
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE FINETUNING DECISION TRANSFORMERS WITH
POLICY GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision Transformer (DT) has emerged as a powerful paradigm for decision
making by formulating offline Reinforcement Learning (RL) as a sequence mod-
eling problem. While recent studies have started to investigate how Decision
Transformers can be extended to online settings, online finetuning with pure RL
gradients remains largely underexplored: most existing approaches continue to
prioritize supervised sequence modeling losses during the online phase. In this
paper, we introduce a new algorithm that performs online finetuning solely through
generative rollouts and the corresponding RL gradients. Our approach represents
a novel adaptation of the classical GRPO algorithm to the online finetuning of
Decision Transformers. To make GRPO efficient and compatible with DTs, we
incorporate several key modifications, including sub-trajectory sampling, sequence-
likelihood objectives, and a reset-based sampling strategy. We conduct extensive
experiments across diverse benchmarks and show that, on average, our method
significantly outperforms existing online finetuning approaches such as ODT and
ODT+TD3. This opens a new direction for advancing the online finetuning of
Decision Transformers.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the dominant architecture across a wide range of
domains. In large language models (LLMs), a powerful training paradigm has emerged: supervised
pretraining on large-scale unlabeled corpora, followed by finetuning and reinforcement learning
(Radford et al., 2018; Brown et al., 2020; Ouyang et al., 2022). Inspired by this success, Decision
Transformer (DT) (Chen et al., 2021) introduced the transformer architecture into decision making
problems, offering a new approach that formulates RL as sequence modeling. Unlike conventional
RL methods, DT is trained entirely offline with a supervised objective on collected trajectories,
effectively functioning as a variant of imitation learning (Hussein et al., 2017) conditioned on a
pre-specified value of the initial return-to-go (RTG).

Its online variant, the Online Decision Transformer (ODT) (Zheng et al., 2022), further extended
this approach by enabling online finetuning after pretraining. ODT collects online trajectories and
use hindsight return relabeling, replacing the (pre-specified) RTGs of the online trajectories with
the actual achieved returns. The purpose of this hindsight return relabeling is to align the RTG
distribution of online trajectories with that of the offline dataset, since both offline pretraining and
online finetuning optimize the same sequence modeling objective. And recent work augmenting it
with TD3 (Fujimoto et al., 2018) gradients to achieve state-of-the-art performance (Yan et al., 2024).
However, existing approaches to online finetuning of DT remain dominated by supervised objectives:
ODT relies solely on supervised loss, while ODT+TD3 combines it with TD3 gradients. Yet, recent
breakthroughs in LLMs demonstrate that purely reinforcement learning gradients like PPO or GRPO
can fundamentally enhance a transformer’s reasoning capabilities (Shao et al., 2024; Team, 2025;
Yang et al., 2024). This trend naturally raises a natural and critical question:

Can we conduct online finetuning of Decision Transformers with pure RL graidents?

To investigate this question, we first revisit the training paradigm of existing online variants of DT
and uncover a core challenge. We find that hindsight return relabeling deployed by existing online
variants such as ODT and ODT+TD3 actually hinders the application of on-policy RL algorithms that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rely on importance sampling. Specifically, hindsight return relabeling introduces a critical mismatch
between the return-to-go during online interaction and the training phase, which ultimately impairs
model performance. Removing this component is the necessary premise for applying importance
sampling based algorithms to DTs as shown in Fig. 1a.

Building on this key insight, we develop a new algorithm for online finetuning DTs with pure RL
gradients. Specifically, we adapt GRPO, an algorithm that has demonstrated remarkable effectiveness
in LLM reasoning, to the characteristics of conventional RL environments. Our method incorporates
several critical modifications: (1) a sub-trajectory based training objective that mitigates estimation
variance and improves convergence; (2) environment resetting techniques (Mhammedi et al., 2024)
to provide consistent initial states; (3) sequence-level importance ratios that enhance efficiency and
stability; (4) active selection that encouraging exploration where the policy is uncertain. With the
above adaptations, our GRPO achieves state-of-the-art performance in online finetuning of Decision
Transformers. Moreover, for scenarios where environment resetting is not feasible, training an
auxiliary Q-function to substitute the resetting process still yields decent results. Additionally, we
also apply PPO to DTs, showing its ability to improve pretrained DTs as well.

Our adapted GRPO achieves higher rewards, requires no auxiliary critic, and is more computationally
efficient as it requires much less gradient updates compared to previous methods. Moreover, unlike
methods such as ODT+TD3 that modify the pretraining loss and train an extra Q-function while
pretraining, our approach can directly finetune most pretrained DT-style models with minimal
changes (see Appendix A.5 for experiments).

Contributions. We summarize our main contributions below:

(i) We identify hindsight return relabeling as the key obstacle that prevents effective finetuning
of Decision Transformers with PPO/GRPO.

(ii) We adapt the original GRPO algorithm to traditional reinforcement learning environments
and demonstrate state-of-the-art performance in online finetuning of Decision Transformers.

(iii) Our adapted GRPO enables efficient, critic-free finetuning of pretrained DTs, unlike prior
methods that require modifying pretraining losses or training extra Q-functions.

(iv) We conduct extensive experiments and show that online finetuning DT with pure RL gradi-
ents can achieve new state-of-the-art results on several benchmarks

Paper organization. The rest of the paper is organized as follows. Section 2 reviews preliminaries
on DT, GRPO and related concepts. Section 3 elaborates our proposed method. Section 4 presents
experiments and results. Section 5 and Section 6 provide related work and conclude paper respectively.

2 PRELIMINARIES

Markov Decision Process. We formulate the reinforcement learning problem as a Markov Decision
Process (MDP), defined by a tuple (S,A, P,R, γ). Here, S is the state space, A is the action space,
P (sh+1 | sh, ah) denotes the transition dynamics, R(sh, ah) is the immediate reward, and γ ∈ [0, 1]
is the discount factor. At each step h = 1, . . . ,H , the agent observes sh ∈ S and selects an action
ah ∈ A according to a policy, either stochastic π(ah|sh) or deterministic µ(sh). The environment
then transitions to sh+1 ∼ P (·|sh, ah) and yields a reward rh = R(sh, ah). A trajectory is thus
(s1, a1, r1, . . . , sH , aH , rH), and the objective of reinforcement learning is to maximize the expected
discounted return Eπ

[∑H
h=1 γ

h−1rh

]
.

Decision Transformers. Decision Transformer (DT) is a powerful paradigm for offline reinforce-
ment learning, formulating decision making as a sequence modeling problem. Instead of relying on
temporal-difference errors, DT reframes offline RL into a supervised learning setting. A DT sequence
consists of three types of tokens: return-to-go (RTG), state, and action. The RTG at step h, denoted
gh, represents the cumulative reward from step h onward. A training trajectory with context length K
can be represented as (gh−K+1, sh−K+1, ah−K+1, . . . , gh, sh, ah). The policy is parameterized by a
GPT-style architecture (Radford et al., 2018), where a causal attention mask enforces the autoregres-
sive structure over the sequence. The training objective is to minimize the mean squared error (MSE)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

between the predicted action and the ground-truth action. During evaluation, the agent is conditioned
on a high RTG and generates actions autoregressively.

Online Finetuning of Decision Transformers. ODT extends DT into the online setting. After
pretraining, it continues training while interacting with the environment, collecting trajectories that
gradually replace the offline buffer. ODT learns a stochastic Gaussian policy conditioned on past
returns, states, and actions:

πθ(ah | s−K,h,g−K,h,a−K,h−1) = N
(
µθ(s−K,h,g−K:h,a−K,h−1),Σθ(s−K,h,g−K,h,a−K,h−1)

)
where θ denotes the policy parameters, Σθ is the diagonal covariance matrix, −K,h means past K
steps before h. However, Yan et al. (2024) pointed out that because ODT models actions conditioned
on desired returns, it actually learns ∂a

∂RTG : how actions change as the target return varies. However,
what drives online policy improvement is ∂RTG

∂a : how returns respond to action adjustments (see
section 3.1 in Yan et al. (2024) for more details). Yan et al. (2024) thus propose ODT+TD3, which
augments ODT loss with TD3 gradients to provide ∂RTG

∂a to guide online exploration, which is
particularly crucial when the offline dataset is of low quality. However, they still prioritize supervised
ODT loss as their main training objective.

Group Relative Policy Optimization (GRPO). GRPO is initially proposed in DeepSeek-
math(Shao et al., 2024) for Large Language Models(LLMs) post-training. It bypass the need
for value model by computing the relative advantage of each response within a group of responses
given the same query. Specifically, the model generate a group of responses o0, o1, . . . , oG from the
old policy πθold for each question q sampled from the question set Q. For each response oi, a reward
ri is specified. Then the policy model is optimized by maximizing the following objective:

JGRPO(πθ) = E
q∼Q,{αi}G

i=1∼π
(l)
θold,i∈I 1

G

G∑
i=1

1

|αi|

|αi|∑
h=1

min
{
wi,h(θ)Âi, clip (wi,h(θ), 1− ε, 1 + ε) Âi − βDKL [πθ ∥ πref]

} ,
(1)

where G the the number of generated responses to each query q, importance ratio wi,h(θ) =
πθ(αi,h|q,αi,<h)
πθold(αi,h|q,αi,<h)

and the advantage of i-th rollout Âi =
ri−mean({r1,r2,··· ,rG})

std({r1,r2,··· ,rG}) .

3 METHODS

This section is organized as follows. We first analyze the limitations of prior attempts at online
finetuning Decision Transformers with importance sampling based algorithms (e.g., PPO/GRPO) and
present our solutions. Based on this we describe our adaptation of GRPO to reinforcement learning
environments, highlighting several key modifications to naive GRPO.

3.1 REMOVING HINDSIGHT RETURN RELABELING

During the online exploration of ODT, a relatively high initial RTG is specified during the rollout
phase. However, when training, the RTGs in collected trajectories are relabeled according to the
achieved return rather than the originally intended return. This hindsight return relabeling, while
necessary for sequence modeling to align the distribution of RTG from offline dataset with online
trajectories (see Fig. 5.4 in Zheng et al. (2022) for details), actually introduces inconsistencies of
RTGs between rollout and training phases, which hinder effective on-policy optimization. This means
the policy generates actions conditioned on an optimistic RTG target during rollout, but the same
actions are later trained against a trajectory labeled with the actually achieved (and often smaller)
RTG. This creates a discrepancy in the conditioning variable: the policy is effectively asked to
maximize likelihood under goals it never explicitly conditioned on during execution. Actions are
drawn under πold(a|s, ghigh) but later trained as if they came from πold(a|s, grelabel), the importance
weights then become unreliable, undermining stable on-policy optimization. This also explains why
naive attempts at applying standard PPO to ODT fails in Yan et al. (2024) (Appendix C in their paper).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Iteration

20

40

60

80

100

120 Hopper-medium-v2

W/O Relabeling
W/ Relabeling

0 500 1000 1500 2000
Iteration

0

20

40

60

80

100 Door-cloned-v1

W/O Relabeling
W/ Relabeling

(a) Hindsight Return Relabeling

0 100 200 300 400 500
Iteration

40

60

80

100

120 Hopper-medium-v2

OURS
Naive GRPO

0 250 500 750 1000 1250 1500
Iteration

50

75

100

125

150
Ant-medium-v2

OURS
Naive GRPO

(b) Sub-trajectory And Full Trajectory

0 100 200 300 400 500
Iteration

40

60

80

100

120 Hopper-medium-v2

Consistent States
Inconsistent States

0 500 1000 1500 2000
Iteration

0

20

40

60

80

100
Door-cloned-v1

Consistent States
Inconsistent States

(c) Consistent And Inconsistent states

0 250 500 750 1000 1250 1500
Iteration

0

20

40

60

80

100 Door-cloned-v1
Sequence Likelihood
Token Likelihood

(d) Sequence likelihoods

0 250 500 750 1000 1250 1500
Iteration

40

50

60

70

80

90

100 Pen-cloned-v1

W/ Active Selection
W/O Active Selection

(e) Active Selection

Figure 1: Examples of GRPO with and without some of our key designs. (a) shows learning process of
our adapted GRPO training with sub-trajectories and naive GRPO training with complete trajectories.
(b) shows learning process with and without consistent states when sampling a group

To address this, one must carefully align rollout conditioning with training objectives. In our practice,
we simply store the intended RTGs alongside each trajectory to preserve consistency. Our ablation
experiments in Fig. 1a demonstrate that without such modification, applying importance sampling
based algorithms to ODT remains unstable. In relatively simple environments such as Hopper, the
policy may initially improve but eventually collapses. In more complex environments such as Door,
the policy fails to learn altogether.

3.2 ADAPTING GRPO TO DECISION TRANSFORMERS

Our method adapts GRPO to Decision Transformers by training on sub-trajectories instead of full
trajectories used in original GRPO. At each iteration, the policy interacts with the environment to
collect full trajectories, from which we sample reset points and generate groups of sub-trajectories
under corresponding conditions. The sub-trajectories within the same group are then assigned
normalized advantages with Eq. (2). These sub-trajectories and their advantages are finally used
to update the policy with Eq. (3). This also aligns the finetuning process with the sub-trajectory
modeling paradigm when pretraining DTs. The details of our training pipeline are described in
Algorithm 1

Compared to the vanilla GRPO, our method introduces four key design modifications to better align
with the Decision Transformer framework and continuous control setting. Specifically, (i) we redesign
the optimizing objective by operating on sub-trajectories rather than full rollouts, (ii) we ensure the
consistency of initial states when generating sub-trajectories by resetting environments to the same
corresponding state (iii) we compute importance weights at the sequence level to match the unit of
reward, and (iv) we incorporate an active selection mechanism that prioritizes uncertain states for
optimization. We elaborate on each of these design choices below.

(1) Optimization on sub-trajectories. In its original formulation to train LLMs, GRPO assigns a
single response-level reward to each generated response, with every token sharing the same reward.
A direct adaptation to continuous control problems would be to aggregate all stepwise rewards in a
rollout and assign advantages computed based on this trajectory-level return to each step, but this
method leads to poor performance (Fig. 1b). To build intuition, we may regard a continuous control
problem as a multi-turn reinforcement learning process in LLMs. Without explicit turn-wise credit
assignment to distinguish effective intermediate actions, the variance of gradient estimates grows
rapidly with the number of turns, which hinders convergence (He et al., 2025; Zhou et al., 2024;
2025). To address this, we adopt a sub-trajectory formulation: from the policy’s action distribution
we sample a segment of length Ltraj, and then continue the rollout deterministically by taking mean
actions for another Leval steps. The cumulative discounted reward over these Ltraj + Leval steps is
attributed to the preceding sub-trajectory and then used to compute advantages within a group with
Eq. (2). By shortening the sampling horizon and evaluating with deterministic rollouts, this design

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Decision Transformers with GRPO (DT w/ GRPO)

Input: Pretrained policy πθ, complete trajectory buffer Treplay, sub-trajectory buffer Tsub, expected
initial RTG g0, total rounds T , number of reset points in a trajectory K, sub-trajectory length
Ltraj, evaluation steps Leval, group size G, discount factor γ.

1: for round t = 1, · · · , T do
2: Rollout complete trajectory τ using current policy πθ(·|s0, g0), conditioned on initial state s0

and RTG g0; update Treplay with τ). // Collect complete policy; buffer updated in a FIFO
manner.

3: Sample a minibatch G from Treplay with probability p(τ) = |τ |∑
τ∈T |τ | .

4: for each τ ∈ G do
5: Sample K reset points {shk

}Kk=1 from action-variance distribution.
6: For each reset point shk

, generate G sub-trajectories {τ subki
}Gi=1 with the current policy

πθt ; evaluate the quality of each sub-trajectory to get reward R(τ subki
). // Sub-trajectory

generation and evaluation.

7: Compute advantage Â(τ subki
) for each sub-trajectory using Eq. (2). // Compute advantages

for GRPO.
8: Update sub-trajectory buffer Tsub with {(τ subki

, Â(τ subki
))}k // Buffer updated in a FIFO

manner.
9: Finetune the current policy with sub-trajectories in Tsub and Eq. (3) to get a new policy πθt+1

.

mitigates credit assignment problems and yields more stable optimization.

Âki =
rsubki

− mean({rsubk1
, rsubk2

· · · , rsubk|G|
}

std({rsubk1
, rsubk2

· · · , rsubk|G|
})

. (2)

(2) Providing consistent states. GRPO requires rollouts within the same group to be conditioned
on the same prompt, which in continuous control corresponds to starting from the same environment
state. If sub-trajectories originate from different states but are grouped together when computing
advantages with Eq. (2), their returns become incomparable and training fails to converge as shown
in Fig. 1c. We therefore enforce state consistency by resetting vectorized environments to specified
states before generating sub-trajectories. This reset mechanism is crucial for stable optimization.
In scenarios where resetting is infeasible, we find that evaluating multiple candidate actions under
the same state with a learned Q-function that is trained following TD3 (Fujimoto et al., 2018), and
applying GRPO at action level (see Appendix A.4 for details) yields decent results.

(3) Sequence-level importance ratio. In naive GRPO, importance weights are computed at the
token level, reflecting stepwise likelihoods. However, in our setting advantages are defined for the
entire sub-trajectories, making token-level ratios misaligned with the unit of reward. This motivates
us to forego the token-level objective and explore utilizing importance weights and performing
optimization at the sequence level. We therefore compute importance ratios directly on sub-trajectories
with Eq. (3), ensuring consistency between the objective and the advantage signal. Note that Eq. (1)
and Eq. (3) differ primarily in their optimization granularity: the former operates at the token level,
whereas the latter is defined at the sequence level. This sequence-level importance ratio improves
both stability and efficiency as shown in Fig. 1d. This is in line with the concurrent work (Zheng
et al., 2025).

JGRPO(θ) =
1

N

N∑
i=1

{
min

[
πθt(τ

sub
i |si,0, gi,0)

πθold(τ
sub
i |si,0, gi,0)

Âi, clip
(

πθt(τ
sub
i |si,0, gi,0)

πθold(τ
sub
i |si,0, gi,0)

, 1− ε, 1 + ε

)
Âi

]

− β DKL[πθt ||πref]

}
+ λHθ(a|s, g). (3)

where DKL[πθt ||πref] =
πref(τ

sub
i |si,0,gi,0)

πθt (τ
sub
i |si,0,gi,0)

− log
πref(τ

sub
i |si,0,gi,0)

πθt (τ
sub
i |si,0,gi,0)

−1 is the KL-penalty, and Hθ(a|s,g)
denotes the entropy regularization term. Following ODT, its coefficient λ is treated as a trainable
parameter to better balance exploration and exploitation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(4) Active selection. During action generation, we observe that certain timesteps exhibit high
variance in the predicted action distribution. When sampling actions, this variance leads to diverse
generated actions, suggesting that the policy is uncertain about which action to take and thus requires
more exploration at these steps. To address this, we introduce a simple yet effective technique called
active selection. Concretely, for a given complete trajectory, we apply a softmax transformation to the
action variance sequence across timesteps using pt =

exp(σ2
t)∑|τ|

k=0 exp(σ2
k)

to yield a probability distribution.

We then sample reset points from this distribution to determine where to initiate sub-trajectory
generation. The effectiveness of this technique is presented in Fig. 1e.

4 EXPERIMENT

In this section, we aim to answer three questions:

(i) How does our DT w/ GRPO (Algorithm 1) perform compared with existing algorithms?

(ii) Do pure RL gradients provide better signals compared with methods that prioritize super-
vised loss during DT online finetuning?

(iii) How does each component in our method affect the performance?

The model architecture and hyperparameter setting can be found in Appendix A.3.1.

4.1 EXPERIMENT SETUP

Tasks and datasets. We evaluate on three types of continuous control and manipulation benchmarks
from D4RL (Fu et al., 2020). (1) Gym locomotion (Hopper, Walker2d, Ant, v2) (Todorov et al., 2012)
with dense rewards, using medium, medium-replay, and random datasets. (2) AntMaze (v2) with
sparse goal-reaching rewards (success = 1, else 0), using umaze and umaze-diverse datasets. (3)
Adroit manipulation tasks (v1) (Rajeswaran et al., 2017) including Door, Hammer, and Pen, evaluated
on human and cloned datasets. The random datasets consist of offline trajectories of low quality
while others are of medium quality. Details of each environment are provided in Appendix A.1.

Baselines. In our experiments, we mainly compare both our adapted GRPO adaption and PPO with
three baselines: Online Decision Transformer (ODT) (Chen et al., 2021), the widely adopted online
version of Decision Transformer with supervised loss as online finetuning objective; ODT+TD3 (Yan
et al., 2024), the current state-of-the-art method for online finetuning of Decision Transformer; IQL
(Kostrikov et al., 2021), a popular offline algorithm which also has an online variant.

Metrics. We use the normalized average reward of 3 random seeds according to D4rl’s statistic
(Fu et al., 2020) where higher rewards represent better performance. Meanwhile, we also present
the learning curves which shows the change of the normalized rewards with respect to the training
iterations. When presenting the curves, we set the x-coordinate to be the number of iteration. This
variable is the round from line 3 of the Algorithm. 1 from ODT Zheng et al. (2022) paper. Note that
conventional x-axis metrics, such as the number of online transitions (indicating sample efficiency)
and the number of gradient updates (indicating computational cost), are not suitable for our setting.
For gradient updates, ODT/ODT+TD3 requires nearly two orders of magnitude more updates per
iteration compared to our PPO/GRPO; for online interactions, our adapted GRPO and PPO consume
several to tens of times more samples than ODT/ODT+TD3. Hence, neither metric provides a fair
comparison.

PPO implementation. Our PPO implementation follows the practice of CleanRL (Huang et al.,
2022). Unlike prior work that applies PPO to multi-agent reinforcement learning (MARL) tasks with
Decision Transformer (Meng et al., 2023), we train the critic using λ-returns rather than discounted
Monte Carlo returns, and store the action probabilities at sampling time instead of recomputing them
during training.

4.2 MAIN RESULTS

Table 1 reports the normalized returns and standard deviations over three random seeds for each
method. Overall, our adapted GRPO achieves the best performance across most tasks. PPO also

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

DT IQL ODT TD3+ODT PPO DT w/ GRPO

Mujuco
(random)

Ho-R-v2 1.98 42.73 (13.66) 30.43 (0.01) 83.32 (8.46) 106.97 (0.96) 99.20 (3.80)
Wa-R-v2 4.59 15.92 (3.54) 10.88 (0.34) 82.95 (18.28) 108.69 (8.86) 100.25 (33.19)
An-R-v2 30.38 59.65 (23.26) 19.08 (3.97) 80.58 (7.25) 107.45 (22.83) 120.69 (5.47)

Average 12.32 39.43 20.13 82.28 107.70 106.71

Mujuco
(medium)

Ho-M-v2 63.1 61.49 (33.33) 98.02 (0.63) 101.47 (2.29) 105.65 (5.43) 108.81 (0.85),
Ho-MR-v2 29.76 98.36 (0.62) 87.73 (0.59) 107.94 (2.29) 109.60 (1.63) 83.61 (20.75)
Wa-M-v2 70.78 102.28 (1.04) 76.49 (0.78) 103.27 (5.95) 109.49 (9.04) 158.34 (3.75)

Wa-MR-v2 58.06 104.27 (3.64) 74.21 (2.41) 102.80 (2.68) 117.45 (14.79) 137.36 (5.64)
An-M-v2 90.58 118.18 (2.42) 90.71 (0.03) 131.56 (0.41) 139.84 (0.95) 147.51 (2.44)

An-MR-v2 78.15 117.51 (0.82) 83.63 (0.87) 120.01 (2.94) 117.95 (2.54) 142.05 (3.32)

Average 65.07 100.35 85.13 111.175 116.66 129.61

Adroit

D-C-v1 4.97 0.10 (0.06) 1.26 (1.02) 79.98 (5.62) 0.19 (0.00) 96.41 (7.59)
D-H-v1 9.30 17.18 (0.75) 8.76 (3.87) 79.73 (4.37) 94.12 (3.99) 89.33 (10.12)
P-C-v1 75.02 63.09 (14.38) 16.24 (5.12) 109.86 (6.27) 27.14 (0.24) 111.15 (2.61)
P-H-v1 95.23 24.94 (1.48) 19.84 (7.42) 77.18 (7.42) 9.92 (5.00) 85.11 (6.08)
H-C-v1 1.80 9.56 (8.13) 1.32 (0.06) 119.95 (2.45) 130.60 (2.81) 140.45 (1.93)
H-H-v1 1.01 0.74 (0.37) 0.91 (0.22) 120.93 (2.18) 129.23 (2.18) 132.64 (12.56)

Average 31.22 19.27 8.06 97.93 65.2 109.18

Antmaze
U-v2 16.00 91.21 (2.14) 89.27 (3.73) 99.64 (0.20) 0.00 (0.00) 96.07 (0.53)

UD-v2 38.00 0.00 (0.00) 63.81 (1.64) 99.42 (0.43) 47.00 (4.00) 97.70 (2.67)

Average 27 45.61 76.54 99.53 23.50 96.89

Table 1: Average reward for each method. The best performance and results > 99% of the best result
is bold. Results > 90% of the best result are underlined. The name of the environments and datasets
are abbreviated as follows: Ho=Hopper, Wa=Walker2d, An=Ant, U=Antmaze-umaze, UD=Antmaze-
umaze-diverse, D=Door, P=Pen, H=Hammer; for the datasets M=Medium, MR=Medium-Replay,
R=Random, C=Cloned, H=Human. The format is ”final (standard deviation)”.

performs competitively in many cases. ODT+TD3 obtains reasonable results, while ODT and IQL
consistently underperform, particularly on tasks with low-quality pretraining data such as the random
datasets and on challenging domains like Adroit. Note that as we perform longer training iterations
as mentioned in Section 4.1, the results for ODT+TD3 are better than the reported ones from the
original paper (Yan et al., 2024).

Low offline data quality. The first part in Table 1 shows results when pretrained with offline
data of low quality. We observe that both our adapted GRPO and PPO perform significantly better
on random datasets. Since these datasets consist of trajectories generated by an untrained random
policy, pretraining on them initializes the agent with poor or even harmful biases, often causing
the policy to collapse or converge to suboptimal solutions. Our results indicate that adapted GRPO
and PPO exhibit stronger robustness to such low-quality pretraining, achieving superior asymptotic
performance compared to baselines. In contrast, ODT—relying purely on supervised learning
signals—fails to escape local optima, and IQL suffers from similar limitations.

Medium data quality. The rest parts of Table 1 present results when pretrained with offline
data of decent quality. For the gym locomotion environments, our adapted GRPO and PPO
achieves best results while ODT+TD3 is competitive and ODT/ODT+TD3 performs reasonably.
In Atari, where state and action spaces are substantially larger and more complex, policies are
highly prone to degradation or collapse during finetuning. Under these conditions, ODT and IQL
fail to improve pretrained policies, whereas our adapted GRPO consistently achieves high returns,
demonstrating strong exploration and stability. ODT+TD3 demonstrates competitive performance on
some environments, but falls short of matching the robustness of our approach in some cases. PPO,
while strong on some environments, fails to improve on other cases. Training longer or incorporating
additional techniques such as reward shaping may alleviate this but we leave it for future work. For
Antmaze environment where reward is sparse, ODT+TD3 achieves best results while our adapted
GRPO performs competitively. Other methods fail to improve the policy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500

40

60

80

100

Hopper-medium-v2

0 100 200 300 400 500

40

60

80

100

Hopper-medium-replay-v2

0 500 1000 1500
60

80

100

120

140

160
Ant-medium-v2

0 500 1000 1500
60

80

100

120

140

160
Ant-medium-replay-v2

0 500 1000 1500
50

100

150

Walker2d-medium-v2

0 500 1000 1500
50

100

150

Walker2d-medium-replay-v2

0 500 1000 1500
0

50

100

Ant-random-v2

0 500 1000 1500
0

50

100

Walker2d-random-v2

0 250 500 750 1000 1250
0

50

100

150
Hammer-cloned-v1

0 250 500 750 1000 1250
0

50

100

150
Hammer-human-v1

0 500 1000 1500 2000
0

20

40

60

80

100
Door-cloned-v1

0 500 1000 1500 2000
Iteration

0

20

40

60

80

100
Door-human-v1

GRPO PPO ODT+TD3 ODT IQL

Figure 2: Results on part of the environments and datasets. Our adapted GRPO perform the best on
most of the environments and dataset. ODT+TD3 and PPO yield competitive results on most of the
environments while ODT and IQL keeps converge on local optimum.

Advantages over previous methods. Our adapted GRPO offers several advantages over prior
approaches besides final performance. First, unlike methods that rely on an auxiliary critic, our
approach requires no additional networks, making it simpler to implement. Second, by leveraging
accurate gradient estimation through sub-trajectory sampling, our method is more computationally
efficient, requires much less gradient updates per iteration. For example, our method requires 8× 256
gradient updates per iteration while ODT/ODT+TD3 typically requires 256× 300, much higher than
our method. Finally, it can finetune any pretrained DT-style model with minimal modifications
(see Appendix A.5 for experiments), whereas prior methods such as ODT+TD3 require altering the
offline pretraining loss to incorporate RL gradients in some cases and training an auxiliary Q-function
simultaneously during pretraining, which prevents them from directly finetuning an already pretrained
model.

4.3 ANALYSES AND ABLATIONS

Ablation on sub-trajectory length. Sub-trajectory in our method represents the unit for assigning
advantage. Thus its length is crucial to our algorithm. Empirical results in Fig. 3a confirm that
increasing sub-trajectory length destabilizes training and leads to inferior outcomes. However,
excessively short sub-trajectories, while stable, also yield sub-optimal results. This is likely because
very short trajectories sampled from the same state distribution are overly homogeneous, limiting
their ability to provide informative learning signals.

Ablation on sub-trajectory evaluation steps. For each sub-trajectory, we extend the rollout with
additional evaluation steps ranging from 30 to 400, depending on the environment. As illustrated
in Fig. 3b, longer evaluation rollouts enable more reliable assessment of sub-trajectory quality and
consequently improve performance.

Using Q function to replace sub-trajectory generation. In scenarios where resetting the environ-
ment is infeasible, we instead train an auxiliary Q function and apply GRPO with Algorithm 2. As
shown in Fig. 3c, this approach still achieves decent performance.

5 RELATED WORK

Transformers for RL. With transformers becoming the dominant architecture in both CV and NLP,
a growing number of transformer-based approaches have been proposed in the RL community (Lin

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500
Iteration

80

100

120

140

Ant-medium-v2

Ltraj=5
Ltraj=15
Ltraj=50
Ltraj=100

(a) Ablation on Ltraj

0 100 200 300 400 500
Iteration

0

20

40

60

80

100

120 Hopper-medium-v2

Ltraj=15
Ltraj=100
Ltraj=200
Ltraj=400

(b) Ablation on Leval

0 100 200 300 400 500
Iteration

0

50

100

150
Ant-medium-v2

GRPO
ODT+TD3
ODT
QGRPO

0 200 400 600 800 1000
Iteration

0

50

100

150
Walker2d-medium-replay-v2

GRPO
ODT+TD3
ODT
GRPO w/ Q

(c) GRPO with Q

Figure 3: Panel (a) shows ablation on sub-trajectory length Ltraj. Both longer and shorter sub-
trajectory length lead to inferior results. Panel (b) shows ablation on evaluation steps Leval. Inadequate
evaluation steps lead to model collapse. Panel (c) shows training with our variant described in
Algorithm 2. It achieves decent results.

et al., 2023; Chen et al., 2022; Yuan et al., 2024). Owing to their strong capability in modeling
sequential dependencies (Parisotto & Salakhutdinov, 2021), transformers are naturally suited for
reinforcement learning when formulated as a sequence modeling problem (Chen et al., 2021; Janner
et al., 2021; Wang et al., 2022). In this paradigm, models typically condition on past states, actions,
and returns to autoregressively predict future actions. However, such approaches rely on offline
datasets and often suffer from issues of data scarcity and out-of-distribution problem. This motivates
the offline pretraining followed by online finetuning paradigm. Nevertheless, existing works either
treat supervised objectives as the primary training signal when tuning transformers online (Zheng
et al., 2022; Yan et al., 2024), rely on Q-learning rather than transformer-based architectures (Lee
et al., 2022; Zheng et al., 2023; Song et al., 2022; Yu & Zhang, 2023; Nair et al., 2020), or are
situated in MARL settings (Meng et al., 2023). In contrast, our work focuses on online finetuning of
offline-pretrained decision-making transformers using purely RL-based gradients.

RL for transformers. Reinforcement learning has also emerged as a powerful technique for aligning
and enhancing large language models (LLMs) (Ouyang et al., 2022; Lee et al., 2023). A wide
spectrum of algorithms has been explored, ranging from policy gradient methods such as PPO, to
off-policy methods like Implicit Language Q-Learning (ILQL) (Snell et al., 2022) and VerifierQ
(Qi et al., 2024), as well as reward-model-free methods such as DPO (Rafailov et al., 2023) and
KTO (Ethayarajh et al., 2024). More recently, novel algorithms such as GRPO and approaches like
ReFT (Luong et al., 2024) have been proposed to further improve the reasoning ability of LLMs. RL
methods have also been applied to transformer-based multi-modal models (Liu et al., 2025; Shen
et al., 2025). However, the strategies designed for training LLMs cannot be directly transferred to
finetuning Decision Transformers, as decision-making tasks fundamentally differ from language
generation in terms of environment dynamics, reward distributions, and optimization objectives. To
this end, our work adapts RL algorithms widely adopted in LLMs, specifically GRPO and PPO, to
the context of finetuning Decision Transformers.

6 CONCLUSION

We presented a systematic study on applying pure RL gradients for online finetuning of Decision
Transformers. We identified hindsight return relabeling as the key obstacle for methods featuring
importance ratio, and introduced adaptations of GRPO with modifications including sub-trajectory
training, environment resetting, and sequence-level importance ratios to enable critic-free and efficient
finetuning of pretrained DT-style models. In addition, we implemented PPO for DTs, showing that
pure RL gradients in online stage substantially improve DTs across diverse benchmarks.

Limitations and future work. While effective, our methods assume environment resetting and
may face challenges in sparse-reward or very long-horizon tasks. Moreover, long rollouts slows
down the training process especially when evaluation steps are relatively long. Our method also
requires extensive hyperparameter tuning when deployed to a new environment. Future work includes
developing reset-free strategies, scaling to more complex domains, and combining our approach with
stronger architectures and exploration techniques to further enhance robustness and generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with
transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Shenghua He, Tian Xia, Xuan Zhou, and Hui Wei. Response-level rewards are all you need for online
reinforcement learning in llms: A mathematical perspective. arXiv preprint arXiv:2506.02553,
2025.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling reinforcement
learning from human feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft:
Reasoning with reinforced fine-tuning. arXiv preprint arXiv:2401.08967, 2024.

10

http://jmlr.org/papers/v23/21-1342.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying
Wen, Haifeng Zhang, Jun Wang, Yaodong Yang, et al. Offline pre-trained multi-agent decision
transformer. Machine Intelligence Research, 20(2):233–248, 2023.

Zak Mhammedi, Dylan J Foster, and Alexander Rakhlin. The power of resets in online reinforcement
learning. Advances in Neural Information Processing Systems, 37:12334–12407, 2024.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Emilio Parisotto and Ruslan Salakhutdinov. Efficient transformers in reinforcement learning using
actor-learner distillation. arXiv preprint arXiv:2104.01655, 2021.

Jianing Qi, Hao Tang, and Zhigang Zhu. Verifierq: Enhancing llm test time compute with q-learning-
based verifiers. arXiv preprint arXiv:2410.08048, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hy-
brid rl: Using both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718,
2022.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE,
2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. Advances in Neural Information Processing
Systems, 35:34748–34761, 2022.

Kai Yan, Alex Schwing, and Yu-Xiong Wang. Reinforcement learning gradients as vitamin for
online finetuning decision transformers. Advances in Neural Information Processing Systems, 37:
38590–38628, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning. In
International Conference on Machine Learning, pp. 40452–40474. PMLR, 2023.

Weilin Yuan, Jiaxing Chen, Shaofei Chen, Dawei Feng, Zhenzhen Hu, Peng Li, and Weiwei Zhao.
Transformer in reinforcement learning for decision-making: a survey. Frontiers of Information
Technology & Electronic Engineering, 25(6):763–790, 2024.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11372–11380, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. arXiv preprint
arXiv:2503.15478, 2025.

Zifeng Zhuang, Dengyun Peng, Jinxin Liu, Ziqi Zhang, and Donglin Wang. Reinformer: Max-return
sequence modeling for offline rl. arXiv preprint arXiv:2405.08740, 2024.

A APPENDIX

A.1 ENVIRONMENTAL AND DATASET DETAILS

Our experiments cover three types of continuous control and manipulation benchmarks from D4RL
(Fu et al., 2020). The first type includes the Gym locomotion environments Hopper, Walker2d, and
Ant (all in v2) (Todorov et al., 2012), which provide dense reward signals. For these environments,
we evaluate on the medium, medium-replay, and random datasets. The medium dataset consists of
trajectories generated by a policy trained to roughly one-third the performance of an expert policy.
The medium-replay dataset is constructed from the replay buffer of a policy trained to medium-level
performance, and the random dataset consists of trajectories generated by an untrained random policy.
The second type focuses on sparse-reward goal-reaching problems in the AntMaze domain (v2). Here,
the agent controls an Ant robot to reach a designated target location, receiving a reward of 1 upon
success and 0 otherwise. We use the umaze and umaze-diverse datasets. The third type includes
robotic manipulation tasks from the Adroit benchmark (v1) (Rajeswaran et al., 2017), including Door,
Hammer, and Pen. These are high-dimensional tasks with challenging dynamics. We experiment
with both the human and cloned datasets, where the former is collected from human teleoperation
and the latter from behavior cloning policies.

A.1.1 MUJUCO ENVIRONMENTS

We conduct our experiment on three Mujuco environments:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• Hopper. Hopper is a Mujuco-based single-legged locomotion task where the agent controls
three joints to make the robot hop forward while maintaining stability. The action space
is 3-dimensional continuous, corresponding to torques applied at the joints, each bounded
within [−1, 1]. The observation space has 11 dimensions, consisting of positional and
velocity information. At each timestep, the reward is a combination of survival bonus,
forward progress, and a control cost penalty proportional to the squared magnitude of the
action. Episodes terminate when the agent falls or reaches the maximum horizon (default
1000 steps).

• Walker2d. Walker2D is a 2D bipedal walking robot task where the agent controls six joints
to make the robot walk forward steadily. The action space is a 6-dimensional continuous
vector (torques in [−1, 1]) applied to hinge joints. The observation space has 17 dimensions.
At each timestep, the agent receives a reward composed of (i) a “healthy” survival bonus,
(ii) a forward progress reward proportional to the displacement in the x-direction, and (iii) a
control cost penalty proportional to the magnitude of the action. Episodes terminate if the
robot becomes unhealthy (e.g. torso height out of range, non-finite states) or reaches the
maximum horizon.

• Ant. The Ant task is a 3-dimensional locomotion problem where the agent controls an
8-joint quadruped to move forward while maintaining balance. The action space is an
8-dimensional continuous vector (typically bounded in [−1, 1]). The observation space
comprises the robot’s positional and velocity state (and sometimes contact observations).
Each timestep the agent receives a reward combining a forward-progress term (displacement
in the x-axis), a control cost penalty (proportional to the squared action magnitude), and
often an alive bonus. Episodes terminate when the ant falls or the time horizon (default
1000) is reached.

The size and normalized return of each offline dataset is presented in Table 2.

Dataset Size Normalized Reward

Hopper-medium-v2 999906 44.32±12.27
Hopper-medium-replay-v2 402000 14.98±16.32

Hopper-random-v2 999906 1.19±1.16
Walker2d-medium-v2 999995 62.09±23.83

Walker2d-medium-replay-v2 302000 14.84±19.48
Walker2d-random-v2 999997 0.01±0.09

Ant-medium-v2 999946 80.30±35.82
Ant-medium-replay-v2 302000 30.95±31.66

Ant-random-v2 999930 6.36±10.07

Table 2: The size and normalized rewards of offline dataset used in Mujuco environment.

A.1.2 ADROIT ENVIRONMENT

We choose three Adroit environments to experiment:

• Door. The Door task requires a 28-DoF hand-arm system to unlatch and open a door.
The action space is 28-dimensional continuous, with each joint command scaled to [−1, 1]
The observation space has 39 dimensions, including joint states, latch status, and relative
positions between the hand and handle. The dense reward combines distance penalties,
velocity regularization, and bonuses for increasing door hinge displacement, encouraging
successful door opening.

• Hammer. The Hammer task involves a 28-DoF robotic hand-arm system (a 24-DoF
ShadowHand plus a 4-DoF arm) that must pick up a hammer and drive a nail into a board.
The action space is 26-dimensional continuous, representing joint commands (scaled into
[−1, 1]. The observation space is 46-dimensional, encoding joint states, poses of the hammer
and nail, and forces on the nail. The reward combines terms for progress in driving the nail
(hinge displacement or insertion depth), penalties on control magnitude, and distance-based
cost.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Pen. The Pen task requires a 24-degree-of-freedom robotic hand to manipulate a pen into
a target orientation. The action space is 24-dimensional continuous, with joint commands
scaled to [−1, 1] for each actuator. The observation space is 45-dimensional, including
joint states, pen pose, and the goal orientation. The reward is composed of a negative
penalty proportional to the Euclidean distance between the pen and target, an orientation
similarity term (dot product between real and target orientation), proximity bonuses when
both distance and angular alignment are sufficiently tight, and a dropping penalty if the pen
falls.

The corresponding offline dataset quality can be found in Table 3.

Dataset Size Normalized Reward

Pen-cloned-v1 499886 108.63± 122.43
Pen-human-v1 4800 202.69± 154.48
Hammer-cloned-v1 999872 8.11± 23.35
Hammer-human-v1 10948 23.80± 33.36
Door-cloned-v1 999939 12.29± 18.35
Door-human-v1 6504 28.35± 13.88

Table 3: The size and normalized rewards of offline dataset used in Adroit environment.

A.2 ANTMAZE ENVIRONMENT

The Umaze environment in Antmaze places an Ant quadruped in a U-shaped maze. The action
space is 8-dimensional continuous, with torques in [−1, 1]. The observation space is a goal-aware
dictionary: a 27-dimensional “observation” vector (positions and velocities of the Ant body parts),
plus 2D achieved goal and desired goal vectors indicating the Ant’s torso position and the target goal
in the plane. The reward provide is sparse: 0 if the ant hasn’t reached its final target position, and 1 if
the ant is in the final target position (the ant is considered to have reached the goal if the Euclidean
distance between both is lower than 0.5 m). The quality of the offline datasets used is presented in
Table 4.

Dataset Size Normalized Reward

Antmaze-Umaze-v2 998573 86.14± 34.55
Antmaze-Umaze-Diverse-v2 999000 3.48± 18.32

Table 4: The size and the average and standard deviation of the normalized reward of the Antmaze
datasets used in our experiments.

A.3 EXPERIMENTAL DETAILS

A.3.1 HYPERPARAMETERS

Table 5 shows the hyperparameters that are common across all our experiments and Table 6 sum-
marizes the domain-specific hyperparameters for each environment and dataset for GRPO. For
antmaze-environment, following ODT+TD3’s (Yan et al., 2024) practice, We remove all 1-step
trajectories, because the size of the replay buffer for decision transformers is controlled by the number
of trajectories, and antmaze dataset contains a large number of 1-step trajectories due to its data
generation mechanism (immediately terminate an episode when the agent is close to the goal, but do
not reset the agent location). And we did not add positional embedding as suggested by ODT (Zheng
et al., 2022).

For GRPO, we collect 1 complete trajectory fpr replay buffer per iteration in Mujoco and Antmaze
environments and 5 complete trajectories each iteration in Adroit environments. The buffer size
for the complete trajectories is 32. When doing resetting, we sample 16 trajectories from the
complete trajectories buffer. We choose four reset points for each trajectory and the group size
for each trajectory is 8. This results in 512 sub-trajectories per iteration. The buffer size for this
sub-trajectories is 2048.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For PPO, we collect 8 trajectories for Mujuco and Antmaze environment and 16 trajectories for
Adroit each iteration. The buffer size is 4 times of the number of trajectories collected per iteration.
Following ODT+TD3’s practice, we add Layernorm (Ba et al., 2016) to the critic of PPO in Adroit
and Antmaze environment to stabilize training process.

Hyperparameters Value

Number of layers 4
Number of attention heads 4

Embedding dimension 512
Actor Optimizer LAMB (You et al., 2019)

Dropout 0.1 when pretraining, disabled when finetuning
Nonlinearity function SiLU (Elfwing et al., 2018)

Weight decay 0.0001
Gradient norm clip 0.5

Target entropy -dim(A)

PPO Critic layer 2
PPO Critic hidden size 256 for Mujoco, 512 for others
PPO Critic activation SiLU
PPO Critic Optimizer AdamW (Loshchilov & Hutter, 2017)
PPO discount factor γ 0.99

Table 5: The common hyperparameters in our experiments

Environ BS Ttrain Teval RTG γ lra Ltraj Leval ε εGRPO ETPR

Ho-M(R) 256 20 1 7200 0.995 5e-5 15 400 0.2 2.0 0.20
Ho-R 256 20 1 7200 0.995 5e-5 15 400 0.2 2.0 0.20

Wa-M(R) 256 20 1 10000 0.995 5e-5 15 400 0.3 2.0 0.04
Wa-R 256 20 1 10000 0.995 5e-5 15 400 0.3 2.0 0.20

An-M(R) 256 20 1 12000 0.995 5e-5 15 200 0.3 2.0 0.04
An-R 256 20 1 12000 0.995 5e-5 15 200 0.3 2.0 0.20

D-C 512 5 1 3000 0.99 3e-5 10 100 0.3 0.5 0.10
D-H 512 5 1 3000 0.99 3e-5 10 100 0.3 0.4 0.04
P-C 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
P-H 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
H-C 512 5 5 4000 0.99 3e-5 10 100 0.3 0 0.05
H-H 512 5 5 4000 0.99 3e-5 10 100 0.3 0.8 0.05

U 256 5 1 2 1.0 5e-5 10 200 0.2 0 0.05
UD 256 1 5 2 1.0 5e-5 10 200 0.2 0 0.05

Table 6: The hyperparameters that we use to finetune DT in each domain, where Ttrain and Teval

stands for context length for training and evaluation, γ is the discount factor, lra represents learning
rate for the actor, Ltraj and Leval represent sub-trajectory length and evaluation steps for each sub-
trajectory respectively, ε is Clipping threshold,εGRPO is the minimum deviation of a sub-trajectory’s
raw reward from the mean reward of its group, ETPR is the initial entropy temperature for online
finetuning.

A.4 GRPO WITH Q FUNCTION

In this section we introduce GRPO with Q, an action-level variant of our method designed for settings
where environment resets are infeasible. Instead of generating multiple sub-trajectories from the
same state, our method samples a group of actions under the current policy for each visited state
and evaluates them with an auxiliary Q-function. The resulting Q-values are normalized to provide
advantages, which are then used to optimize the policy via the GRPO objective. Meanwhile, the
Q-function is updated following standard TD3 practice. This design preserves the core idea of
group-based policy optimization while eliminating the need for environment reset.

A.5 TRAINING WITH OTHER ARCHITECTURE

To evaluate the generality of our algorithm, we further apply it to other DT-style architectures. Rein-
former (Zhuang et al., 2024) is a max-return sequence modeling approach for offline reinforcement

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 GRPO with Q (action-level variant)

Input: Pretrained policy πθ, trajectory buffer Treplay, auxiliary Q-function Qϕ, total rounds T , group
size G, discount factor γ.

1: for round t = 1, · · · , T do
2: Rollout trajectory τ using current policy πθ(·|s, g); update Treplay with τ . // Trajectory

collection with FIFO buffer update.
3: Sample a minibatch G from Treplay with probability p(τ) ∝ |τ |.
4: for each τ ∈ G do
5: For each state sh in τ , sample G actions {ah,i}Gi=1 ∼ πθ(·|sh, gh).
6: Evaluate each sampled action with Qϕ(sh, ah,i).
7: Normalize scores {Qϕ(sh, ah,i)} to obtain advantages {Âh,i}. // Action-level evaluation

with Q-function.

8: Update policy πθ using GRPO objective with advantages {Âh,i}.
9: Update Qϕ following TD3-style critic learning.

learning. It integrates the RL objective of return maximization into supervised sequence modeling by
using expectile regression to predict the in-distribution maximum return, which then guides optimal
action generation. This method enhances trajectory stitching capability and achieves state-of-the-art
performance among sequence models on the D4RL benchmark, particularly on tasks requiring learn-
ing from suboptimal data. The training process of applying our adapted GRPO to this architecture is
presented in Fig. 4.

0 50 100 150 200 250
Iteration

40

60

80

100

Hopper-medium-v2

DT
Reinformer

0 200 400 600 800
Iteration

0

20

40

60

80

100

120 Hopper-random-v2

DT
Reinformer

0 100 200 300 400 500
Iteration

60

80

100

120

140

160 Ant-medium-replay-v2

DT
Reinformer

0 200 400 600 800 1000 1200
Iteration

0

20

40

60

80

100 Door-cloned-v1

DT
Reinformer

Figure 4: Applying our adapted GRPO to Reinformer

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to polish the writing of this paper.

16

	Introduction
	Preliminaries
	Methods
	Removing Hindsight Return Relabeling
	Adapting GRPO to Decision Transformers

	Experiment
	Experiment Setup
	Main Results
	Analyses and Ablations

	Related work
	Conclusion
	Appendix
	Environmental and dataset details
	Mujuco Environments
	Adroit Environment

	Antmaze Environment
	Experimental Details
	Hyperparameters

	GRPO with Q function
	Training With Other Architecture
	The Use of Large Language Models (LLMs)

