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Abstract

Neural rendering can be used to reconstruct implicit representations of shapes
without 3D supervision. However, current neural surface reconstruction methods
have difficulty learning high-frequency geometry details, so the reconstructed
shapes are often over-smoothed. We develop HF-NeuS, a novel method to improve
the quality of surface reconstruction in neural rendering. We follow recent work to
model surfaces as signed distance functions (SDFs). First, we offer a derivation
to analyze the relationship between the SDF, the volume density, the transparency
function, and the weighting function used in the volume rendering equation and
propose to model transparency as a transformed SDF. Second, we observe that
attempting to jointly encode high-frequency and low-frequency components in a
single SDF leads to unstable optimization. We propose to decompose the SDF
into base and displacement functions with a coarse-to-fine strategy to increase
the high-frequency details gradually. Finally, we design an adaptive optimization
strategy that makes the training process focus on improving those regions near
the surface where the SDFs have artifacts. Our qualitative and quantitative results
show that our method can reconstruct fine-grained surface details and obtain better
surface reconstruction quality than the current state of the art. Code available at
https://github.com/yiqun-wang/HFS|

1 Introduction

3D reconstruction from a set of images is a fundamental challenge in computer vision [9]. In the
recent past, the seminal framework NeRF [19] inspired a lot of follow up work by modeling 3D
objects as a density function o () and view-dependent color ¢(z,v) for each point x € R? in the
volume. The density function and view-dependent color function are implicit functions modeled by
a neural network. The results of this approach are very strong and therefore NeRF inspired a large
amount of follup up work, e.g. [18} 17, 24,135} 20, 2]

In particular, one direction of work tries to constrain the density field to make it more consistent with
a density field stemming from a surface. In the original formulation, almost arbitrary densities can be
modeled by the neural network and there is no guarantee that a meaningful surface can be extracted
from the density. Two noteworthy recent approaches, Neus [30] and VolSDF [32]], proposed to embed
a signed distance field in the volume rendering equation. Therefore, instead of modeling the density
o with a neural network, these approaches model a signed distance function f with a neural network.
This leads to greatly improved surface reconstruction.

We build on this exciting recent work and seek further improvement in the quality of surfaces that are
being reconstructed. To this end, we propose our method HF-NeuS consisting of three new building
blocks. First, we analyze the relationship between the signed distance function on the one hand and
the volume density, the transparency, and the weighting function on the other hand. We conclude from
our derivation that it would be best to model a function that maps signed distances to the transparency
and propose a class of functions that fulfill the theoretical requirements. Second, we observe that

36th Conference on Neural Information Processing Systems (NeurIPS 2022).


https://github.com/yiqun-wang/HFS

Reference Image NeRF VolSDF NeuS OURS

Figure 1: Qualitative evaluation on the Lego, Robot, and Ficus models. First column: reference
images. Second to the fifth column: NeRF, VoISDF, NeuS, and OURS.

;
2l f
Ve 1
SEAERI
\)}7 |

Reference Image NeuS

M Bl

Wi aanl [i#

Figure 2: The challenge of using high-frequencies directly in the NeuS framework. First column:
reference image. Second to the fourth column: NeuS, NeuS with high-frequency details, and OURS.

it is challenging to learn high-frequency details directly with a single signed distance function as
shown in Fig.2] We therefore propose to decompose the signed distance function into a base function
and a displacement function following related work. We adapt this idea to the differentiable NeRF
rendering framework and the NeRF training scheme. Third, the functions that translate distance to
transparency can be chosen to have a parameter, which we call scale s. It controls the slope of the
function (or the deviation of the derivative), which further controls the localization precision of the
surface and how much out-of-surface colors influence the result. In previous work, this parameter
s is set globally but is trainable, so it can change from iteration to iteration. We propose a novel
spatially adaptive weighting scheme to influence this parameter, so that the optimization focuses
more on problematic regions in the distance field. The three building blocks are the three main
contributions of the paper. In the results, we can see that HF-NeusS has a clear improvement in surface
reconstruction. On the 15 scene DTU benchmark we can improve from the current best values of 0.87
(NeuS) and 0.86 (VoISDF) to 0.77 the Chamfer distance (See Figs. |I| andE]for a visual comparison).
The benchmark as well as the metric were proposed by previous work.

2 Related Work

Multi-view 3D reconstruction. 3D reconstruction based on multiple views is a fundamental
challenge in the field of 3D vision. Classical 3D reconstruction algorithms usually reconstruct
discrete 3D representations. The methods can be roughly categorized into voxel-based methods
and point-based methods. Voxel-based methods [6] [T4] 4], [T1] 22]] first discretize the three-
dimensional space uniformly into voxels, and then decide whether the surface occupies a particular
voxel. Point-based methods [}, 7} 26, 25| [8] usually use the correlation between multiple views to
reconstruct depth maps and fuse multiple depth maps into a point cloud. The point cloud needs to be



subsequently reconstructed into a mesh model using explicit algorithms like ball-pivoting [3]] and
Delaunay trianglulation [[15] or implicit algorithms like Poisson surface reconstruction [13].

Neural implicit surfaces. Recently, neural implicit representations have received a lot of attention.
The corresponding methods aim to reconstruct continuous implicit function representations of shapes
directly from 2D images. A required building block is differentiable rendering, which maps the 3D
scene representation to a 2D image for a given camera pose. DVR [21] utilizes surface rendering
to model the occupancy function of a 3D shape, which uses a root search approach to obtain the
location of the surface and predicts a 2D image. IDR [33]] models the signed distance function of
the shape and uses a sphere tracking algorithm to render 2D images. A significant milestone in 3D
reconstruction was the development of NeRF [19]]. It uses volume rendering to map a 3D density
field and a 3D directional color field to a 2D image. The proposed representation is flexible enough
so that realistic images can be synthesized. To model more complex scenes, NeRF++ [35] proposes
to model the background scene with an additional neural radiance field, which handles the foreground
and background separately, and achieves better results for large scenes. However, the density function
is not as easy to control as the occupancy function or the signed distance function, and it is difficult
to guarantee the smoothness of the generated 3D shape. Subsequently, UNISURF [23]] embeds the
occupancy function into the volume rendering equation of NeRF. They use a decay strategy to control
which region to sample around the surface during training without explicitly modeling volumetric
density. Using signed distance functions, VolSDF [32] embeds a signed distance function into the
density formulation and proposes a sampling strategy that satisfies a derived error bound on the
transparency function. NeuS [30] derive an unbiased density function equation using logistic sigmoid
functions and introduce a learnable parameter to control the function’s slope during rendering and
sampling. Concurrent to our work, NeuralPatch [3]] uses the homography matrix to warp the source
patches adjacent to the reference image to constrain colors in the volume to come from closeby
patches. However, the calculation of patch warping relies on the accurate surface normal, so it cannot
be trained from scratch. Therefore, it is only used as a fine-tuning or post-processing method for
other algorithms to optimize the surface. We consider VolSDF and NeusS as the current state of the
art and we will compare to these two methods.

High-frequency detail reconstruction. It is generally difficult for neural networks to learn high-
frequency information from raw signals. Inspired by the field of natural language processing,
positional encoding [19l 29]] is used to guide the network to reconstruct high-frequency details.
Positional encoding spreads the original signal into different frequency bands using sine and cosine
functions of different frequency. Subsequently, SIREN [28]] proposes to use the sin function as
activation function in the network. MipNeRF [2] presents an integrated positional encoding to control
frequency in different scales. Park et al. [24] proposed to use a coarse-to-fine learning strategy to
gradually increase high-frequency information, which was subsequently used for pose estimation [17]].
Hertz et al. [10] further propose a spatially adaptive progressive coding strategy. For surface
reconstruction, implicit displacement fields were proposed for single-view 3D reconstruction [[16]].
Based on the supervision of ground truth SDF values of sampled points, the method utilizes separate
networks to model the base SDF and implicit displacement fields. Subsequently, Wang et al. [|34]]
utilize the SIREN network to learn the base implicit function and implicit displacement function,
respectively, for point cloud reconstruction tasks. In contrast to our proposed algorithm, these methods
require 3D supervision. Further, they do not involve the NeRF formulation or volume rendering.
In our work, we build on these ideas to develop a new state-of-the-art algorithm for multi-view
reconstruction.

3 Method

As input we consider a set of N images I = {1, I...Ix }, and their corresponding intrinsic and
extrinsic camera parameters II = {my, m5...7my }. HF-NeuS aims to reconstruct the representation of
3D surface S as implicit functions. Specifically, we encode surfaces as signed distance fields. We
will explain our method in three parts: 1) First, we show how to embed the signed distance function
into the formulation of volume rendering and discuss how to model the relationship between distance
and transparency. 2) Then, we propose to utilize an additional displacement signed distance function
to add high-frequency details to the base signed distance function. 3) Finally, we observe that the
function that maps signed distances to transparency is controlled by a parameter s that determines
the slope of the function. We propose a scheme to set this parameter s in a spatially varying manner



depending on the gradient norm of the distance field, rather than keeping it constant for the complete
volume within a single training iteration.

3.1 Modeling transparency as transformed SDF

We first review the integral formula for volume rendering and derive a relationship between trans-
parency and the weighting function (the product between density and transparency). Based on this
analysis, we discuss the criteria for functions that are suitable to map signed distances to transparency
and propose a class of functions that fulfill the theoretical requirements.

Given aray r(t) = o + td, the volume rendering equation is used to calculate the radiance C' of
the pixel corresponding to the ray r. The volume rendering equation is an integral along the ray and
involves the following quantities defined for each point in the volume: the volume density ¢ and the
(directional) color c. In addition, the volume has compact support and the boundaries of the volume
are encoded by ¢, and ¢ ;.

tf
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The transparency 7'(t) is derived from the volume density as explained below. The function 7'(t)
denotes the accumulated transmittance along the ray from ¢,, to ¢
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and T'(t) is a monotonic decreasing function with a starting value of T'(¢,,) = 1. The product
T(t)o(r(t)) can be regarded as a weighting function w (¢) in the volume rendering equation as in
Eq. (I).

In order to involve a signed distance function f, we have to define a function W to transform a
signed distance function so that it can be used to compute the density related terms in the rendering
equation. One way is to directly model a density function o(r(t)) = ¥ (f (r(t))) as proposed by
VOLSDF [32]. Taking this approach, a sampling method is required to satisfy an error bound of the
sampling to make it less than an error threshold by gradually reducing the scale parameter. Another
way is to model the weighting function w((¢)) = W (f (r(t))) as proposed by NeuS. The NeuS paper
showcases a complex derivation to get the expression for the density function o.

We rethink this problem to obtain a simplified derivation by focusing on transparency instead of the
weighting function and also a better understanding of the problem, as follows:

d(T() _
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An interesting observation is that the derivative of the transparency function 7”(t) is the negative
weighting function. The weighting function has the property of having a maximum on the surface.
We take the derivative of the weighting function and set it to O to find the extrema (maxima), as

follows.
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Assuming a planar surface and a single ray-plane intersection, we can see that the extremum point,
denoted as ¢, of the weighting function w(t) will also be the extremum point of the derivative of
the transparency function 7”(¢). The point ¢, is expected to be the intersection of the ray and the
surface. Therefore, we consider defining the transparency function directly as T'(t) = U (f (r(¢))).
If the transparency function is designed in such a way that its derivative 7" (¢) reaches a minimum
on the surface, it follows that the weighting function has a maximum on the surface. Therefore, one
can directly model a transparency function under the condition that its derivative has a minimum on
the surface. This is conceptually simpler than modeling the weighting function w(t) as proposed by
NeuS. We compute the derivative of ¥ (f (r(t))) as follows.
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where V f (r(¢)) - d is the product of the surface normal and the ray direction, which is a constant
in case of a planar surface and a single ray-plane intersection. The signed distance function is zero
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Figure 3: Comparing NeuS and VolSDF with our transparency model. Ground truth is on the top left.
For each method, the left shows the reconstructed image and the right the reconstructed surface.

on the surface. Hence ¥’ has an extremum at f = 0. This also means ¥ has the steepest slope at
the surface of the shape. On the other hand, the signed distance function is positive outside of the
object, and negative when entering the interior of the object. We generally assume that t = ¢,, is
outside so that the signed distance starts positive and decays to a negative value along a ray, which is a
monotonic decreasing function. According to the characteristics of transparency T'(t) = U (f (r(¢))),
the transparency starts at 1 at ¢ = ¢,, and is a monotonic decreasing function to O inside the object.
This inverse property results in the ¥ function being a monotonic increasing function from O to 1.
Therefore, we have our design criteria for ¥: ¥ should be a monotonic increasing function from 0 to
1, with the steepest slope at 0.

A very intuitive idea to satisfy this criteria is to use a sigmoid function and normalize the function
to have an output in the interval [0, 1]. We simply use the logistic sigmoid function proposed by
NeusS [30] for a fair comparison. However, our idea is more general and other sigmoid functions
could be used. Our designed transparency function is as follows,

T(0) = . (f (1(0) = Ty ©

where U is the logistic sigmoid function with parameter s controlling the slope of the function. Note
that the parameter s is also the standard deviation of the function U’,. We will use this fact later when
discussing the adaptive version of the framework.

Given the differentiable transparency function 7'(¢), the volume density o can be easily calculated
following Eq.[3]
T'(t)
t) = ——+ 7

7(x(1) = 75 ™
For discretization, we bring Eq. [5]and Eq. [6into Eq[7] and take advantage of the properties of the
derivative of the logistic sigmoid function ¥/, = sU,(1 — ¥,). We can get the o formula for the
discretization computation:

o(r(t:) = s (Vs (f (e(t:) =) VS (r(t:)) - d ®)

Then the volume rendering integral can be approximated using a-composition, where o; = 1 —
exp (—o; (t;+1 — t;)). For multiple surface intersections, we follow the same strategy as NeuS [30],
where «; = clamp (o, 0,1). Compared with NeuS, we obtain a simpler formula for the density o
for the discretization computation, reducing the numerical problems caused by division in NeuS.
Furthermore, our approach does not need to involve two different sampling points, namely section
points and mid-points, which makes it easier to satisfy the unbiased weighting function. Since
there is no need to calculate the SDF and the color separately for the two different point sets, the
color and the geometry are more consistent compared to NeuS. Compared to VoISDF [32], since
the transparency function is explicit, our method can use an inverse distribution sampling computed
with the inverse CDF to satisfy the approximation quality. Thus no complex sampling scheme as in
VoISDF is required. A visual comparison is shown in Fig. 3]



3.2 Implicit displacement field without 3D supervision

In order to enable a multi-scale fitting framework, we propose to model the signed distance function
as a combination of a base distance function and a displacement function [34}16] along the normal of
the base distance function. The implicit displacement function is an additional implicit function. The
reason for this design is that it is difficult for a single implicit function to learn low-frequency and
high-frequency information at the same time. The implicit displacement function can complement
the base implicit function, so that it is easier to learn high-frequency information.

Compared with the task of learning implicit functions from point clouds, reconstructing 3D shapes
from multiple images makes it more difficult to learn high-frequency content. We propose to use
neural networks to learn frequencies at multiple scales, and to gradually increase the frequency
content in a coarse-to-fine manner.

Suppose f is the combined implicit function that represents the surface we want to obtain. The
function f; is the base implicit function that represents the base surface. Following [34], the
displacement implicit function fy is used to map the point x; on the base surface to the surface point
x along the normal n;, and vice versa f; is used to map the point x on the base surface to the surface
point x;, along the normal 7y, thus fg (x,) = fq(x). Because of the nature of implicit functions, the
relationship between the two functions can be expressed as follows,

(xb

fo(xp) = f(xp + far (xp) 1p) = 0 9)
where x; = %, is the normal of x; on the base surface. To compute the expression for

the implicit function f, we bring the formula x, = x — fu (x3) 1y into the Eq. @]) and obtain the
expression for the combined implicit function:

f(x) = fo(x — fa (x) np) (10)

Therefore, we can use the base implicit function and the displacement implicit function to represent
the combined implicit function. However, two challenges arise. First, the Eq.[I0]is only satisfied if
the point x is on the surface. Second, the normal at the point x; is difficult to estimate when only
knowing the position x. We rely on two assumptions to solve the problem. One assumption is that
this deformation can be applied to all iso-surfaces, i.e. fp(xp) = f(xp + far (Xp) np) = c. In this
way the equation is assumed to be valid for all points in the volume and not only on the surface.
Another assumption is that x; and x are not too far away, thus n; can be replaced with normal n on
the point x in the Eq. (T0). We control the magnitude of the implicit displacement function using a
displacement constraint 497 ( f3).

To precisely control the frequency, we use positional encoding to encode the base implicit function
and the displacement implicit function separately. We would like to note some differences to [34].
We use positional encoding instead of Siren [28]], so that the frequency can be explicitly controlled by
a coarse-to-fine strategy rather than simply using two Siren networks with two different frequency
levels. This is useful when 3D supervision is not given. More details are shown in the supplementary.
Positional encoding decomposes the input position x into multiple selected frequency bands.

W(X) = [’YO(X)771(X)7"'7’YL—1(X)] (11)
where each component consists of a sin and a cos function with different frequency.
7;(x) = [sin (277x) , cos (277x)] (12)

Directly learning high-frequency positional encoding makes the network susceptible to noise, because
wrongly learned high-frequencies hinder the learning of low frequencies. This problem is less
pronounced if 3D supervision is available, however high-frequency information of images is easily
introduced into the surface generation as noise. We use the coarse-to-fine strategy proposed by Park et
al. [24]] to gradually increase the frequency of the positional encoding.
1 —cos(clamp (oL — 3,0,1) 7

(%00 = w; (@) () = LM 1 x) (13
where « € [0, 1] is the parameter to control the frequency information involved. In each iteration, «
is increased by 1/n.x until it touches 1, where 7,y is the maximum number of iterations.




We utilize two kinds of positional encoding v(x, ), v(x, ;) with different parameter a; and
aq. We set o, = 0.5a4 and only control o4 for simplicity. We also use two MLP functions
M LP,, M LP, for fitting the base and displacement functions.

f(X) = MLPb(’Y(Xv ab) - 4\P;(fb)MLPd (7(X7 ad)) 1’1), (14)

where n = Hgﬁgi\l that can be computed by the gradient of MLP, and V.(f;) =

U (M LPy(y(x,))). The s of the displacement constraint should be clamped during training.
‘We show how to control the adaptive s in the supplemental materials.

We bring this implicit function into Eq. (6)) for calculating the transparency so that the radiance (color)
C; of images can be computed by the volume rendering equation.
To train the network, we employ the loss function £ = L,,q + L4, Which includes the radiance

loss and the Eikonal regularization loss of the signed distance functions. For the regularization loss,
we constrain both the base implicit function and the detailed implicit function.

1 A 1
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3.3 Modeling an adaptivate transparency function

In previous subsections, the transparency function is parametrized as a sigmoid function controlled
by the scale s. This parameter controls the slope of the sigmoid function and it is also the standard
deviation of the derivative. We can also say that it controls the smoothness of the function. When s is
large, the value of the sigmoid function drops sharply as the position moves away from the surface.
On the contrary, the value decreases smoothly when s is small. However, choosing a single parameter
s per iteration gives the same behavior at all spatial locations in the volume.

Since two signed distance functions need to be reconstructed, especially after the high frequency is
superimposed, it is easy to break the Eikonal constraint, i.e., make the SDF’s gradient norm deviate
from 1 in some positions. Even with the regularization loss, it is impossible to avoid this problem.

We propose to use the gradient norm of the signed distance field to weight the parameter s in a
spatially varying manner, increasing s when the gradient norm along the ray direction is larger than
1. The intuition is that the implicit function with the larger gradient norm undergoes more abrupt
changes, which indicates a region that should be improved. Making s larger in such regions makes
the distance function more precise by magnifying its errors, especially near the surface. In order to
adaptively modify the scale s, we propose the following equation:

-1
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where V f is the gradient of the signed distance function, and K is the number of sampling points, w;
K

is the normalized ¥’ ( f;) as the weight and > w; = 1.
i=1

While this method can be used to control the transparency function, it can also be used for the
hierarchical sampling stage proposed by standard NeRF [19]. By locally increasing s, more samples
will be generated near the surface where the signed distance values change more rapidly. This
mechanism also helps to optimization to focus on these regions in the volume.

4 Experiments

Baselines. We compare HF-NeusS to the following three state-of-the-art baselines: (1)NeuS [30] is the
most relevant baseline for our work. We consider it to be the best published method. (2)VolSDF [32]]
is concurrent work to NeuS. We consider it to be the second best published method. Overall it also
performs very well. (3)NeRF focuses on image synthesis and is included for completeness. NeRF



Table 1: Quantitative results on the DTU dataset.
Metric  Method 24 37 40 55 63 65 69 8 97 105 106 110 114 118 122 Mean

NeRF 1.90 160 1.85 058 228 127 147 167 205 107 088 253 1.06 115 096 149
VOLSDF 1.14 126 081 049 125 070 072 129 118 070 066 1.08 042 0.61 055 0.86

Fidelity “News 137 121 073 040 120 070 072 101 116 082 066 169 039 049 051 087
OURS 076 132 070 039 106 063 063 115 112 080 052 122 033 049 050 0.77
NeRF 2624 2574 2679 27.57 31.96 31.50 29.58 32.78 2835 32.08 3349 31.54 310 3559 3551 30.65
psnr  VOLSDF 2628 2561 2655 2676 3157 3150 2938 3323 2803 3213 3316 3149 3033 3490 3475 3038

NeuS 2820 27.10 28.13 28.80 32.05 33.75 30.96 34.47 29.57 3298 35.07 32.74 31.69 3697 37.07 31.97
OURS  29.15 27.33 28.37 28.88 32.89 33.84 31.17 34.83 30.06 33.37 3544 33.09 32.12 37.13 37.32 32.33
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Figure 4: Qualitative evaluation on DTU (first and third rows) and BlendedMVS (second row).

is not really a surface reconstruction method and does not reconstruct high-quality surfaces, but
it is very good in image-based metrics. We use a threshold of 25 (as proposed by NeuS [30]) to
extract surfaces for the comparisons. For all three methods, we use the default parameters and the
number of iterations recommended in their respective papers. We do not include older methods in the
comparison, such as UNISURF [23]] or IDR [33], because NeuS and VoISDF have better results.

Datasets. We conduct experiments on the DTU dataset [12]. We follow previous work and choose
the same 15 models for comparison. DTU is a multi-view stereo dataset. Each scene consists of
49 or 64 views with 1600 x 1200 resolution. We further choose 9 challenging scenes from other
datasets: 6 scenes from the NeRF-synthetic dataset [19] and 3 scenes from BlendedMVS [31]}(CC-4
License). The image resolution of NeRF synthetic dataset [19] is 800 x 800 and 100 views are
provided for each scene. The dataset contains objects with very obvious detailed and sharp features,
such as the Lego and Microphone scenes. We chose this dataset for the analysis of reconstructions of
high-frequency details. The BlendedMVS dataset is similar to the DTU dataset, but with a richer
background. This dataset provides image resolution of 768 x 576. We also select models with
high-frequency details or sharp features which are difficult to reconstruct. In all three datasets, ground
truth surfaces and camera poses are provided.

Evaluation metrics. To evaluate the quality of the reconstruction, we follow previous work and used
Chamfer distance (lower values are better) and PSNR (higher values are better). For the DTU dataset,
we use the official evaluation protocol, which means computing the mean of accuracy (distance from
the reconstructed surface to the ground truth surface) and completeness (distance from the ground
truth surface to the reconstructed surface). For DTU and BlendedMVS, the background is not part of
the ground truth surface. Therefore, we remove the background for computing the Chamfer distance,
following previous work. The NeRF-synthetic dataset [19] has no background, so we only remove
disconnected parts for all competing methods.



Table 2: Quantitative results on NeRF-synthetic and BlendedM VS datasets.

Metric(lO_Q) Method  Chair Ficus Lego Materials Mic  Ship Mean Bread Dog Robot Mean

NeRF 212 517 3.05 1.51 477 354 336 0102 0.693 2325 1.07
Fidelity VOLSDF 126 1.54 283 1.35 362 292 237 0.074 0354 1453 0.63
NeuS 074 121 235 1.30 389 233 197 0.068 0.173 1.036 0.43
OURS 069 1.12 0.94 1.08 072 218 112 0.065 0.155 0922 0.38

NeRF  33.00 30.15 32.54 29.62 3291 2834 31.09 3127 2746 2533 28.02
VOLSDF 2591 2441 2699 28.83 2946 2565 2686 31.05 2824 2546 28.25
NeuS 2795 2579 29.85 29.36 29.89 2546 28.05 3132 28.71 2587 28.63
OURS  28.69 2646 30.72 29.87 30.35 25.87 28.66 31.89 2942 26.15 29.15

PSNR

Table 3: Ablation study results.

Chamfer Distance PSNR
Datasets Base Base+H Base+C2F IDF+H IDF+C2F FULL| Base Base+H Base+C2F IDF+H IDF+C2F FULL

DTU 1.08 120 1.07 1.25 0.89 0.78 |31.77 32.73 32.56 32.69 3213 3249
NeRF-Synthetic 2.51  3.61 2.95 2.83 1.35 091 [28.39 30.52 30.63 30.12 29.88 3031
BlendedMVS  0.43 fail 0.63 0.47 0.41 0.38 [28.63  fail 27.35 28.20 28.95  29.15

Implementation details. We use MLPs to model two signed distance functions f; and f;. Each
MLP consists of 8 layers. Related work like NeuS [30]] and IDR [33]] also use MLPs with 8 layers.
We use Adam with learning rate Se~* for the network training using NVIDIA TITAN A100 40GB
graphics cards. For adaptive sampling, we first uniformly sample 64 points on the ray, then calculate
the SDF and its gradient at these points. We utilize the Eq.[I6]to calculate the gain of the s parameter,
and then adaptively update the weight according to the gain and sample an additional 64 points. For
the coarse-to-fine strategy, we observe that using oY = 0 at the beginning for surface reconstruction
produces smoothed results. We utilize o = 0.5 and o) = 0.5a9 = 0.25 for both signed distance
functions. We set L = 16 for the parameter of the frequency band of positional encoding. For other
parameter settings, please see the supplemental materials.

Comparison. In table |1} we show quantitative results with other competitors on 15 scenes of the
DTU dataset [[12]. The values shown in the upper part of the table measure the fidelity of the surface
reconstruction, the Chamfer distance. The numbers indicate that HF-NeuS significantly outperforms
NeRF. In most scenes, HF-NeusS is better than VolSDF and NeuS so that the overall average distance
is also improved. In the lower part of the table we show the PSNR values. It can be seen that our
PSNR surpasses all other methods. We further compare the visual quality achieved by different
methods. As shown in Fig. 4, HF-NeuS can reconstruct high-frequency details. For example, the
windows have better geometric details, and the feathers of the bird are more distinct.

Most of the scenes in the DTU dataset have smooth surfaces, and high-frequency details are not
obvious. We selected 9 challenging models from the NeRF-synthetic dataset [[19] and BlendedMVS
dataset [31], which have more high-frequency details. For example, the Lego model has uneven
repeating bumps, and the power cord of the Mic model has a very thin structure (Fig.[T). The robot
model has richer edge and corner features (Fig. 4] second row). As shown in Table[2] the gap between
our surface reconstruction quality and that of all other methods widens. This shows that HF-NeuS
is especially advantageous for surface reconstructions with high-frequency information. We can
also observe that NeRF is very good in the image-based metric (PSNR) while performing poorly in
the surface reconstruction metric (Chamfer distance). This observation is consistent with previous
work. Compared with the NeRF-Synthetic dataset, the BlendedBMS dataset has a more complex
background, this also restricts the performance of NeRF to a certain extent. Besides outperforming
other baselines in terms of quantitative error, we also achieve better results in terms of qualitative
visual effects. As shown in Fig.[I] HF-NeuS can more accurately reconstruct the details of each Lego
block and even some of the tiny holes that are not reconstructed by any other method. For the Robot
scene, HF-NeuS can reconstruct more accurate facial contours and sharper horns. Finally, for the
Mic model, HF-NeusS can clearly reconstruct the power cord, while other methods will mess up this
structure.

Ablation study. We verify the influence of different modules on the reconstruction results, including
the coarse-to-fine module, the implicit displacement function module, and the position-adaptive s



control module. In Table[3] “Base “refers to the baseline method, which is NeuS. "H" means we use
high-frequency positional encoding. Here we set L=16 to represent high frequencies. "C2F" refers to
the coarse-to-fine optimization strategy with high-frequency positional encoding. We set the initial «
to 0.5. "IDF" represents using the implicit displacement function in reconstruction. For each dataset,
we chose the mean of the three scenes as the quantitative metric. From the results of the BlendedMVS
dataset, we can observe that the divergence of network training can be prevented based on the
coarse-to-fine strategy. From the DTU and NeRF-synthetic datasets, introducing high-frequency
directly can easily lead to overfitting on these datasets. This means that an increase in PSNR cannot
guarantee the improvement of the fidelity of surface reconstruction. Although the coarse-to-fine
module can alleviate this mismatch to some degree, it is difficult to further improve the performance.
However, adding the implicit displacement function component improves the fidelity of the surface
reconstruction and PSNR at the same time. During reconstruction, the network with adaptive s can
help to improve the reconstruction quality upon more complex scenes.

Limitation. As shown in Fig.[5] our method still has challenges. We show a reference ground truth
image, our corresponding reconstructed image, and our reconstructed surface. For the grid of ropes
of the ship, some overfitting to ground-truth radiance is still observed. Specifically, the grid of ropes
is visible in the image, but the surface is not reconstructed accurately. Another limitation is that the
individual thin ropes are missing. We also visualize a bad case of Table[I] where the error is larger
than that of the other methods as shown in Fig.[T4]DTU Bunny in the supplementary material. In
this case, the lighting of this model varies and the texture is not as pronounced, thus it is difficult to
reconstruct the details of the belly. Further, integrating our proposed IDF increases computation time.

4

Reference OURS-Image OURS-Surface

Figure 5: Limitation. First column: the reference ground truth images. Second column: our synthetic
images. Last column: our reconstructed surface.

5 Conclusion

We introduce HF-NeuS, a new method for multi-view surface reconstruction with high-frequency
details. We propose a new derivation to explain the relationship between signed distance and
transparency and propose a class of functions that can be used. By decomposing the signed distance
field into a combination of two independent implicit functions, and using adaptive scale constraints
to focus on optimizing the regions where the implicit function distribution is not ideal, a more refined
surface can be reconstructed compared to previous work. The experimental results show that the
method outperforms the current state of the art in terms of quantitative metrics and visual inspection.
An interesting direction for future work is to explore the reconstruction of scenes under different
lighting modalities. Finally, we do not expect negative social impacts that will be directly linked to
our research. Negative social impacts of surface reconstruction in general are possible though.
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