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ABSTRACT

Speech separation is a problem area where a mixture with overlapping speech
signals is the input and estimations of the clean speech signals which make up
the mixture is the output. In this paper we propose a novel sequence modelling
method called relative context and use it for a speech separation architecture called
RCSep.
The main advantages of relative context is that it does not require trainable pa-
rameters, is very lightweight and highly parallelized. The RCSep model which
heavily uses relative context is an extremely efficient source separation model. It
has less than 500k trainable parameters, lower memory usage and is significantly
faster than all previous source separation methods while still maintaining high
separation accuracy.
Furthermore, we also used relative context instead of LSTMs in a current SOTA
architecture which simultaneously improved separation accuracy and decreased
computation time, memory usage and model size.

1 INTRODUCTION

1.1 BACKGROUND

Audio source separation is a signal processing problem which in the last decade has seen major ad-
vancements using machine learning. The aim of audio source separation is to recover the individual
sources that make up a mixture given only the mixture. For example, when multiple people are talk-
ing over each other, they create a mixture and the goal of a source separation system is to estimate
the original utterances of each speaker. This problem is also known as the cocktail party problem
(Bronkhorst, 2000; Haykin & Chen, 2005).

Expressed formally, the mixture x⃗ ∈ RL×1 is the sum of the C individual audio signals s⃗1 ∈ RL×1

to s⃗C ∈ RL×1

x⃗ =

C∑
i=1

s⃗i (1)

with L being the sequence length and C being the number of individual sources which the separation
system is trying to recover. In the context of this paper, we focus on single-channel source separa-
tion. Single-channel simply means that the audio was recorded using a single microphone. This area
of research is relevant to any other problem which struggles with noisy inputs due to overlapping
signals (Narayanan & Wang, 2014). Some notable examples include automatic speech recognition
(ASR), music and audio production and hearing devices.

1.2 MOTIVATION

In the last few years, research for single-channel speech separation has been advancing quickly. In
the Conv-TasNet paper (Luo & Mesgarani, 2019), people were asked to rate the estimations the
model produced against the clean baseline on a scale of 1 to 5 with 5 being the best quality. The
estimations of the Conv-TasNet almost matched the results of the clean signal with the estimations
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Figure 1: WER of LibriSpeech test-clean ASR benchmark using wav2vec2 for ASR in relation to
the SI-SDR of the input audio. Artificial estimations were mixed together at the specified SI-SDRs
while the other estimations are a results of the specific separation system being applied to the clean
Libri2Mix and noisy Libri3Mix. Once the estimations reach the same WER as the baseline clean
source, further separation accuracy improvement is unnecessary for ASR.

reaching a mean score of roughly 4 while the clean signals reached a score of 4.25. For human
listening, the Conv-TasNet estimations are already almost as good as clean signals.

Since this is a very subjective measure, however, and speech separation can be used as a preprocess-
ing step for other tasks, we did some additional testing. The goal is to find out, whether separation
accuracy improvements are still relevant to other tasks or whether the separation accuracy has al-
ready passed a certain threshold where further improvement is practically irrelevant. In order to test
this, we ran an experiment using the LibriSpeech Corpus (Panayotov et al., 2015) and two speech
separation datasets which are based on this corpus (Cosentino et al., 2020). We test the ASR per-
formance of the wav2vec2 (Baevski et al., 2020) model using clean sources from the LibriSpeech
corpus test-clean set as the baseline level and various estimations of the sources which are produced
by a source separation model. The intent is to find out whether these estimations of the sources
can reach the baseline level, which would mean that further separation accuracy improvements are
irrelevant for ASR, at least for the wav2vec2 model.

We show the results of this experiment in Figure 1. Figure 1 shows the performance of the wav2vec2
model in word error rate (WER) compared to separation accuracy in scale-invariant signal-to-
distortion ratio (SI-SDR) (Roux et al., 2018). The baseline of this model is 4.8% WER for clean
audio input as depicted in the red line. This is slightly worse than the results reported in the original
paper because the original paper uses a sampling rate of 16 kHz while we use 8 kHz which is then
upsampled. The reason we do this is because in audio separation it is currently common practice to
work with 8 kHz data and all the pretrained models we use were trained with 8 kHz data.

The dark blue line shows artificially mixed together audio signals at the given SI-SDRs. For these
artificial estimations, the point at which the baseline WER performance is reached, is about 35 dB
SI-SDR. However, these artificial estimations mix together two speech signals at a constant rate,
while real separation models do not operate like that. Therefore, we also show experiments using
models trained on two speaker separation data with no background noise (light blue line) and three
speaker separation data with background noise (orange line).

Our experiments show that although these tasks have different difficulties and therefore different
results for the models, they seem to follow a fairly consistent pattern. For both datasets we use the
same three models: Conv-TasNet (Luo & Mesgarani, 2019), SepFormer (Subakan et al., 2021) and
TF-GridNet (Wang et al., 2022). The results of this experiment show, that for the easier two speaker
separation task, current SOTA models like TF-GridNet produce estimations that reach almost 5%
WER which makes them basically equivalent to the clean sources at 4.8% WER.
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As the current SOTA speech separation models for two speaker separation without background noise
have already reached the threshold at which further separation accuracy improvement is irrelevant,
the logical next step is to find more lightweight solutions which can approach this threshold. Cur-
rently, most speech separation models use millions of parameters and are difficult to run in real-time,
especially on low resource devices like hearing devices. Therefore, finding an efficient and accurate
speech separation model is the topic of this paper.

1.3 CONTRIBUTIONS

This paper has the following three contributions:

1. We introduce the relative context operation which allows for pattern recognition within
neural networks without using trainable parameters.

2. Using the relative context operation, the RCSep architecture is constructed which performs
single-channel speech separation with high accuracy, very few trainable parameters, high
speed and low memory usage. To our best knowledge, the RCSep outperforms all previous
separation models in training speed, inference speed, and training memory usage while
matching the previous bests for inference memory usage. In terms of model size, the RCSep
is over 3 times smaller than previous lightweight models while maintaining comparable
accuracy on the WSJ0-2Mix and WHAM! benchmark.

3. We determine a threshold value for source separation at roughly 25 dB SI-SDR at which
further accuracy improvements are irrelevant for ASR and likely most other tasks.

2 RELATED WORKS

As with most problem areas where pattern recognition is necessary, modern source separation sys-
tems rely on neural networks. In early deep learning research concerning source separation, the
separation approaches usually were based on the short-time Fourier transform (STFT) (Hershey
et al., 2016; Kolbaek et al., 2017; Luo et al., 2018). The magnitude information of the mixture was
used as the input of the neural network and corrected magnitudes for each estimation were calculated
as the output. These new magnitudes alongside the mixture’s phase information were then used to
return to waveforms using the inverse STFT. This approach, however, was limited by not changing
the phase information. The reason why changing the phase information is not as straightforward as
correcting the magnitude (Williamson et al., 2016) is due to the phase being the imaginary part of
the complex valued STFT while the magnitude is the real part.

In order to remove this upper limit set by not changing phase information, time domain systems
were proposed instead, initially in (Wang & Wang, 2015) and later in (Luo & Mesgarani, 2018)
which set the foundation of current time domain source separation systems. The main advantage
of time domain based separation approaches was that it would not decouple phase and magnitude
information and just operate on the waveform directly instead.
Further improvements to the time domain based approaches include the dual-path method (Luo
et al., 2020a) as well as the use of Transformers (Vaswani et al., 2017) within the context of source
separation (Chen et al., 2020; Subakan et al., 2021). The main idea of the dual-path approach is to
split the input mixture into overlapping chunks and then stack these chunks on top of each other. The
neural network uses layers which are capable of capturing sequential patterns across the sequence
inside the chunks (intra-processing) as well as the sequence of the chunks (inter-processing). This
allows for local and global pattern recognition and generally resulted in higher separation accuracy
(Luo et al., 2020a; Chen et al., 2020; Subakan et al., 2021; Lam et al., 2021; Rixen & Renz, 2022b).
In some more recent research, frequency domain separation methods (Wang et al., 2022; Yang et al.,
2022) have been competitive with the best time domain methods (Rixen & Renz, 2022a; Jiang
et al., 2024; Zhao et al., 2023; Lee et al., 2024; Mu et al., 2023; Yip et al., 2024) as working with
complex valued tensors is now supported in most deep learning frameworks. There have also been
some models which combine time- and frequency domain approaches (Rixen & Renz, 2022b; Lutati
et al., 2023) and reach SOTA performance.
However, all these methods are approaching the threshold value determined in Figure 1 which is why
finding more efficient models is becoming more relevant. Notable lightweight separation methods
include the group communication method (Luo et al., 2020b) and small versions of certain models
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like S4M (Chen et al., 2023). There are some other relevant methods like the TDANet (Li et al.,
2023), tiny SepFormer (Luo et al., 2022), small version of DP-Mamba (Jiang et al., 2024) and the
Sandglasset (Lam et al., 2021) which do have a focus on efficiency, but as they still exceed 2 million
trainable parameters they cannot be considered as lightweight as the previously mentioned models.
In fact, even the small version of S4M has almost 2 million trainable parameters, meaning there is a
severe lack of research for tiny models, with the only real exception being the group communication
paper. While the group communication method is extremely effective at lowering model size, other
efficiency metrics like speed and memory are still problematic and often even negatively effected by
using this method.

To summarize, current lightweight separation methods are not exceeding in every efficiency metric.
Some focus on memory usage (Lam et al., 2021) and speed (Li et al., 2023; Chen et al., 2023),
others on model size (Luo et al., 2020b). In this paper, we propose the RCSep architecture which to
our best knowledge outperforms all previous methods in terms of speech and memory usage. The
model size of the RCSep is significantly smaller than all previous models at less than 500k trainable
parameters except for the group communication method. Separation accuracy of the RCSep is also
improved in comparison to the previous lightweight models and even borderline reaches SOTA.

RCSep draws inspiration from some previous work, specifically the Sandglasset (Lam et al., 2021),
QDPN (Rixen & Renz, 2022a) and some of the hybrid models combining time- and frequency
domain approaches (Lutati et al., 2023; Rixen & Renz, 2022b). We did also test out the group com-
munication method in order to lower model size even further, however this lead to lower separation
accuracy and increases in memory usage and computation time. There are, of course some other
proven methods for lowering model size and computational cost like weight sharing and quantiza-
tion, however, these methods also tend to have a negative impact on accuracy. Since the model size
of the RCSep is already extremely small at less than 500k parameters, we instead elected to keep its
accuracy higher.

3 RELATIVE CONTEXT

The basic idea of relative context is to shift the input tensor across a given axis where patterns exist
(e.g. height and width for images, time for audio, etc.) and subtract it from the original input tensor.
Instead of describing the input with raw values, relative context describes them as offsets in relation
to previous or following elements. This makes relative context a type of differencing operation.

=-

Sequence length T

Channel size E

3     1     8    6     7     2    2     9     4     5

6     3     3    5     2     0    0     1     9     2

2     5     3    1     7     3    1     0     5     4

7     9     4    2     1     6    1     3     1     1

2     2     7    4     2     3    2     1     8     3

2     5     3    1     7     3    1     0     5     4

4    -3     0    2    -3    -2    0    1     8    -7

-1    -4    5    5     -1   -4   -5    7     2    -4

-2     5     2    1    -5    5    -2    2     0    -6

-5    -2    5     1     0     2   -6    -2    6     1

-2

-1

0

1

2

shift Input along sequence dim by

Input                         -                  shifted input                              =                         Output

4     5     3    1     8     6    7     2     2     9

2     6     3    3     5     2    0     0     1     9

0     0     0    0     0     0    0     0     0     0

9     4     2    1     6     1    3     1     1     7

7     4     2    3     2     1    8     3     2     2

Figure 2: The relative context operation across one dimension with K=5. For the subchannel where
the shift is 0, no subtraction happens since it would result in deleting the information of that sub-
channel and the input is instead preserved.

There are many input types where this idea is useful. For images, the raw values just describe how
bright the pixel is in the channel. If we apply relative context, however, we can instead get to know
how bright this pixel is in relation to its neighbours.

Generally speaking, most neural network architectures use a channel size that is much greater than
that of the original data input. The relative context operation makes use of this fact and splits its input
across the channel dimension into K subchannels. Each subchannel is then shifted by a different
amount. An example of this is shown in Figure 2 where both the channel size E and the number
of subchannels K are set to 5. The input tensor is split into 5 subchannels with the first row being
shifted two elements to the right and the last row being shifted two elements to the left. This shifted
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tensor is then subtracted from the original to produce the output of the relative context operation.
Note, that for the subchannel where the shift is equal to 0, we simply copy the original input into the
output. Otherwise, we would delete information and have a row of zeros.

The relative context operation is named after the idea that it delivers information about the current
element in relation to its neighbours. It enables sequence modelling without adding trainable pa-
rameters which is why it is very effective for lightweight models. One disadvantage of the relative
context operation is that it links the channel size to the amounts of shifts that are possible. At most,
one can set K = E for the maximum amount of shifts. However, this would result in subchannels of
size 1. In our experiments, this never lead to optimal accuracy since some shifts are more important
than others, specifically the smaller ones which give context in relation to the direct neighbours.
Therefore, leaving them a greater subchannel size by keeping K relatively low usually is the better
choice for achieving greater accuracy.

The relative context operation in its current form basically encourages the neural network to place
relevant information for the specific shifts into their corresponding channels.

Relative context can be applied across a single dimension for one dimensional data like audio or
across multiple dimensions for data like images. Figure 2 shows a simple example of applying one
dimensional relative context. Both the Figure 2 and the rest of the paper assume relative context to
be bidirectional, however, it is easily possible to make it unidirectional and have it work for real-time
applications.

Since the way relative context works is somewhat similar to convolutional layers, we also include
the option of setting a dilation factor to enable a stack of relative contexts to behave like tempo-
ral convolutional networks (TCN) (Lea et al., 2016). The inclusion of the dilation factor is very
straightforward, as one just multiplies the shift by the dilation factor to get the new shift.

4 RCSEP

The RCSep model uses a hybrid approach where a time domain model produces the initial estima-
tions which are then used alongside the input mixture for the frequency domain model to output the
final estimations. An overview of the RCSep architecture is shown in Figure 3.

4.1 TIME MODEL

The time model produces the first set of estimations. As the name suggests, it is a time domain
based model. The initial estimations and the original mixture are later used for the frequency model
to produce the final estimations.

4.1.1 ENCODER

Similar to what was done in the Sandglasset and the QDPN model, we first segment the input
mixture into overlapping chunks with an overlap ratio of 50%. This temporarily doubles the tensor
size, however, as we use chunk size M as our channel dimension, we effectively halve the sequence
size L through this step, massively improving computational cost. In our testing, this step also
slightly increases accuracy. After the chunking step, the tensor is fed through a one dimensional
convolutional layer which increases the channel size from M to ET with ET being the channel size
of the time model. The kernel size and stride of the encoder are set to 1.

4.1.2 SEPARATION

The general structure of the separation module is also inspired by the Sandglasset and the QDPN.
Similar to the QDPN, we combine a TCN and Transformer architecture. The first difference is, that
the RCSep uses relative context as is shown in the purple box in Figure 3 instead of convolutional
layers which massively decreases computational cost and model size. The structure of the temporal
relative context network (TRCN) is shown in the purple box in Figure 3. For the time model, a depth
of 8 layers is chosen where the dilation factor increases from 20 in the first layer to 27 in the last
layer. The other difference is the usage of what we call MiniFormer blocks. Just like in the QDPN
and Sandglasset, depthwise convolutional layers are used for downsampling and upsampling before
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Figure 3: The RCSep architecture. Details on what each step contains is shown in the color matching
boxes. I. Overview of the RCSep architecture. II. Overview of the time model. III. Structure of the
MiniFormer block. IV. A single relative context block which forms the temporal relative context
network (TRCN) by being repeated 8 times for the time model and 10 times for the frequency
model. V. Structure of a single MiniFormer which is repeated 4 times for each MiniFormer block.
VI. Overview of the frequency model.

and after 4 MiniFormers as shown in the orange box in Figure 3. The MiniFormer structure is shown
in the dark blue box in Figure 3. Unlike normal Transformers, it does not include the feed forward
network to save on computational cost. The attention layer also has a slight adjustment which in our
testing did not affect accuracy while lowering model size and computational cost. Unlike a normal
attention layer which uses multiple linear layers for the query, key and value, in our implementation
they are just multiplied by three weights, each with a size of ET .

Note, that the entire separation module does not change the channel size at any point. The only
axis which does change is the sequence axis. This is inspired by the Sandglasset which in turn is
based on the many successful applications of the U-net (Ronneberger et al., 2015). After each of
the first two TRCNs, a downsampling step is performed using depthwise convolutional layers. The
third TRCN is equivalent to the bottleneck layer, after which upsampling occurs using depthwise
transposed convolutional layers. As is shown in Figure 3, residual connections between the tensors
with the same sequence size exist, meaning the result of the fourth TRCN is added to the result of the
second TRCN and the same happens for the first and last TRCN. In our testing this U-net structure
slightly increased accuracy while significantly lowering computational cost.

The last step of the separation module is to multiply its output with the encoded input from the
beginning of the network.

4.1.3 DECODER

The decoder is simply a one dimensional transposed convolutional layer which changes the channel
size to M · ET and allows for the C estimations to get reconstructed into a waveform using the
overlap and add operation with the same parameters as the initial segmentation that occurred before
the encoding step.
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Note, that for the time model to actually produce estimations, this output needs to be used for the
loss calculation in addition to the final output.

4.2 FREQUENCY MODEL

The frequency model takes both the original mixture and the C estimations produced by the time
model as its input. Generally speaking, the goal of the frequency model is to correct these initial
estimations. The time model is responsible for most of the work and most of the computation. We
did, however, find that adding this frequency model was more effective for increasing accuracy than
using a bigger time model.

4.2.1 ENCODER

The first step of the frequency model is to apply the STFT to the mixture and the estimations and
then concatenate them together. Specifically, the tensor shape for the frequency model is four di-
mensional unlike the time model which was three dimensional. These four dimensions are the batch
dimension, the time dimension of the bins, the frequency dimension of the bins and finally the chan-
nel dimension. Note, that since the STFT outputs complex numbers, the channel dimension for each
STFT has a size of 2, storing the real and imaginary values of the STFT. The STFTs are concatenated
in said channel dimension and fed through a two dimensional convolutional layer which expands the
channel size to EF which is the channel size of the frequency model.

4.2.2 SEPARATION

As previously mentioned, the frequency model is much smaller than the time model. The separation
module, which makes up the bulk of the computation for either model, only consists of two TRCNs.
The difference for the frequency model is that said TRCNs are applying two dimensional relative
context across both the time and frequency axes of the bins and that the TRCNs have a depth of 10
instead of 8. In this case the dilation factor increases from 20 to 29 from the first to the last layer. In
our experiments, adding MiniFormer blocks or a U-net structure did not improve accuracy which is
why we elected to only use TRCNs.

4.2.3 DECODER

The decoder is a transposed two dimensional convolutional layer which returns the channel size
from EF to 2 · C since we require two channels for each estimation for both the real and imaginary
parts of the STFT. These corrections to the estimations STFTs are then added to the original STFTs
before going through the inverse STFT to reconstruct the estimations as waveforms.

5 EXPERIMENTS

5.1 DATASETS

We evaluated the RCSep model on two speech separation benchmarks, the WSJ0-2Mix (Hershey
et al., 2016) and the WHAM! dataset (Wichern et al., 2019). Both datasets are based on the WSJ0
corpus (Garofolo, John S. et al., 1993). The WSJ0-2Mix is a two speaker separation dataset without
background noise and without reverberation while the WHAM! dataset includes background noise.

Each dataset contains 30 hours of training, 10 hours of validation and 5 hours of evaluation data.
119 different speakers with roughly half being female and the other half being male are included.
Different utterances but the 101 same speakers are used for the training and validation sets while the
evaluation set has both different utterances and 18 different speakers than the training and validation
sets.

5.2 MODEL CONFIGURATION

The chunk size for the segmentation, M , is equal to 4 for all experiments. This is optimal for
accuracy, but it is possible to lower computational cost further by increasing this value since it
would lower the sequence length. The channel size of the time model ET is set to 64. This means
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that the group sizes of all down- and upsampling layers is also equal to 64 since they are depthwise
convolutional layers. The stride factor of the two downsampling layers in the U-net structure is set
to 2 and 8, respectively. The kernel sizes of these convolutional layers is double that of their stride
factor. The kernel sizes and stride factors of the transposed convolutional upsampling layers are the
same as the corresponding downsampling layers.

The MiniFormer blocks use down- and upsampling layers with a stride factor of 32 and a kernel
size of 64. The group size is once again equal to the channel dimension, making them depthwise
convolutional layers. The number of subchannels K of the relative context operations is set to 7 for
the time model and 3 for the frequency model.

For the STFT, the window size is set to 256 while the hop size is set to 64. While we have found
this setup to be optimal for accuracy, it is possible to significantly lower computation time of the
RCSep by lowering the window size to 128. This does lower accuracy a bit, but since it also halves
the tensor size for the frequency model, it has a significant impact on both speed and memory usage.
Since the RCSep is already outperforming all previous models in these metrics, however, we elected
to prioritize accuracy but for actual deployment it might make sense to lower the window size to
128. The channel size of the frequency model, EF , is 64.

We train the RCSep for a total of 200 epochs. For the first 100 epochs, we use a learning rate of
1e−3 and after the 100th epoch we halve the learning rate if the validation SI-SDR does not improve
for 3 consecutive epochs. Gradient clipping with a maximum L2 norm of 5 is employed in order to
avoid the exploding gradient problem. The Adam optimizer (Kingma & Ba, 2017) is used.

We use the standard loss function for speech separation, meaning the SI-SDR. Since we have two
sets of estimations, however, we also need to calculate two losses which are then summed up for a
final loss before the backwards pass.

Aside from the RCSep architecture, we also tested a TF-GridNet variant, where we replace the
BLSTMs with one dimensional TCRNs with a depth of 7.

5.3 RESULTS ON WSJ0-2MIX AND WHAM!

We show the results of our experiments in Table 1. We include two versions of the RCSep model,
with the RCSep128 having double the channel size in the time model compared to the RCSep64.

Table 1: Comparing the model size and scale-invariant signal-to-distortion ratio improvement (SI-
SDRi) on the WSJ0-2Mix and WHAM! of previous models and our proposed model, the RCSep.
We include two versions, the RCSep64 with a channel size of 64 for the time model and RCSep128
which has a channel size of 128 for the time model.

SI-SDRi (dB)
Method Model type Model size WSJ0-2Mix (Hershey et al., 2016) WHAM! (Wichern et al., 2019)

Conv-TasNet (Luo & Mesgarani, 2019) Time 14.9M 15.3 12.7
DualPathRNN (Luo et al., 2020a) Time 2.6M 18.8 13.7
TDANet (Li et al., 2023; Chen et al., 2023) Time 2.3M 18.6 15.2
S4M-tiny (Chen et al., 2023) Time 1.8M 19.4 -
SepFormer (Subakan et al., 2023) Time 26.0M 22.3 16.4
TF-GridNet (Wang et al., 2023) Frequency 14.5M 23.5 -
MossFormer2 (Wang et al., 2023) Time 55.7M 24.1 18.1

RCSep64 Hybrid 485K 17.8 13.4
RCSep128 Hybrid 1.38M 19.4 14.8
TF-GridNet + TRCN Frequency 12.1M 23.7 -

While the RCSep is unable to match current SOTA models like TF-GridNet and MossFormer2, these
models are over 10 times bigger and have a significantly higher computational cost. Therefore, they
are not really in direct comparison with the RCSep models. The methods that make a more fair
comparison are the recent lightweight separation methods such as the TDANet and S4M-tiny. Note,
that both RCSep models are still significantly smaller than the TDANet and the S4M-tiny. While the
RCSep64 is not quite able to match their accuracy on the WSJ0-2Mix and WHAM! benchmarks,
it still is fairly close, reaching 17.8 dB on the WSJ0-2Mix and 13.4 dB on the WHAM! dataset.
The RCSep128, however, is able to match and even outperform the S4M-tiny and TDANet in terms
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of separation accuracy, reaching an SI-SDRi of 19.4 dB on the WSJ0-2Mix and 14.8 dB on the
WHAM!.

The TF-GridNet variant which uses TRCNs instead of BLSTMs reaches and SI-SDRi of 23.7 dB,
which is marginally higher than the original’s 23.5 dB. It is, however, also significantly smaller than
the original at 12.1 million trainable parameters instead of 14.5 million trainable parameters.

5.4 RESULTS COMPUTATION TIME

Figure 4 shows the computational cost in terms of training and inference speed. We compare the
two RCSep models with two recent lightweight models, the TDANet and S4M-tiny, as well as some
larger models like SepFormer and TF-GridNet plus the TF-GridNet variant with TRCNs. We use an
input with a sequence length of 32000 and do a 1000 runs for the speed tests.
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Figure 4: Training and inference computation time from various speech separation models given a
4 second 8 kHz input measured by using 1000 runs. The models are listed in order of separation
accuracy, with the least accurate models starting from the left.

For the speed tests, both RCSep models significantly outperform not only the bigger models like
the SepFormer and TF-GridNet but also the recent lightweight models, meaning the TDANet and
S4M-tiny. The RCSep128 model is only very slightly slower than the RCSep64 model despite being
significantly more accurate. Both models are roughly 3 times faster than any of the other models we
tested during both training and inference.

Furthermore, the TF-GridNet variant using TRCNs is 14% faster than the original during training
and 12% faster during inference while also being more accurate and having 17% fewer trainable
parameters.

5.5 RESULTS MEMORY USAGE

Figure 5 shows the memory usage of the same models as 4 during training and inference while
processing a 4 second 8kHz input. Memory usage during inference is fairly uniform across all
models tested except for the original TF-GridNet which uses about twice as much memory as all
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the other models. The TRCN version of the TF-GridNet reduces inference memory usage by 45%.
Training memory usage between these two models, however, is basically identical. The RCSep
models are in line with the other lightweight models during inference, but use roughly 2-3 times less
memory than any of the other models during training. The RCSep128 uses slightly more memory
than the RCSep64 during both training and inference but for most application this would likely be a
worthwhile trade off considering the accuracy difference between the two models.
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Figure 5: Training and inference memory usage from various speech separation models given a 4
second 8 kHz input. The models are listed in order of separation accuracy, with the least accurate
models starting from the left.

6 CONCLUSION

In this paper we introduced the relative context operation as well as the RCSep architecture for
speech separation.

Through the experimental results shown, it is clear that the RCSep has by far the lowest computa-
tional cost of any speech separation architecture while also matching or even outperforming previous
lightweight models in terms of separation accuracy.

We have further demonstrated the potential of the relative context operation by using it in a current
SOTA model, the TF-GridNet, instead of BLSTMs. This resulted in a slight accuracy gain, a 17% re-
duction in model size, a 10-15% speed increase and a 45% memory usage decrease during inference.
Therefore, using relative context instead of BLSTMs caused a significant drop in computational cost
while marginally increasing the separation accuracy.

Additionally, we have experimentally determined a threshold value of roughly 25 dB SI-SDR at
which further improvement is irrelevant to separation accuracy. This means, that making separation
models more lightweight is the next most important task in this problem area. While the RCSep
models are still relatively far from this threshold, the modified TF-GridNet model does almost reach
it while being significantly more lightweight than the original. Furthermore, for other applications
such as human listening, the RCSep models already produce higher quality estimations than the
Conv-TasNet model whose estimations were rated almost on par with the original sources. We will
provide audio samples at a later date.
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7 REPRODUCIBILITY STATEMENT

The datasets used are described in section 5.1. No special preprocessing is used. The relative context
operation itself is described in section 3 and shown in Figure 2. The RCSep architecture is described
in section 4 and shown in Figure 3 while its parameters are defined in section 5.2.
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Colin Lea, René Vidal, Austin Reiter, and Gregory D. Hager. Temporal Convolutional Networks:
A Unified Approach to Action Segmentation. In Gang Hua and Hervé Jégou (eds.), Computer
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