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Abstract

Machine learning methods, particularly neural networks trained on large datasets,
are transforming how scientists approach scientific discovery and experimental
design. However, current state-of-the-art neural networks are limited by their
uninterpretability: despite their excellent accuracy, they cannot describe how they
arrived at their predictions. Here, using an “interpretable-by-design” approach,
we present a neural network model that provides insights into RNA splicing, a
fundamental process in the transfer of genomic information into functional bio-
chemical products. Although we designed our model to emphasize interpretability,
its predictive accuracy is on par with state-of-the-art models. To demonstrate
the model’s interpretability, we introduce a visualization that, for any given exon,
allows us to trace and quantify the entire decision process from input sequence to
output splicing prediction. Importantly, the model revealed novel components of
the splicing logic, which we experimentally validated. This study highlights how
interpretable machine learning can advance scientific discovery.

1 Introduction

Machine learning algorithms, in particular neural networks, capture complex quantitative relationships
between input and output. However, as neural networks are typically black box, it is difficult to
extract post-hoc insights on how they achieve their predictive success. Furthermore, they easily
capture artifacts or biases in the training data, often fail to generalize beyond the datasets used for
training and testing, and do not lead to new insights on the underlying processes [14].

In recent years, neural networks have been used to tackle challenging biological questions. One
outstanding question in genomics is understanding the regulatory logic of RNA splicing, which plays
a critical role in the fundamental transfer of information from DNA to functional RNA and protein
products. Splicing removes introns and ligates exons together to form mature RNA transcripts. While
some canonical sequence features are necessary for exon definition (splice sites delimiting exons and
branch points used during intron removal), exon definition is also facilitated by exon sequence [21,
8]. Despite recent success using neural networks to predict splicing outcomes [35, 18], understanding
how exon sequence dictates inclusion or skipping remains an open challenge. The challenge is further
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underscored by the sensitivity of splicing logic, where almost all single nucleotide changes along an
exon can lead to dramatic changes in splicing outcomes [20, 23].

To enable scientific progress, machine learning models should not only accurately predict outcomes,
but also describe how they arrive at their predictions. Here we demonstrate that an “interpretable-by-
design” model achieves predictive accuracy without sacrificing interpretability, captures a unifying
decision-making logic, and reveals novel splicing features.

2 Generating a synthetic dataset for interpretable machine learning

As neural network performance and interpretability is inextricable from the data it is trained on, we
began by generating a large, high-quality synthetic splicing dataset. The use of synthetic datasets
offers several advantages over genomic data used in previous work. First, genomic datasets are
limited by the number of exons in the genome. In contrast, synthetic assays can dramatically increase
the number of data points by orders of magnitude [34, 4]. Second, genomic exons are flanked by
varying sequences (splice sites, introns, promoters) that also participate in splicing decisions [17],
greatly complicating attempts at interpretability. In contrast, synthetic datasets fix all but one variable
region, allowing to focus on the region of interest. Third, genomic exons contain overlapping RNA
codes (e.g., protein coding sequences). In contrast, sequences in synthetic datasets are devoid of
overlapping codes by design. In summary, from both a quantity and quality perspective, synthetic
datasets provide crucial advantages for machine learning over genomic datasets.

Figure 1 j Data generation and interpretable-by-design machine learning model. a, All reporters in the
assay share the same three-exon design, and differ only in their middle exon, which contains a random 70
nucleotide-long sequence. Depending on its sequence, an exon might be included, skipped, or a probabilistic
mix of the two. Each reporter includes a unique barcode at the end of the third exon so that exon identity can be
inferred in exon skipping products. b, The assay includes over 3� 105 different reporters. The reporters were
transfected into HeLa cells in a pooled fashion in three biological replicates. High-throughput sequencing then
provides a “percent spliced in” (PSI) value to each reporter. c, The machine learning model consists of both short
convolution filters (applied to exon sequence only) and long convolution filters (applied to both exon sequence
and predicted structure). The output of these filters (strength) can depend on the position along the exon. Half
of the filters are designated as inclusion filters, and the rest are skipping filters. The difference between the
total strength of the inclusion filters and the total strength of the skipping filters is used to compute the output
predicted PSI.

The synthetic dataset we generated includes hundreds of thousands of input-output data points. Each
data point is a different random 70-nucleotide exon sequence, paired with a measured percent spliced
in (PSI) output, which is a number between 0 (always skipped) and 1 (always included) (Fig. 1a).
The dataset is generated by a massively parallel reporter assay that allows for PSI quantification for
hundreds of thousands of unique sequences in a single biological experiment (Fig. 1b). Splicing
outcomes for the parallel reporter assay were measured after transfection into human HeLa cells using
high-throughput sequencing. We verified that reporters are evenly represented in the reporter assay
(Extended Data Fig. 1a). The vast majority of splicing products corresponded to exon inclusion or
exon skipping products (Extended Data Fig. 1b), and we filtered our data to exclude spurious splicing
products. PSI values are calculated as the number of inclusion reads divided by the total number of
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inclusion and skipping reads. Three biological replicates of the assay showed excellent agreement
(Extended Data Fig. 1c) and their sequencing results were combined for all downstream analysis.
High-throughput sequencing measurements were consistent with semi-quantitative measurements of
individual reporters (Extended Data Fig. 1d).

3 An interpretable-by-design model accurately predicts splicing outcomes

State-of-the-art neural networks (based on gated recurrent units [9] and transformers [43]) trained
on this dataset provided excellent prediction accuracy on a held-out test set (RMSE=0.165 and
RMSE=0.183, respectively). However, these models are not interpretable, and do not provide any
biological insights. We therefore designed a novel model with the explicit goal of being interpretable.

The predictive accuracy of our interpretable-by-design model is comparable to that of state-of-the-art
models trained on the same synthetic dataset (RMSE=0.180; Extended Data Fig. 2a). This suggests
that interpretability need not come at the expense of accuracy. In addition to our own dataset, the
model accurately predicts splicing outcomes from other splicing datasets [38, 39, 40, 34, 3, 23]
(Extended Data Fig. 2b). Importantly, unlike our random exons, these datasets were modeled on
specific genomic exons, with each dataset differing in splice sites, introns, and flanking exons.
Furthermore, these datasets were generated in different immortalized cell lines. Encouragingly,
despite these dramatic differences in RNA architecture and cell types, our model tested well on these
datasets, suggesting that our model generalizes and captures critical aspects of splicing regulatory
logic.

4 Model architecture reveals unifying decision-making process

Our interpretable-by-design model incorporates domain knowledge throughout its architecture
(Fig. 1c). Specifically, we reasoned that short six nucleotide sequence filters would capture motifs
previously demonstrated to play an important role in splicing decisions [12, 22]. We therefore
introduced one-dimensional convolutional filters applied to the input RNA sequence. Next, since
RNA secondary structure was previously implicated in splicing outcomes [15, 40], we also provided
the network with predicted structure [27]. We then introduced longer (30 nucleotide) one-dimensional
convolutional filters to the structure-augmented sequence. Crucially, while we fixed filter lengths
using minimal domain knowledge, we did not explicitly specify sequences and structures, allowing
the network flexibility to learn filters in an unbiased manner. Furthermore, our model explicitly
quantifies the strength (in network-defined arbitrary units) of each activated filter to the inclusion or
skipping decision. Importantly, we allowed the strength of any filter to vary along the length of an
exon, providing the network the flexibility to capture position-dependent effects of RNA features on
splicing outcomes.

To arrive at its output, the network computes the difference in the sum total of exon inclusion strengths
and exon skipping strengths (� strength), which is then converted to predicted PSI. The greater the
magnitude of this difference, the closer the PSI is to 0 (difference� 0) or 1 (difference� 0). This
additive combinatorial behavior is consistent with previous literature [51, 34].

5 Model extends understanding of splicing regulatory logic

Even though our model was trained on a synthetic dataset, it recapitulates and extends domain
knowledge from previous genomic and biochemical studies.

Many filters in the model match binding motifs of RNA binding proteins implicated in splicing
regulation (splicing factors) [33, 11] (Fig. 2a). Consistent with previous studies, network inclusion
filters match binding sites for SR proteins known to promote exon inclusion [6, 36], whereas network
skipping filters match binding sites for hnRNP proteins known to promote exon skipping [7].

However, while the directionality of these RNA features towards splicing was established, their
magnitude was not clear. Importantly, the model addresses this issue by assigning a quantitative
strength to each filter. Moreover, some filters exhibit striking position dependent strengths, suggesting
that the position of an RNA feature along an exon affects its strength.
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Figure 2 j Model expands on known splicing logic and its predictions can be interpreted using balance
plots. a,Splicing features detected by the model's �lters, represented by their sequence logo [37]. Filters either
contribute to inclusion (blue) or skipping (red). Plots show the average strength in our dataset of each �lter as a
function of position along the exon. RNA binding proteins (RBP) with a similar binding motif, as reported in
previous work [6, 33, 11]. The model also identi�ed short stem loops and long G-poor stretches as contributing
to exon skipping.b, Balance plots used to visualize the logic leading to PSI prediction for �ve randomly picked
exons (V1-V5). Bar plot showing the total strength contributed by each �lter (top). Bars are labeled by �lter
numbers from panela. Bar labeled B represents a constant initial inclusion strength. Labels are not shown for
smaller bars. The difference between total inclusion and total skipping strengths (� strength) leads to predicted
PSI (center). PSI as measured by semi-quantitative RT-PCR matches the machine learning predictions (bottom).

Surprisingly, our network accurately predicted splicing outcomes using a concise list of �lters
(Fig. 2a). This contrasts with previous studies suggesting that splicing outcomes result from the
combinatorics of hundreds of unique RNA features [34, 50, 46].

Using the local interpretability of our model, we introduce a visualization (balance plot) that enables
explicit examination and quanti�cation of how multiple RNA features lead to splicing outcomes
for any given exon from our dataset (Fig. 2b, Extended Data Fig. 3). For a given exon, the total
strengths of activated �lters are represented as bars of the appropriate height. Total inclusion strength
(blue) and skipping strength (red) are then visible as the height of the stacked bars. The� strength is
represented by the difference in heights between the stacked inclusion and skipping �lters. These
visualizations provide an intuitive tool to understand the contributions of individual sequence and
structure features leading to each exon's predicted PSI. They emphasize that splicing logic results
from contributions of many RNA features along the exon, and that a single nucleotide can be part of
multiple overlapping �lters [20, 34].

6 Discovery and validation of novel splicing features

Next, we asked whether our interpretable-by-design model could advance scienti�c discovery by
identifying novel splicing features. While most network �lters were consistent with previously-
described splicing features, two uncharacterized long skipping �lters with strong in�uence on splicing
predictions stood out (Fig. 2a). We con�rmed that these �lters were robustly identi�ed across multiple
initialization seeds and training/testing splits, suggesting that they are not training artifacts. We then
turned our attention to characterizing and experimentally validating these features.

Examining the �rst uncharacterized �lter revealed that it identi�es stem loop structures with short,
GC-rich, 5-7 nucleotide double-stranded regions (Fig. 3). Next, we experimentally validated that these
stem loops contribute to exon skipping and are not artifacts. We introduced mutations that disrupt
double-stranded base pairing in an exon with such a stem loop. First, we introduced single nucleotide
mutations predicted to abolish the stem by disrupting base pairing. Notably, these mutations were
designed to minimize disruptions of other �lters, ensuring that prediction differences are mainly due
to altered secondary structure, and not due to the introduction or disruption of other sequence features.
In addition to two such mutations, we also introduced both compensatory mutations together, restoring
the original stem loop structure [47]. We measured splicing outcomes for all four individual reporters
(original, upstream mutation, downstream mutation, and double mutations) and observed that splicing
outcomes matched our predictions (Fig. 3). Namely, PSI increased dramatically in both single
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