.7 66.4 It 32.2 80.3 Ja 4.9 60.9 Cs 15.1 68.8 Cs 14.5 67.8
Cs 13.6 64.7 De 17.3 77.7 Cs 15.1 64.0 Cs 2.5 51.9 De 25.5 79.6 De 26.8 81.5

Table 18: Full experimental results of pivot prompts on WMT dataset. The best results of each group are in bold.

Model
RTE XNLI BoolQ
En Fr De Zh En

Pivot Accuracy Pivot Accuracy Pivot Accuracy Pivot Accuracy Pivot Accuracy

Qwen-7B
De 85.9 De 78.9 Es 80.2 De 74.2 Es 81.6
Es 86.6 Es 77.9 Fr 79.2 Es 74.1 - -
Fr 85.6 Ru 77.2 Ru 77.2 Fr 72.3 - -

Qwen-14B
De 89.2 De 80.1 Es 79.5 De 73.3 Es 86.0
Es 90.6 Es 80.5 Fr 79.8 Es 74.2 - -
Fr 88.8 Ru 79.1 Ru 77.7 Fr 72.8 - -

ALMA-13B
De 84.1 De 82.0 Es 79.6 De 75.9 Es 77.7
Es 84.5 Es 81.7 Fr 80.8 Es 74.3 - -
Fr 80.1 Ru 79.4 Ru 79.8 Fr 74.6 - -

Yi-34B
De 79.1 De 70.0 Es 72.6 De 64.7 Es 84.2
Es 85.9 Es 71.5 Fr 71.9 Es 68.1 - -
Fr 84.8 Ru 66.6 Ru 64.8 Fr 66.6 - -

Qwen-72B
De 91.3 De 85.8 Es 85.5 De 78.9 Es 88.7
Es 92.4 Es 85.0 Fr 85.2 Es 80.6 - -
Fr 90.6 Ru 83.9 Ru 83.5 Fr 79.5 - -

Bloomz-176B
De 74.4 De 50.0 Es 53.0 De 49.6 - -
Es 73.3 Es 53.1 Fr 50.5 Es 53.7 - -
Fr 77.6 Ru 50.8 Ru 53.3 Fr 52.0 - -

Table 19: Full experimental results of pivot prompts on RTE, XNLI and BoolQ dataset. The best results of each
group are in bold.
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Dataset Prompt

FLORES-200

WMT

Direct

Translate into target-language .

source-language : source-sentence

target-language :

PMI

Translate into target-language .

source-language : source-sentence

parallel-language(1) : parallel-sentence(1)

parallel-language(2) : parallel-sentence(2)
······
parallel-language(n) : parallel-sentence(n)

target-language :

PMIMS

PMIPA

There are six sentences in source-language , I need you to fully

understand all of them and then translate to one target-language
sentence.
source-language :

1. paraphrase-sentence1

2. paraphrase-sentence2

3. paraphrase-sentence3

4. paraphrase-sentence4

5. paraphrase-sentence5

target-language :

Asset

WikiAuto

Direct

You will be presented with a complex sentence. Your task is to sim-
plify this sentence to make it easier to understand, while maintaining
its core meaning and factual content. The goal is to generate a sim-
plified version of the sentence without losing important information
or altering its original intent. Please provide a single simplified sen-
tence as your response, without any explanation. Here is the complex
sentence:
Complex Sentence: sentence
Your simplified version:

PMI

You will be presented with the same sentence in four
different languages: source-language , parallel-language1 ,

parallel-language2 , and parallel-language3 . These sentences
convey the exact same meaning. Your task is to simplify the sen-
tence into source-language to make it easier to understand, while
maintaining its core meaning and factual content. It is important to
note that since all sentences have the same meaning, you only need
to provide one simplified source-language version. Please gener-

ate a single simplified source-language sentence as your response,
without any explanation. Here are the sentences:
source-language Sentence: source-sentence

parallel-language1 Sentence: parallel-sentence1

parallel-language2 Sentence: parallel-sentence2

parallel-language3 Sentence: parallel-sentence3

Your simplified source-language version:

Continued on next page
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Dataset Prompt

RTE

Direct

You will be presented with a pair of sentences.Your task is to deter-
mine the relationship between these two sentences. There are two pos-
sible relationships: entailment, not_entailment. ’entailment’ means
the first sentence logically implies the second one. ’not_entailment’
means the first sentence logically conflicts with the second one. Please
provide a single prediction for the relationship based on these sentence
pairs, without any explanation. Here is the sentence pair:
Premise: src-premise

Hypothesis: src-hypothesis
Your prediction:

PMI

You will be provided with a set of sentence pairs that are se-
mantically identical but presented in four different languages:
src-language , parallel-language1 , parallel-language2 , and

parallel-language3 . Each pair consists of a premise and a hypothe-
sis. Despite the language differences, the meaning of these sentences
is the same across all languages. Your task is to analyze these sen-
tence pairs and determine the relationship between the premise and
the hypothesis. There are two possible relationships: entailment
and not_entailment. ’entailment’ means the first sentence logically
implies the second one. ’not_entailment’ means the first sentence
logically conflicts with the second one. Please provide a single pre-
diction for the relationship based on these sentence pairs, without any
explanation. Here are the sentence pairs:
src-language :

Premise: src-premise

Hypothesis: src-hypothesis

parallel-language1 :

Premise: para1-premise

Hypothesis: para1-hypothesis

parallel-lang2 :

Premise: para2-premise

Hypothesis: para2-hypothesis

parallel-lang3 :

Premise: para3-premise

Hypothesis: para3-hypothesis
Your prediction:

XLSum

Direct

You will be presented with a long text. Your task is to summarize
this text in 1-2 sentences in source-language , capturing the most
important and core content. The summary should distill the essence of
the article concisely and accurately. Please provide a single summary
for the text without any explanation. Here is the text:
source-text

Your summary:

PMI

You will be presented with two texts, each in a different language:
source-language , parallel-language . These texts convey the same

meaning in their respective languages. Your task is to summarize
the core content of these texts in one summary (1-2 sentences) in
source-language , capturing the most important and central idea.

Please provide a single summary for the texts without any explanation.
Here are the texts:
source-language Text: source-text

parallel-language Text: parallel-text

Your summary in source-language :

Continued on next page
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Dataset Prompt

BoolQ

Direct

You will be provided with a passage and a yes/no question based on
that passage. Your task is to read the passage and then answer the
question with a simple ‘Yes’ or ‘No’ based on the information in the
passage. Please do not provide any explanations or reasoning for your
answer.
Passage: source-passage

Question: source-question
Please respond with ‘Yes’ or ‘No’ only. Your answer:

PMI

You will be provided with two passages, each in a different language:
source-language , parallel-language . These passages convey the

same meaning. Your task is to understand the content of these pas-
sages and then answer a yes/no question based on them. It’s important
to note that you only need to make one prediction as the semantic
content across all the passages is identical. Please do not provide any
explanations or reasoning for your answer.
source-language Passage: source-sentence

parallel-language Passage: parallel-sentence

Question: source-question
Please respond with ‘Yes’ or ‘No’ only. Your answer:

XNLI

Direct

You will be presented with a pair of sentences. Your task is to deter-
mine the relationship between these two sentences. There are three
possible relationships: entailment, contradiction, or neutral. Please
provide a single prediction for the relationship based on these sentence
pairs, without any explanation. Here is the sentence pair:
Premise: premise-sentence

Hypothesis: hypothesis-sentence
Your prediction:

PMI

You will be given a premise in multiple languages ( source-language ,

parallel-language1 , parallel-language2 , parallel-language3 )

and a hypothesis in source-language . Your task is to deter-
mine the relationship between the multilingual premises and the
source-language hypothesis. There are three possible relationships:

entailment, contradiction, or neutral. Please provide a single pre-
diction for the relationship, without any explanation. Here are the
premises and the hypothesis:
source-sentence Premise: source-premise

parallel-language1 Premise: parallel-premise1

parallel-language2 Premise: parallel-premise2

parallel-language3 Premise: parallel-premise3

Hypothesis: source-hypothesis
Your prediction:

Table 20: All the prompts used in experiments.
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