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Abstract— Autonomous long-horizon mobile manipulation
encompasses a multitude of challenges, including scene dynamics,
unexplored areas, and error recovery. Recent works have
leveraged foundation models for scene-level robotic reasoning
and planning. However, the performance of these methods
degrades when dealing with a large number of objects and large-
scale environments. To address these limitations, we propose
MORE, a novel approach for enhancing the capabilities of
language models to solve zero-shot mobile manipulation planning
for rearrangement tasks. MORE leverages scene graphs to
represent environments, incorporates instance differentiation,
and introduces an active filtering scheme that extracts task-
relevant subgraphs of object and region instances. These
steps yield a bounded planning problem, effectively mitigat-
ing hallucinations and improving reliability. Additionally, we
introduce several enhancements that enable planning across
both indoor and outdoor environments. We evaluate MORE
on 81 diverse rearrangement tasks from the BEHAVIOR-1K
benchmark, where it becomes the first approach to successfully
solve a significant share of the benchmark, outperforming
recent foundation model-based approaches. Furthermore, we
demonstrate the capabilities of our approach in several complex
real-world tasks, mimicking everyday activities. We make the
code publicly available at redacted-for-review.

I. INTRODUCTION

Recent studies have achieved notable advances in the
completion of long-horizon robotic tasks in large-scale envi-
ronments [1]–[4]. This progress was largely fueled by recent
breakthroughs in scene comprehension and the integration
of foundation models. At the same time, evaluations are still
limited to known environments [1], [3], interactive search
tasks [2], [5], or a series of hand-crafted tasks in specific real-
world settings that lack reproducibility by the community [1],
[3], [6]–[8].

Previous research conducted within single-room environ-
ments has demonstrated the capability to accomplish a broad
spectrum of tasks [9], [10]. Nonetheless, in the context of
mobile robotic manipulation, the scope of environments can
expand to encompass entire apartments and outdoor areas,
leading to an exponential increase in the number of objects
and possible interactions, leading to exploding planning
times [11] or hallucinations [1]. Furthermore, assumptions of a
priori known scene layouts and object locations do not account
for environment changes or flexible deployment. These partial
scene observability and unexplored areas complicate planning
by requiring reasoning about the unknown.

In this work, we focus on generalizing to rearrangement
tasks with a mobile manipulator in a zero-shot manner, tack-
ling both large-scale and unexplored environments spanning
across indoor and outdoor spaces. We scale previous work
in natural language-based interactive object search [2] and
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Fig. 1. We present MORE, an efficient model for the task of rearrangement
through mobile manipulation. We utilize 3D scene graphs as a logical scene
representation manifold that is filtered to obtain task-relevant subgraphs.

thus expand the range of application to general everyday
activities and introduce the first method capable of solving a
substantial part of the BEHAVIOR-1K benchmark [12]. We
refine the benchmark by providing fully defined language
task descriptions and implementing computationally efficient
evaluations, thereby facilitating reproducible assessments
across an extensive set of tasks. Subsequently, we present a
methodology that can operate effectively in unknown environ-
ments, both indoor and outdoor, and extends the reasoning
to a large set of subpolicies. Our approach introduces novel
solutions to integrate object and instance information and to
identify the subscene pertinent to the current task, thereby
maintaining the planning problem within manageable bounds
and significantly mitigating hallucinations and distractions.

In our experiments, we conduct a comparative analysis
of previous approaches based on Large Language Model
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(LLM) and Vision-Language Model (VLM) planners. Our
experiments reveal substantial benefits from incorporating
explicit memory, such as scene graphs, and employing
our filtering approach to streamline the planning phase by
minimizing the search space.

Our key contributions can be summarized as follows:
• A novel scene representation that encompasses environ-

ments spanning across both indoor and outdoor areas.
• An efficient LLM-based planning framework that identi-

fies the task-relevant subscenes and can execute instance-
level actions in large-scale environments.

• The extension of the BEHAVIOR-1K benchmark with
fully-specified language task descriptions, facilitating
reproducible assessments of everyday activities.

• The first approach to complete a significant subset of
BEHAVIOR-1K tasks, containing 81 daily activities
together with real-world evaluation of representative
tasks in a multi-room apartment.

II. RELATED WORK

3D Scene Graphs and Spatial AI: Robotic reasoning and
planning struggle to scale effectively in large-scale environ-
ments when utilizing dense semantic representations [13],
[14]. Instead, recent works break down large-scale indoor or
outdoor scenes into hierarchical 3D scene graphs covering
distinct concepts at various levels of granularity. [15]–[18].
While Hydra [15] focuses on real-time execution, Concept-
Graphs [19] and HOV-SG [16] investigate the incorporation
of open-vocabulary vision-language features for language-
grounded robot navigation. OrionNav [20] and MoMa-
LLM [2] further introduce frontier-based exploration stacks
for dynamically populating the scene graph based on language-
guided high-level policy calls. Orthogonally, KESU [21]
proposed constructing a knowledge base by employing vision-
language foundation models to enhance spatial environment
understanding. Clio [22] proposes to cluster task-agnostic
object primitives based on task instructions to reduce scene
complexity. Related to the problem of scene granularity,
Search3D [23] proposes an additional hierarchical level below
the object primitives by breaking down class-agnostic object
proposals into granular segments representing partial objects.
While still in its early stages, another branch of studies
deals with dynamic updates of scene graphs through various
input signals. Most works solely focus on the aspect of
incorporating novel observations [2], [20], whereas MM-
3DSGU [24] is the first general approach to also consider
human interactions, robot actions, or language inputs [24].
Compared to previous works, we propose a scene graph
approach that spans both indoor and outdoor domains under
a single combined representation and allows space partitioning
through Voronoi decomposition.

Vision-Language Models for Planning: Foundation models
have shown strong reasoning capabilities that provide accurate
representations. Language models have been utilized to
formulate a planning domain and establish a goal for a
symbolic planner to execute planning within [25], [26].
Coupled with scene graphs, LLMs have been able to solve

long-horizon tasks [1], [2], [27]. Recently, VLMs have
enabled finer-grained decision-making based on annotated
images [7], [28]. Where COME relies on global semantically
annotated object maps to enable longer-horizon reasoning [6],
OK-Robot [29] only executes open-vocabulary pick-and-drop
tasks. BUMBLE further extends to additional skills and
includes visual memory [3]. Furthermore, fully end-to-end
models have succeeded in performing tasks such as unloading
and folding laundry. However, these models concentrate on
confined environments [6], [7], [28]–[30] that do not require
robust memory mechanisms, rely on a priori known scenes [1],
[3] or involve a restricted range of interactions related to
search and exploration [2], [27].

In large environments, methods to reduce the size of the
planning problem have been proposed by predicting the
importance of objects through graph neural networks [31].
Liu et al. [26] query an LLM to prune a fully known
scene graph given a task description. Ray et al. [32]
identify rules for removing symbols from a task and motion
planning (TAMP) navigation problem. In contrast to these
methods, our work concentrates on formulating plans within
unknown environments, thus necessitating an analysis of
the significance of nodes in the context of exploration.
EmbodiedRAG [33] enables an LLM to envision task-relevant
objects, subsequently formulating plans only with those
objects, which correspond to the a priori knowledge.

Embodied AI Benchmarks: In the last years, numerous
simulators and benchmarks have been introduced, including
large and navigable scenes [34]. Recently, they have been
extended to partially interactive scenes for rearrangement
tasks, without doors or articulated objects [35], [36], and
often restricted to confined room-sized scenes [9], [10]. Where
iGibson [37] provides 15 fully interactive apartment scenes,
ProcThor procedurally generates large scenes, nonetheless
with limited complexity [38]. A number of recent works have
shown capabilities on real-world hand-crafted tasks, complex
to replicate and use for benchmarking [1], [3], [6]–[8]. In
an effort to enable evaluations that are both accessible and
replicable, we have chosen BEHAVIOR-1K [12], a dataset
that augments the scenes from iGibson to encompass 50 varied
daily task scenarios with near-photorealistic visualization. It
offers an open and challenging testbed for long-horizon task
planning in large environments that require strong capabilities
of understanding and memory.

III. APPROACH

A. Problem Statement: Embodied Reasoning

This work investigates embodied reasoning in large and
unexplored environments. The agent is situated in an unknown
environment and given a task description g in natural
language together with its proprioceptive sensor observations,
consisting of a posed RGB-D frame It and the current robot
state srobot. For computational simplicity, we assume accurate
semantic perception by relying on ground truth semantics. To
complete the task, the agent has to explore its surroundings,
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Fig. 2. Overview of MORE. Starting in an unexplored environment, we continuously construct a hierarchical scene graph of the environment based on
RGB-D data and semantic segmentation. We first build a dense occupancy map and then extract a navigational Voronoi graph. This graph is separated at
room borders based on door locations, then clustered and segmented into rooms and outdoor regions. The resulting scene graph is converted to natural
language descriptions. To generate a bounded planning problem, we first filter the observed objects by task relevance and then use an LLM as a task
planner in the resulting subgraph. The LLM orchestrates navigation, manipulation, and exploration subpolicies, which in turn result in an updated scene
representation.

identify relevant objects given the task, and interact with the
environment until all goal conditions are satisfied.

Although recent studies are centered on manually defined
tasks executed under real-world conditions [1], [3], [6]–[8],
these tasks frequently exhibit a high degree of specificity
unique to each research endeavor and are often challenging
to reproduce. This specificity has resulted in numerous
approaches that are difficult to compare. For this reason,
we focus on one of the broadest benchmarks for everyday
tasks, BEHAVIOR-1K [12]. While this benchmark has been
established for a considerable period, it remains unsolved.
Its public availability and broad scope enable reproducible,
large-scale evaluation of general task solving capabilities.

The BEHAVIOR-1K benchmark consists of 1,000 activities
in over 50 scenes across both indoor and outdoor areas [12].
Each task is defined by its associated objects as well as
initial and final conditions in the predicate logic language
BDDL [39]. The tasks are then procedurally initialized in
the OmniGibson environment, built on top of the NVIDIA
Isaac simulator. The environment samples the required task
objects and places them in a randomly chosen scene such that
they fulfill the initial task conditions. Following successful
initialization, the agent, embodied as a Fetch robot, is then
randomly placed in the scene. We carefully analyzed both the
task environments and definitions and provide the following
benchmark modifications for practicality and reproducibility.
We verified that all scenarios are computationally feasible in
a reasonable amount of time.

We categorized the tasks into two groups: currently solvable
and nearly unsolvable. Specifically, we isolate a subset of 163
tasks that necessitate interactions involving articulated objects
and, in the broadest interpretation, entail rearrangements
with inside and onto state transitions. We further exclude

any task wherein the initialization process is unsuccessful.
The final set includes 81 tasks such as packing picnic
food into car or buy dog food across 17 unique
scenes. Given that the original task descriptions frequently
lack unique specificity regarding the desired task outcomes,
we provide natural language descriptions derived from
the BDDL goal conditions for the complete set of tasks.
For instance, the natural language description for the first
mentioned task is: Put all the food in the bags
and load the bags into the car. The enumera-
tion of the tasks, along with their corresponding natural lan-
guage descriptions, is accessible in Supplementary Sec. S.1.

Nevertheless, conducting evaluations across this extensive
set of tasks is exceedingly time-consuming, owing to their
prolonged duration and the constrained simulation speed
within large environments. We address this problem by intro-
ducing significantly accelerated subpolicies. These policies
follow the concept of “magic actions”, removing the need
for physical simulations and their associated steps. Although
this methodology disables the precise execution of arm move-
ments, it enables a reasonable simulation pace to evaluate
high-level reasoning capabilities across a broader set of tasks
compared to previous works. We make these subpolicies
publicly available with our code. The implementation of
these magic actions is detailed in Supplementary Sec. S.2.

B. MORE Model

In this work, we scale previous work on language model-
based planning via scene graphs to reason and act in large
environments while extending it to general tasks [2]. Our
model consists of three main components: a hierarchical scene
graph representation, a high-level language-based planner, and
subpolicies that control the robot. An overview is shown in
Fig. 2.



user: You have already observed 3 regions, they contain the following objects:
- garden contains [armchair A, armchair B, bush M, bush N, bush O, bush A, bush B, bush C, bush D, bush E,
bush F, bush G, bush P, bush H, bush I, bush J, bush Q, bush K, bush L, coffee-table B, closed dishwasher A,
grill A, closed microwave A, pedestal-table A, picture A, pillar A, pillar B, plant-pot A, plant-pot B,
plant-pot C, plate A, pot-plant D, pot-plant E, pot-plant F, pot-plant G, pot-plant H, pot-plant I, pot-
plant J, pottable-daffodil A, pottable-daffodil B, sofa B, sofa C, spotlight A, spotlight B, spotlight C,
spotlight D, tree R, tree S, tree T, tree U, tree V, tree W, tree X, tree Y, tree Z, tree AA, tree AB, tree
AC, tree AD, tree AE, tree AF, tree AG, tree AH, tree AI, tree AJ, tree AK, tree AL, tree AM, tree AN, tree
AO, tree AP, tree AQ, tree AR, tree AS, tree AT, tree AU, tree AV, tree AW, tree AX, tree AY, tree AZ, tree
BA, closed window A, closed window D].
- kitchen contains [background A, bed A, closed bottom-cabinet A, closed bottom-cabinet D, closed bottom-
cabinet B, closed bottom-cabinet C, closed bottom-cabinet E, closed bottom-cabinet F, breakfast-table A,
breakfast-table B, coffee-table A, countertop A, electric-switch B, electric-switch C, electric-switch D,
electric-switch F, floor-lamp A, closed fridge A, lawn A, loudspeaker A, ottoman A, closed oven A, picture
B, picture C, pot-plant A, pot-plant B, pot-plant C, roof A, shelf A, shelf B, shelf C, sink B, sofa A,
standing-tv A, straight-chair A, straight-chair B, straight-chair C, straight-chair D, straight-chair E,
swivel-chair A, table-lamp A, closed top-cabinet G, closed top-cabinet H, closed top-cabinet I, closed top-
cabinet J, closed top-cabinet K, trash-can A, closed window B, closed window C].
- bathroom contains [mirror A, pottable-cactus A, shower-stall A, sink A, toilet A, towel-rack A, towel-rack
B].
Please remove any objects that you are sure will be irrelevant for a robot to complete the task or to find
any objects relevant to the task.
Output Response Format:
A list with bullet points of the form
- room name: [object 1, object 2, ...]
Remember:
- you can only use the given rooms and objects.
- note that some objects are not explicitely mentioned in the task description, but will be helpful to solve
the task.
- don't remove any objects that might be helpful in finding objects needed for the task.
- your action space includes open, close, grasp, place.
- respond only in the described output format.

assistant:
- garden: [plant-pot A, plant-pot B, plant-pot C, pottable-daffodil A, pottable-daffodil B]
- kitchen: []
- bathroom: [pottable-cactus A]

Fig. 3. Language-based scene graph filtering: We employ a filtering prompt
that structurally represents all regions and respective objects of the unfiltered
scene ξ. Next, we employ an LLM in order to identify which objects are
task-relevant. Those are returned, yielding a task-informed sub-graph ξtask .

1) Scene Graph: Given the requirement to act in combined
indoor-outdoor scenes, we extend previous work to larger
scenes. Similarly to MoMa-LLM [2], we employ Voronoi
graphs to cover the navigational space. Although Voronoi
graphs allow for efficient space partitioning, they quickly grow
to an impractical number of nodes, which is exacerbated in the
considered large-scale environments. In general, each morpho-
logical irregularity generates a substantial quantity of Voronoi
nodes that do not contribute to functional utility. Therefore,
we introduce a novel sparsification scheme operating on the
navigational Voronoi graph, whereby we identify and extract
nodes of degree two that fall within a specified distance
of one another. We then replace the original edges with a
single coarser edge. The resulting algorithm scales linearly
in the number of vertices and is provided in Supplementary
Sec. S.3. While MoMa-LLM [2] assigns all objects to the
largest connected component of the Voronoi graph, this is
no longer sufficient for areas that extend to the outdoors. A
specific challenge is the observability of different regions of
the scene through unnavigable windows. We instead assign
objects directly to their closest component and only then
reduce the observed scene graph to the component connected
to the robot’s current position. This eliminates unreachable
regions until a path is discovered by opening a door, for
instance. Given these modifications, the proposed navigational
graph can efficiently represent unified indoor-outdoor scenes
that feature highly disparate node counts. In addition, we
extend the room separation mechanism to an adaptive kernel
width based on the observed door bounding boxes, thereby
facilitating more robust segmentation of regions. Subsequently,
we adhere to MoMa-LLM’s strategy to assign objects to
the separated Voronoi graph, based on both the viewpoint
they are observed from and the language-model based room
classification of each region.

2) High-level planning: Given our perceived state of the
scene, our aim is to take the action with the highest likelihood

system: You are a robot with a manipulator arm in an unexplored house. Your task is to distribute daffodils
in different pots and cactus in a pot.
You have the following actions available that you can use to achieve this task:
1. navigate(room_name, object_name): navigate to this object in this room.
2. go_to_and_open(room_name, object_name): go to this articulated object, door or container and open it.
3. go_to_and_close(room_name, object_name): go to this articulated object, door or container and close it.
4. go_to_and_grasp(room_name, object name): go to this object in this room and grasp it.
5. go_to_and_place_inside(room_name, object name): go to this object in this room and place the grasped
object inside of it.
6. go_to_and_place_ontop(room_name, object name): go to this object in this room and place the grasped
object on top of it.
7. explore(room_name): explore the unknown space near one of the rooms that is not fully explored yet.
8. done(): call when the task is completed or if you are unable to take any further actions.
You must respond with three items, Analysis, Reasoning, and Command, as below:
Analysis: describe where you could find the objects of interest and what actions you need to execute to get
there.
Reasoning: justify why the next action is important to solve the task.
Command: function call

assistant: Analysis: The task requires distributing daffodils in different pots and placing the cactus in a
pot. The garden has three plant pots, and two of them already contain daffodils. The 
bathroom has a pottable-cactus A that needs to be placed in a pot. Plant-pot C in the garden is currently
empty and can be used for the cactus.
Reasoning: To complete the task, the next step is to grasp the pottable-cactus A in the bathroom and place
it in the empty plant-pot C in the garden.
Command: go_to_and_grasp(bathroom, pottable-cactus A)

user: You are currently in the bathroom. You are standing next to the following objects: [pottable-cactus
A]. Furthermore, you have found the following rooms and objects in the house so far:
- bathroom: [pottable-cactus A, opened door A].
- garden: [plant-pot A, plant-pot B, plant-pot C, pottable-daffodil A inside plant-pot A, pottable-daffodil
B inside plant-pot B].
- kitchen: [opened door B, opened door A].
These rooms have unexplored space leading out of the room: [].
These rooms have unexplored space within the room: [].
Your 5 previous actions were: go_to_and_place_inside(garden, plant-pot B) - Succeeded., explore(kitchen) -
Succeeded., go_to_and_open(garden, opened door A) - Succeeded., explore(bathroom) -
Succeeded., explore(bathroom) - Succeeded.
Your arm is empty and you are allowed to grasp an object.
What is the best next action to complete the task as efficiently as possible?
Remember:
1. Respond with a function call. Only use the described response format! You must not add any formatting or
style, and just call the function in a simple line.
2. You can only use the objects and rooms that you have already found. Object names and room names have to
match the description exactly.
3. You can only explore rooms that are listed as having unexplored space.
4. If some actions failed repeatedly, they may not be possible.
5. Explore all areas that might contain relevant objects before calling done().
6. If you have fully completed the task, directly call done().

Fig. 4. Language-based reasoning: Assuming a filtered sub graph ξtask ,
we provide the LLM with the task description, a skill API, and the filtered
set of regions and objects. Based on the high-level action chosen by the
LLM, we orchestrate the next policy steps to be executed in order to fulfill
the task at hand.

of progressing the task. We introduce a novel scene graph
filtering mechanism and extend LLM-based reasoning to
instances and attributes.

Scene representation: We extend prior research to encode
the scene graph, including potential unobserved regions, into
a structured language representation [2]. Whereas previous
research concentrated predominantly on class-specific object
search, our objective is to generalize to a broader range
of tasks. As a result, we represent the task relevance of
object attributes and properties, even for multiple target
object instances, in our scene graph representation. Inferred
object states or attributes, accessible through recent VLM
methods [16], are incorporated into their related description
as supplementary attributes. However, given that objects can
possess a large number of attributes, this can lead to a large
increase of the scene description. We tackle this through the
filtering described below. As a task may require us to interact
with a specific instance, we first uniquify each instance by
assigning it an alphabetical ID and provide all instances to
the LLM. Note that this principle is interchangeable with
using specific properties as instance identifiers. However,
alphabetical IDs enable fair comparisons across different
methods. The resulting scene description is depicted in
Fig. 3. We specify each region and its corresponding objects
including IDs and ask the LLM to remove object instances
that are not relevant given the task as detailed in the following.

Scene graph filtering: Planning in the full environment is a
highly challenging task, as considering all possible objects
and interactions leads to either exploding planning times [11]
or hallucinations [33]. For common everyday tasks, only a



small subset of objects and areas in the scene are actually
task relevant. Therefore, we hypothesize that there exists
a filtering function f that maps from the full scene ξ to
the relevant subscene ξtask, which is simpler to attain than
the full task planning. Its aim is to ignore distracting scene
entities. In contrast to previous work [26], [31], [32], we
face two additional challenges: we are acting in unexplored
environments, making not just task-specific objects relevant,
but also objects that may inform us about the unexplored
parts of the scene, and we are considering tasks that might
require multiple instances of objects or instances with specific
attributes.

We propose an LLM-based scene filtering for partially
observed scenes. The LLM receives a structured natural
language description of the scene together with the task
instructions. It is then prompted to remove any objects that
will be irrelevant for a robot to completing the task, or in
finding any of the objects relevant for the task, and to respond
with a formatted list of rooms and objects. An example is
shown in Fig. 3.

Task planning: Given the identified subscene ξtask, we con-
duct MPC-style task planning, outputting the next subpolicy to
execute before replanning with the newest scene observation.
We instantiate this as another large language model call
a = l(ξtask, srobot, g, h), where g is the task instruction, h is
an action history, including potential environment feedback
from the subpolicy execution. We extract two parts of
information from the robot state srobot: the room it is currently
in, and whether it is holding an object in its gripper. The
action history h consists of the previous five actions as well
as all previously failed actions. The environment feedback c
consists of a binary indicator whether a subpolicy succeeded
or failed, as well as easily obtainable feedback such as the
gripper being full or requiring an articulated object to be
opened before placing another object inside. While more
information would be available in simulation, it is often not
realistic to obtain such details in the real world. An example
prompt is shown in Fig. 4.

We parameterize object-centric subpolicies, consisting
of explore(room): explore the closest frontier within a
specified room. navigate(room, object): navigate to
the vornoi node closest to this object via A∗-planner in the
constructed occupancy map. go to and {open, close,
grasp, place inside, place ontop}(room,
object): navigate to the closest Voronoi node, then
execute a magic action to complete the interaction. done():
complete the episode and evaluate success. These subpolicies
on one hand incorporate often implied precursor actions
such as moving to the object, and on the other hand are
parameterized by object and room names. We found this
important to match the reasoning level of the LLM. The
LLM is provided with a short description of each subpolicy.

An episode terminates if the model calls done(), exceeds
50 high level steps or continues to act for more than five
high-level steps after all goal conditions are completed.

TABLE I
RESULTS ON 81 TASKS OF THE BEHAVIOR-1K BENCHMARK.

Model SR [%] TTC [%] TP [%] rTP [%]

BUMBLE [3] 11.3 15.0 35.2 39.7
BUMBLE [3] + filtering 15.7 20.5 43.7 48.8
MoMa-LLM [2] 19.7 32.1 67.6 72.4
MoMa-LLM [2] + spatial relations 36.1 41.2 64.6 67.4
MORE 48.1 50.6 70.1 80.1

The reported numbers are averaged across all evaluated tasks. We report
the success rate (SR), the average task progression (TP), the relative task
progression (rTP), and the TTC denoting the total task completion rate.

Fig. 5. Real-world experiments. From top left to bottom right: overview of
the environment, throwing away a plastic bottle, fetching a book, grasping a
bowl, taking milk out of the fridge, placing cereals on the dinner table.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate our approach on the BEHAVIOR-1K bench-
mark [12] with a Fetch robot and magic actions as detailed
in Sec. III-A. For every model tested, we use GPT-4o as a
language model. For MoMa-LLM and MORE, we use the
simpler model GPT-3.5 Turbo for room classifications.

Metrics: We compare the following statistics:
Success Rate (SR): share of tasks with all goal conditions
completed and done() called correctly.. Note that this does
not require the model call done() correctly after doing so.
Total Task Completion (TTC): share of tasks with all goal
conditions completed, irresp. of calling done() correctly.
Task Progression (TP): average share of completed goal
conditions of all goal conditions.
Relative task progression (rTP): share of completed goal
conditions that include observed task objects. Removing a
component of ambiguity from tasks such as “throw away all
boxes” where it is unclear when to stop searching for further
objects.

Baselines: We compare MORE against a range of different
methods detailed in the following.
MoMa-LLM [2]: language-based planning through scene
graphs tailored towards interactive object search, which we
extend to our set of subpolicies.
MoMa-LLM [2] + spatial relations: the above model,
equipped with an improved scene representation including
spatial relations among observed objects, same as MORE.
BUMBLE [3]: a current VLM-based reasoning method that



TABLE II
REAL-WORLD EVALUATION

Task Goal Conditions Completed Reasoning

Set the table for cereals. Place bowl, cereals and milk from
fridge on dinner table

3/3 Placed bowl and cereals on table; opened fridge to search for milk, found it, and placed it
on table, then called done.

Clean up the empty
bottles and cans.

Find two bottles and one can and
put in the bin

3/3 Found and threw away all objects. Continued to search kitchen and living room. Then failed
to call done, stopped manually when base controller disconnected.

Fetch a book and store it
in the dinning room.

Find book and place in storage box
or cabinet in dining room

1/1 Explored all rooms, found and grasped book, drove back to dining room and placed in
storage box. Due to gripper opening too late book fell outside box. Then called done.

provides a visual short- and long-term memory together
with the current, annotated view to a VLM model to select
subpolicies. We adapt the model to have access to the
same ground-truth semantic perception as MORE, replace
its original skill set with our subpolicies and adapt the
prompt descriptions accordingly. Note that BUBMLE does not
employ a structured scene representation. Additional details
are provided in Supplementary Sec. S.5.
BUMBLE [3] + filtering: the above model, extended with
our scene filtering function, applied to the objects that get
annotated in the current view.

B. Results

The results across the identified set of 81 tasks are reported
in Tab. I. We find that BUMBLE is able to complete a
significant share of tasks. However, the landmark-based
memory does not scale efficiently to very large environments,
as this requires a very large number of frames. Furthermore, it
does not allow reacting to changes in the scenes easily (which
would require updated images). While the VLM reasoning can
take into account fine-grained spatial relationships, it struggles
with cluttered scenes that result in heavily annotated images,
which in turn leads to incorrect selections or hallucinations.
Accordingly, we observe an increase in performance when
incorporating our filtering in this model. Nevertheless, the
other issues persist. One advantage of MoMa-LLM and
MORE over BUMBLE is that they base action selection
on a comprehensive representation of the entire scene, rather
than relying solely on the current view and the histories.
This approach allows MoMa-LLM and MORE to achieve
superior results compared to BUMBLE. MoMa-LLM achieves
a success rate of 19.7%, though completing all conditions
in 32.1% of cases. We found that it struggles with the large
number of objects and fails to differentiate instances. MoMa-
LLM + spatial relations improves the differentiation of objects,
enhancing performance and achieving a 36.1% success rate
underlining the effectiveness of our scene representation.

MORE achieves a success rate of 48.1% and in over 50%
of all tasks completes all goal conditions. The average share
of overall completed task conditions is even higher at over
70%. Nonetheless, the model may face challenges in the
following cases: (i) numerous constraints - although the model
demonstrates high progress (rTP), it might overlook a few
constraints and find a partial solution, (ii) task ambiguity -
the task description might not provide the number of relevant
objects, and the model struggles to determine when to stop
searching, causing a gap between TP and rTP, (iii) simulator

failures - spawning objects in unreachable areas, and getting
stuck in dead spots due to opening articulated objects.
We conducted our experiments on a cluster consisting of 4
nodes, each equipped with 8 NVIDIA GeForce RTX 2080
Ti GPUs. We achieved an average completion time of 1 hour
and 27 minutes per task.

C. Real-World Experiments

We construct an apartment consisting of three rooms,
kitchen, living room, dining room, and deploy our approach
on the Toyota HSR robot, with an omnidirectional base and
5-DoF arm. We follow previous work in assuming accurate
semantic perception by revealing a pre-annotated semantic
map based on the areas observed by the depth camera of the
robot. We use the ROS Navstack for navigation and manipu-
late objects with the N2M2 mobile manipulation policy [40],
[41] based on single end-effector demonstrations per object,
relative to an AR marker pose. For place poses, we infer the
closest point to the robot on the selected object to place down
objects, then generate linear end-effector motions to that pose.

We evaluate our approach qualitatively on three challenging
tasks. The results are reported in Tab. II and shown in Fig. 5
as well as the accompanying video. We find that our approach
transfers well to the real world, completing all required
goal conditions for all tasks, including complex interactions
such as fetching the milk from the closed fridge. A small
failure in opening the gripper led a book to fall outside the
container. The largest issue was task ambiguity, leading to
indeterminism whether the cleaning task is completed or
if the agent should continue to search for further bottles.
This reflects a general issue of abstract task definitions.
Additionally, we find long LLM inference times to cause
a strain on evaluations. While these are restricted to high-
level reasoning at a very low control frequency, they still
accumulate to a significant fraction of runtime.

V. CONCLUSION

We introduced MORE, a model capable of diverse rear-
rangement tasks across very large environments. We generate
fully specified task descriptions for a large subset of the
BEHAVIOR-1K tasks as well as a set of policies that allow
computationally feasible evaluation. We construct scalable
scene graphs across indoor/outdoor environments to subse-
quently identify the subscene and instance information directly
related to the task. This enabled the efficient orchestration of
object-centric subpolicies through a large language model. In
extensive experiments, we find our approach to outperform



both previous LLM-based models and VLM-based approaches
and, for the first time, complete a significant subset of the
BEHAVIOR-1K benchmark. Finally, we demonstrated that
our approach successfully transfers to real-world scenarios.
In future work, we aim to investigate the integration of VLM
models for local fine-grained decision-making as well as
further approaches for ambiguity resolution, either through
human interaction, if available, or explicit reasoning about
the desired task context.
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In this supplementary material, we provide additional
details on the generated task descriptions and simulation
setup. We furthermore provide details on the scene graph
construction and the implementation details of the BUMBLE
baseline. We also provide additional details on the real world
subpolicies.

S.1. TASK SUBSET

Tab. S.1 presents the tasks utilized to evaluate our method.
The first column lists the activity names, each corresponding
to a task from the BEHAVIOR-1K dataset. The second column
provides our new task descriptions given to the agent. These
descriptions ensure that all task relevant details are included
for the goal conditions provided by the BEHAVIOR-1K
benchmark. For example, if goal conditions are specific to
a certain object instance in the scene, the task description
entails this detail. For tasks requiring interaction with specific
object instances in the scene, the variable is preceded by a
dollar sign $. During task initialization, variables preceded
by a dollar sign $ will be substituted with the corresponding
object names.

S.2. SIMULATION ENVIRONMENT

A. Modifications

• We close exterior doors and filter them out of the scenes
as they lead to empty space.

• We take non-physical steps as the robot size cannot
be adjusted, and many collisions between the robot
and objects in narrow areas are unavoidable and would
otherwise not allow the robot to complete certain tasks.

• We skip scene restaurant diner as its area is
divided into 2 disconnected regions, and the scene
school gym because of floors with different heights.

B. Perception

The robot in simulation is equipped with an RGB-D camera
with a resolution of 256×256 pixels. As the focus of this work
is on decision making, we abstract from imperfect perception
and assume access to ground truth instances and semantic
segmentation from the simulator. For a realistic detection
range, we restrict all sensors (depth, semantics) to a maximum
range of 5 m. We furthermore assume accurate detection of
whether an articulated object is open or closed. Moreover, all
inner objects within an articulated object become visible to
the robot once the outer object is opened. We construct all

maps at a resolution of 0.075 m and detect the floor, carpet,
lawn and driveway categories as free space.

C. Execution

All trajectories start by fully turning around in-place to
initialize the scene graph.

Low-level action space: The subpolicies act in a low-level
action space consisting of the following actions:

• move forward by 7.5 cm
• turn-left by up to 35 rad
• turn-right by up to 35 rad
• explore a region: the agent navigates to the closest

frontier point of that region.
• open articulated object: if the arm is empty and the

object is closed, the agent opens the object.
• close articulated object: if the arm is empty and the

object is opened, the agent closes the object.
• grasp an object: if the arm is empty, and the agent grasps

the object
• place an object relative to another object: the agent puts

the object {inside, on top} of another object. If placing
an object inside, the target object must be open.

• done: end the episode and evaluate the success

To execute any action in {open, close, grasp, place}, the
robot must first navigate to a position near the target object.
Specifically, it samples points along a fixed-radius circle
around the object and moves to the closest sampled position.

Algorithm 1: Voronoi Graph Sparsification
Require: Voronoi Graph V with nodes N and edges E,

threshold value c.
Ensure: Simplified Voronoi Graph

1: Let E2 be the set of nodes in N with a degree of 2
2: for each node x ∈ E2 do
3: Let v and u be the neighbors of x
4: Let w1 and w2 be the weights of edges (v, x) and

(u, x) respectively
5: if w1 + w2 < c then
6: Remove node x from V
7: Remove edges (v, x) and (u, x) from V
8: Add edge (u, v) with weight w1 + w2 to V
9: end if

10: end for



S.3. VORONOI GRAPH

A. Creation

The agent perceives a sequence of posed RGB-D frames,
{I0, . . . , It}, including semantic maps of the environment.
Using the camera’s intrinsic parameters, the depth maps are
converted into point clouds. These points are then transformed
into a global coordinate frame and arranged on a 3D voxel
grid, Mt. Since we address an interactive problem, our map
is dynamically updated to incorporate newly explored areas
and changes due to manipulated objects.

To determine obstacle positions, walls, and free space, we
extract the highest occupied entry per stixel in Mt. This
value may be negative in cases where objects like swimming
pools are present. These entries are then used to generate a
two-dimensional bird’s-eye-view (BEV) occupancy map, Bt,
by marking all occupied positions except those classified as
free space, Ft. The latter represents the navigable area that
is used in the exploration.

Similar to MoMa-LLM [2], we construct a navigational
graph, GV from the dense occupancy map. First, we inflate Bt

using a Euclidean Signed Distance Field (ESDF) formulation
for robustness, while setting the free space coordinates defined
in Ft to zero. Based on this, we compute a Generalized
Voronoi Diagram (GVD), which consists of a set of points,
V , which maintain equal clearance to the nearest obstacles
derived from Bt. We exclude all nodes that are on obstacles
or do not reside within Bt. Given the boundaries of the GVD,
we construct edges E among V and obtain our navigational
Voronoi graph, GV = (V,E).

B. Sparsification

We employ the Voronoi graph as a proxy to extract
the closest area to an object or detect frontier points in
unexplored areas. However, the graph grows rapidly in
large-scale environments. Therefore, any large process on
the graph becomes computationally infeasible. In this case,
each morphological irregularity consists of a vast number of
Voronoi nodes that lie close to each other and do not add any
functionality. We propose an iterative sparsification algorithm,
described in Alg. 1, which reduces the complexity of the
graph while preserving its structure.

Our algorithm removes redundant nodes with a degree
of two if their neighbors are sufficiently close. The node
is eliminated, and a direct edge is introduced between its
neighbors. Note that the removal of one node does not change
the degree of any other node, and after each removal step,
exactly one degree-two node is eliminated. The algorithm
processes each degree-two node only once. The final graph is
minimal—i.e., no further degree-two nodes can be removed.
This approach runs in a computational complexity of O(|V |).

C. Region Separation at Doors

A scene is divided into regions when no navigable path
exists between navigable regions, most commonly due to
closed doors or gates. To extract the Voronoi graph for each
region separately, we first remove all edges whose nodes
belong to different regions. To achieve this, we treat all
observed doors as separation gates and remove all edges that
cross doors. Mathematically, we construct a 2D plane and
fit a Gaussian kernel to each door, where the center of the
kernel aligns with the center of the door. The Gaussian kernel
diameters are adjusted according to the door’s bounding box
dimensions. Each door and its associated Gaussian kernel
also share the same orientation.

Next, we evaluate each edge by integrating the values of
its points in the 2D plane. If this integral exceeds a threshold,
it indicates that the edge passes through a Gaussian kernel,
that is, a door, implying that its nodes belong to different
regions. As a result, when these edges are removed, it ensures
a clear segmentation of the scene.

S.4. SCENE GRAPH

Similar to MoMa-LLM [2], we employ a hierarchical 3D
scene graph with three levels of abstraction: root, regions, and
objects. Consequently, our approach requires (i) distinguishing
different regions within the environment and (ii) assigning
each object to its corresponding region.

To detect different regions, we use the region separation
method described in Supplementary Sec. S.3. Due to partial
observability, a single region (e.g., a room or garden) in
the environment may be divided into multiple connected
components within the Voronoi graph, each covering a sub-
region. These sub-regions are merged once the exploration
of the region is complete.

For each observed object O, we define vp(O) as the robot’s
viewpoint that is currently the closest to the object. We
identify the nodes in the Voronoi graph that are in close
proximity to the object and its viewpoint, denoted as SO and
Svp(O), respectively.

For every pair (v, u), where v ∈ SO and u ∈ Svp(O), we
determine the optimal solution to the following minimization
problem:

min
v,u

dV (v, u) + dE(O, v)λ + dE(vp, u), (1)

where dV represents the shortest path length in the Voronoi
graph, and dE denotes the Euclidean distance in 2D space.
By weighting the distance to the object with an exponent of
λ = 1.3, we prioritize selecting nodes that are closer to the
object. If v and u belong to different connected components
in the Voronoi graph, the shortest path length dV (v, u) is
considered infinite. Once the optimal pair (v, u) is found,
the object O is assigned to the connectivity component that
contains both v and u.



After constructing the scene graph, the objects within each
region are provided to an LLM to predict the region’s label
(e.g., kitchen, bathroom, etc.). Additionally, we determine the
robot’s current region and remove all unreachable regions
and their associated objects from the scene graph.

S.5. BUMBLE IMPLEMENTATION

In this section, we will introduce the modifications we
have made to BUMBLE [3] to adapt it to the BEHAVIOR-
1K tasks. All implementation details provided below refer
to the latest version of the author’s repository at the time
of writing1. BUMBLE uses Grounded SAM (GSAM) [3]
to obtain a segmentation mask of non-background objects.
This is achieved by prompting GSAM with the query ’all
objects’. For a fair comparison, we replaced GSAM with
the simulator’s ground truth information. Specifically, we
obtained the segmentation mask and excluded background
objects such as the floor and walls. As previously described
in section IV, we integrated the same set of subpolicies are
used for all models for BUMBLE.

In the original BUMBLE pipeline, the agent could directly
interact only with objects visible in the current frame,
eliminating the need to store information about previously
seen objects. However, for the tasks tackled in this work,
the agent may need to interact with previously discovered
objects. For this reason, we integrated a new buffer containing
previously acquired frames. These frames are continuously
sampled during action execution.

Whenever the agent intends to interact with an object, i.e.,
when performing navigate or go to and ∗ subpolicies,
it must first select an image from the buffer containing
the desired target object. The frame selection process is
implemented based on BUMBLE’s goto landmark skill.
The agent is provided with the current subtask to achieve, a
list of frames, each associated with a landmark. As we found
BUMBLE prone to hallucinations, we additionally provide it
with the list of objects within each image, which we found
to reduce the problem to some degree. The agent then selects
the landmark corresponding to the most suitable frame.

Subsequently, the agent must choose one object
from the selected frame. This follows BUMBLE’s
navigate to point on ground skill. The agent is pro-
vided with the subtask to achieve, a description of all the
objects in the selected frame, and the annotated frame. For
annotating the image, we followed the public BUMBLE code.

The original work does not integrate a subpolicy for
exploring the environment, relying instead on hardcoded
positions within the tested buildings, which the robot could
navigate between using the goto landmark skill. We
incorporate an exploration subpolicy following the same
approach of the goto landmark skill, but, instead of
using hardcoded positions, we provide the VLM with frames

1https://github.com/UT-Austin-RobIn/BUMBLE, commit
4ff5ac0.
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Fig. S.1. Map of the real world environment. Object positions are shown
in different intensities and annotated with their category name.

from the buffer where the unexplored areas are visible
and a description of all the objects in each frame. The
unexplored areas are extracted from the scene graph. The
agent subsequently chooses the image that depicts the areas
to be explored. If multiple areas to explore are present in an
image, the closest one is selected.

In BUMBLE, the feedback received after executing an
action must be related to the subtask generated by the
agent. For the subpolicies navigate and go to and ∗

we use the same feedback as for our method. For the more
abstract exploration subpolicy, feedback is generated by the
Visual Language Model (VLM). The VLM is tasked with
determining whether the subtask was accomplished during
the exploration. It is provided with the frames acquired
during the exploration. Again, beyond BUMBLE’s original
implementation, we additionally include the list of objects in
the frame to reduce halucinations.

S.6. REAL WORLD IMPLEMENTATION

A. Map

The real world environment spans three rooms, furnished
as kitchen, living room and dining room with six articulated,
openable objects and 38 different objects overall. A map of
the environment is shown in Fig. S.1.

B. Subpolicies

As discussed in Sec. IV-C, we simulate accurate semantic
perception by annotating a recorded 2D map of the environ-
ment with semantic labels. We then use the depth camera
of the robot to identify the explored area, and reveal the
according parts of the map to robot. The recorded map is
also used for LiDAR based localization. This allows us to

https://github.com/UT-Austin-RobIn/BUMBLE


isolate the factors relevant to the decision-making part of
problem.

Navigate: the agent uses the default omnidirectional
ROS Navstack provided by the robot’s manufacturer. Obsta-
cles are avoided based on the static map, inflated by 0.25m as
well as dynamic obstacles perceived with the robot’s LiDAR
and depth camera mounted on the head.

Manipulation: All manipulation motions consist of an
inferred end-effector motion. This end-effector motion is
converted to a whole-body motion through the N2M2 mobile
manipulation policy [40], [41]. This policy takes the desired
end-effector motion together with the robot state and a local
occupancy map for collision avoidance and produces joint
velocities for the full robot at a high control frequency.

Open object: We provide a single demonstration for
the motion of the end-effector relative to an AR marker for
each articulated object.

Pick object: Object poses are detected via AR markers.
We then define a grasp pose relative to the marker. To grasp
the object, we generate a linear end-effector motion from a
point in front of the grasp pose to the grasp pose and back
to a point in front and slightly above the grasp pose.

Place object: We identify the mask of the object
where the agent wants to place something down. We erode
this mask and take the point closest to the robot as place
pose. We predefine the height of all placeable areas to select
the relevant height component. We then generate linear end-
effector motions from a point in front and above the place
pose to a pose above the place pose. Followed by a linear
motion to the place pose and back to a point in front of the
place pose.
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TABLE S.1
TASK NAMES & TASK DESCRIPTION FOR 81 BEHAVIOR-1K TASKS

Task name Task description

putting away tools put tools in toolbox. Wrenches must be in the same toolbox. Also screwdrivers must be in the same toolbox

attach a camera to a tripod put the digital camera on top the tripod

sorting vegetables distribute chard and bok choy in one bowl, leek and artichoke in another bowl, and sweet corns in another one

setting up room for games put games and dices on $table.n.02 1

recycling office papers throw all legal documents in $recycling bin.n.01 1

shopping at warehouse stores put the cream cheese, watermelon, pomegranate, baguette and corn flakes on checkout

put together a scrapping tool kit put the tools in the toolbox

putting dishes away after cleaning put all the plates in $cabinet.n.01 1. In total there are 8 plates

fold a tortilla put $tortilla.n.01 1 on $plate.n.04 1 and $tortilla.n.01 2 on $tortilla.n.01 1

putting shopping away store dairy and meat in $electric refrigerator.n.01 1, and other food and oil in $cabinet.n.01 1

remove sod put the sods on top of the wheelbarrow

distributing groceries at food bank put milk, pasta, apple juice and canned for in each box

buy eggs put $egg.n.02 1 and money on the checkout

packing fishing gear into car load all fishing stuff into the car

hoe weeds put weeds in $ashcan.n.01 1

loading the car put $bag.n.06 1, $sack.n.01 1 and $laptop.n.01 1 in the car

buy a good avocado put the avocado and money on the checkout

packing documents into car load the documents and the book into the car

pack a pencil case put the pencil, pen, eraser and shear in the pencil box

packing car for trip put sunglasses, money and laptop in suitcases, and load all suitcases into the car

packing art supplies into car put the pencil and markers in the suitcase, and put the suitcase in the car

store beer store all beer bottles in $electric refrigerator.n.01 1

moving stuff to storage put ice skates and bowling balls in one carton while the painting and textbooks in the other one

outfit a basic toolbox put all the tools in the tool box

organizing boxes in garage put balls, plates and saucepan in boxes

organizing office documents put legal docs in a folder. Then, put post-it on the folder, and put the folder in $cabinet.n.01 1

packing books into car load all the books into the car and make sure suitcase is not inside the car

buy boxes for packing put the cartons and money on the checkout

cleaning parks put bottles in $recycling bin.n.01 1

buy dog food put the dog food and money on the checkout

buying groceries put milk, apple juice and prawn in one bag, and peanut butter, brown rice and banana in another bag.
put all the money in $cash register.n.01 1

buy a air conditioner put the air conditioner and money on the checkout

buy a keg put the beer barrel and credit card on the checkout

buy pet food for less put the canned foods and dog foods on checkout and all money in $cash register.n.01 1

clearing the table after dinner put bowls, cups and bottles in $bucket.n.01 1

buy alcohol put the wine, vodka, beer and money on the checkout

buying groceries for a feast put all the groceries in a shopping card, and money in $cash register.n.01 1

stacking wood stack all logs on top of each other and put them on $table.n.02 1

cleaning up branches and twigs put branches in $ashcan.n.01 1

buy food for a party put all pasta, milk, apple juice, and cake on the checkout. Put all the money in $cash register.n.01 1

buy candle making supplies put candle sticks, paraffin and money on the checkout

putting out condiments put the knifes, pickles, spaghetti sauce and all the bottles on $breakfast table.n.01 1

returning videotapes to store put DVDs in $shelf.n.01 1

putting leftovers away store all lasagna and spaghetti sauces in $electric refrigerator.n.01 1

boxing books up for storage put all the books in a carton

assembling gift baskets put a cheese, candle, cookie and bow in each basket

re shelving library books put $book.n.02 1, $book.n.02 2, $book.n.02 3, and $book.n.02 4, $book.n.02 5, $book.n.02 6, $book.n.02 7
and $book.n.02 8 on $shelf.n.01 1

sorting bottles cans and paper distribute water bottles in one bucket, cans in another bucket, and magazines and newspapers in another one

preparing lunch box store all the food and drink in $packing box.n.02 1

bringing newspaper in put the newspaper on $coffee table.n.01 1

put togethera basic pruning kit put the pruner and the shears in the toolbox

bag groceries put egg, apple, orange juice and canned food in a bag

bringing water put bottles in $cabinet.n.01 1

preparing food for a fundraiser distribute the bottles in cartons. Put the food on tupperware and then put tupperware in cartons
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