
Scaling Robot-Learning by Crowdsourcing
Simulation Environments

Marcel Torne1 Arhan Jain∗2 Vidyaaranya Macha∗2, Jiayi Yuan∗2 Lars Lien Ankile1
Anthony Simeonov1 Pulkit Agrawal1 Abhishek Gupta2

1Massachusets Institute of Technology 2University of Washington
* equal contribution

Abstract: Scaling robot learning requires data collection pipelines
that scale favorably with human effort to ensure a sufficient di-
versity and quality of expert data. In this work, we propose
Scaling, Crowdsourcing and Amortizing Real-to-Sim-to-Real - SCAR, a pipeline
for scaling up data collection and learning generalist policies where human effort
scales sublinearly with the number of environments where data is collected.
The key idea is to crowdsource digital twins of real-world scenes using 3D
reconstruction techniques and collect large-scale data in these simulation scenes,
rather than in the real-world. Data collection in simulation is initially driven by
reinforcement learning bootstrapped with human demonstrations. However, as
the training of a generalist policy progresses across environments, the general-
ization capabilities of the learned generalist policy can be used to replace human
effort with model generated demonstrations. This results in a pipeline where
environments are easily sourced from non-experts through 3D capture, while
behavioral data is collected with continually reducing amounts of human effort.
We analyze the zero-shot and few-shot scaling laws of SCAR on two real-world
tasks: placing mugs/bowls/cups into a sink and placing boxes on a shelf across a
diverse range of environments. We also demonstrate the capabilities of the SCAR
pipeline to finetune trained policies in a target scenario using a novel unsupervised
fine-tuning technique that can improve behavior simply using 3D environments
scans at test time, without requiring additional human demonstrations.

Keywords: Real-to-Sim-to-Real, Continual Data Collection, Scaling-up

1 Introduction

Robot learning has the potential to revolutionize decision-making for robots by leveraging data to
learn behaviors deployable in unstructured environments, showing generalization and robustness.
Critical to the success of robot learning, beyond the algorithms and model architectures, is the data
used for training. As in most fields of machine learning, getting the “right” type, quality and quantity
is key to generalization. Robot learning is still grappling with the question of what the right type
of data is and how to obtain it at scale. The type of data we can train on is inherently tied to the
abundance of this data - good data is both high-quality and abundant. This paper proposes a system
for obtaining this type of diverse, high-quality data at scale with sublinear human effort.

Unlike vision and language, data for learning is not available passively - there are relatively few
robots that are already finding use in the world. This makes applying the same recipes we did in
vision and language challenging, necessitating more careful consideration of how and where this
data comes from. One option is to rely on teleoperation to collect this data. This approach is inher-
ently limited by human effort, since the cost to collect data scales linearly with human involvement.
Recent work [1, 2, 3] has attempted to scale the amount of teleoperation data however the quantity
of data collected is still orders of magnitude smaller than the scale at which vision and language
models show emergent capabilities.

Crowdsourced
Real World Scanning 4

Generalist
Policy

Zero-shot transfer

RL fine-tuning from demosCollect demos

Generalist
Policy

Scanned Deployment Fine-tuning

Amortized Data Collection through Real-to-Sim-to-Real

Human demos reduce
as training progresses

1000
 trajectories

1000
trajectories

1000
trajectories

1000
trajectories

1000
trajectories

RL fine-tuning Sim-to-Real transfer

Distillation 321

Figure 1: Overview of SCAR, we propose a system for training generalist policies leveraging real-to-sim
simulation on crowdsourced scans. These have zero-shot transfer and scanned fine-tuning capabilities.

So where might we find data that scales sublinearly with human effort? Simulation offers a potential
solution, at face value providing free data up to the limit of computing. However, this hides a signifi-
cant cost - scene, task, and reward creation per domain is non-trivial, and even with scenes generated,
behaviors are costly to obtain. This suggests that despite the promise, simulation data isn’t quite free
of cost, and requires considerable amounts of human efforts for content and behavior creation per
environment. While it is possible to generate random environments procedurally, generating thou-
sands of environments randomly is unlikely to cover the distribution of ”natural environments”, and
generating behaviors randomly is unlikely to lead to success.

In this work, we propose a method to scale up continual data collection, ensuring human effort
amortizes sublinearly with the number of environments. Our key idea is to leverage simulation for
data scaling without the corresponding increase in content and behavior creation effort. For content
scaling, we utilize 3D reconstruction methods, shifting the burden from designers to non-expert
users. For behavior generation, we employ techniques that leverage model generalization to reduce
the required human data over time. The insight is that as we go across many simulated environments,
models will show some levels of generalization. This generalization can be leveraged to continually
reduce the amount of human data needed as new environments are encountered. SCAR creates a
data flywheel, where data begets more data through model generalization.

Our contributions include 1) a novel continual data collection system based on real-to-sim-to-real for
training generalist policies, 2) a novel scanned deployment fine-tuning technique for improving the
accuracy of a generalist policy on a target environment without additional human demonstrations,
3) a detailed analysis of the scaling laws for zero-shot performance of our generalist policies, 4)
evaluation of the few-shot performance of the resulting generalist policies.

2 Related Work

Large Scale Data Collection for Robotics: Learning from real-world demonstrations has proven
effective [4, 5, 6]. To facilitate this, various studies have focused on improving hardware to ease
the data collection process for teleoperators [5, 7, 8]. Efforts have also scaled up the volume of data
from real-world demonstrations [2, 1, 3], staying nevertheless in the low-data regime. Moreover,
real-world data collection is costly, requiring expert supervision and physical robots, which limits
scalability. SCAR, instead, trains entirely in simulation, using real-world scans obtained via stan-
dard smartphones. Additionally, while traditional teleoperation data collection scales linearly with

2

human effort, SCAR reduces the human effort needed for subsequent learning steps by leveraging
the knowledge acquired during training.

Autonomous Learning: To improve scalability of robot learning and reduce the amount of human
demonstrations required, the field has explored autonomous data collection and learning methods.
One approach is reinforcement learning (RL) in the real world [9, 10], but the standard RL tech-
niques’ need for resets poses scalability issues, as it requires either human supervision or substantial
engineering efforts for automating resets. Reset-free reinforcement learning [11, 12, 13, 14] offers
a promising alternative, but it still requires occasional human intervention and struggles with high
sample complexity for learning more challenging tasks, making it hard to learn in the real-world.
Autonomous learning in the real world presents significant challenges that are mitigated in simula-
tion, where resets are manageable and data collection is more abundant. In SCAR, we exploit these
advantages of simulation while minimizing the sim-to-real gap through real-to-sim scene transfers.
Continual learning also faces challenges, such as catastrophic forgetting, as discussed in prior work
[15]. We address this by decoupling the policy used to generate trajectories, which is fine-tuned with
RL, from the final generalist policy, which is trained with imitation learning over the entire dataset.

Procedural and Synthetic Data Generation: Creating realistic environments for robot learning
in simulation is a significant challenge. To address this, prior work has proposed using large lan-
guage models (LLMs) or heuristics to generate scene plans resembling the real world [16, 17, 18],
or utilizing real-world scans to replicate actual scenes [19, 20]. Despite reducing human involve-
ment, these methods often produce scenes that are unrealistic in appearance or object distribution,
such as failing to accurately simulate real-world clutter. Generating procedurally accurate training
environments remains an open challenge. However, extracting digital twins from the real world mit-
igates this issue, as scans reflect the actual test distribution. Relevant to our work, [21] automates
the creation of simulatable environments from real-world scans, which could be integrated into our
pipeline to scale up environment crowdsourcing. Once the environments are available, generating
valid robot trajectories that solve the task is another challenge. An option becomes procedurally
generating the motions using motion planning techniques [22]. However, these techniques require
some assumptions beforehand.

Real-to-Sim-to-Real Transfer for Robotics: Real-to-sim-to-real techniques have proven effective
in learning robust policies for specific scenarios with minimal human supervision [23, 24]. How-
ever, these policies often fail to generalize to different scenarios, requiring significant human effort
for each new environment. In this work, we address this limitation by learning generalist policies
through a novel technique that amortizes the number of human demonstrations through training.
Other research has tackled various challenges in real-to-sim-to-real, such as enhancing simulator ac-
curacy with real-world interaction data [25, 26, 27], and automatically generating articulations from
images [20, 28, 29]. These complementary advancements make simulators more realistic and could
reduce human effort further in SCAR. Additionally, real-to-sim techniques have shown promise in
their use for simulated evaluation of real-world policies [30].

3 Amortized Data Scaling for Learning Generalist Policies through
Real-to-Sim-to-Real

This work presents SCAR, a pipeline for large-scale continual data collection for robotic manipu-
lation. The primary challenge for data scaling in the realm of robotics is the absence of “passive”,
easy-to-collect data from naturally occurring, inadvertent sources, as is common in vision and lan-
guage. While procedural generation in simulation can provide large amounts of data, the distribution
and diversity of the data does not overlap with real-world environments. In this work, we argue that a
multi-task, multi-environment real-to-sim-to-real pipeline can enable large-scale data generation, by
leveraging model generalization to scale human-effort sublinearly as increasing numbers of environ-
ments are encountered. This is opposed to typical human teleoperated data collection that requires
considerable expertise, physical infrastructure and suffers from linear scaling in human effort. This
approach enables the scaling laws necessary for large scale data collection and training of robotic

3

foundation models, showing non-trivial zero-shot generalization performance as well as cheap and
efficient fine-tuning in new environments. SCAR consists of three elements - 1) fast, accessible
digital twin generation with 3-D reconstruction methods, 2) multi-environment model learning that
amortizes the data collection process through autonomous data collection and model generalization,
3) efficient fine-tuning in new environments using 3-D scans, and minimal human demonstrations.

3.1 Real-to-Sim Scene Synthesis

Our proposed data collection pipeline adopts a real-to-sim-to-real approach, building digital twins
of real-world scenes in simulation and collecting behavioral data in these simulations instead of the
real world. This method offers several advantages - 1) data collection does not require a physical
robot setup, and hence can occur in a broader variety of realistic environments 2) it allows for safe,
decentralized, and asynchronous data collection 3) digital twins capture the complexities of real-
world scenarios more accurately than procedurally generated simulations. These advantages are
crucial to the democratization and scalability of data collection as it is scaled up to thousands of non-
experts and real environments beyond the lab. We leverage easily accessible mobile software[31, 32]
for scene reconstruction from sequences of images to easily crowdsource simulated environments
1. These environments indicate the geometry, visuals and physics of diverse real-world scenes in
simulation but do not have any demonstrations of the desired optimal behavior. We discuss how this
can be obtained efficiently in the following section.

3.2 Amortized Data Collection
Autonomously Data

Collection in Sim
RL Fine-tuning Distillation Fine-tuning

Vision Policy

Query human
for demos

Generalist
Policy

Generalist
Policy

2nd RL
fine-tuning

Figure 2: Overview of the proposed continual data collection system for amortizing human data collection.

Given the diversity of realistic simulation scenes available through the digital twin pipeline outlined
in Section 3.1, learning generalizable decision-making policies requires a large training set of vi-
suomotor trajectories demonstrating optimal behavior for each distinct environment. Two natural
alternatives for obtaining these trajectories are: 1) human-provided demonstrations and 2) optimal
policies trained via reinforcement learning 2. While tabula-rasa reinforcement learning can provide
a robust set of trajectories with extensive state coverage without expensive human intervention, it
faces considerable challenges related to exploration and reward design. On the other hand, human
demonstrations avoid these issues but are expensive to collect at scale.

A natural solution is to use sparse-reward reinforcement learning bootstrapped with human demon-
strations [23, 33, 34]3. This approach balances human effort for data collection and reward specifica-
tion with state-space coverage. However, scaling it up to hundreds or thousands of scenes becomes
tedious, as the required human effort increases linearly with the number of environments. In this
work, we learn a generalist multi-environment policy to amortize the cost of human data collection
across environments. We demonstrate that the capacity of such a multi-environment model to dis-
play non-trivial generalization allows the cost of continual human data collection to decrease as the
number of training environments increases.

1We provide further details about the real-to-sim pipeline in Appendix 6.2, including how to stage these
scenes, articulate them quickly and so on.

2Other techniques such as trajectory optimization or motion planning may be applicable as well
3We refer readers to Appendix 6.3.1 for details of demonstration bootstrapped reinforcement learning

4

This system, formally stated in the Appendix Algorithm 1, divides the total number of environ-
ments into batches of size K. For the first batch of K environments E1, E2, . . . , EK , we have a
multi-environment visuomotor policy πG randomnly initialized with no generalization capabilities.
Thereafter, we initialize it with data from the first K environments, using reinforcement learning
bootstrapped with human-provided demonstrations. Demonstration bootstrapped RL produces opti-
mal visuomotor trajectories per environmentD, that are then distilled into a single perception-based,
generalist multi-environment policy πG with visuomotor policy distillation [35] (Appendix 6.3.2).

While human demonstrations are used to bootstrap the data generation and training of the first
iteration of the generalist policy πG on the first K environments, our key insight is that if πG

shows non-trivial level of generalization on visuomotor deployment in the next K simulation en-
vironments - EK+1, . . . , E2K , then this policy πG can be used to collect simulated demonstrations
T = τK+1,1, τK+1,2, . . . , τ2K,N in place of a human demonstrator. We do so by deploying the
visuomotor policy πG(at|ot) using perceptual observations ot such as RGB point clouds, but since
we are in the simulation we collect T with paired data of visual observations ot, actions at and
low-dimensional privileged Lagrangian state st. These privileged state-based trajectories enable
the usage of efficient demonstration-bootstrapped reinforcement learning of a state-based policy πs

rather than operating from high-dimensional perceptual observations. See Eq 1 and Appendix 6.3.1
for the state-based policy update using PPO [36] with a BC loss, where Ât is the estimator of the
advantage function at step t [36], and Vϕ is the learned value function.

πs ← max
θ,ϕ

α
∑

Ei∈{E1,E2,...,EK}

∑
(st,at,rt)∈Ei(πθold)

min(
πθ(at|st)
πθold(at|st)

Ât, clip(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ)Ât)

+β
∑

Ei∈{E1,E2,...,EK}

∑
(st,V

targ
t)∈Ei(πθold)

(Vϕ(st)− V targ
t)2 + γ

∑
(si,ai)∈T

log πθ(ai|si)

(1)

T can be used to obtain a single robust, state-covering optimal multi-environment policy πs1(at|st)
for all EK+1, . . . , E2K via demonstration-bootstrapped reinforcement learning. Nevertheless, in
some environments, the policy may still perform poorly due to the occasional low-quality demon-
strations from πG. To address this, we define the set of environments where πs1 achieves below
r success rate as F ⊂ {EK , EK+1, . . . , E2K}. For these environments F , we fall back to query-
ing the human demonstrator for high-quality demonstrations and learn a second state-based policy
πs2(at|st) using demonstration-bootstrapped reinforcement learning on F .

The two learned policies πs1 and πs2 can then be used for generating data on
{EK , EK+1, . . . , E2K}\F and F respectively with these new trajectories being added into D. Then,
a visuomotor policy can be trained by fitting D on the first 2K environments with supervised learn-
ing (see Appendix 6.3.2 for implementation details).

πG ← max
θ

E(oi,ai)∼D [log πGθ(ai|oi)] (2)

Then the process repeats for the next K environments. As the visuomotor generalist policy πG is
trained across more environments, it demonstrates increasingly non-trivial generalization, gradu-
ally replacing the human demonstrator in more environments. This reduces the amount of human
effort required for data collection as training progresses. Importantly, the generalization across en-
vironments does not need to achieve perfect success rates but should be sufficient to bootstrap a
demonstration-augmented policy learning algorithm (Equation 1). This suggests an interesting scal-
ing law - data collection becomes more human-efficient as training progresses, eventually becoming
self-sustaining. For a detailed outline of the practical data collection pipeline, refer to Algorithm 1.

5

3.3 Fine-tuning of Generalist Policies on Deployment

The generalist policies πG(at|ot) pretrained in Section 3.2, show non-trivial generalization across
environments but may not achieve optimal performance in any one environment upon zero-shot de-
ployment. However, these generalist policies can serve as a starting point for efficient fine-tuning
at test time. In this section, we present an alternative for fine-tuning generalist policies πG(at|ot)
during deployment. We make the observation that we can follow the same procedure as model-
bootstrapped autonomous data collection during training described in Section 3.2. Given a scanned
digital twin Etest of the testing environment in simulation, the pre-trained multi-environment model
πG(at|ot) shows some non-trivial zero-shot generalization, but may not achieve optimal perfor-
mance in Etest. By executing the visuomotor policy πG(at|ot) in Etest, we collect a dataset of only
successful trajectories Ttest consisting of (ot, at, st) tuples in simulation, without the need for any
external human intervention. This model-generated data can then be used to train a robust, high-
coverage state-based policy πs(at|st) using demonstration-bootstrapped reinforcement learning (Eq
1). Finally, for real-world transfer from visual observations this state-based policy πs(at|st) is dis-
tilled into a “fine-tuned” visuomotor policy πGf (at|ot), by collecting a set of successful rollouts D
with πs(at|st) and fine-tuning the previously obtained generalist policy πG(at|ot) as in Eq 2. This
approach allows the model to retain the generalist capabilities of πG while achieving high success in
Etest. Importantly, this fine-tuning step is accomplished using only a video scan of the environment,
without the need for human-provided demonstrations or feedback in the physical environment. (See
Algorithm 2, in Appendix 6.4.1). Finally, in the Appendix 6.4.2, we propose a second technique
involving few-shot supervised fine-tuning using a limited set of human-provided demonstrations.

4 Experimental Evaluation

Our experiments are designed to answer the following questions: (a) What are the scaling laws
of SCAR? (b) How much can we amortize the quantity of human data needed through learning
without a loss in performance? (c) What are the few-shot/scanned fine-tuning capabilities of the
learned generalist policies? (d) Do these scaling laws hold across different tasks? (e) Do these
generalist policies extrapolate to multi-object environments when trained with single object?

To answer these questions, we design two different tasks: placing bowls/mugs/cups in sinks and
placing boxes in shelves. We use a single-arm manipulator, the Franka Research 3 arm with 7
DoF and a parallel jaw gripper, see Appendix 10. We crowdsourced environment data collection,
obtaining (a maximum of) 56 and 36 different scenes for the two tasks, respectively. We evaluated
the policies across two institutions on 8 and 2 real-world scenes not included in the training set.
Further details on the hardware setup and tasks are provided in Appendix 7 and 10.

4.1 Zero-Shot Scaling Laws Analysis

Su
cc

es
s

Ra
te

9 56

50

70

40

60

10

30

20

503020100 40

Su
cc

es
s

Ra
te

Zero-Shot Scaling Laws

Training environments

Training Set (sim) Test Set (real)

Training environments

16 60

Zero-Shot Large-Scale
Evaluation

10

Robustness test (real)

50

10

40

30

20

201510 25

Su
cc

es
s

Ra
te

 in
 R

ea
l

Success Rate in Sim

Scaling in Sim
Corresponds to Scaling in Real

R2 = 0.92

a b c
50

40

30

20

60

Figure 3: a) SCAR’s zero-shot scaling laws on the task of pick and placing bowl/cup/mugs to sinks; b) in
the proposed real-to-sim-to-real setup there is a linear relation between performance in sim and performance in
real; c) evaluation on a broader set of environments confirms the robustness of the zero-shot policies.

6

3020100

Su
cc

es
s

Ra
te

100

50

Pe
rc

en
ta

ge
 o

f e
nv

s
re

qu
iri

ng
 h

um
an

 d
em

os

Training environments

50

30

20

40

70

60

10

5003002001000 400
Human demos

40302010

12

5

W
al

l c
lo

ck
 ti

m
e

in
 m

in
ut

es
 to

co

lle
ct

 a
ut

on
om

ou
s

de
m

os

Training environments

a b c

SCAR flywheel
SCAR

Zero-Shot Performance of Policies Quantity of Human Demos Needed Compute Time to Collect
Autonomous Demos

90

40

80

30

70

20

60

10

9

4

7

3

6

10

2

14

11

13

8

1

Figure 4: a) SCAR with continual data collection becomes more efficient in number of human demos and
achieves higher performance than running SCAR uniquely from human demos. b) with continual data col-
lection the number of human demos required decreases throughout training. c) even though SCAR relies on
compute we observe the amount of compute needed also tends to decrease when scaling up this process.

In this section, we analyze the zero-shot performance of multiple generalist policies trained with
varying amounts of training environments on the task of put a mug/bowl/cup in a sink. For fair
comparison, we train these policies using human demonstrations in each environment. In Section
4.2, we compare this baseline to the autonomous data collection system presented in Section 3.2.

The first experiment involves a thorough real-world evaluation of these policies across two institu-
tions, using three different kitchens and six different objects, with six rollouts each (a total of 108
rollouts per policy). As shown in Figure 3 a, we confirm the real-to-sim-to-real pipeline scaling law:
as the number of trained environments increases, the zero-shot success rate also increases, reaching
a 62% when trained on 56 environments. Furthermore, Figure 3 b shows a linear correlation between
simulation and real world performance, indicating that our real-to-sim-to-real scaling approach in
simulation proportionally corresponds to improved performance in the real world.

To verify the robustness of the learned policies, we ran evaluation on eight additional kitchens.
The results highlight an improvement of 16% to 60% rate as the number of training environments
increased from 9 to 56 (Figure 3 c). Figure 7 shows a sample of the objects and environments
used for evaluation. Finally, we stress-tested against other types of robustness (Figure 3), including
extreme lighting changes, clutter and physical disturbances, and observed that the policies suffer a
drop in performance but keep obtaining success rates above 30% (see Appendix 9.2). On the same
lines we evaluate the policy on multiple objects in the scene and observe that even though it was
only trained to pick up one object, it still succeeds 10% of the times to clean a scene with 3 objects
(See Figure 6 and Appendix 9.1).

4.2 Amortized Human Data Needed Through Continual Data Collection

In this section, we evaluate the amortization of number of human demonstrations needed as learning
progresses across multiple environments. We compare two approaches: our proposed system using
continual data collection performed in four sequential batches of 10 environments each, and another
baseline providing human demonstrations for each environment individually. The evaluation is con-
ducted in a single real-world kitchen with six different objects for the task of put a bowl/mug/cup
in a sink, performing 6 rollouts per object. Figure 4(a) shows that the performance per number of
demonstrations significantly increases as the policy starts developing generalization. Specifically,
as shown in Figure 4(b), the quantity of human demonstrations needed decreases as the policy im-
proves with each subsequent batch. Although SCAR shifts the burden to compute rather than human
effort, Figure 4(c) indicates that the compute required decreases as well when scaling up the sys-
tem, since the success rate of the generalist policy is higher, the number of trials performed to reach
the same number of successful rollout decreases. Finally, we observe that the performance of the
continually learned policy is higher than of the policy learned solely from human demonstrations.
We hypothesize that this is due to the multimodality in behaviors from the human demonstrations.
When the policy autonomously collects the data, behaviors remain closer to those already learned,
whereas human-provided demonstrations may introduce more variability, making learning harder.

4.3 Fine-Tuning of Generalist Policies
Unsupervised scanned deployment fine-tuning: To evaluate the efficacy of unsupervised fine-
tuning through a scan (Section 3.3), we select two scenes for the task of placing a mug/cup/bowl in

7

100
90

80

70

60

50

40

30

20

10

100
90

80

70

60

50

40

30

20

10

20 70 8020

SCAR Finetuned on Scanned Deployment

Scanned Deployment

Su
cc

es
s R

at
e

8020 0 6070

SCAR-base SCAR Few-shot fine-tunedImitation Learning

Su
cc

es
s

Ra
te

Few-shot Fine-tuning

1010

17 70

10

Figure 5: Fine-tuning results. left: SCAR successfully improves its performance fine-tuning autonomously
on a scanned deployment environment. right: Few-shot fine-tuning on 10 demos we can significantly improve
the performance of the generalist policy on the target scene.

a sink where the policy trained on 36 environments performs poorly (≤ 20%). We then apply the
scanned deployment fine-tuning algorithm as described in Section 3.3. As shown in Figure 5, this
results in an average performance increase of 55% without any additional human demonstrations.

Few-shot supervised fine-tuning: We select three environments where the base policy trained on
36 environments performs poorly (≤20%). We then collect 10 demonstrations for each environment
and apply the few-shot fine-tuning procedure described in Section 6.4.2. This fine-tuning improves
the performance of the base policy by an average of a 54% in success rate.

4.4 Further Scaling Laws Analysis

50

100

40

90

30

80

20

70

10

60

80 10

Su
cc

es
s

Ra
te

1 2 3

10

40

30

20

50

3020100 40

Su
cc

es
s

Ra
te

Object-to-Cabinet Few-Shot Scaling Laws

Training environments

Training Set (sim)

Test Set (real)

Object-to-Sink Multi-Object Evaluation

Number of placed objectsSCARBC (10 demos)

10
0

80

Figure 6: left: scaling laws for few-shot fine-tuning on the task of pick and place a box on a shelf right:
multi-object evaluation results on the task of pick and place mug/bowl/cups in the sink

We attempt to solve another task, putting a box on a cabinet. Given the difficulty of this task,
we focus our analysis on scaling laws after few-shot fine-tuning as described in Section 3.3. We
crowdsourced 36 environments, collected 10 demonstrations for each of three scenes and reported
the performance after fine-tuning with 10 demos. In Figure 6, we show the performance the per-
formance increases with the number of training environments, without reaching a saturation point.
Fine-tuning the policy trained on 36 environments resulted in a significant performance improve-
ment of 36% compared to the imitation learning baseline, which had a 0% success rate.

5 Conclusion

Limitations: While with this work we demonstrate sublinear scaling of human demonstrations, the
burden shifts to compute. And even though we have shown a reduction in compute time with scal-
ing, it still exceeds the time required for collecting real-world demonstrations. Additionally, training
in simulation poses challenges, as not all real-world objects can be accurately simulated yet, such as
liquids and deformable objects. However, contrary to the human teleoperation efforts, with advance-
ments in compute resources and simulator research, systems like SCAR will benefit from these and
further improve scalability. Conclusion: This work presents SCAR, a real-to-sim-to-real system
that trains generalist policies with sublinear human effort. This research paves the way for building
robotic foundation models in simulation with larger datasets and enhanced robustness.

8

Acknowledgments

The authors would like to thank the Improbable AI Lab and the WEIRD Lab members for their
valuable feedback and support in developing this project. Furthermore, we would like to thank all
of the people who contributed by providing scans of scenes for training our policies. This work was
partly supported by the Sony Research Award, the US Government, and Hyundai Motor Company.

References

[1] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,
M. K. Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation
dataset. arXiv preprint arXiv:2403.12945, 2024.

[2] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai,
A. Singh, A. Brohan, et al. Open x-embodiment: Robotic learning datasets and rt-x mod-
els. arXiv preprint arXiv:2310.08864, 2023.

[3] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[4] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[5] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[6] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,
C. Finn, and S. Levine. Octo: An open-source generalist robot policy. In Proceedings of
Robotics: Science and Systems, Delft, Netherlands, 2024.

[7] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. arXiv preprint
arXiv:2402.10329, 2024.

[8] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. arXiv preprint arXiv:2309.13037, 2023.

[9] J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and S. Levine.
Serl: A software suite for sample-efficient robotic reinforcement learning, 2024.

[10] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. The International
journal of robotics research, 37(4-5):421–436, 2018.

[11] M. Balsells, M. Torne, Z. Wang, S. Desai, P. Agrawal, and A. Gupta. Autonomous robotic
reinforcement learning with asynchronous human feedback. arXiv preprint arXiv:2310.20608,
2023.

[12] J. Yang, M. S. Mark, B. Vu, A. Sharma, J. Bohg, and C. Finn. Robot fine-tuning made easy:
Pre-training rewards and policies for autonomous real-world reinforcement learning. arXiv
preprint arXiv:2310.15145, 2023.

[13] A. Sharma, A. M. Ahmed, R. Ahmad, and C. Finn. Self-improving robots: End-to-end au-
tonomous visuomotor reinforcement learning. arXiv preprint arXiv:2303.01488, 2023.

9

[14] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-
free reinforcement learning via multi-task learning: Learning dexterous manipulation behav-
iors without human intervention. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6664–6671. IEEE, 2021.

[15] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-Rodrı́guez. Continual
learning for robotics: Definition, framework, learning strategies, opportunities and challenges.
Information fusion, 58:52–68, 2020.

[16] L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang, H. Xu, and X. Wang.
Gensim: Generating robotic simulation tasks via large language models. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

[17] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, K. Ehsani, J. Salvador, W. Han, E. Kolve,
A. Kembhavi, and R. Mottaghi. procthor: Large-scale embodied ai using procedural genera-
tion. Advances in Neural Information Processing Systems, 35:5982–5994, 2022.

[18] S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi, A. Mandlekar, and Y. Zhu.
Robocasa: Large-scale simulation of everyday tasks for generalist robots. In Robotics: Science
and Systems (RSS), 2024.

[19] M. Deitke, R. Hendrix, A. Farhadi, K. Ehsani, and A. Kembhavi. Phone2proc: Bringing robust
robots into our chaotic world. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9665–9675, 2023.

[20] Z. Chen, A. Walsman, M. Memmel, K. Mo, A. Fang, K. Vemuri, A. Wu, D. Fox, and A. Gupta.
Urdformer: A pipeline for constructing articulated simulation environments from real-world
images. arXiv preprint arXiv:2405.11656, 2024.

[21] H. Xia, Z.-H. Lin, W.-C. Ma, and S. Wang. Video2game: Real-time, interactive, realistic and
browser-compatible environment from a single video. arXiv preprint arXiv:2404.09833, 2024.

[22] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In Conference on Robot Learning, pages 3766–3777. PMLR, 2023.

[23] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta, and P. Agrawal. Reconciling reality
through simulation: A real-to-sim-to-real approach for robust manipulation. arXiv preprint
arXiv:2403.03949, 2024.

[24] L. Wang, R. Guo, Q. Vuong, Y. Qin, H. Su, and H. Christensen. A real2sim2real method for
robust object grasping with neural surface reconstruction. In 2023 IEEE 19th International
Conference on Automation Science and Engineering (CASE), pages 1–8. IEEE, 2023.

[25] M. Memmel, A. Wagenmaker, C. Zhu, P. Yin, D. Fox, and A. Gupta. Asid: Active exploration
for system identification in robotic manipulation. arXiv preprint arXiv:2404.12308, 2024.

[26] F. Ramos, R. C. Possas, and D. Fox. Bayessim: adaptive domain randomization via probabilis-
tic inference for robotics simulators. arXiv preprint arXiv:1906.01728, 2019.

[27] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. In 2019
International Conference on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

[28] Z. Jiang, C.-C. Hsu, and Y. Zhu. Ditto: Building digital twins of articulated objects from
interaction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5616–5626, 2022.

[29] N. Nie, S. Y. Gadre, K. Ehsani, and S. Song. Structure from action: Learning interactions for
articulated object 3d structure discovery. arxiv, 2022.

10

[30] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kir-
mani, S. Levine, J. Wu, C. Finn, H. Su, Q. Vuong, and T. Xiao. Evaluating real-world robot
manipulation policies in simulation. arXiv preprint arXiv:2405.05941, 2024.

[31] A. Code. Ar code. https://ar-code.com/, 2022.

[32] Polycam. Polycam. https://poly.cam, 2020.

[33] H. Hu, S. Mirchandani, and D. Sadigh. Imitation bootstrapped reinforcement learning, 2023.

[34] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demon-
strations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

[35] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand
reorientation of novel and complex object shapes. Science Robotics, 8(84):eadc9244, 2023.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023. URL https:
//repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

[38] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. CoRR, abs/2003.08934, 2020.
URL https://arxiv.org/abs/2003.08934.

[39] NVIDIA. Nvidia isaac-sim. https://developer.nvidia.com/isaac-sim, May 2022.

[40] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo, H. Mazhar,
et al. Orbit: A unified simulation framework for interactive robot learning environments. IEEE
Robotics and Automation Letters, 2023.

[41] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

[42] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part III 16, pages 523–540. Springer, 2020.

11

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2003.08934
http://jmlr.org/papers/v22/20-1364.html

In the Appendix, we are going to cover the following details of our work.

• Task Specifications Appendix 7: Specifications of tasks used for evaluating SCAR.

• Implementation Specification Appendix 8: Specification of hyper-parameters used in the
network architectures, point cloud processing, and dataset used in SCAR.

• Evaluation Details Appendix 9: Details of evaluation, including robustness experiments,
adding disturbance and distractors.

• Hardware Setup Appendix 10: Specification for hardware setup used for training and
evaluating SCAR.

• Appendix Crowdsourcing 11: Specification for crowdsourcing real-world 3D scans.

• Compute Resources Appendix 12: Specficiations for compute resources used for data
collection, training and evaluating SCAR.

6 Method Details

6.1 Amortized Data Collection

Algorithm 1 SCAR: Amortized Data Collection for Generalist Policies
1: Input: Human demonstratorH, crowdsource humans C
2: Initialize vision-based generalist policy πG

3: while True do
4: Sample set of K digital twins from crowdsourced humans {EK , EK+1, . . . , E2K} ∼ C
5: T ← {}
6: for Ei in EK , EK+1, . . . , E2K do
7: Te ← RolloutPolicy(Ei, πG)
8: T ← T ∪ FilterSuccessfulRollouts(Te)
9: πs ← RLFinetuning(T , {EK , EK+1, . . . , E2K})

10: Th ← {}
11: F ← FailedEnvironments({EK , EK+1, . . . , E2K}, πs)
12: for Ei in F do
13: Th ← Th ∪ CollectDemos(Ei,H)
14: πh ← PPORLFinetuning(F , πh)
15: πG ← TeacherStudentDistillation(E , πG, πs, πh)

6.2 Real-to-Sim Transfer of Scenes

Unlike prior work [23, 20], our goal is not to accurately master a single environment, but rather
to train a generalist agent capable of generalizing to new, unseen environments. To obtain a wide
distribution of scenes with a variety of layouts, colors, lighting conditions, We develop our gen-
eral purpose, easy to use, real-to-sim-to-real pipeline that support crowdsourcing contribution of
3D scans. Digital twins are obtained directly from real-world videos or image sequences using
photogrammetry methods such as Gaussian splatting [37] and neural radiance fields [38]. High fi-
delity 3D meshes can be scanned in under five minutes using off-the-shelf mobile software such as
Polycam [32] and ARCode [31]. This easy-to-use software running on standard, commercial mo-
bile phones enables crowdsourcing of real-world scans from non-experts worldwide with minimal
instruction. The crowdsourced scenes demonstrate a natural distribution of clutter, scene layouts,
colors, lighting conditions, and positional variations.

These real-world scans are then easily transferred into a photo-realistic physics simulator, Issac
Sim [39], using an easy-to-use GUI for scene articulation and curation [23]. This flexible interface
accommodates various scene complexities, from static to highly articulated environments. Using
the GUI, we also add objects of interests (bowl/mug/cup for putting the object into the sink, box for

12

putting the box in the cabinet) into the scene, and additional site to mark the position of sink and
cabinet.

With the scene and the object rendered inside the simulation, we use teleoperation with carb key-
board to collect 10 demonstrations for each articulated environment. There are 14 different dis-
cretized actions to choose from, corresponding to two directions in all spatial axis and rotational
axis, and open and close the gripper. See Appendix 7 for details.

6.3 Autonomous Data Collection

6.3.1 Multi-task bootstrapped RL fine-tuning:

Given a set T of 10 demonstrations on each one of the digital twin scenes in the batch, and an easily
defined sparse reward across all tasks, we leverage the current capabilities of fast multi-environment
training on GPUs and accurate simulators to do RL fine-tuning using PPO Schulman et al. [36] to
obtain a policy that is more robust to object poses, corrections, and disturbances than if we simply
learned from the demos. In addition, this multi-scene policy is being trained from privileged state
space, since this removes the need for rendering, making the amount of simulated parallel environ-
ments higher, and training becomes faster since we can use bigger batch sizes. Finally, we observe
that although equivalent in theory, training across multiple scenes instead of a single environment at
a time per GPU in practice brings a big speedup in training. With the available resources our experi-
ments are run with 10 different scenes in parallel spread across 2048 environments, and even though
the total training time is the same as for a single scene, the policy now works across 10 scenes which
corresponds effectively to a 10x speedup.

6.3.2 Teacher-student distillation

In the previous RL fine-tuning step, we obtain a state-based policy that works across the whole
batch of environments. However, in the real-world we do not have access to this privileged state
of the environment such as object poses. For this reason we need our policy to take as input a
state representation available in the real world. We decide to use colored point clouds as the sensor
modality. Thereafter, we use teacher-student distillation techniques to distill the obtained policies
into πG. This consists on for each one of the scenes we use the working state-based policy to collect
a set of 1000 trajectories. Out of the 1000 trajectories, 500 of them are rendered from two cameras
in simulation and 500 are synthetically generated by sampling from the meshes, making the point
cloud fully observable. In practice, the synthetically generated point clouds make learning with point
clouds as input much smoother even for the camera-rendered point clouds. Due to the significant
amount of data available, our experiments go up to 56 environments with 1000 trajectories each. We
avoid catastrophic forgetting by retaining the data from previous batches during distillation.

6.4 Fine-tuning

6.4.1 Scanned Deployment Fine-tuning

Algorithm 2 Scanned-deployment fine-tuning
1: Input: a generalist policy πG, a digital twin of an environment E
2: T ← {}
3: while |T | ≤ 10 do
4: Te ← RolloutPolicy(E , πG)
5: T ← T ∪ FilterSuccessfulRollouts(Te)
6: πs ← RLFinetuning(T , E)
7: πG ← TeacherStudentDistillation(E ,FreezeEncoder(πG), πs)

13

6.4.2 Few-shot Supervised Fine-tuning:

The second proposed fine-tuning technique involves using small amounts of human-provided real-
world demonstrations for few-shot supervised fine-tuning. We fine-tune the generalist policy
πG(at|ot) using supervised learning on a dataset of human collected visuomotor demonstrations
Dh via standard maximum likelihood as shown in Eq 2.

Architecturally, this involves freezing the preliminary “visual processing” layers and fine-tuning
only the final fully-connected layers of the pretrained generalist network πG. As we show in Section
4.3, this straightforward fine-tuning procedure can yield significant performance improvements with
a small numbers of real-world demonstrations.

7 Task details

Figure 7: Overview of a selected number scenes and objects used for the real world evaluation of the task of
placing bowls/mugs/cups in the sink.

In this section of the appendix, we describe the specification of each tasks for training and evaluating
SCAR. For each task, the state space consists of the concantation of the following state informa-
tion: object positions, object orientations, DOF positions of the tool normalized to its max and min
ranges, end-effector orientation, end-effector position. The action space consists of one of the 14
discretized actions, corresponding to the end effector delta pose. In specific, the 14 actions include
the following: 6 actions in position change, corresponding to±0.03m change in each axis; 6 actions
in orientation change, corresponding to ±0.02 radian change in each axis; 2 actions correpsonding
to gripper open and close.

We define a sparse reward function for each task in PPO training:

• Put object into sink: success =
||sink site−object site||2 < 0.25&& condition(object upright) && condition(gripper open)

• Put object into cabinet: success =
cabinet z axis < object z axis && condition(object upright) && condition(gripper open)

7.1 Simulation details

We used the latest physical-based virtual environment simulation platform, Isaac Sim [39] for our
simulation task training. Our reinforment learning codebase is inspired by the Orbit codebase [40],
a unified and modular framework for robot learning built upon Isaac Sim.

For the simulation parameters of the environment, we use the default value set by the GUI in the
most case, except changing the collision mesh of background from convex decomposition to SDF
mesh with 256 resolution to reflect high-fidelity collision mesh. For all the other objects, we use
the default value, which is convex decomposition with 64 hull vertices and 32 convex hulls as the
collision mesh for all objects. We keep all the physical parameters of the environment as default in
the GUI. The default value of physical parameters for all objects are as follow: dynamic and static
frictions of all objects as 0.5, the joint frictions as 0.1, and the mass as 0.41kg. See Table 6 for

14

Task Episode Randomized Position Position Orientation Orientation
length Object Ids Min (x,y,z) Max (x,y,z) Min

(z-axis)
Max

(z-axis)

obj2sink 135 [Background,
Object]

[[-0.1,-0.1,-
0.1],[-0.1,-

0.1,0]]

[[0.1,0.1,0.1],
[0.1,0.1,0]]

[-0.3, -0.3] [0.3, 0.3]

obj2cabinet 150 [Background,
Object]

[[-0.1,-0.1,-
0.05],
[-0.1,-
0.1,0]]

[[0.1,0.1,0.05],
[0.1,0.1,0]]

[-0.1,
-0.15]

[0.1, 0.15]

Table 1: Specific simulation parameters for each tasks.

Figure 8: Examples of simulated environment used for RL fine-tuning. The top ones corresponds to environ-
ments for obj2sink task and the bottom ones corresponds to environments for obj2cabinet task.

task-sepcific randomization parameters, Table 2 for task-specific camera parameters and Figure 8
for examples of simulated scenes.

8 Implementation details

8.1 Architecture Details

8.1.1 State-based policy

As described in Section 3.2, we trained a series of state-based policies with privileged information in
simulation. The policy model is a simple Multi-Layer Perceptron (MLP) network, with input as the
privileged state in simulation as specified in 7 and outputs a probability distribution of 14 classes,
corresponding to the probabilities for each discrete end-effector action. To implment PPO with BC
loss algorithm, we built upon the Stable Baselines 3 repository [41]. The size of MLP network is
a mix of two sizes: two layers of size 256 and 256, and three layers of size 256, 512 ans 256. See
Table 3 for more details.

15

Task Position (x,y,z) Rotation
(quat)

Crop
Min

Crop
Max

Size

Parameters Camera Camera Camera Camera Image

obj2sink [[-0.01,-0.50,0.69], [-0.01,-0.50,0.69]] [[0.84,0.33,
-0.15,
-0.41],
[-0.42,-
0.22,-

0.39,0.79]]

[-0.8,-
0.8,-
0.3]

[0.8,0.8,
1.0]

(640,480)

obj2cabinet [[-0.01,-0.50,0.69], [-0.01,-0.50,0.69]] [[0.84,0.33,
-0.15,
-0.41],
[-0.42,-
0.22,-

0.39,0.79]]

[-0.2,-
0.5,-
0.5]

[1.5,0.5,
1.5]

(640,480)

Table 2: Camera parameters for each task.

MLP layers PPO n steps PPO batch
size

PPO BC
batch size

PPO BC
weight

Gradient
Clipping

256,256 or 256, 512, 256 Episode length 31257 32 0.1 5

Table 3: State-based policy training parameters. The rest of the parameters are the default as de-
scribed in Stable Baselines 3[41].

8.1.2 Point cloud policy

As mentioned in Section 3.3, when distillating the state-based teacher policy to a fine-tuned vi-
sumotor policy, we will train a point cloud policy as the student. We train an MLP network of size
256,256, that takes the embedding of the point cloud observation, that has 128 dimensions, together
with the state of the robot (end-effector scaled pose, position and orientation), that has 9 dimen-
sions, as the input, and a probability distribution of 14 actions as output. To encode the point cloud
observation, we use the volumetric 3D point cloud encoder proposed in Convolutional Occupancy
Networks [42], which consists of a local point net that converts the point cloud to 3D features, fol-
lowed by a 3D U-Net that output a dense voxel of features. The output features are then pooled by
a max pooling layer and an average pooling layers separately, with the pooling output concatenated
into the resulting encoding of dimension 128.

9 Detailed Evaluation Results

We conducted experiments involving disturbance and distractors for putting the object into the sink
task to study the robustness of the generalist policies. The experiments include multi-object scenario,
dim lighting scenario, messy kitchen scenario and disturbance scenario.

9.1 Evaluation on Multi-Object Scenes

In this section we study the extrapolation and robustness capabilities of the learned generalist poli-
cies by evaluating them on tasks involving multi-object scenes. Specifically, the robot needs to pick
and place multiple objects into the sink sequentially, even though it was trained on single objects.
We evaluated this by allowing the robot six trials to place the three objects in the kitchen into the
sink. As shown in Figure 6, despite not being trained for multi-object, the policy succeeds 80% of
the time in placing two objects and 10% in placing all three objects sequentially.

16

of Env distilled Kitchen Ids Bowl
right of
the sink

Bowl left
of the
sink

Mug right
of the
sink

Mug left
of the
sink

Overall

9 Kitchen 1 66.7% 0% 22.2% 0% 22.2%
9 Kitchen 2 66.7% 0% 11.1% 0% 19.4%
9 Kitchen 3 41.7% 0% 16.7% 0% 14.6%
36 Kitchen 1 55.6% 55.6% 22.2% 22.2% 38.9%
36 Kitchen 2 44.4% 33.3% 22.2% 22.2% 30.6%
36 Kitchen 3 13.3% 46.7% 20.0% 60.0% 35.0%
56 Kitchen 1 55.6% 55.6% 44.4% 66.7% 64.8%
56 Kitchen 2 77.8% 33.3% 55.6% 22.2% 47.2%
56 Kitchen 3 58.3% 83.3% 66.7% 91.7% 75.0%

Table 4: Zero-shot success rate for putting object to sink task. We tested on different types of objects
such as bowls, mugs and cups. We evaluated the policy by placing the object on either sides of the
sink.

Num. Env distilled Num. demos Kitchen Ids Object type Success rate

0 (IL) 10 Kitchen 1 Bowl 10.0%
36 10 Kitchen 1 Bowl 70.0%
0 (IL) 10 Kitchen 2 Mug 10.0%
36 10 Kitchen 2 Mug 70.0%
0 (IL) 10 Kitchen 3 Mug 10.0%
36 10 Kitchen 3 Mug 60.0%
0 (IL) 10 Kitchen 3 Bowl 10.0%
36 10 Kitchen 3 Bowl 60.0%

Table 5: Imitation learning baseline and few-shot supervised fine-tuning success rate for putting
object to sink task.

Num. Env distilled Num. demos Kitchen Id Success rate for
grasping

Success rate for
placing

0 (IL) 10 Kitchen 1 0.0% 0.0%
16 10 Kitchen 1 10.0% 0.0%
26 10 Kitchen 1 60.0% 20.0%
36 10 Kitchen 1 80.0% 30.0%
0 (IL) 10 Kitchen 2 0.0% 0.0%
16 10 Kitchen 2 10.0% 0.0%
26 10 Kitchen 2 20.0% 20.0%
36 10 Kitchen 2 30.0% 30.0%

Table 6: Imitation learning baseline and few-shot supervised fine-tuning success rate for putting
object to cabinet task. We recorded both the success rate for grasping the object and placing the
object to the cabinet.

17

Num. objects successfully Generalist policy Imitation Learning Average
placed in the sink success rate baseline success rate num. of episodes

1 100.0% 0.0% 1.6
2 80.0% 0.0% 3.5
3 10.0% 0.0% 4

Table 7: Multi-object scenario evaluation. As shown in Fig 8, three objects are placed in the scene.
The policy is rolled out for 6 episodes in total. The table show the success rate for average number
of episodes it takes to placing certain number of objects into the sink.

Figure 9: Overview of the experiment setup for evaluating the robustness capacity of the generalist policy.
upper left: multi-object scenario. upper right: dim lightning scenario. bottom left: messy kitchen scenario.
bottom right: human disturbance scenario. See Table 8 for success rate.

9.2 Evaluation on Scenes Involving Disturbance and Distractors

In the dim lighting scenario, there is minimal lightning in the scene, while the robot is only trained
in the environment with sufficient lightning. The robot was able to complete the task successfully
into the sink for 30% of all trials. See Figure 9 for experimental setup.

In the messy kitchen scenario, there are dirty dishes and tableware sitting in the sink, closely mim-
icking the realistic setting of a household kitchen sink. The robot is only trained in the environment
with clean sink. The robot was able to complete the task successfully into the sink for 30% of all
trials. See Figure 9 for experimental setup.

In the human disturbance scenario, the experimenter would push the object the change its position
during the evaluation process. The robot was able to complete the task successfully into the sink for
50% of all trials. See Figure 9 for experimental setup.

18

Figure 10: Overview of the hardware used to evaluting SCAR. left: used to evaluate in Kitchen 2 in both
tasks. right: used to evaluate in Kitchen 1 and 3 in putting object to sink and Kitchen 1 in putting box to cabinet.

Scenario name Generalist policy success rate Imitation Learning success rate
baseline

Dim lighting scenario 30.0% 0.0%
Messy kitchen scenario 30.0% 10.0%
Human disturbance scenario 50.0% 0.0%

Table 8: Success rate for various disturbance and distractor scenarios.

10 Hardware Setup

Real world experiemnts are run on two different Panda Franka arms. Both of the Panda Franka
arms are mounted on mobile tables, and running the same experiments, but they are located in two
different institutions and therefore having access to different real-world kitchen settings.

We mount two calibrated cameras per setup to obtain the depth perception in order to create an
aligned point cloud map for vision-based policies. In particular, we use the two Intel depth Realsense
cameras D435i for both setups. See Figure 10 for mode details on the robot setup.

11 Crowdsourcing

We source the kitchen scans from both expert and non-expert users. For placing the object to sink
task, we collect policies on 29 sink scenes, of which 22 were collect through crowdsoucing. For
putting the object to cabinet task, we collect policies on 26 cabinet scenes, of which 18 are collected
through crowdsourcing. Figure 11 shows the poster we use for crowdsourcing and Figure 12 shows
the geographical distribution of the crowdsourcing contributors.

19

Figure 11: Poster used for calling
crowdsourcing contribution.

Figure 12: Geographical distribution of crowdsourcing contributors.

12 Compute Resources

We run all the experiment on an NVIDIA GeForce RTX 3090, an NVIDIA GeForce RTX 3080, an
NVIDIA RTX A6000. The first step of RL fine-tuning is to use the GUI to create a task environment
from a crowdsourced kitchen scan, and collecting a set of 10 demonstrations in simulation using
teleopertation, which takes 1 hour per environment on average. We leverage a distributed research
computing cluster to run the RL fine-tuning, where we request an NVIDIA Quadro RTX 6000, and
it takes on average 20 hours to converge. Finally, during the teacher-student distillation step, it
takes 4 hours on average to collect the simulation trajectories and 2 hours to collect the synthetic
trajectories, and 5 days to distilling into the vision policy.

20

	Introduction
	Related Work
	Amortized Data Scaling for Learning Generalist Policies through Real-to-Sim-to-Real
	Real-to-Sim Scene Synthesis
	Amortized Data Collection
	Fine-tuning of Generalist Policies on Deployment

	Experimental Evaluation
	Zero-Shot Scaling Laws Analysis
	Amortized Human Data Needed Through Continual Data Collection
	Fine-Tuning of Generalist Policies
	Further Scaling Laws Analysis

	Conclusion
	Method Details
	Amortized Data Collection
	Real-to-Sim Transfer of Scenes
	Autonomous Data Collection
	Multi-task bootstrapped RL fine-tuning:
	Teacher-student distillation

	Fine-tuning
	Scanned Deployment Fine-tuning
	Few-shot Supervised Fine-tuning:

	Task details
	Simulation details

	Implementation details
	Architecture Details
	State-based policy
	Point cloud policy

	Detailed Evaluation Results
	Evaluation on Multi-Object Scenes
	Evaluation on Scenes Involving Disturbance and Distractors

	Hardware Setup
	Crowdsourcing
	Compute Resources

