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ABSTRACT

Decision Transformer (DT) has emerged as a powerful paradigm for decision
making by formulating offline Reinforcement Learning (RL) as a sequence mod-
eling problem. While recent studies have started to investigate how Decision
Transformers can be extended to online settings, online finetuning with pure RL
gradients remains largely underexplored: most existing approaches continue to
prioritize supervised sequence modeling losses during the online phase. In this
paper, we introduce a new algorithm that performs online finetuning solely through
generative rollouts and the corresponding RL gradients. Our approach represents
a novel adaptation of the classical GRPO algorithm to the online finetuning of
Decision Transformers. To make GRPO efficient and compatible with DTs, we
incorporate several key modifications, including sub-trajectory sampling, sequence-
likelihood objectives, and a reset-based sampling strategy. We conduct extensive
experiments across diverse benchmarks and show that, on average, our method
significantly outperforms existing online finetuning approaches such as ODT and
ODT+TD3. This opens a new direction for advancing the online finetuning of
Decision Transformers.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the dominant architecture across a wide range of
domains. In large language models (LLMs), a powerful training paradigm has emerged: supervised
pretraining on large-scale unlabeled corpora, followed by finetuning and reinforcement learning
(Radford et al., 2018; Brown et al., 2020; Ouyang et al., 2022). Inspired by this success, Decision
Transformer (DT) (Chen et al., 2021) introduced the transformer architecture into decision making
problems, offering a new approach that formulates RL as sequence modeling. Unlike conventional
RL methods, DT is trained entirely offline with a supervised objective on collected trajectories,
effectively functioning as a variant of imitation learning (Hussein et al., 2017) conditioned on a
pre-specified value of the initial return-to-go (RTG).

Its online variant, the Online Decision Transformer (ODT) (Zheng et al., 2022), further extended
this approach by enabling online finetuning after pretraining. ODT collects online trajectories and
use hindsight return relabeling, replacing the (pre-specified) RTGs of the online trajectories with
the actual achieved returns. The purpose of this hindsight return relabeling is to align the RTG
distribution of online trajectories with that of the offline dataset, since both offline pretraining and
online finetuning optimize the same sequence modeling objective. And recent work augmenting it
with TD3 (Fujimoto et al., 2018) gradients to achieve state-of-the-art performance (Yan et al., 2024).
However, existing approaches to online finetuning of DT remain dominated by supervised objectives:
ODT relies solely on supervised loss, while ODT+TD3 combines it with TD3 gradients. Yet, recent
breakthroughs in LLMs demonstrate that purely reinforcement learning gradients like PPO or GRPO
can fundamentally enhance a transformer’s reasoning capabilities (Shao et al., 2024; Team, 2025;
Yang et al., 2024). This trend naturally raises a natural and critical question:

Can we conduct online finetuning of Decision Transformers with pure RL graidents?

To investigate this question, we first revisit the training paradigm of existing online variants of DT
and uncover a core challenge. We find that hindsight return relabeling deployed by existing online
variants such as ODT and ODT+TD3 actually hinders the application of on-policy RL algorithms that
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rely on importance sampling. Specifically, hindsight return relabeling introduces a critical mismatch
between the return-to-go during online interaction and the training phase, which ultimately impairs
model performance. Removing this component is the necessary premise for applying importance
sampling based algorithms to DTs as shown in Fig. 1a.

Building on this key insight, we develop a new algorithm for online finetuning DTs with pure RL
gradients. Specifically, we adapt GRPO, an algorithm that has demonstrated remarkable effectiveness
in LLM reasoning, to the characteristics of conventional RL environments. Our method incorporates
several critical modifications: (1) a sub-trajectory based training objective that mitigates estimation
variance and improves convergence; (2) environment resetting techniques (Mhammedi et al., 2024)
to provide consistent initial states; (3) sequence-level importance ratios that enhance efficiency and
stability; (4) active selection that encouraging exploration where the policy is uncertain. With the
above adaptations, our GRPO achieves state-of-the-art performance in online finetuning of Decision
Transformers. Moreover, for scenarios where environment resetting is not feasible, training an
auxiliary Q-function to substitute the resetting process still yields decent results. Additionally, we
also apply PPO to DTs, showing its ability to improve pretrained DTs as well.

Our adapted GRPO achieves higher rewards, requires no auxiliary critic, and is more computationally
efficient as it requires much less gradient updates compared to previous methods. Moreover, unlike
methods such as ODT+TD3 that modify the pretraining loss and train an extra Q-function while
pretraining, our approach can directly finetune most pretrained DT-style models with minimal
changes (see Appendix A.5 for experiments).

Contributions. We summarize our main contributions below:

(i) We identify hindsight return relabeling as the key obstacle that prevents effective finetuning
of Decision Transformers with PPO/GRPO.

(ii) We adapt the original GRPO algorithm to traditional reinforcement learning environments
and demonstrate state-of-the-art performance in online finetuning of Decision Transformers.

(iii) Our adapted GRPO enables efficient, critic-free finetuning of pretrained DTs, unlike prior
methods that require modifying pretraining losses or training extra Q-functions.

(iv) We conduct extensive experiments and show that online finetuning DT with pure RL gradi-
ents can achieve new state-of-the-art results on several benchmarks

Paper organization. The rest of the paper is organized as follows. Section 2 reviews preliminaries
on DT, GRPO and related concepts. Section 3 elaborates our proposed method. Section 4 presents
experiments and results. Section 5 and Section 6 provide related work and conclude paper respectively.

2 PRELIMINARIES

Markov Decision Process. We formulate the reinforcement learning problem as a Markov Decision
Process (MDP), defined by a tuple (S,A, P,R, γ). Here, S is the state space, A is the action space,
P (sh+1 | sh, ah) denotes the transition dynamics, R(sh, ah) is the immediate reward, and γ ∈ [0, 1]
is the discount factor. At each step h = 1, . . . ,H , the agent observes sh ∈ S and selects an action
ah ∈ A according to a policy, either stochastic π(ah|sh) or deterministic µ(sh). The environment
then transitions to sh+1 ∼ P (·|sh, ah) and yields a reward rh = R(sh, ah). A trajectory is thus
(s1, a1, r1, . . . , sH , aH , rH), and the objective of reinforcement learning is to maximize the expected
discounted return Eπ

[∑H
h=1 γ

h−1rh

]
.

Decision Transformers. Decision Transformer (DT) is a powerful paradigm for offline reinforce-
ment learning, formulating decision making as a sequence modeling problem. Instead of relying on
temporal-difference errors, DT reframes offline RL into a supervised learning setting. A DT sequence
consists of three types of tokens: return-to-go (RTG), state, and action. The RTG at step h, denoted
gh, represents the cumulative reward from step h onward. A training trajectory with context length K
can be represented as (gh−K+1, sh−K+1, ah−K+1, . . . , gh, sh, ah). The policy is parameterized by a
GPT-style architecture (Radford et al., 2018), where a causal attention mask enforces the autoregres-
sive structure over the sequence. The training objective is to minimize the mean squared error (MSE)
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between the predicted action and the ground-truth action. During evaluation, the agent is conditioned
on a high RTG and generates actions autoregressively.

Online Finetuning of Decision Transformers. ODT extends DT into the online setting. After
pretraining, it continues training while interacting with the environment, collecting trajectories that
gradually replace the offline buffer. ODT learns a stochastic Gaussian policy conditioned on past
returns, states, and actions:

πθ(ah | s−K,h,g−K,h,a−K,h−1) = N
(
µθ(s−K,h,g−K:h,a−K,h−1),Σθ(s−K,h,g−K,h,a−K,h−1)

)
where θ denotes the policy parameters, Σθ is the diagonal covariance matrix, −K,h means past K
steps before h. However, Yan et al. (2024) pointed out that because ODT models actions conditioned
on desired returns, it actually learns ∂a

∂RTG : how actions change as the target return varies. However,
what drives online policy improvement is ∂RTG

∂a : how returns respond to action adjustments (see
section 3.1 in Yan et al. (2024) for more details). Yan et al. (2024) thus propose ODT+TD3, which
augments ODT loss with TD3 gradients to provide ∂RTG

∂a to guide online exploration, which is
particularly crucial when the offline dataset is of low quality. However, they still prioritize supervised
ODT loss as their main training objective.

Group Relative Policy Optimization (GRPO). GRPO is initially proposed in DeepSeek-
math(Shao et al., 2024) for Large Language Models(LLMs) post-training. It bypass the need
for value model by computing the relative advantage of each response within a group of responses
given the same query. Specifically, the model generate a group of responses o0, o1, . . . , oG from the
old policy πθold for each question q sampled from the question set Q. For each response oi, a reward
ri is specified. Then the policy model is optimized by maximizing the following objective:

JGRPO(πθ) = E
q∼Q,{αi}G

i=1∼π
(l)
θold,i∈I 1

G

G∑
i=1

1

|αi|

|αi|∑
h=1

min
{
wi,h(θ)Âi, clip (wi,h(θ), 1− ε, 1 + ε) Âi − βDKL [πθ ∥ πref ]

} ,
(1)

where G the the number of generated responses to each query q, importance ratio wi,h(θ) =
πθ(αi,h|q,αi,<h)
πθold(αi,h|q,αi,<h)

and the advantage of i-th rollout Âi =
ri−mean({r1,r2,··· ,rG})

std({r1,r2,··· ,rG}) .

3 METHODS

This section is organized as follows. We first analyze the limitations of prior attempts at online
finetuning Decision Transformers with importance sampling based algorithms (e.g., PPO/GRPO) and
present our solutions. Based on this we describe our adaptation of GRPO to reinforcement learning
environments, highlighting several key modifications to naive GRPO.

3.1 REMOVING HINDSIGHT RETURN RELABELING

During the online exploration of ODT, a relatively high initial RTG is specified during the rollout
phase. However, when training, the RTGs in collected trajectories are relabeled according to the
achieved return rather than the originally intended return. This hindsight return relabeling, while
necessary for sequence modeling to align the distribution of RTG from offline dataset with online
trajectories (see Fig. 5.4 in Zheng et al. (2022) for details), actually introduces inconsistencies of
RTGs between rollout and training phases, which hinder effective on-policy optimization. This means
the policy generates actions conditioned on an optimistic RTG target during rollout, but the same
actions are later trained against a trajectory labeled with the actually achieved (and often smaller)
RTG. This creates a discrepancy in the conditioning variable: the policy is effectively asked to
maximize likelihood under goals it never explicitly conditioned on during execution. Actions are
drawn under πold(a|s, ghigh) but later trained as if they came from πold(a|s, grelabel), the importance
weights then become unreliable, undermining stable on-policy optimization. This also explains why
naive attempts at applying standard PPO to ODT fails in Yan et al. (2024) (Appendix C in their paper).
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Figure 1: Examples of GRPO with and without some of our key designs. (a) shows learning process of
our adapted GRPO training with sub-trajectories and naive GRPO training with complete trajectories.
(b) shows learning process with and without consistent states when sampling a group

To address this, one must carefully align rollout conditioning with training objectives. In our practice,
we simply store the intended RTGs alongside each trajectory to preserve consistency. Our ablation
experiments in Fig. 1a demonstrate that without such modification, applying importance sampling
based algorithms to ODT remains unstable. In relatively simple environments such as Hopper, the
policy may initially improve but eventually collapses. In more complex environments such as Door,
the policy fails to learn altogether.

3.2 ADAPTING GRPO TO DECISION TRANSFORMERS

Our method adapts GRPO to Decision Transformers by training on sub-trajectories instead of full
trajectories used in original GRPO. At each iteration, the policy interacts with the environment to
collect full trajectories, from which we sample reset points and generate groups of sub-trajectories
under corresponding conditions. The sub-trajectories within the same group are then assigned
normalized advantages with Eq. (2). These sub-trajectories and their advantages are finally used
to update the policy with Eq. (3). This also aligns the finetuning process with the sub-trajectory
modeling paradigm when pretraining DTs. The details of our training pipeline are described in
Algorithm 1

Compared to the vanilla GRPO, our method introduces four key design modifications to better align
with the Decision Transformer framework and continuous control setting. Specifically, (i) we redesign
the optimizing objective by operating on sub-trajectories rather than full rollouts, (ii) we ensure the
consistency of initial states when generating sub-trajectories by resetting environments to the same
corresponding state (iii) we compute importance weights at the sequence level to match the unit of
reward, and (iv) we incorporate an active selection mechanism that prioritizes uncertain states for
optimization. We elaborate on each of these design choices below.

(1) Optimization on sub-trajectories. In its original formulation to train LLMs, GRPO assigns a
single response-level reward to each generated response, with every token sharing the same reward.
A direct adaptation to continuous control problems would be to aggregate all stepwise rewards in a
rollout and assign advantages computed based on this trajectory-level return to each step, but this
method leads to poor performance (Fig. 1b). To build intuition, we may regard a continuous control
problem as a multi-turn reinforcement learning process in LLMs. Without explicit turn-wise credit
assignment to distinguish effective intermediate actions, the variance of gradient estimates grows
rapidly with the number of turns, which hinders convergence (He et al., 2025; Zhou et al., 2024;
2025). To address this, we adopt a sub-trajectory formulation: from the policy’s action distribution
we sample a segment of length Ltraj, and then continue the rollout deterministically by taking mean
actions for another Leval steps. The cumulative discounted reward over these Ltraj + Leval steps is
attributed to the preceding sub-trajectory and then used to compute advantages within a group with
Eq. (2). By shortening the sampling horizon and evaluating with deterministic rollouts, this design
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Algorithm 1 Decision Transformers with GRPO (DT w/ GRPO)

Input: Pretrained policy πθ, complete trajectory buffer Treplay, sub-trajectory buffer Tsub, expected
initial RTG g0, total rounds T , number of reset points in a trajectory K, sub-trajectory length
Ltraj, evaluation steps Leval, group size G, discount factor γ.

1: for round t = 1, · · · , T do
2: Rollout complete trajectory τ using current policy πθ(·|s0, g0), conditioned on initial state s0

and RTG g0; update Treplay with τ ). // Collect complete policy; buffer updated in a FIFO
manner.

3: Sample a minibatch G from Treplay with probability p(τ) = |τ |∑
τ∈T |τ | .

4: for each τ ∈ G do
5: Sample K reset points {shk

}Kk=1 from action-variance distribution.
6: For each reset point shk

, generate G sub-trajectories {τ subki
}Gi=1 with the current policy

πθt ; evaluate the quality of each sub-trajectory to get reward R(τ subki
). // Sub-trajectory

generation and evaluation.

7: Compute advantage Â(τ subki
) for each sub-trajectory using Eq. (2). // Compute advantages

for GRPO.
8: Update sub-trajectory buffer Tsub with {(τ subki

, Â(τ subki
))}k // Buffer updated in a FIFO

manner.
9: Finetune the current policy with sub-trajectories in Tsub and Eq. (3) to get a new policy πθt+1

.

mitigates credit assignment problems and yields more stable optimization.

Âki =
rsubki

− mean({rsubk1
, rsubk2

· · · , rsubk|G|
}

std({rsubk1
, rsubk2

· · · , rsubk|G|
})

. (2)

(2) Providing consistent states. GRPO requires rollouts within the same group to be conditioned
on the same prompt, which in continuous control corresponds to starting from the same environment
state. If sub-trajectories originate from different states but are grouped together when computing
advantages with Eq. (2), their returns become incomparable and training fails to converge as shown
in Fig. 1c. We therefore enforce state consistency by resetting vectorized environments to specified
states before generating sub-trajectories. This reset mechanism is crucial for stable optimization.
In scenarios where resetting is infeasible, we find that evaluating multiple candidate actions under
the same state with a learned Q-function that is trained following TD3 (Fujimoto et al., 2018), and
applying GRPO at action level (see Appendix A.4 for details) yields decent results.

(3) Sequence-level importance ratio. In naive GRPO, importance weights are computed at the
token level, reflecting stepwise likelihoods. However, in our setting advantages are defined for the
entire sub-trajectories, making token-level ratios misaligned with the unit of reward. This motivates
us to forego the token-level objective and explore utilizing importance weights and performing
optimization at the sequence level. We therefore compute importance ratios directly on sub-trajectories
with Eq. (3), ensuring consistency between the objective and the advantage signal. Note that Eq. (1)
and Eq. (3) differ primarily in their optimization granularity: the former operates at the token level,
whereas the latter is defined at the sequence level. This sequence-level importance ratio improves
both stability and efficiency as shown in Fig. 1d. This is in line with the concurrent work (Zheng
et al., 2025).

JGRPO(θ) =
1

N

N∑
i=1

{
min

[
πθt(τ

sub
i |si,0, gi,0)

πθold(τ
sub
i |si,0, gi,0)

Âi, clip
(

πθt(τ
sub
i |si,0, gi,0)

πθold(τ
sub
i |si,0, gi,0)

, 1− ε, 1 + ε

)
Âi

]

− β DKL[πθt ||πref ]

}
+ λHθ(a|s, g). (3)

where DKL[πθt ||πref ] =
πref(τ

sub
i |si,0,gi,0)

πθt (τ
sub
i |si,0,gi,0)

− log
πref(τ

sub
i |si,0,gi,0)

πθt (τ
sub
i |si,0,gi,0)

−1 is the KL-penalty, and Hθ(a|s,g)
denotes the entropy regularization term. Following ODT, its coefficient λ is treated as a trainable
parameter to better balance exploration and exploitation.
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(4) Active selection. During action generation, we observe that certain timesteps exhibit high
variance in the predicted action distribution. When sampling actions, this variance leads to diverse
generated actions, suggesting that the policy is uncertain about which action to take and thus requires
more exploration at these steps. To address this, we introduce a simple yet effective technique called
active selection. Concretely, for a given complete trajectory, we apply a softmax transformation to the
action variance sequence across timesteps using pt =

exp(σ2
t )∑|τ|

k=0 exp(σ2
k)

to yield a probability distribution.

We then sample reset points from this distribution to determine where to initiate sub-trajectory
generation. The effectiveness of this technique is presented in Fig. 1e.

4 EXPERIMENT

In this section, we aim to answer three questions:

(i) How does our DT w/ GRPO (Algorithm 1) perform compared with existing algorithms?

(ii) Do pure RL gradients provide better signals compared with methods that prioritize super-
vised loss during DT online finetuning?

(iii) How does each component in our method affect the performance?

The model architecture and hyperparameter setting can be found in Appendix A.3.1.

4.1 EXPERIMENT SETUP

Tasks and datasets. We evaluate on three types of continuous control and manipulation benchmarks
from D4RL (Fu et al., 2020). (1) Gym locomotion (Hopper, Walker2d, Ant, v2) (Todorov et al., 2012)
with dense rewards, using medium, medium-replay, and random datasets. (2) AntMaze (v2) with
sparse goal-reaching rewards (success = 1, else 0), using umaze and umaze-diverse datasets. (3)
Adroit manipulation tasks (v1) (Rajeswaran et al., 2017) including Door, Hammer, and Pen, evaluated
on human and cloned datasets. The random datasets consist of offline trajectories of low quality
while others are of medium quality. Details of each environment are provided in Appendix A.1.

Baselines. In our experiments, we mainly compare both our adapted GRPO adaption and PPO with
three baselines: Online Decision Transformer (ODT) (Chen et al., 2021), the widely adopted online
version of Decision Transformer with supervised loss as online finetuning objective; ODT+TD3 (Yan
et al., 2024), the current state-of-the-art method for online finetuning of Decision Transformer; IQL
(Kostrikov et al., 2021), a popular offline algorithm which also has an online variant.

Metrics. We use the normalized average reward of 3 random seeds according to D4rl’s statistic
(Fu et al., 2020) where higher rewards represent better performance. Meanwhile, we also present
the learning curves which shows the change of the normalized rewards with respect to the training
iterations. When presenting the curves, we set the x-coordinate to be the number of iteration. This
variable is the round from line 3 of the Algorithm. 1 from ODT Zheng et al. (2022) paper. Note that
conventional x-axis metrics, such as the number of online transitions (indicating sample efficiency)
and the number of gradient updates (indicating computational cost), are not suitable for our setting.
For gradient updates, ODT/ODT+TD3 requires nearly two orders of magnitude more updates per
iteration compared to our PPO/GRPO; for online interactions, our adapted GRPO and PPO consume
several to tens of times more samples than ODT/ODT+TD3. Hence, neither metric provides a fair
comparison.

PPO implementation. Our PPO implementation follows the practice of CleanRL (Huang et al.,
2022). Unlike prior work that applies PPO to multi-agent reinforcement learning (MARL) tasks with
Decision Transformer (Meng et al., 2023), we train the critic using λ-returns rather than discounted
Monte Carlo returns, and store the action probabilities at sampling time instead of recomputing them
during training.

4.2 MAIN RESULTS

Table 1 reports the normalized returns and standard deviations over three random seeds for each
method. Overall, our adapted GRPO achieves the best performance across most tasks. PPO also

6
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DT IQL ODT TD3+ODT PPO DT w/ GRPO

Mujuco
(random)

Ho-R-v2 1.98 42.73 (13.66) 30.43 (0.01) 83.32 (8.46) 106.97 (0.96) 99.20 (3.80)
Wa-R-v2 4.59 15.92 (3.54) 10.88 (0.34) 82.95 (18.28) 108.69 (8.86) 100.25 (33.19)
An-R-v2 30.38 59.65 (23.26) 19.08 (3.97) 80.58 (7.25) 107.45 (22.83) 120.69 (5.47)

Average 12.32 39.43 20.13 82.28 107.70 106.71

Mujuco
(medium)

Ho-M-v2 63.1 61.49 (33.33) 98.02 (0.63) 101.47 (2.29) 105.65 (5.43) 108.81 (0.85),
Ho-MR-v2 29.76 98.36 (0.62) 87.73 (0.59) 107.94 (2.29) 109.60 (1.63) 83.61 (20.75)
Wa-M-v2 70.78 102.28 (1.04) 76.49 (0.78) 103.27 (5.95) 109.49 (9.04) 158.34 (3.75)

Wa-MR-v2 58.06 104.27 (3.64) 74.21 (2.41) 102.80 (2.68) 117.45 (14.79) 137.36 (5.64)
An-M-v2 90.58 118.18 (2.42) 90.71 (0.03) 131.56 (0.41) 139.84 (0.95) 147.51 (2.44)

An-MR-v2 78.15 117.51 (0.82) 83.63 (0.87) 120.01 (2.94) 117.95 (2.54) 142.05 (3.32)

Average 65.07 100.35 85.13 111.175 116.66 129.61

Adroit

D-C-v1 4.97 0.10 (0.06) 1.26 (1.02) 79.98 (5.62) 0.19 (0.00) 96.41 (7.59)
D-H-v1 9.30 17.18 (0.75) 8.76 (3.87) 79.73 (4.37) 94.12 (3.99) 89.33 (10.12)
P-C-v1 75.02 63.09 (14.38) 16.24 (5.12) 109.86 (6.27) 27.14 (0.24) 111.15 (2.61)
P-H-v1 95.23 24.94 (1.48) 19.84 (7.42) 77.18 (7.42) 9.92 (5.00) 85.11 (6.08)
H-C-v1 1.80 9.56 (8.13) 1.32 (0.06) 119.95 (2.45) 130.60 (2.81) 140.45 (1.93)
H-H-v1 1.01 0.74 (0.37) 0.91 (0.22) 120.93 (2.18) 129.23 (2.18) 132.64 (12.56)

Average 31.22 19.27 8.06 97.93 65.2 109.18

Antmaze
U-v2 16.00 91.21 (2.14) 89.27 (3.73) 99.64 (0.20) 0.00 (0.00) 96.07 (0.53)

UD-v2 38.00 0.00 (0.00) 63.81 (1.64) 99.42 (0.43) 47.00 (4.00) 97.70 (2.67)

Average 27 45.61 76.54 99.53 23.50 96.89

Table 1: Average reward for each method. The best performance and results > 99% of the best result
is bold. Results > 90% of the best result are underlined. The name of the environments and datasets
are abbreviated as follows: Ho=Hopper, Wa=Walker2d, An=Ant, U=Antmaze-umaze, UD=Antmaze-
umaze-diverse, D=Door, P=Pen, H=Hammer; for the datasets M=Medium, MR=Medium-Replay,
R=Random, C=Cloned, H=Human. The format is ”final (standard deviation)”.

performs competitively in many cases. ODT+TD3 obtains reasonable results, while ODT and IQL
consistently underperform, particularly on tasks with low-quality pretraining data such as the random
datasets and on challenging domains like Adroit. Note that as we perform longer training iterations
as mentioned in Section 4.1, the results for ODT+TD3 are better than the reported ones from the
original paper (Yan et al., 2024).

Low offline data quality. The first part in Table 1 shows results when pretrained with offline
data of low quality. We observe that both our adapted GRPO and PPO perform significantly better
on random datasets. Since these datasets consist of trajectories generated by an untrained random
policy, pretraining on them initializes the agent with poor or even harmful biases, often causing
the policy to collapse or converge to suboptimal solutions. Our results indicate that adapted GRPO
and PPO exhibit stronger robustness to such low-quality pretraining, achieving superior asymptotic
performance compared to baselines. In contrast, ODT—relying purely on supervised learning
signals—fails to escape local optima, and IQL suffers from similar limitations.

Medium data quality. The rest parts of Table 1 present results when pretrained with offline
data of decent quality. For the gym locomotion environments, our adapted GRPO and PPO
achieves best results while ODT+TD3 is competitive and ODT/ODT+TD3 performs reasonably.
In Atari, where state and action spaces are substantially larger and more complex, policies are
highly prone to degradation or collapse during finetuning. Under these conditions, ODT and IQL
fail to improve pretrained policies, whereas our adapted GRPO consistently achieves high returns,
demonstrating strong exploration and stability. ODT+TD3 demonstrates competitive performance on
some environments, but falls short of matching the robustness of our approach in some cases. PPO,
while strong on some environments, fails to improve on other cases. Training longer or incorporating
additional techniques such as reward shaping may alleviate this but we leave it for future work. For
Antmaze environment where reward is sparse, ODT+TD3 achieves best results while our adapted
GRPO performs competitively. Other methods fail to improve the policy.
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Figure 2: Results on part of the environments and datasets. Our adapted GRPO perform the best on
most of the environments and dataset. ODT+TD3 and PPO yield competitive results on most of the
environments while ODT and IQL keeps converge on local optimum.

Advantages over previous methods. Our adapted GRPO offers several advantages over prior
approaches besides final performance. First, unlike methods that rely on an auxiliary critic, our
approach requires no additional networks, making it simpler to implement. Second, by leveraging
accurate gradient estimation through sub-trajectory sampling, our method is more computationally
efficient, requires much less gradient updates per iteration. For example, our method requires 8× 256
gradient updates per iteration while ODT/ODT+TD3 typically requires 256× 300, much higher than
our method. Finally, it can finetune any pretrained DT-style model with minimal modifications
(see Appendix A.5 for experiments), whereas prior methods such as ODT+TD3 require altering the
offline pretraining loss to incorporate RL gradients in some cases and training an auxiliary Q-function
simultaneously during pretraining, which prevents them from directly finetuning an already pretrained
model.

4.3 ANALYSES AND ABLATIONS

Ablation on sub-trajectory length. Sub-trajectory in our method represents the unit for assigning
advantage. Thus its length is crucial to our algorithm. Empirical results in Fig. 3a confirm that
increasing sub-trajectory length destabilizes training and leads to inferior outcomes. However,
excessively short sub-trajectories, while stable, also yield sub-optimal results. This is likely because
very short trajectories sampled from the same state distribution are overly homogeneous, limiting
their ability to provide informative learning signals.

Ablation on sub-trajectory evaluation steps. For each sub-trajectory, we extend the rollout with
additional evaluation steps ranging from 30 to 400, depending on the environment. As illustrated
in Fig. 3b, longer evaluation rollouts enable more reliable assessment of sub-trajectory quality and
consequently improve performance.

Using Q function to replace sub-trajectory generation. In scenarios where resetting the environ-
ment is infeasible, we instead train an auxiliary Q function and apply GRPO with Algorithm 2. As
shown in Fig. 3c, this approach still achieves decent performance.

5 RELATED WORK

Transformers for RL. With transformers becoming the dominant architecture in both CV and NLP,
a growing number of transformer-based approaches have been proposed in the RL community (Lin
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Figure 3: Panel (a) shows ablation on sub-trajectory length Ltraj. Both longer and shorter sub-
trajectory length lead to inferior results. Panel (b) shows ablation on evaluation steps Leval. Inadequate
evaluation steps lead to model collapse. Panel (c) shows training with our variant described in
Algorithm 2. It achieves decent results.

et al., 2023; Chen et al., 2022; Yuan et al., 2024). Owing to their strong capability in modeling
sequential dependencies (Parisotto & Salakhutdinov, 2021), transformers are naturally suited for
reinforcement learning when formulated as a sequence modeling problem (Chen et al., 2021; Janner
et al., 2021; Wang et al., 2022). In this paradigm, models typically condition on past states, actions,
and returns to autoregressively predict future actions. However, such approaches rely on offline
datasets and often suffer from issues of data scarcity and out-of-distribution problem. This motivates
the offline pretraining followed by online finetuning paradigm. Nevertheless, existing works either
treat supervised objectives as the primary training signal when tuning transformers online (Zheng
et al., 2022; Yan et al., 2024), rely on Q-learning rather than transformer-based architectures (Lee
et al., 2022; Zheng et al., 2023; Song et al., 2022; Yu & Zhang, 2023; Nair et al., 2020), or are
situated in MARL settings (Meng et al., 2023). In contrast, our work focuses on online finetuning of
offline-pretrained decision-making transformers using purely RL-based gradients.

RL for transformers. Reinforcement learning has also emerged as a powerful technique for aligning
and enhancing large language models (LLMs) (Ouyang et al., 2022; Lee et al., 2023). A wide
spectrum of algorithms has been explored, ranging from policy gradient methods such as PPO, to
off-policy methods like Implicit Language Q-Learning (ILQL) (Snell et al., 2022) and VerifierQ
(Qi et al., 2024), as well as reward-model-free methods such as DPO (Rafailov et al., 2023) and
KTO (Ethayarajh et al., 2024). More recently, novel algorithms such as GRPO and approaches like
ReFT (Luong et al., 2024) have been proposed to further improve the reasoning ability of LLMs. RL
methods have also been applied to transformer-based multi-modal models (Liu et al., 2025; Shen
et al., 2025). However, the strategies designed for training LLMs cannot be directly transferred to
finetuning Decision Transformers, as decision-making tasks fundamentally differ from language
generation in terms of environment dynamics, reward distributions, and optimization objectives. To
this end, our work adapts RL algorithms widely adopted in LLMs, specifically GRPO and PPO, to
the context of finetuning Decision Transformers.

6 CONCLUSION

We presented a systematic study on applying pure RL gradients for online finetuning of Decision
Transformers. We identified hindsight return relabeling as the key obstacle for methods featuring
importance ratio, and introduced adaptations of GRPO with modifications including sub-trajectory
training, environment resetting, and sequence-level importance ratios to enable critic-free and efficient
finetuning of pretrained DT-style models. In addition, we implemented PPO for DTs, showing that
pure RL gradients in online stage substantially improve DTs across diverse benchmarks.

Limitations and future work. While effective, our methods assume environment resetting and
may face challenges in sparse-reward or very long-horizon tasks. Moreover, long rollouts slows
down the training process especially when evaluation steps are relatively long. Our method also
requires extensive hyperparameter tuning when deployed to a new environment. Future work includes
developing reset-free strategies, scaling to more complex domains, and combining our approach with
stronger architectures and exploration techniques to further enhance robustness and generalization.
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A APPENDIX

A.1 ENVIRONMENTAL AND DATASET DETAILS

Our experiments cover three types of continuous control and manipulation benchmarks from D4RL
(Fu et al., 2020). The first type includes the Gym locomotion environments Hopper, Walker2d, and
Ant (all in v2) (Todorov et al., 2012), which provide dense reward signals. For these environments,
we evaluate on the medium, medium-replay, and random datasets. The medium dataset consists of
trajectories generated by a policy trained to roughly one-third the performance of an expert policy.
The medium-replay dataset is constructed from the replay buffer of a policy trained to medium-level
performance, and the random dataset consists of trajectories generated by an untrained random policy.
The second type focuses on sparse-reward goal-reaching problems in the AntMaze domain (v2). Here,
the agent controls an Ant robot to reach a designated target location, receiving a reward of 1 upon
success and 0 otherwise. We use the umaze and umaze-diverse datasets. The third type includes
robotic manipulation tasks from the Adroit benchmark (v1) (Rajeswaran et al., 2017), including Door,
Hammer, and Pen. These are high-dimensional tasks with challenging dynamics. We experiment
with both the human and cloned datasets, where the former is collected from human teleoperation
and the latter from behavior cloning policies.

A.1.1 MUJUCO ENVIRONMENTS

We conduct our experiment on three Mujuco environments:
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• Hopper. Hopper is a Mujuco-based single-legged locomotion task where the agent controls
three joints to make the robot hop forward while maintaining stability. The action space
is 3-dimensional continuous, corresponding to torques applied at the joints, each bounded
within [−1, 1]. The observation space has 11 dimensions, consisting of positional and
velocity information. At each timestep, the reward is a combination of survival bonus,
forward progress, and a control cost penalty proportional to the squared magnitude of the
action. Episodes terminate when the agent falls or reaches the maximum horizon (default
1000 steps).

• Walker2d. Walker2D is a 2D bipedal walking robot task where the agent controls six joints
to make the robot walk forward steadily. The action space is a 6-dimensional continuous
vector (torques in [−1, 1]) applied to hinge joints. The observation space has 17 dimensions.
At each timestep, the agent receives a reward composed of (i) a “healthy” survival bonus,
(ii) a forward progress reward proportional to the displacement in the x-direction, and (iii) a
control cost penalty proportional to the magnitude of the action. Episodes terminate if the
robot becomes unhealthy (e.g. torso height out of range, non-finite states) or reaches the
maximum horizon.

• Ant. The Ant task is a 3-dimensional locomotion problem where the agent controls an
8-joint quadruped to move forward while maintaining balance. The action space is an
8-dimensional continuous vector (typically bounded in [−1, 1]). The observation space
comprises the robot’s positional and velocity state (and sometimes contact observations).
Each timestep the agent receives a reward combining a forward-progress term (displacement
in the x-axis), a control cost penalty (proportional to the squared action magnitude), and
often an alive bonus. Episodes terminate when the ant falls or the time horizon (default
1000) is reached.

The size and normalized return of each offline dataset is presented in Table 2.

Dataset Size Normalized Reward

Hopper-medium-v2 999906 44.32±12.27
Hopper-medium-replay-v2 402000 14.98±16.32

Hopper-random-v2 999906 1.19±1.16
Walker2d-medium-v2 999995 62.09±23.83

Walker2d-medium-replay-v2 302000 14.84±19.48
Walker2d-random-v2 999997 0.01±0.09

Ant-medium-v2 999946 80.30±35.82
Ant-medium-replay-v2 302000 30.95±31.66

Ant-random-v2 999930 6.36±10.07

Table 2: The size and normalized rewards of offline dataset used in Mujuco environment.

A.1.2 ADROIT ENVIRONMENT

We choose three Adroit environments to experiment:

• Door. The Door task requires a 28-DoF hand-arm system to unlatch and open a door.
The action space is 28-dimensional continuous, with each joint command scaled to [−1, 1]
The observation space has 39 dimensions, including joint states, latch status, and relative
positions between the hand and handle. The dense reward combines distance penalties,
velocity regularization, and bonuses for increasing door hinge displacement, encouraging
successful door opening.

• Hammer. The Hammer task involves a 28-DoF robotic hand-arm system (a 24-DoF
ShadowHand plus a 4-DoF arm) that must pick up a hammer and drive a nail into a board.
The action space is 26-dimensional continuous, representing joint commands (scaled into
[−1, 1]. The observation space is 46-dimensional, encoding joint states, poses of the hammer
and nail, and forces on the nail. The reward combines terms for progress in driving the nail
(hinge displacement or insertion depth), penalties on control magnitude, and distance-based
cost.
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• Pen. The Pen task requires a 24-degree-of-freedom robotic hand to manipulate a pen into
a target orientation. The action space is 24-dimensional continuous, with joint commands
scaled to [−1, 1] for each actuator. The observation space is 45-dimensional, including
joint states, pen pose, and the goal orientation. The reward is composed of a negative
penalty proportional to the Euclidean distance between the pen and target, an orientation
similarity term (dot product between real and target orientation), proximity bonuses when
both distance and angular alignment are sufficiently tight, and a dropping penalty if the pen
falls.

The corresponding offline dataset quality can be found in Table 3.

Dataset Size Normalized Reward

Pen-cloned-v1 499886 108.63± 122.43
Pen-human-v1 4800 202.69± 154.48
Hammer-cloned-v1 999872 8.11± 23.35
Hammer-human-v1 10948 23.80± 33.36
Door-cloned-v1 999939 12.29± 18.35
Door-human-v1 6504 28.35± 13.88

Table 3: The size and normalized rewards of offline dataset used in Adroit environment.

A.2 ANTMAZE ENVIRONMENT

The Umaze environment in Antmaze places an Ant quadruped in a U-shaped maze. The action
space is 8-dimensional continuous, with torques in [−1, 1]. The observation space is a goal-aware
dictionary: a 27-dimensional “observation” vector (positions and velocities of the Ant body parts),
plus 2D achieved goal and desired goal vectors indicating the Ant’s torso position and the target goal
in the plane. The reward provide is sparse: 0 if the ant hasn’t reached its final target position, and 1 if
the ant is in the final target position (the ant is considered to have reached the goal if the Euclidean
distance between both is lower than 0.5 m). The quality of the offline datasets used is presented in
Table 4.

Dataset Size Normalized Reward

Antmaze-Umaze-v2 998573 86.14± 34.55
Antmaze-Umaze-Diverse-v2 999000 3.48± 18.32

Table 4: The size and the average and standard deviation of the normalized reward of the Antmaze
datasets used in our experiments.

A.3 EXPERIMENTAL DETAILS

A.3.1 HYPERPARAMETERS

Table 5 shows the hyperparameters that are common across all our experiments and Table 6 sum-
marizes the domain-specific hyperparameters for each environment and dataset for GRPO. For
antmaze-environment, following ODT+TD3’s (Yan et al., 2024) practice, We remove all 1-step
trajectories, because the size of the replay buffer for decision transformers is controlled by the number
of trajectories, and antmaze dataset contains a large number of 1-step trajectories due to its data
generation mechanism (immediately terminate an episode when the agent is close to the goal, but do
not reset the agent location). And we did not add positional embedding as suggested by ODT (Zheng
et al., 2022).

For GRPO, we collect 1 complete trajectory fpr replay buffer per iteration in Mujoco and Antmaze
environments and 5 complete trajectories each iteration in Adroit environments. The buffer size
for the complete trajectories is 32. When doing resetting, we sample 16 trajectories from the
complete trajectories buffer. We choose four reset points for each trajectory and the group size
for each trajectory is 8. This results in 512 sub-trajectories per iteration. The buffer size for this
sub-trajectories is 2048.
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For PPO, we collect 8 trajectories for Mujuco and Antmaze environment and 16 trajectories for
Adroit each iteration. The buffer size is 4 times of the number of trajectories collected per iteration.
Following ODT+TD3’s practice, we add Layernorm (Ba et al., 2016) to the critic of PPO in Adroit
and Antmaze environment to stabilize training process.

Hyperparameters Value

Number of layers 4
Number of attention heads 4

Embedding dimension 512
Actor Optimizer LAMB (You et al., 2019)

Dropout 0.1 when pretraining, disabled when finetuning
Nonlinearity function SiLU (Elfwing et al., 2018)

Weight decay 0.0001
Gradient norm clip 0.5

Target entropy -dim(A)

PPO Critic layer 2
PPO Critic hidden size 256 for Mujoco, 512 for others
PPO Critic activation SiLU
PPO Critic Optimizer AdamW (Loshchilov & Hutter, 2017)
PPO discount factor γ 0.99

Table 5: The common hyperparameters in our experiments

Environ BS Ttrain Teval RTG γ lra Ltraj Leval ε εGRPO ETPR

Ho-M(R) 256 20 1 7200 0.995 5e-5 15 400 0.2 2.0 0.20
Ho-R 256 20 1 7200 0.995 5e-5 15 400 0.2 2.0 0.20

Wa-M(R) 256 20 1 10000 0.995 5e-5 15 400 0.3 2.0 0.04
Wa-R 256 20 1 10000 0.995 5e-5 15 400 0.3 2.0 0.20

An-M(R) 256 20 1 12000 0.995 5e-5 15 200 0.3 2.0 0.04
An-R 256 20 1 12000 0.995 5e-5 15 200 0.3 2.0 0.20

D-C 512 5 1 3000 0.99 3e-5 10 100 0.3 0.5 0.10
D-H 512 5 1 3000 0.99 3e-5 10 100 0.3 0.4 0.04
P-C 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
P-H 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
H-C 512 5 5 4000 0.99 3e-5 10 100 0.3 0 0.05
H-H 512 5 5 4000 0.99 3e-5 10 100 0.3 0.8 0.05

U 256 5 1 2 1.0 5e-5 10 200 0.2 0 0.05
UD 256 1 5 2 1.0 5e-5 10 200 0.2 0 0.05

Table 6: The hyperparameters that we use to finetune DT in each domain, where Ttrain and Teval

stands for context length for training and evaluation, γ is the discount factor, lra represents learning
rate for the actor, Ltraj and Leval represent sub-trajectory length and evaluation steps for each sub-
trajectory respectively, ε is Clipping threshold,εGRPO is the minimum deviation of a sub-trajectory’s
raw reward from the mean reward of its group, ETPR is the initial entropy temperature for online
finetuning.

A.4 GRPO WITH Q FUNCTION

In this section we introduce GRPO with Q, an action-level variant of our method designed for settings
where environment resets are infeasible. Instead of generating multiple sub-trajectories from the
same state, our method samples a group of actions under the current policy for each visited state
and evaluates them with an auxiliary Q-function. The resulting Q-values are normalized to provide
advantages, which are then used to optimize the policy via the GRPO objective. Meanwhile, the
Q-function is updated following standard TD3 practice. This design preserves the core idea of
group-based policy optimization while eliminating the need for environment reset.

A.5 TRAINING WITH OTHER ARCHITECTURE

To evaluate the generality of our algorithm, we further apply it to other DT-style architectures. Rein-
former (Zhuang et al., 2024) is a max-return sequence modeling approach for offline reinforcement
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Algorithm 2 GRPO with Q (action-level variant)

Input: Pretrained policy πθ, trajectory buffer Treplay, auxiliary Q-function Qϕ, total rounds T , group
size G, discount factor γ.

1: for round t = 1, · · · , T do
2: Rollout trajectory τ using current policy πθ(·|s, g); update Treplay with τ . // Trajectory

collection with FIFO buffer update.
3: Sample a minibatch G from Treplay with probability p(τ) ∝ |τ |.
4: for each τ ∈ G do
5: For each state sh in τ , sample G actions {ah,i}Gi=1 ∼ πθ(·|sh, gh).
6: Evaluate each sampled action with Qϕ(sh, ah,i).
7: Normalize scores {Qϕ(sh, ah,i)} to obtain advantages {Âh,i}. // Action-level evaluation

with Q-function.

8: Update policy πθ using GRPO objective with advantages {Âh,i}.
9: Update Qϕ following TD3-style critic learning.

learning. It integrates the RL objective of return maximization into supervised sequence modeling by
using expectile regression to predict the in-distribution maximum return, which then guides optimal
action generation. This method enhances trajectory stitching capability and achieves state-of-the-art
performance among sequence models on the D4RL benchmark, particularly on tasks requiring learn-
ing from suboptimal data. The training process of applying our adapted GRPO to this architecture is
presented in Fig. 4.
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Figure 4: Applying our adapted GRPO to Reinformer

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to polish the writing of this paper.
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