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Abstract
We propose MonarchAttention – a novel
approach to sub-quadratic attention approxima-
tion via Monarch matrices, an expressive class
of structured matrices. Based on the vari-
ational form of softmax, we describe an ef-
ficient optimization-based algorithm to com-
pute an approximate projection of softmax at-
tention onto the class of Monarch matrices
with Θ(N

√
Nd) computational complexity and

Θ(Nd) memory/IO complexity. Unlike previ-
ous approaches, MonarchAttention is both
(1) transferable, yielding minimal performance
loss with no additional training, even when re-
placing every attention layer of the transformer,
and (2) hardware-efficient, utilizing the highest-
throughput tensor core units on modern GPUs.
With optimized kernels, MonarchAttention
achieves substantial speed-ups in wall-time over
FlashAttention-2: 1.4× for shorter se-
quences (N = 256), 4.5× for medium-length
sequences (N = 4K), and 8.2× for longer se-
quences (N = 16K). We demonstrate the quality
of MonarchAttention on diverse tasks and
architectures in vision and language problems,
showing that it flexibly and accurately approxi-
mates softmax attention in a variety of contexts.

1. Introduction
Over the past decade, transformers (Vaswani et al., 2017)
have become the dominant architecture for generating and
processing various data modalities, such as text (Brown
et al., 2020), images (Dosovitskiy et al., 2021), and speech
(Radford et al., 2023). Central to the transformer’s suc-
cess is attention, the mechanism through which complex
interactions within sequential data are captured through
weighted combinations of embeddings at every position in
the sequence. Famously, the attention mechanism has a
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Figure 1: Zero-shot conversion of attention layers for
image classification and question answering. We vary
hyperparameters for various baselines to evaluate model
quality vs compute tradeoff. Left. Top-5 accuracy vs. total
attention FLOPs across all layers for ViT on ImageNet.
Right. F1 score vs total attention FLOPs across all layers
for RoBERTa on SQuAD.
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Figure 2: Zero-shot conversion of attention layers for
long sequence summarization. We vary the sequence
length of the text to be summarized to evaluate model qual-
ity vs compute tradeoff. We report recall-based ROUGE-1
and ROUGE-L scores vs. total attention FLOPs across all
layers for BART on BookSum-chapters.

quadratic-time complexity Θ(N2d) in the length of the se-
quence N , where d is the head dimension, which is a key
bottleneck for both training and inference, particularly in
long sequence problems. To address this, numerous works
have proposed sub-quadratic substitutes for attention. Yet,
such approaches either (1) are not transferable, requiring
training from scratch or fine-tuning of existing models, or
(2) do not yield speed-ups in practice (except on extremely
long sequences) due to a gap between theoretical complexity
and practical considerations for modern GPUs, especially
compared to highly optimized implementations (Dao et al.,
2022b).

In this work, we propose MonarchAttention: a novel
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Figure 3: Approximation of softmax attention via MonarchAttention. By directly optimizing the softmax variational
objective constrained to Monarch matrices, MonarchAttention yields accurate zero-shot approximation to softmax
attention compared to other hardware-friendly, efficient attention baselines. Attention maps extracted from RoBERTa on the
SQuAD dataset in Section 4.

sub-quadratic attention substitute based on approximat-
ing the attention matrix via Monarch matrices (Dao et al.,
2022a), a class of expressive structured matrices. We frame
the computation of the attention matrix as an optimization
problem in terms of the variational form of softmax, and ex-
ploit low-dimensional structure in the variational objective
when constrained to the set of Monarch matrices – this yields
a sub-quadratic Θ(N

√
Nd)-time approximation, where d

is the head dimension.

Nearly all approaches to sub-quadratic attention approxi-
mate the attention matrix by a structured matrix, specifically
low-rank (Wang et al., 2020; Katharopoulos et al., 2020;
Choromanski et al., 2021; Qin et al., 2022; Zhang et al.,
2024; Xiong et al., 2021), sparse (Child et al., 2019; Chen
et al., 2022; Kitaev et al., 2020; Daras et al., 2020), or a
combination of the two (Chen et al., 2021; Han et al., 2024)
– we review prior work on structured matrices, including
Monarch matrices, as well as existing approaches to efficient
attention in Appendix A. However, as mentioned before,
there are significant drawbacks to these methods in terms
of either expressivity or efficiency. MonarchAttention
achieves the best of both worlds: it is fast and hardware-
friendly due to utilization of tensor cores for batched mat-
muls, while computing highly accurate approximations to
the extent that it can directly replace softmax attention with
no additional training. We discuss closely related ideas in
the literature in Appendix A.

2. Preliminaries
Softmax. The softmax function RN → ∆N maps N real
numbers to the (N − 1)-dimensional unit simplex, and is
defined as

[softmax(z)]i :=
exp(zi)∑
j exp(zj)

, ∀i ∈ [N ]. (1)

An alternative definition (Blondel et al., 2019) is given by
the following variational form:

softmax(z) := argmax
a∈∆N

⟨a, z⟩+H(a), (2)

where H(a) = −
∑

i ai logai is Shannon entropy. See
Appendix B for equivalence of (1) and (2).

Attention. Given query, key, value matrices Q,K,V ∈
RN×d, where N is the sequence length and d is the head
dimension, a single head of standard softmax attention1

computes
O = softmax

(
QK⊤)V , (3)

where the softmax function is applied across rows. The
computational complexity of attention is Θ(N2d) for each
forward pass, because the matrices Q,K,V are data-
dependent.

Monarch Matrices. Given N = m× b for integers m, b,
a Monarch matrix M is a permuted block rank-one matrix
M = P⊤B, where P is a “transpose” permutation and B
is a block rank-one matrix

B =

B11 . . . B1m

...
. . .

...
Bb1 . . . Bbm

 , (4)

where Bjk = LjkR
⊤
kj ∈ Rm×b for some Ljk ∈

Rm,Rkj ∈ Rb for j ∈ [b] and k ∈ [m]. When m =

b =
√
N , storing M requires only Θ(N

√
N) space, while

matrix multiplication (matmul) with a matrix V ∈ RN×d

can be computed efficiently in Θ(N
√
Nd) operations (as

opposed to Θ(N2d) for dense matrices) with batched mat-
muls and transposes. See Appendix C for more details.

3. MonarchAttention
The main goal of MonarchAttention is to find a
Monarch matrix M ∈ RN×N in o(N2d) time such that
M ≈ softmax(QK⊤). Then, we can approximately com-
pute the output O = MV using efficient matmul. We can
do this by viewing the softmax operation as an optimization
problem via its variational form (2), whose objective can

1Typically, the QK⊤ matrix is scaled by a factor of d−1/2, but
this can be absorbed into Q.
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(a) Softmax (b) MonarchAttention (c) Nyströmformer

Figure 4: Visual quality of generated images for zero-shot conversion of attention layers. Example images generated by
with softmax (left), MonarchAttention (middle), and Nyströmformer (right). Only the first half of the attention layers
of DiT are replaced.

be efficiently maximized with exact alternating steps when
constrained to Monarch matrices. As shown in Figure 3,
this yields highly accurate approximations to the softmax
attention matrix.

Softmax Objective. First, from (2) we can write

σ(QK⊤) = argmax
A∈∆N×N

⟨A,QK⊤⟩+H(A)︸ ︷︷ ︸
f(A;Q,K)

, (5)

where ∆N×N denotes a matrix whose rows lie on ∆N , and
H(A) = −

∑
i,j Aij logAij . For a dense matrix A, com-

puting f(A;Q,K) requires Θ(N2d) operations, which is
the same as computing σ(QK⊤) directly. However, we
are interested in the case where A is a Monarch matrix
M = P⊤B:

f(P⊤B;Q,K) = ⟨P⊤B,QK⊤⟩+H(P⊤B)

= ⟨B, Q̃K⊤⟩+H(B) =
∑
j,k

f(Bjk; Q̃j ,Kk),

where Q̃ = PQ, and Q̃j ∈ Rm×d,Kk ∈ Rb×d are the
jth and kth block of rows of Q̃,K respectively. Then, for
each j ∈ [b], k ∈ [m] we evaluate f on the rank-one matrix
Bjk = LjkR

⊤
kj :

f(Bjk; Q̃j ,Kk)

=⟨LjkR
⊤
kj , Q̃jK

⊤
k ⟩ −

∑
l,i

LjklRkji log(LjklRkji)

=⟨Q̃⊤
j Ljk,K

⊤
k Rkj⟩ −

(
1⊤Rkj

)
·H(Ljk)

−
(
1⊤Ljk

)
·H(Rkj).

Thus, for each j ∈ [b], k ∈ [m] we only need Θ((m+ b)d)

operations to compute f(Bjk; Q̃j ,Kk) due to Q̃⊤
j Ljk and

K⊤
k Rkj . We emphasize that the rank-one structure implies

separability of the entropy term, meaning we can compute
the entropy on Ljk and Rkj individually and avoid the need
to materialize Bjk, which would incur Θ(mb) cost as op-
posed to Θ(m+b). Since there are m·b many Bjk matrices,
we have in total Θ((m2b+ b2m)d) operations to compute
f(M ;Q,K), which for m = b =

√
N is Θ(N

√
Nd),

improving on the dense computation by a factor of
√
N .

Alternating Maximization with Constraints. We will
now explain the alternating maximization approach for op-
timizing f . When L is fixed, the objective is concave in
R, and vice-versa – therefore, we can derive closed form
expressions via KKT conditions for L and R that maximize
f with one of L or R fixed, which will constitute a single
update step. Evaluating (and therefore differentiating) f
w.r.t. L and R can be done in Θ(N

√
Nd) time, which will

be the same complexity as one of these steps. For T steps,
this will require Θ(TN

√
Nd) computation; provided that

T = o(
√
N), this will still be sub-quadratic. However, the

constraint M ∈ ∆N×N presents a challenge in its current
form, since this requires materializing M to check that
each entry is non-negative. Instead, we use the fact that(
Lj,:,l ∈ ∆m, Rkj ∈ ∆b, ∀j ∈ [b],∀k, l ∈ [m]

)
=⇒

M ∈ ∆N×N , i.e., slices of L,R individually lying on
the unit simplex is sufficient to enforce the constraint on M .
This is easily seen from (6) – obviously if Ljkl,Rkji ≥ 0,
then [Mlk]ji ≥ 0. Moreover, this also enforces the sum-
to-one constraint, as rows of M sum as

∑
k,i[Mlk]ji =

(
∑

k Ljkl) (
∑

i Rkji) = 1.

The update steps with full derivation is provided in Ap-
pendix D.1. A naïve implementation of the full algorithm is
provided in Appendix D.2. We discuss in Appendix D.3 how
padding can be incorporated into MonarchAttention
for when N is not divisible by b. Finally in Appendix D.4
we show how the algorithm is implemented in practice to
achieve an optimal Θ(Nd) IO complexity.
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Figure 5: MonarchAttention vs. FlashAttention-2 run-time across various sequence lengths. Normalized
runtime (1 = slowest, 0 = fastest) of MonarchAttention and FlashAttention-2 on A40 GPU. Left: sweep
sequence length N with E = 1, H = 12, and d = 64. Right: sweep batch size E with N = 256, H = 12, and d = 64.

4. Experiments
In this section, we evaluate the zero-shot performance (no
additional training) of MonarchAttention for convert-
ing pre-trained/fine-tuned transformer attention layers to
sub-quadratic attention in four different model/task settings.
See Appendix E.1 for more details on the baselines.

Image Classification with Vision Transformer. We con-
vert all attention layers of a trained ViT-B (Dosovitskiy et al.,
2021) and evaluate on ImageNet-1K (Russakovsky et al.,
2015) for image classification; see Appendix E.2 for more
details on the set-up. The results are shown in the left panel
of Figure 1. MonarchAttention achieves significant
improvement over other baselines – compared to the orig-
inal softmax attention, MonarchAttention loses only
5% accuracy to reduce attention FLOPs by 80%, or matches
the performance to reduce attention FLOPs by 50%.

Question Answering with Encoder-Only Transformer.
We convert a subset of attention layers of a trained
RoBERTa-B (Liu et al., 2019) and evaluate on SQuAD1.1
(Rajpurkar et al., 2016) for question answering; see Ap-
pendix E.3 for more details on the set-up. The results
are shown in the right panel of Figure 1. Once again,
MonarchAttention achieves significant improvement
over other baselines – compared to the original softmax
attention, MonarchAttention loses only 10 points in
F1 score to reduce attention FLOPs by 60%, or matches the
performance to reduce attention FLOPs by 35%.

Summarization with Encoder-Decoder Transformer.
We convert all attention layers of a trained BART-B
(Lewis et al., 2020) encoder and evaluate on BookSum-
chapters (Kryściński et al., 2022) for summarization; see
Appendix E.4 for more details on the set-up. The results are
shown in Figure 2. We see that MonarchAttention

achieves a strictly better ROUGE score (Lin, 2004) vs.
FLOPs tradeoff than even softmax attention, due to accurate
and efficient processing of longer sequences. In particular,
the N = 8192 MonarchAttention model improves on
the N = 2048 softmax attention model by 0.75 on ROUGE-
1 and 0.5 on ROUGE-L with slightly fewer FLOPs, while
the N = 8192 Nyströmformer model with similar FLOPs
does strictly worse than softmax.

Image Generation with Diffusion Transformer. We con-
vert a subset of attention layers of a trained DiT-XL (Peebles
and Xie, 2023) on ImageNet (Deng et al., 2009) for image
generation; see Appendix E.5 for more details on the set-
up. Examples of generated images with each method for
replacing the first 14 layers are shown in Figure 4, where
MonarchAttention produces clear images resembling
those of softmax attention, while the Nyströmformer ones
are extremely noisy. We also provide quantitative results on
FID in Appendix F.

Benchmarking MonarchAttention. Finally, we val-
idate that the computational/IO complexity reduction
achieved by MonarchAttention translates into ac-
tual speed-ups. We implement our kernels in Tri-
ton and compare with the fastest available implemen-
tation of FlashAttention-2. In the left panel of
Figure 5, we sweep the sequence length N , show-
ing that MonarchAttention consistently outperforms
FlashAttention-2, notably achieving up to 8.2×
speed-up with N = 16384. For shorter sequences, we
further fuse MonarchAttention to have a single thread
block compute a single head of attention. In the right panel
of Figure 5, we sweep the batch size at N = 256. With
smaller batch sizes, we have low utilization of hardware.
Yet MonarchAttention achieves up to 1.4× speed-up
over FlashAttention-2 for larger batch sizes.
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Notation. We use [N ] to denote the index set {1, 2, . . . , N}. We use ∆N to denote the (N − 1) dimensional unit simplex,
given by ∆N = {a ∈ RN : a ⪰ 0, ⟨1N ,a⟩ = 1}. We denote the m×m identity matrix by Im. We use the notation Aijk

to denote an element of a 3-way tensor, and Ai,:,k to denote a slice. We use δkl to denote the Kronecker delta that is 1 if
k = l and otherwise 0.

A. Related Work
Structured & Monarch Matrices. We use the phrase “structured matrices” to mean those that admit sub-quadratic
storage and matrix-vector multiplication, such as low-rank or sparse matrices. There are many useful classes of structured
matrices, such as those with low displacement rank (Kailath et al., 1979), which includes Toeplitz, Hankel, Vandermonde,
Cauchy matrices (Pan, 2001); orthogonal polynomial transforms (Chihara, 2014), which includes discrete Fourier/cosine
and Hadamard transforms; butterfly factorizations (Dao et al., 2019), which implement fast matrix-vector multiplication
via a recursive divide-and-conquer algorithm similar to that of fast Fourier transforms (FFTs); and Monarch matrices, an
expressive family of structured matrices (generalizing butterfly matrices and thereby many fast transforms) that overcome
unfavorable memory access patterns typical to FFT-like algorithms by implementing matrix products via batched dense
matrix multiplications (also called matmuls) on fast tensor cores found in modern GPUs.

Sub-Quadratic Attention.

• Low-Rank. Motivated by Johnson-Lindenstrauss embeddings, Wang et al. (2020) propose sketching the key and value
matrices along the sequence dimension via learnable projections. Katharopoulos et al. (2020) introduce linear attention,
where the exponential kernel is approximated via inner products of queries and keys lifted via some feature map. Several
follow-up works proposed various feature maps, such as the exponential linear unit (ELU) (Katharopoulos et al., 2020),
random positive features (Choromanski et al., 2021), rectified linear unit (ReLU) with cosine reweighting (Qin et al.,
2022), and learnable single-layer multi-layer perceptrons (MLPs) (Zhang et al., 2024). Xiong et al. (2021) use the
Nyström method for computing low-rank approximations by sampling rows and columns.

• Sparse. Child et al. (2019) introduce sparsity by applying fixed, structured sparse masks on the attention matrix. In
particular, Chen et al. (2022) propose a particular block butterfly matrix for the sparse mask, which is more hardware-
friendly at the cost of reduced expressiveness. Those that do not enforce a structure on the sparsity pattern include
Kitaev et al. (2020); Daras et al. (2020) where they utilize locality-sensitive hashing (LSH) on shared query/key vectors
to only compute attention within clusters of similar tokens.

• Low-Rank + Sparse. Inspired by robust PCA, Chen et al. (2021) decompose the attention matrix into a sum of two
matrices: an unstructured sparse component using LSH and a low-rank component that is constructed via linear attention.
Han et al. (2024) propose to subsample columns of the non-normalized attention matrix based on row norms of the value
matrix, while estimating the softmax normalization factors from a few large elements via LSH.

Pure low-rank methods are often fast and hardware-friendly, but are not typically suitable as drop-in replacements for
attention in pre-trained transformers due to the prevalence of “strongly diagonal”, high-rank attention matrices where
attention weights are concentrated locally in a sequence. Making up for this with a fixed sparsity pattern does not allow for
data-dependent support of the attention matrix, necessary for zero-shot conversion. Finally, sparsity approaches that do
not have a fixed sparsity pattern by relying on LSH improve on accuracy over low-rank approximations but suffer from
significant overhead due to GPU incompatibility.

The next two works are closely related to our work.

• Dao et al. (2022b) propose FlashAttention, an IO-aware streaming algorithm for computing exact softmax attention.
We show in Section 3 that each step of MonarchAttention can be written as a FlashAttention-like compu-
tation, allowing for similar IO savings to FlashAttention – in fact, we demonstrate that MonarchAttention
achieves a strictly better worst-case IO complexity compared to FlashAttention. We also note that Dao et al. (2022b)
propose to further accelerate FlashAttention using block butterfly attention masks, so MonarchAttention can
be viewed as a generalization of block-sparse FlashAttention to more general Monarch matrices.

• MonarchAttention is closely related to Monarch Mixer (Fu et al., 2023), a mixer-type architecture (Tolstikhin et al.,
2021) that utilizes Monarch instead of dense matrices for token and channel mixing. MonarchAttention also uses
Monarch matrices for mixing tokens – however, it is based on the attention operation which is data-dependent, unlike
Monarch Mixer.
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B. Equivalence of Softmax Definitions
Consider the optimization problem in (2):

max
a

f(a) :=
∑
i

aizi −
∑
i

ai logai s.t. ai ≥ 0,
∑
i

ai = 1.

From the KKT stationarity condition, we have

∂

∂ai

(
f(a) + λ

(
1−

∑
i

ai

)
+
∑
i

µiai

)
= 0 =⇒ zi − (1 + logai)− λ+ µi = 0,

where λ ∈ R,µ ∈ RN are dual variables. From complementary slackness aiµi = 0 and the fact that logai is not defined
for ai = 0, we must have µi = 0, which gives

logai = zi − λ− 1 =⇒ ai = exp(zi)/ exp(λ+ 1).

Finally, from the constraint
∑

i ai = 1, we must have exp(λ+ 1) =
∑

j exp(zj), which gives the form of softmax in (1).

C. Monarch Background
From (4), it follows that B has the following form:

B =


L⊤

1

L⊤
2

. . .
L⊤

b

P


R1

R2

. . .
Rm

 ,

where Lj ∈ Rm×m for j ∈ [b] and Rk ∈ Rb×b for k ∈ [m], and P ∈ RN×N is a “transpose” permutation matrix whose
(i+ 1)th row is given by eσ(i)+1 where

σ(i) = b · (i mod m) +

⌊
i

m

⌋
, i ∈ {0, . . . , N − 1}.

Px corresponds to row-major reshaping x ∈ RN to Rm×b, transposing to Rb×m, then row-major flattening back to RN .
As an illustrative example, let N = 6, b = 3, and m = 2. The action of P is given by the following steps:

1
2
3
4
5
6


reshape 2×3

[
1 2 3
4 5 6

]
transpose

1 4
2 5
3 6

 flatten


1
4
2
5
3
6

 .

In matrix form, we have

P =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

 .

Given the above, matrix products are given by:

MV = O, where Ob·(l−1)+j,v =
∑
k

LjklYjkv, Yjkv =
∑
i

RkjiVb·(k−1)+i,v
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for i, j ∈ [b], k, l ∈ [m]. A useful characterization of M is in block form:

M =

M11 . . . M1m

...
. . .

...
Mm1 . . . Mmm

 , (6)

where Mlk ∈ Rb×b, [Mlk]ji = LjklRkji, ∀i, j ∈ [b], k, l ∈ [m].

D. Details for MonarchAttention
D.1. Updates

Derivatives. We evaluate f with A = M as a Monarch matrix. Using (6), we have

f(M ;Q,K) =
∑

LjklRkjiQjlvKkiv −
∑

LjklRkji log(LjklRkji)

=
∑

LjklRkjiQjlvKkiv −
∑

LjklRkji logRkji −
∑

RkjiLjkl logLjkl.

The derivatives of f w.r.t. each factor are given by

∂f(M ;Q,K)

∂Ljkl
= βL,jkl − cL,jk − (1 + logLjkl)γL,jk, (7)

∂f(M ;Q,K)

∂Rkji
= βR,kji − γR,kj − (1 + logRkji)cR,kj , (8)

where

βL,jkl =
∑
v

Qjlv

∑
i

(RkjiKkiv), cL,jk =
∑
i

Rkji logRkji, γL,jk =
∑
i

Rkji,

βR,kji =
∑
v

Kkiv

∑
l

(LjklQjlv), γR,kj =
∑
l

Ljkl logLjkl, cR,kj =
∑
l

Ljkl.

We derive updates for each factor based on maximizing f with the other factor fixed.

L update. First, we fix R ∈ ∆m×b×b and consider

max
L

f(M ;Q,K) s.t. Ljkl ≥ 0,
∑
k

Ljkl = 1.

From the KKT stationarity condition, we have

∂

∂Ljkl

(
f(M ;Q,K) +

∑
λL,jl

(
1−

∑
k

Ljkl

)
+
∑

µL,jklLjkl

)
= 0

where λL ∈ Rb×m,µL ∈ Rb×m×m are dual variables. Along with (7), we have

βL,jkl − cL,jk − (1 + logLjkl)γL,jk − λL,jl + µL,jkl = 0.

Now, from complementary slackness µL,jklLjkl = 0 and the fact that logLjkl is not defined for Ljkl = 0, we must have
µL,jkl = 0. Moreover, since R ∈ ∆m×b×b, we have γL,jk = 1. Altogether, we have

logLjkl = βL,jkl − cL,jk − λL,jl − 1 =⇒ Ljkl =
exp(βL,jkl − cL,jk)

exp(λL,jl + 1)
.

Finally, from the constraint
∑

k Ljkl = 1, we must have exp(λL,jl + 1) =
∑

k exp(βL,jkl − cL,jk), which gives the final
closed form update:

L = softmaxk(ZL), ZL,jkl = βL,jkl − cL,jk,

where softmaxk is applied along the k index dimension.
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R update. Similarly, we fix L ∈ ∆b×m×m and consider

max
R

f(M ;Q,K) s.t. Rkji ≥ 0,
∑
i

Rkji = 1.

From the KKT stationarity condition, we have

∂

∂Rkji

(
f(M ;Q,K) +

∑
λR,kj

(
1−

∑
i

Rkji

)
+
∑

µR,kjiRkji

)
= 0

where λR ∈ Rm×b,µR ∈ Rm×b×b are dual variables. Along with (8), we have

βR,kji − γR,kj − (1 + logRkji)cR,kj − λR,kj + µR,kji = 0.

As before, from complementary slackness µR,kjiRkji = 0 and the fact that logRkji is not defined for Rkji = 0, we must
have µR,kji = 0. Altogether, we have

logRkji =
βR,kji − γR,kj − λR,kj

cR,kj
− 1 =⇒ Rkji =

exp(βR,kji/cR,kj)

exp(γR,kj/cR,kj + λR,kj/cR,kj + 1)
.

Finally, from the constraint
∑

i Rkji = 1, we must have exp(γR,kj/cR,kj + λR,kj/cR,kj + 1) =
∑

i exp(βR,kji/cR,kj),
which gives the final closed form update:

R = softmaxi(ZR), ZR,kji = βR,kji/cR,kj ,

where softmaxi is applied along the i index dimension.

D.2. Naïve Algorithm

We provide pseudo-code for the naive version of MonarchAttention in Figure 6. This is a direct implementation of
alternating maximization for finding the Monarch factors, ignoring concerns about memory and IO. We alternate between
updating L and R as described above for T iterations. Specifically, we highlight the choices to (1) initialize L to be block
identity, and (2) update R before L in each iteration.

D.3. Padding and Masking

In practice, the sequence length N may not be divisible by the desired block size b. In such cases, we round the number of
blocks m to m′ = ⌈N/b⌉, and set the new sequence length N ′ = m′b, post-padding Q,K,V to have N ′ rows. However,
we need to take special care that the final N ′ −N columns of the padded Monarch attention matrix M ∈ ∆N ′×N ′

are zero,
since these correspond to padded rows of V . This is also an issue when batched sequences of different lengths are padded to
a maximum length to avoid dynamic resizing.

From (6), it is clear that to set all columns of M beyond the N th column to zero, it is sufficient to set Rkji to
zero whenever b(k − 1) + i > N . Thus, we simply form the mask ω ∈ Rm′×b×b given by

ωkji =

{
0 b(k − 1) + i ≤ N

−∞ otherwise,

which we then add to ZR before softmax in (??). We can also pre-pad the sequence, which would be change the above
condition to b(k − 1) + i ≥ N ′ −N .

D.4. Implementation

To minimize data movement and memory usage on GPU, we do not materialize L or R in high-bandwidth memory (HBM).
In addition to Q,K,V ,O, we only need to maintain states2 α

(t)
R ,α

(t)
L , c

(t)
R , c

(t)
L from (??) and (??), resulting in Θ(Nd)

2The α and c variables can share the same memory location as those corresponding to R can be derived from L (and vice-versa).
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1 # Q: array of size (N, d)
2 # K: array of size (N, d)
3 # V: array of size (N, d)
4 # T: number of steps
5

6 def monarch_attention(Q, K, V, T):
7 L = stack(b * [eye(m)])
8 Qb = einshape("(lj)v->jlv", Q, j=b)
9 Kb = einshape("(ki)v->kiv", K, i=b)

10

11 # Alternating maximization for L, R
12 for t in range(T):
13 # R update
14 aR = einsum("jkl,jlv->kjv", L, Qb)
15 bR = einsum("kjv,kiv->kji", aR, Kb)
16 cR = einsum("jkl->kj", L)
17 R = softmax(bR / cR[:, :, None], axis=2)
18

19 # L update
20 aL = einsum("kji,kiv->jkv, R, Kb)
21 bL = einsum("jkv,jlv->jkl", aL, Qb)
22 cL = einsum("kji->jk", R * log(R))
23 L = softmax(bL - cL[:, :, None], axis=1)
24

25 # Monarch multiply
26 Vb = einshape("(ki)v->kiv", V, i=b)
27 Y = einsum("kji,kiv->jkv", R, Vb)
28 Z = einsum("jkl,jkv->ljv, L, Y)
29 O = einshape("ljv->(lj)v", Z)
30

31 return O

Figure 6: Naïve implemention of MonarchAttention

additional memory. All other intermediate values are only materialized in on-chip SRAM, fusing all operations between the
α (and similarly c) variables. For instance, from the above update equations, the computation of α(t)

L from α
(t)
R is given by

α
(t)
L,jkv = softmaxi

(∑
v α

(t)
R,kjvKkiv

c
(t)
R,kj

)
Kkiv,

which can be seen as a batched attention computation, meaning we can implement a FlashAttention-like kernel to
reduce IO between HBM and on-chip SRAM. However, several aspects of this computation make it particularly IO-efficient.
Besides the fact that K acts as both the K and V matrices in (3), the effective sequence length is

√
N . This eliminates

the need for tiling along the sequence length, except for very long sequences having Θ(
√
Nd) > S, where S is the size of

on-chip SRAM. This means that we have an optimal IO complexity of Θ(Nd) for a single call, as opposed to the worst-case
O(N2d2/S) complexity of FlashAttention. The computation of α(t)

R from α
(t)
L , as well as the Monarch matmul, can

be written in a similar fashion. Python-like code for MonarchAttention is given in Figure 7.

E. Experimental Details
E.1. Baselines

We describe the baselines used in Section 4. We specifically exclude low-rank methods with learnable components (Wang
et al., 2020; Zhang et al., 2024), since we are focused on the zero-shot setting, as well as sparsity/LSH-based approaches
(Kitaev et al., 2020; Daras et al., 2020; Chen et al., 2021; Han et al., 2024), since these do not admit efficient implementations
on current GPUs.

• linear-attention (Katharopoulos et al., 2020) approximates exp(q⊤k) ≈ ϕ(q)⊤ϕ(k) where ϕ : Rd → Rr is a
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1 def al_cl_kernel(aR, cR, Kb): # Computes aL, cL from aR, cR
2 R = softmax(bmm(aR, Kb.transpose(1, 2)) / cR[:, :, None], dim=2)
3 cL = sum(R * log(R), dim=2).transpose(0, 1)
4 aL = bmm(R, Kb).transpose(0, 1)
5 return aL, cL
6

7 def ar_cr_kernel(aL, cL, Qb): # Computes aR, cR from aL, cL
8 L = softmax(bmm(aL, Qb.transpose(1, 2)) - cL[:, :, None], dim=1)
9 cR = sum(L, dim=2).transpose(0, 1)

10 aR = bmm(L, Qb).transpose(0, 1)
11 return aR, cR
12

13 def al_y_cl_kernel(aR, cR, Kb, Vb): # Fuse al_cl_kernel + Monarch matmul 1st step
14 R = softmax(bmm(aR, Kb.transpose(1, 2)) / cR[:, :, None], dim=2)
15 cL = sum(R * log(R), dim=2).transpose(0, 1)
16 aL = bmm(R, Kb).transpose(0, 1)
17 y = bmm(R, Vb).transpose(0, 1)
18 return aL, y, cL
19

20 def z_kernel(aL, y, cL, Qb): # Monarch matmul 2nd step
21 L = softmax(bmm(Qb, aL.transpose(1, 2)) - cL[:, None, :], dim=2)
22 z = bmm(L, y).transpose(0, 1)
23 return z
24

25 def monarch_attention(Q, K, V, T): # Q, K, V: (N, d), T: number of steps
26 Qb = Q.reshape(m, b, d).transpose(0, 1)
27 Kb = K.reshape(m, b, d)
28 Vb = V.reshape(m, b, d)
29 aR = Q.reshape(m, b, d)
30 cR = ones(m, b)
31

32 for t in range(T-1):
33 aL, cL = al_cl_kernel(aR, cR, Kb)
34 aR, cR = ar_cr_kernel(aL, cL, Qb)
35

36 aL, y, cL = al_y_cl_kernel(aR, cR, Kb, Vb)
37 z = z_kernel(aL, y, cL, Qb)
38 o = z.reshape(N, d)
39 return o

Figure 7: Python-like code for MonarchAttention. Each kernel materializes all intermediate arrays in SRAM to
reduce data movement.

kernel feature map, resulting in a rank r approximation to softmax attention:

softmax(QK⊤) ≈ ϕ(Q)ϕ(K)⊤

ϕ(Q)ϕ(K)⊤1N1⊤
N

.

Katharopoulos et al. (2020) propose the map ϕ(x) = 1 + elu(x) with r = d where elu is the exponential linear unit
applied element-wise.

• performer (Choromanski et al., 2021) is a linear attention method using the fact that

exp(q⊤k) = Eω∼N (0,Id)

[
exp

(
ω⊤q − ∥q∥2

2

)
exp

(
ω⊤k − ∥k∥2

2

)]
to construct a random kernel feature map

ϕ(x) =
1√
r
exp

(
−∥x∥2

2

)[
exp(ω⊤

1 x) . . . exp(ω⊤
r x)

]⊤
,

where ω1, . . . ,ωr
iid∼ N (0, Id).

12



Approximating Attention with Monarch Matrices

• cosformer (Qin et al., 2022) is a linear attention method utilizing position-dependent kernel feature maps of the
form

ϕi(x) =
[
sin
(

πi
2N

)
relu(xi) cos

(
πi
2N

)
relu(xi)

]
, ∀i ∈ [N ],

which produces a rank r = 2d approximation.

• nystromformer (Xiong et al., 2021) computes landmark Q̃, K̃ ∈ Rr×d from Q,K by averaging N/r consecutive
spans of rows, which are used to approximate softmax attention via the quadrature method:

F̃ = softmax(QK̃⊤), B̃ = softmax(Q̃K⊤), Ã = softmax(Q̃K̃⊤)

softmax(QK⊤) ≈ F̃ Ã+B̃,

where Ã+ denotes the pseudoinverse of Ã, producing a rank r approximation.

E.2. Image Classification with ViT

We convert all 12 attention layers, each having 12 heads with sequence length N = 197 and head dimension d = 64, of the
87M parameter ViT-B (Dosovitskiy et al., 2021) that has been pre-trained on ImageNet-21K (Deng et al., 2009) and fine-
tuned on ImageNet-1K (Russakovsky et al., 2015) for image classification. To evaluate the performance at different FLOP
counts, we vary the number of steps T for MonarchAttention, and vary the rank for Performer and Nyströmformer as
follows:

• monarch-attention: b = 14 and T ∈ {1, 2, 3}

• performer: r ∈ {16, 32, 48, 64, 80, 96}

• nystromformer: r ∈ {16, 24, 32, 40}

The ViT-B model fine-tuned on ImageNet-21K is retrieved from the Hugging Face transformers library (Wolf et al.,
2019) as google/vit-base-patch16-224. The ImageNet-1K evaluation dataset is retrieved from the Hugging Face
datasets library (Lhoest et al., 2021) as imagenet-1k using the validation split.

E.3. Question Answering with RoBERTa

We convert the initial 4 and final 4 layers of the 12 attention layers, each having 12 heads with sequence length N = 384
and head dimension d = 64, of the 125M parameter RoBERTa-B (Liu et al., 2019) that has been pre-trained on a large
English corpus and fine-tuned on SQuAD1.1 (Rajpurkar et al., 2016) for question answering. As before, to evaluate the
performance at different FLOP counts, we vary the block size b for MonarchAttention, and vary the rank for Performer
and Nyströmformer as follows:

• monarch-attention: T = 1 and b ∈ {24, 48, 96, 128}

• performer: r ∈ {32, 64, 96, 128, 160, 192}

• nystromformer: r ∈ {16, 32, 48, 64}

The RoBERTa-B model fine-tuned on SQuAD1.1 is retrieved from the Hugging Face transformers library as
csarron/roberta-base-squad-v1. The SQuAD1.1 evaluation dataset is retrieved from the Hugging Face
datasets library as squad using the validation split. For evaluation, we truncate and pad to sequence length
of 384.

E.4. Summarization with BART

We convert all 6 attention layers, each having 12 heads with head dimension d = 64, in the encoder of the 139M parameter
BART-B (Lewis et al., 2020) that has been pre-trained on a large English corpus and fine-tuned on BookSum-chapters
(Kryściński et al., 2022) for summarization. We only convert the encoder model and leave the decoder intact. To evaluate
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Table 1: Hyperparameters used for BART summarization.

Sequence Length Method (b, T ) r Total Attention FLOPs (109)

1024
Softmax – – 9.66

Nyströmformer – 64 1.93
MonarchAttention (32, 3) – 1.96

2048
Softmax – – 38.7

Nyströmformer – 80 4.41
MonarchAttention (32, 2) – 3.93

4096
Softmax – – 155.

Nyströmformer – 112 10.6
MonarchAttention (64, 2) – 10.9

8192
Softmax – – 619.

Nyströmformer – 160 35.0
MonarchAttention (64, 2) – 31.4

the benefits of sub-quadratic attention for processing longer sequences, we truncate the text to be summarized to various
sequence lengths N for each method. The hyperparameters for each method across sequence lengths are shown in Table 1.

The pre-trained BART-B model is retrieved from the Hugging Face transformers library as facebook/bart-base.
The BookSum-chapters training/evaluation dataset is retrieved from the Hugging Face datasets library as
kmfoda/booksum using the train and validation splits respectively. BART employs learned positional em-
beddings up to 1024 sequence length, and since we are interested in long-sequence summarization up to 8192 tokens, we
linearly interpolate the encoder positional embeddings up to 8192 tokens, before fine-tuning on BookSum-chapters – we
leave the decoder positional embeddings intact. We fine-tune for 5 epochs with batch size of 32 and learning rate of 10−4

using the Adam optimizer (Kingma and Ba, 2014) without weight decay, with the input and summary sequences truncated
and padded to 8192 and 512 tokens respectively. For evaluation, we truncate the input sequence to the corresponding
sequence length in Figure 2.

E.5. Image Generation with DiT

We convert a subset of the 28 attention layers, each having 16 heads with sequence length N = 256 and head dimension
d = 72, of the 675M parameter DiT-XL (Peebles and Xie, 2023) that has been trained on ImageNet (Deng et al., 2009).
We consider replacing either all layers, the first 14 layers, or the last 14 layers; see Appendix E.5 for more details on the
set-up. Examples of generated images with each method for replacing the first 14 layers are shown in Figure 4, where
MonarchAttention produces clear images resembling those of softmax attention, while the Nyströmformer ones are
extremely noisy. We also provide quantitative results on FID in Appendix F.

The pre-trained model DiT-XL is retrieved from the Hugging Face transformers library as
facebook/DiT-XL-2-256. Following Peebles and Xie (2023), we generate images using 32 sampling steps,
a 2× 2 patch size, and a classifier-free guidance scale of 1.5. We use the following hyperparameters:

• monarch-attention: b = 16 and T = 3

• nystromformer: r = 32

F. Additional DiT Results
Here we quantitatively evaluate the (s)FID scores (Heusel et al., 2017) of MonarchAttention compared with Nys-
trömformer, using images generated with the original softmax attention model as reference – the results are reported in
Table 2. MonarchAttention noticeably outperforms Nyströmformer with similar FLOP count. In particular, using
MonarchAttention in the first half of the DiT layers results in extremely small FID and sFID from the softmax attention
model’s images, while reducing FLOPs by nearly 30%.
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Table 2: Quantitative results for zero-shot conversion of attention layers for image generation. We report FID and sFID
(using the original softmax attention model as reference) of DiT when replacing all or half of the attention layers.

Layers Replaced Method Total Attention FLOPs (109) FID (↓) sFID (↓)

– Softmax 8.46 – –

All Nyströmformer 3.30 5.97 13.47
MonarchAttention 3.44 2.82 5.09

First Half Nyströmformer 5.88 8.17 19.01
MonarchAttention 5.95 0.39 0.66

Second Half Nyströmformer 5.88 6.76 13.58
MonarchAttention 5.95 1.98 3.36
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