
Fast Asymptotically Optimal Algorithms for
Non-Parametric Stochastic Bandits

Dorian Baudry
Ecole Polytechnique, CREST

Palaiseau, France
dorian.baudry@ensae.fr

Fabien Pesquerel
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189-CRIStAL, F-59000 Lille, France
fabien.pesquerel@inria.fr

Rémy Degenne
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189-CRIStAL, F-59000 Lille, France
remy.degenne@inria.fr

Odalric-Ambrym Maillard
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189-CRIStAL, F-59000 Lille, France
odalric.maillard@inria.fr

Abstract

We consider the problem of regret minimization in non-parametric stochastic
bandits. When the rewards are known to be bounded from above, there exists
asymptotically optimal algorithms, with asymptotic regret depending on an infi-
mum of Kullback-Leibler divergences (KL). These algorithms are computationally
expensive and require storing all past rewards, thus simpler but non-optimal al-
gorithms are often used instead. We introduce several methods to approximate
the infimum KL which reduce drastically the computational and memory costs of
existing optimal algorithms, while keeping their regret guaranties. We apply our
findings to design new variants of the MED and IMED algorithms, and demonstrate
their interest with extensive numerical simulations.

1 Introduction

A Multi-Armed Bandit (MAB) is a sequential decision-making problem where at each time step
t ∈ N a learner collects a reward from an arm At chosen among K ∈ N alternatives. We consider the
stochastic case, in which all rewards collected from an arm k ∈ [K] are i.i.d. and drawn from a fixed
distribution Fk, of expectation µk. For a time horizon T we define the number of pulls of an arm k by
Nk(T) =

∑T
t=1 I(At = k), and their sub-optimality gap by ∆k = µ?−µk, with µ? = maxk∈[K] µk.

The goal of the learner is to maximize their expected sum of rewards, or equivalently to minimize the
regret, defined as

RT = E

[
T∑
t=1

(µ? − µAt)

]
=

K∑
k=1

∆kE [Nk(T)] . (1)

To achieve this goal, the learner can leverage the rewards collected up to time t and their knowledge
on the family of distributions F to which F1, . . . , FK belong. The definition of F determines the
complexity of the bandit problem, since any uniformly efficient algorithm1 satisfies the lower bound
[Lai and Robbins, 1985, Burnetas and Katehakis, 1996]: for all k ∈ [K] with ∆k > 0,

lim inf
T→∞

E[Nk(T)]

log(T)
>

1

KFinf(Fk, µ
?)
, KFinf(Fk, µ

?) = inf
G∈F
{KL(Fk, G) :EG[X]>µ?} , (2)

1∀(F1, . . . , FK) ∈ FK : ∀α > 0, E[Nk(T)] = o(Tα) for all k satisfying ∆k > 0.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

where KL(., .) denotes the Kullback-Leibler divergence between two distributions. We call an
algorithm asymptotically optimal (sometimes shortened to optimal) if its regret upper bound matches
this lower bound. That is, if for all k, lim supT→∞ E[Nk(T)]/ log(T)≤1/KFinf(Fk, µ

?).

For some parametric families (e.g. Gaussian),KFinf has a convenient closed-form expression. However,
for more general non-parametric families of distributions this may not be the case. In this work we
consider the most famous example of such model, where the learner only knows that the distributions
are bounded. Given a range [b, B], we formally define

F[b,B] = {F ∈ P(R) : supp(F) ⊂ [b, B] ⊂ R}, (3)

but in the rest of the paper we keep the notation F (for F[b,B]) for simplicity. We always assume
that B is known, but in some cases knowing that b is finite will be sufficient. By analyzing a dual
optimization problem derived from (2), Honda and Takemura [2010] obtained that

∀F ∈ F , µ 6 B : KFinf(F, µ) = max
λ∈[0, 1

B−µ]
EX∼F [log (1− λ (X − µ))] . (4)

Optimal algorithms for bounded distributions The literature on MABs has become diverse in
the past years, so in the following we present a non-exhaustive selection of works that focus on
asymptotically optimal algorithms for (bounded) stochastic bandits. We refer the reader to [Lattimore
and Szepesvári, 2020, Bubeck et al., 2012] for broader surveys.

The most famous optimal algorithm is certainly KL-UCB [Cappé et al., 2013, Agrawal et al., 2021].
Based on the principle of optimism in face of uncertainty [Auer et al., 2002], it uses confidence
intervals on empirical KFinf to choose the arm with the largest plausible mean. The optimality of
KL-UCB was only proved recently [Agrawal et al., 2021], as the seminal work of Cappé et al.
[2013] only proved it for Multinomial distributions. A second family of algorithms, Minimized
Empirical Divergence (MED) [Honda and Takemura, 2010, 2011, 2015, Baudry et al., 2023], aims
at exploiting the lower bound (2): these algorithms are based on the computation of KFinf for the
empirical distributions and the current best empirical mean, and hence differ from KL-UCB (they
perform only one computation per arm/step). More recently, an optimal algorithm based on Thompson
Sampling (TS) [Thompson, 1933] was proposed for general bounded distributions, under the name
of Non-Parametric Thompson Sampling (NPTS) [Riou and Honda, 2020]. In this work, the authors
generalize the TS algorithms for Bernoulli distributions [Agrawal and Goyal, 2012, Kaufmann et al.,
2012] by using an improper Dirac prior and a Dirichlet posterior.

Throughout the paper, we use “MED algorithms” (or simply MED) to refer to the family of algorithms.
We denote by MED the randomized algorithm presented in [Honda and Takemura, 2010], that we detail
in Algorithm 3, and IMED its deterministic counterpart ([Honda and Takemura, 2015], Algorithm 2).

Cost/performance trade-off In practice, the choice of a bandit algorithm may be motivated by its
theoretical guarantees, but also by its computation and memory costs. Unfortunately, optimal algo-
rithms are quite costly: MED and KL-UCB need to compute an empirical KFinf (costing O(n log(n))
for n samples, solving (4) with precision 1/n) for each arm/round, KL-UCB being more costly (sev-
eral KFinf per step), while the cost of sampling in NPTS is linear in the number of samples of each arm.
For that reason, cheaper sub-optimal alternatives are often considered in place of optimal algorithms.
For instance, UCB [Auer et al., 2002] has constant run time and memory, and achieves a logarithmic
regret with multiplicative constant O

(∑
k:∆k>0 ∆−1

k

)
. More generally, all the algorithms designed

for 1/4-sub-gaussian distributions can be used on F if the rewards are rescaled in [0, 1]. A finer
approximation consists in using the KL divergence of Bernoulli distributions, that lower bounds KFinf
[Cappé et al., 2013]. However, it is important to note that these approximations are sensitive to the
value (and knowledge) of the lower bound of the support b (as a rescaling in [0, 1] is necessary),
contrarily to asymptotically optimal algorithms. Pushing further this idea, a procedure proposed by
Riou and Honda [2020], inspired by Agrawal and Goyal [2012], consists in discretizing the rewards:
a reward X ∈ [b, B] is transformed in Y ∈ X := {x1 = b, . . . , xM = B} for some finite grid X ,
such that E[Y |X] = X . Hence, the expectations of the arms are unchanged while the memory is
reduced to O(MK) and the computation time of KFinf for discretized distributions is proportional to
M . Unfortunately, even if all these techniques lead to logarithmic regret, the multiplicative constant
before log(T) can be arbitrarily large compared with the optimal one. More precisely, we show in
Lemma 6 that for a small gap ∆ the ratio KFinf/∆

2 can be of order ∆−1. We detail this result and the
description of the discretization procedure in Appendix D.

2

We illustrate this gap with an example from [Baudry et al., 2021a], that consider a problem of
crop-management optimization in agriculture. In Figure 1, we represent four distributions of crop
yields generated from the DSSAT2 simulator [Hoogenboom et al., 2019], corresponding to different
crop-management policies. The distributions are naturally bounded due to the physical constraints of
the problem and are non-parametric. In Table 1 we compare KFinf to the Bernoulli KL-divergence,
denoted by kl (see (16) for a definition), and to ∆2 for each arm, and we obtain on the 4-armed bandit
that a regret bound scaling with kl or 2∆2

k is almost 10 times larger than the asymptotically optimal
regret defined by (2). We include this problem in our experiments of Section 4 to check the practical
consequences of this asymptotic property.

0 2000 4000 6000 8000 10000
value

0

2

4

6

8

de
ns

it
y

1e 5

F1 (Opt.)
 = 3630

F2
 = 3013

F3
 = 3317

F4
 = 3396

Dist. KFinf(Fk,µ
?)

kl(µk,µ?)
KFinf(Fk,µ

?)

2∆2
k

F2 4.4 4.72
F3 11.73 12.44
F4 12.04 12.73

Table 1: Comparison ofKFinf, kl and
2∆2

k for each sub-optimal arm.

Figure 1: Four yield distributions from DSSAT, and comparison of KFinf, kl, and 2∆2.

Algorithm Run time Memory Optimality

KL-UCB [Cappé et al., 2013] O(n log(n)2) n Opt.
kl-UCB O(log(n)) O(1) Sub-opt. (kl)

UCB [Auer et al., 2002] O(1) O(1) Sub-opt. (2∆2
k)

NPTS
[Riou and Honda, 2020] O(n) n Opt.

MED/IMED
[Honda and Takemura, 2015] O(n log(n)) n Opt.

Mult. MED/IMED (M items) O(M log(n)) O(M) Sub-opt. (KFinf mult.)

FMED/FIMED
(this paper)

O(n log(n)) if pulled,
O(1) otherwise. n

Opt.
(Theorem 1)

OMED/OIMED
(this paper) O(1) O(K)

Opt. under
assumptions
of Theorem 2

Table 2: Comparison of memory and run time needed per step and for an arm k with n observations

Outline and contributions The results presented in previous paragraphs motivate the search for
novel cheap and asymptotically optimal non-parametric bandit algorithms. We build on MED to
propose two novel approaches that achieve this goal. We first propose FMED (resp. FIMED) as a fast
variant of MED (resp. IMED), that computesKFinf only for the arm that is pulled while for the other arms
a first-order Taylor expansion is used. This simple change translates to a considerable speed-up of the
algorithms, as for large enough horizons the best empirical arm (for which KFinf is 0) is pulled most of
the time, and preserves the theoretical guarantees of the two algorithms. However, FMED and FIMED
still require to store all rewards and to fully compute KFinf (sometimes). Hence we propose another
approach, in which estimates of KFinf are computed using an online portfolio selection algorithm. We
highlight a property that would ensure that such an algorithm also keeps the guarantees of MED and
IMED, while having much faster computation time and at most O(K2) memory.

2Decision Support System for Agrotechnology Transfer

3

The novel algorithms are presented in Section 2, while we discuss their guarantees in Section 3.
Finally, in Section 4 we perform numerical simulations that confirm the benefits of our novel
algorithms in terms of computation time, and show their strong empirical performance. Table 2
summarizes our results. We detail all computations in Appendix F.1.

2 Fast MED algorithms

In the following, we denote by Fk(t), µk(t) and µ?(t) = maxk µk(t) respectively the empirical
distribution and mean of arm k and the best empirical mean at time t. We propose fast variants of
MED and IMED, that avoid computing KFinf(Fk(t), µ?(t)) for each arm and at each time.

2.1 On-access update and linearization: FMED and FIMED

We use that KFinf is non-decreasing and convex in its second argument (Lemma 2, prop. 1). Given
F ∈ F and two thresholds (µ′, µ) ∈ [b, B]2, and assuming that KFinf(F, µ) and its derivative (w.r.t µ)
have already been computed and are available in memory, we can use that

KFinf(F, µ
′) ≥ KFinf(F, µ) +

∂KFinf

∂µ
(F, µ)(µ′ − µ) . (5)

This inequality is a cheap approximation of KFinf from below when only the second argument changes:
as long as k ∈ [K] is not pulled its empirical distribution Fk(t) is constant. Furthermore, the
derivative is equal to the maximizer of (4) [Honda and Takemura, 2015], which is provided at no
additional cost when computing KFinf. Using this result, we propose FMED and FIMED as fast variants
of MED and IMED respectively, for which at each time step KFinf(Fk(t), µ?(t)) is replaced by

Kk(t) = max
{

0,KFinf(Fk(t), µ?(sk(t))) + λk(sk(t))× (µ?(t)− µ?(sk(t)))
}
, (6)

where sk(t) = sup {s 6 t : As = k} is the time of last pull of arm k before t, and for s ∈ N,

λk(s) = argmax
λ∈[0,(B−µ?(s))−1]

EFk(s) [log(1− λ(X − µ?(s)))] .

We detail their implementation in Appendix A.2. Despite its simplicity, this method already permits
a huge gain of computation time. Indeed, in Theorem 1 (see Section 3) we prove that each sub-
optimal arm is pulled only O(log T) in expectation, which is thus the expected number of full KFinf
computations. Additionally, at most one KFinf is computed at each stage, while for MED/IMEDK − 1
computations are required. However, FMED/FIMED still require to keep every sample in memory. This
motivates us to investigate an alternative approach in the next section.

2.2 Sequential update: OMED and OIMED

We now propose bandit algorithms that update KFinf(Fk(t), µ?(t)) in a purely sequential fashion, for
any arm k. We use that its formulation as a maximization problem (4) can be reformulated as an
online portfolio selection problem, a class of online convex optimization problems. In the following
we drop the index k to simplify the presentation, and thus use the notation N(t) and F (t) for the
sample size and empirical cdf of the selected arm at time t, and by Xn the n-th observation collected
by this arm.

Formulation Online portfolio selection is a sequential interaction between a learner and an adver-
sary. Before the interaction, the adversary selects (xn)n∈[N] ∈ RN×d for a dimension d ≥ 2. At
iteration n ∈ N, the learner chooses λn ∈ 4d ⊆ Rd (the simplex of dimension d− 1) and receives
the reward log(λ>n xn). The regret of the learner after N iterations is defined by

RN (x1, . . . , xn) = max
λ∈4d

N∑
n=1

log(λ>xn)−
N∑
n=1

log(λ>n xn) . (7)

The objective of the learner is then to find a sequence (λn)n∈N, where λn depends only on
(λ1, x1, . . . , λn−1, xn−1), that minimizes RN . We now express the computation of KFinf(F (t), µ?(t))

4

as a portfolio selection algorithm in dimension 2,

N(t)KFinf(F (t), µ?(t)) = max
λ∈∆2

N(t)∑
n=1

log
(
λ>xn(t)

)
, with xn(t) =

(
1,

B −Xn

B − µ?(t)

)
.

However, this expression is unpractical since x1(t), . . . , xn(t) all depend on µ?(t), that is not
revealed before time t. At the n-th iteration, we can only use the current best empirical mean,
denoted by µ?n for simplicity: a portfolio algorithm can only try to minimize RN (x1, . . . , xN), with
xn = (1, (B −Xn)/(B − µ?n)). We call that quantity portfolio regret in the rest of the paper.

On the other hand, if µ?n diverges too often from µ?(t) the estimation of KFinf will not be accurate. We
define the bias of the portfolio algorithm (or portfolio bias) by

BN(t)(µ
?(t)) = max

λ∈42

Nk(t)∑
n=1

log(λ>xn)− max
λ∈∆2

N(t)∑
n=1

log
(
λ>xn(t)

)
. (8)

This term can be studied independently of the portfolio regret and only depends on the variations
of the best empirical mean. It is not negligible: we will have to modify the structure of the MED
algorithms and assume that the best mean is not too close to B to control its magnitude.

In summary, and using all the previously introduced notation, at each stage t we propose to approx-
imate N(t)KFinf(F (t), µ?(t)) by LN(t) :=

∑N(t)
n=1 log(λ>n xn), where λn is updated sequentially by

a portfolio algorithm. Furthermore, the accuracy of the estimate can be expressed in terms of the
portfolio bias and regret as follows,

N(t)KFinf(F (t), µ?(t)) = LN(t) +RN(t) +BN(t)(µ
?(t)) , (9)

the theoretical results presented in Section 3 are hence obtained by bounding these two quantities.

Portfolio algorithms See [Tsai et al., 2023] for a recent review of portfolio selection algorithms.
Different methods vary based on their computational complexities and their regret. Some have regret
upper bounds as low as O(d log T) but are computationally expensive, like UPS [Cover, 1991, Cover
and Ordentlich, 1996, Kalai and Vempala, 2002]. Our goal is to use portfolio methods to obtain a
computationally efficient KFinf, hence we cannot use those. On the other hand, we can afford a looser
regret upper bound since we will use it on O(log T) samples from the sub-optimal arms. Other
algorithms have O(d) computational complexity per round, which is cheap in our case where d = 2.
This is, for example, the case for Soft-Bayes [Orseau et al., 2017], which has regret O(

√
dT). Other

algorithms achieve intermediate trade-offs: see [Zimmert et al., 2022, Tsai et al., 2023]. Among the
computationally cheap algorithms, we chose Soft-Bayes for its simple implementation and the fact
that Orseau et al. [2017] provide bounds on the regret valid for an adaptive step-size parameter, which
we need since we don’t known the total number of samples we will see for the arms.

While we are the first to use a portfolio algorithm to estimate KFinf in a bandit algorithm, the link
betweenKFinf and portfolio selection was previously used in [Agrawal et al., 2021, Lemma E.1], where
the authors use the existence of a portfolio algorithm with logarithmic regret to obtain a concentration
inequality on KFinf. However, they only use that observation to obtain a bound for the analysis and
they don’t explore any algorithmic use of the portfolio formulation.

Furthermore, our theoretical analysis is based on a non-standard assumption, that the regret of the
portfolio algorithm admits sub-linear upper and lower bounds. We discuss this assumption in the
next section.

Algorithm structure of OMED and OIMED We introduce the OMED and OIMED algorithms for a
generic portfolio algorithm. As discussed above, using an online estimate of empirical KFinf makes
the MED algorithms highly sensitive to variations of the best empirical mean. For this reason, we
apply several structural changes to the algorithms in order to prevent the portfolio bias to be large,
and assume the knowledge of an upper bound µmax on µ? with µmax < B.

First, we use a duel-based algorithm: inspired by Chan [2020], at each round t we define a leader as
`t ∈ argmax Nk(t)3. Then, the other arms (called challengers) compete against the leader in pairwise

3ties are broken in favor of the arm with best empirical mean, then at random if several candidates remain

5

Algorithm 1 Online Indexed Minimum Empirical Divergence OIMED
Input: K arms, B, portfolio selection algorithm ALG (and its parameters), function f , µmax.
Initialization: Pull each arm once. ∀(k, `) ∈ [K]2 set Nk = 1, Ñk,` = 0, µ̂k = Xk,1, Lk,` = 0,

λ̂k` = 1/2 (init. for ALG).
for t ≥ K do

Set A = {}, choose leader ` ∈ arg maxk∈[K]Nk ; . Break ties comparing (µ̂k)
for k 6= ` do

if N` 6 f(Ñk,`) or µ̂` > µmax then (if µ̂k > µ̂` then add k to A, set Zk = 0) ; . Greedy
else (if Lk,` + log(Ñk,`) 6 log(N`) then add k to A, set Zk = 1) ; . IMED duel

if A = {} then add l to A, set Zl = 0 ; . Pull leader if no challenger
for k ∈ A do

Pull k, observe reward X , update µ̂k, Nk. ; . General update (even if Zk = 0)
if Zk = 1 then

Update λ̂k,` with ALG, knowing Ñk,` and B−X
B−µ̂` ; . Portfolio update

Ñk,` ← Ñk,` + 1, Lk,` ← Lk,` + log
(

1− λ̂k,` X−µ̂`B−µ̂`

)
.

comparisons called duels. At the end of the round, all winning challengers (if any) are pulled. If there
are none, the leader is pulled. Hence several arms can be pulled per round. The main ideas are to
replace µ?(t) by µ`t(t) for the reference value used by the challengers, and to implement a different
KFinf estimate Lk,`t(t) for each possible pair (k, `t).

We now introduce some notation and terminology to describe the duel between a challenger k and
a leader `. In some cases (described below) we perform a greedy duel, for which the winner is
argmax{µk(t), µ`(t)}. We introduce a variable Zk(t), that indicates if the duel played by arm k was
greedy (Zk(t) = 0) or not (Zk(t) = 1), and then Ñk,`(t) =

∑t−1
s=1 I(k ∈ As+1, `s = `, Zk(s) = 1),

the number of observations of a challenger k collected against the leader ` after a non-greedy duel.

Using this notation and considering a function f : N 7→ R+ satisfying n = o(f(n)), the duels of
OMED/OIMED are implemented as follow: if N`(t) 6 f(Ñk,`(t)) or µ`(t) > µmax the duel is greedy,
otherwise MED and IMED are respectively adapted as follows.

Non-greedy OIMED duel: k wins if Lk,`(t) + log(Ñk,`(t)) 6 log(N`(t)) . (10)

Non-greedy OMED duel: k wins if Wk(t) = 1, with Wk(t) ∼ Ber
(
e−Lk,`(t)

)
. (11)

Then, we update Lk,`(t) using the portfolio selection algorithm only if the duel was non-greedy, i.e.
Zk(t) = 1, providing µ`(t) and the reward collected from k: this is the main ingredient to control the
portfolio bias in our analysis. We provide a condensed implementation of OIMED in Algorithm 1, and
the detailed implementation of OMED in Appendix A.2 (Algorithm 6).

3 Theoretical guarantees

We present our theoretical results on the MED algorithms introduced in Section 2, and some insights
from their analysis. We start with the theoretical guarantees of FMED and FIMED.
Theorem 1 (Regret bound for fast MED). Consider (F1, . . . , FK) ∈ FK and µ? = maxk∈[K] µk.
Then, for any time horizon T ∈ N and ε > 0, MED, IMED, FMED and FIMED all satisfy

E [Nk(T)] 6
log(T)

KFinf(Fk, µ
?)− ε

+ oε(log(T)) , (12)

where oε(log(T)) denotes a term that is asymptotically dominated by log(T) for a fixed ε, but with a
polynomial dependency in ε−1. Furthermore, all the algorithms are asymptotically optimal.

We prove Theorem 1 in Appendix B. The main result is that FMED and FIMED both preserve the
theoretical guarantees of their original algorithm. We apply our analysis to MED and IMED too, in

6

order to exhibit more precisely the new terms induced by the approximation, and their scaling in
ε. Note that the components of the oε(log(T)) terms are explicit in the proof. When ε is small, we
obtain more precisely a scaling in ε−6, that allows to obtain a sub-linear problem-independent bound
of order T 5/6, though not the optimal

√
T bound. Note however that the same scaling can be obtained

for MED with the proof techniques presented in [Baudry et al., 2023], so the fast implementation do
not deteriorate that bound. The strong empirical performance of MED/IMED hints that this result is
likely to be not tight, but to the best of our knowledge it remains open to prove that an optimal4

(instance-dependent) algorithm achieves theO(
√
T) problem-independent bound for general bounded

distributions. Finally, we emphasize that the analysis of IMED presented in Appendix B is drastically
simplified compared to Honda and Takemura [2015], although their result is more general (they allow
b = −∞).

Proof sketch. First, the inequality Kk(t) > KFinf(Fk(t), µ?(t)) (Eq. (5) and (6)) makes FMED and
FIMED at least as exploratory as the vanilla algorithms. Their regret is thus smaller in a pre-
convergence regime, defined by the time steps for which µ?(t) 6 µ? − ε. The main challenge
is then to prove that using (Kk(t))k∈[K] do not lead to over-exploration of the sub-optimal arms in
a post-convergence regime, where µ?(t) > µ? − ε. The main ingredient of the proof consists in
showing that this kind of scenario can only be caused by events of the form

∃j ∈ [K] : {At+1 = j,Nj(t) = n, µj,n > µ? + ε} or {At+1 = j,Nj(t) = n, µj,n 6 µ? − ε} .

Each of them can cause at most 1 pull of a sub-optimal arm. With union bounds and Hoeffding’s
inequality we obtain an additional O(ε−2) term in the regret bound compared to MED and IMED.

We now provide a very similar result on OMED and OIMED, under some additional assumptions: first,
we need the largest mean to be well-separated from B to control the portfolio bias. This is a mild
assumption, since the decision-maker can also choose to slightly increase the value of B used by the
algorithm if it does not clearly hold. Then, we require strong guarantees on the portfolio regret, that
we discuss at the end of this section.

Theorem 2 (Regret bound for online MED algorithms). Consider (F1, . . . , FK) ∈ FK , and µ? =
maxk∈[K] µk < µmax, for a known µmax < B. Assume that OMED and OIMED use a portfolio selection
algorithm ALG that satisfies for any (k, `) ∈ [K]2 and n ∈ N the deterministic guarantee

|Rk,`,n| = o(n) (sub-linear absolute portfolio regret) . (13)

Then, both OMED and OIMED satisfy Equation (12) (with a different second-order term) and are
asymptotically optimal: they enjoy the same asymptotic guarantees as MED and IMED.

Strikingly, the performance of OMED/OIMED only depend on the regret bounds of the portfolio regret.
As detailed below, this is largely due to our modified algorithm’s structure.

Proof sketch. The general proof scheme is inspired by [Chan, 2020], that proposed a similar
duel-based approach. The main difficulty consists in controlling the deviation of Lk,`t(t) from
KFinf(Fk,`t(t), µ`t(t)), denoting by Fk,`t(t) the empirical distribution of the Ñk,`t(t) observations
used to update Lk,`t(t). Both over and under-estimation are bad: one may prevent sufficient explo-
ration of the best arm, while the other may lead to over-exploration of sub-optimal arms. Building on
the discussion of Section 2, our proof relies on the following crucial result: for fixed arms (k, `), a
sample size Ñk,`(t) = n, and any threshold µ it holds that

nKFinf(Fk,`,n, µ) = Lk,`,n +Rk,`,n +Bk,`,n(µ) , (14)

where Bk,`,n(µ) is the portfolio bias with respect to a fixed threshold µ, defined in (8), and where
Lk,`,n and Fk,`,n are used to denote Lk,`(t) and Fk,`(t) when Ñk,`(t) = n, for simplicity. In the
proofs, the portfolio regret is controlled by assumption, but the bias requires more careful examination.
To analyze it, we prove the following result (details in Appendix E). For i 6 n, we denote by tk,`,i
the time when the i-th iteration of Lk,`,n occurred.

4i.e. with bounds depending on KF
inf and not ∆2

k or kl

7

Lemma 1 (Deviations of Bk,`,n(µ)). Let µ ∈ (0, 1), and set Ck,`,i =
B−µ`(tk,`,i)

B−µ it holds that

−
n∑
i=1

log
(
C−1
k,`,i

)
I(µ`(tk,`,i) > µ) 6 Bk,`,n(µ) 6

n∑
i=1

log (Ck,`,i) I(µ > µ`(tk,`,i)) . (15)

We always use this result for µ ∈ (maxk:µk<µ? µk, µ
?), and µ`(tk,`,i) < µmax. Hence, the upper

bound (resp. lower bound) of (15) is expected to be sub-linear when ` = 1 (resp. ` 6= 1), thanks to
the use of different estimates according to the leader’s identity. The rate of convergence of these sums
is also important: our proof techniques work if n = o(N`(tk,`,n)), which justifies the greedy duels.
Indeed, we need eanP(Bk,`,n < −nx) to be small enough (for some a, x > 0 and large n), and with
this trick we obtain ean−f(n)yx → 0 (for some yx depending on x).

The modifications introduced in OMED and OIMED guarantee a small absolute bias with large probabil-
ity. It is natural to ask whether they are necessary. We cannot formally prove it, but our experiments
in Section 4 suggest that the regret of OIMED/OMED may be linear without them.

Assumption on the portfolio regret As detailed in Section 2 there are several candidates for the
implementation of OIMED/IMED. The literature on regret lower bounds is however scarce. In [Gofer
and Mansour, 2016], the authors characterize algorithms with non-negative regret, but for linear
losses. Guzmán et al. [2021] showed that the regret of FTRL algorithms is bounded as O(

√
T) both

from above and below, in a setting that encompasses portfolio selection. Unfortunately, FTRL is
computationally inefficient, which makes it unsuitable for our application. We used Soft-Bayes for its
simplicity and computational efficiency, but it might not have the desired lower bound. Our problem
seems to be among the first where a large negative regret is detrimental, and obtaining a portfolio
algorithm with both small computational complexity and a regret lower bound is an open question.
On the other hand, it may be that this lower bound requirement could be relaxed in the analysis, and
that for example a high-probability lower bound could be enough. Our experimental study in the
next section supports the hypothesis that using Soft-Bayes in OIMED gives good regret bounds for the
bandit problem.

4 Experiments

We numerically assess the regret and run time of the two novel approaches presented in this paper.
We benchmark our approaches with the known asymptotically optimal algorithms: IMED [Honda
and Takemura, 2015], KL-UCB [Cappé et al., 2013] and NPTS [Riou and Honda, 2020]; and the
more efficient but sub-optimal UCB [Auer et al., 2002], kl-UCB [Cappé et al., 2013] and kl-IMED
(that denotes the binarized version of IMED). We provide the pseudo-code of KL-UCB and NPTS in
Appendix A.2 for completeness. Our code is available in the supplementary material of the paper.

We showcase our main findings by presenting a selection of experiments, focusing on FIMED and
OIMED, while we present a broader set of experiments and more detailed results in Appendix F. In
each case, we plot the average run time and regret of each algorithm, along with their quantiles
10%-90%. The run times are dependent of the Python implementation of our algorithms, and are thus
only indicative. We refer to Appendix F.1 for discussions on their theoretical complexity.

Distributions from DSSAT We first consider the crop-management optimization problem intro-
duced in Section 1 and detailed for instance in [Baudry et al., 2021a], as it illustrates the theoretical
advantage of asymptotically optimal algorithms (Figure 1). A learner needs to select a planting
date for maize grains among seven possible options. For each distribution, the rewards are drawn
uniformly at random among 104 points sampled from the DSSAT simulator, in order to emulate the
distributions at a reduced cost.5. Our results, displayed in Figure 2, show that on this problem optimal
algorithms also achieve better empirical performance. IMED, NPTS and KL-UCB perform similarly,
while kl-IMED and UCB achieve significantly larger regret. Furthermore, FIMED is 10 times faster
than IMED for T = 104 (and as fast as kl-UCB), with almost no difference in terms of regret. As
expected, OIMED is as fast as UCB and kl-IMED. It achieves better regret than those algorithms, but
its performance is deteriorated compare to IMED. This can be seen as the cost of the ability to forget

5The dataset is available in the supplementary material of the paper

8

past observations. In summary, this experiment illustrates the respective benefits of our two novel
approaches: FIMED is the fastest algorithm among those with the smallest regret, while OIMED has
the smallest regret among the fastest algorithm.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
eg

re
t

UCB
NPTS
IMED
IMED-kl
OIMED
FIMED
kl-UCB
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 2: Average regret (left) and run time (right) of the algorithms on the DSSAT bandit problem

Bernoulli bandit For our second experiment we consider a Bernoulli bandit with several means
close to 0.5, for which all optimal algorithms match their implementation with the Bernoulli KL-
divergence. Intuitively, sequences of 0 and 1 with high variance may lead to the most potentially
confusing inputs for portfolio algorithms, so our objective is to check the performance of OIMED in
that case. Our results, summarized in Figure 3, are promising: the average regret of OIMED is on par
with other algorithms, while it still is among the fastest. In that experiment only UCB is sub-optimal,
and performs much worse than the other algorithms.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
eg

re
t

UCB
NPTS
IMED
OIMED
FIMED
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

5

10

15

20

25

30

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 3: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit
problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}.

Importance of the duel-based structure In Section 3 we detailed our theoretical motivations for
introducing a duel-based approach when approximating KFinf with a portfolio algorithm. We now
provide empirical evidence that this change may prevent OIMED from suffering a linear regret. In
Figure 4, we compare the regret of OIMED and a variant of OIMED that does not use the duel-based
structure of Algorithm 1 for the two experiments introduced in previous paragraphs. In that algorithm,
the online estimates of KFinf are updated at each pull of an arm with the current best empirical mean.
We observe that the regret of the “no duel” variant of OIMED may be better in some cases: for the
DSSAT experiment, its average regret matches the best algorithms of Figure 2. However, on the
Bernoulli experiment its regret is linear. Overall, OIMED needs a modification like the duels to ensure
that it has sub-linear regret.

Further experiments In Appendix F we show that FMED and OMED exhibit the same characteristics
as FIMED and OIMED, as expected. We also consider other Bernoulli bandits, for instance with means
close to the boundaries of the support. We then show that the conclusions of this section still hold on
problems with distributions of various shapes, by testing our algorithms on several examples of Beta
distributions. We also investigate the sensitivity of OIMED to the learning rate of Soft-Bayes, which is
the only hyper-parameter of the algorithm. Finally, we perform experiments with the discretized IMED
algorithms that is briefly presented in the introduction and discussed more thoroughly in Appendix D.

9

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

100

120

140

R
eg

re
t

0 2000 4000 6000 8000 10000
Number of samples

0

200

400

600

800

1000

1200

1400

R
eg

re
t

OIMED
OIMED no duels

Figure 4: Average regrets of OIMED and ”OIMED no duels” on the previous 7-armed DSSAT bandit
(left) and 6-armed Bernoulli bandit (right).

5 Conclusion

We introduced methods to compute efficiently approximations of KFinf and demonstrated their use in
algorithms for regret minimization in stochastic bandits. The FMED and FIMED variants have the same
asymptotic optimality properties as the base MED algorithms, but have a much reduced computational
complexity. OMED and OIMED push the computational gains further and are also memory efficient.
They can also be asymptotically optimal, under the hypothesis that the portfolio algorithm they use
satisfies a deterministic regret lower bound.

While our experiments show the good practical performance of OIMED and OMED with the Soft-Bayes
portfolio algorithm, this question is however still open: can we have a portfolio algorithm which is
computationally efficient, does not store all past gains in memory and has sub-linear regret upper and
lower bounds?

Finally, our work towards enabling the use of KFinf in a computationally efficient way has potential
applications beyond regret minimization in stochastic bandits. First, similar quantities are used in RL
algorithms like IMED-RL [Pesquerel and Maillard, 2022]. Second, other bandit tasks like best arm
identification also have complexities that depend on a KFinf quantity, and could benefit from faster
variants of the algorithms that need to compute it [Jourdan et al., 2022].

Acknowledgements

R. Degenne acknowledges the funding of the French National Research Agency under the project
FATE (ANR-22-CE23-0016-01). This work beneficiated from the support of the French Ministry of
Higher Education and Research, of Inria and of the Hauts-de-France region.

10

References
S. Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-armed bandit problem. In

Proceedings of the 25th Annual Conference on Learning Theory, 2012.

S. Agrawal, S. Juneja, and W. M. Koolen. Regret minimization in heavy-tailed bandits. In Conference
on Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, 2021.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.

D. Baudry, R. Gautron, E. Kaufmann, and O. Maillard. Optimal thompson sampling strategies for
support-aware cvar bandits. Proceedings of Machine Learning Research. PMLR, 2021a.

D. Baudry, P. Saux, and O.-A. Maillard. From optimality to robustness: Adaptive re-sampling
strategies in stochastic bandits. In Advances in Neural Information Processing Systems, 2021b.

D. Baudry, K. Suzuki, and J. Honda. A general recipe for the analysis of randomized multi-armed
bandit algorithms, 2023.

S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for sequential allocation problems.
Advances in Applied Mathematics, 17(2):122–142, 1996.

O. Cappé, A. Garivier, O.-A. Maillard, R. Munos, and G. Stoltz. Kullback-Leibler upper confidence
bounds for optimal sequential allocation. Annals of Statistics, 41(3):1516–1541, 2013.

H. P. Chan. The multi-armed bandit problem: An efficient nonparametric solution. The Annals of
Statistics, 48(1):346–373, 2020.

T. M. Cover. Universal portfolios. Mathematical finance, 1(1):1–29, 1991.

T. M. Cover and E. Ordentlich. Universal portfolios with side information. IEEE Transactions on
Information Theory, 42(2):348–363, 1996.

E. Gofer and Y. Mansour. Lower bounds on individual sequence regret. Machine Learning, 103:
1–26, 2016.

C. Guzmán, N. Mehta, and A. Mortazavi. Best-case lower bounds in online learning. Advances in
Neural Information Processing Systems, 34:21923–21934, 2021.

J. Honda and A. Takemura. An asymptotically optimal bandit algorithm for bounded support models.
In COLT, pages 67–79, 2010.

J. Honda and A. Takemura. An asymptotically optimal policy for finite support models in the
multiarmed bandit problem. Mach. Learn., 2011.

J. Honda and A. Takemura. Non-asymptotic analysis of a new bandit algorithm for semi-bounded
rewards. J. Mach. Learn. Res., 16:3721–3756, 2015.

G. Hoogenboom, C. Porter, K. Boote, V. Shelia, P. Wilkens, U. Singh, J. White, S. Asseng, J. Lizaso,
L. Moreno, et al. The dssat crop modeling ecosystem. Advances in crop modelling for a sustainable
agriculture, pages 173–216, 2019.

M. Jourdan, R. Degenne, D. Baudry, R. de Heide, and E. Kaufmann. Top two algorithms revisited. In
NeurIPS 2022-36th Conference on Neural Information Processing System, 2022.

A. T. Kalai and S. Vempala. Efficient algorithms for universal portfolios. Journal of Machine
Learning Research, pages 423–440, 2002.

E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically optimal finite-time
analysis. In Algorithmic Learning Theory - 23rd International Conference, ALT 2012, 2012.

11

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

L. Orseau, T. Lattimore, and S. Legg. Soft-bayes: Prod for mixtures of experts with log-loss. In
International Conference on Algorithmic Learning Theory, pages 372–399. PMLR, 2017.

F. Pesquerel and O.-A. Maillard. Imed-rl: Regret optimal learning of ergodic markov decision
processes. In NeurIPS 2022-Thirty-sixth Conference on Neural Information Processing Systems,
2022.

C. Riou and J. Honda. Bandit algorithms based on Thompson sampling for bounded reward distribu-
tions. In Algorithmic Learning Theory, pages 777–826. PMLR, 2020.

W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

C.-E. Tsai, H.-C. Cheng, and Y.-H. Li. Online self-concordant and relatively smooth minimization,
with applications to online portfolio selection and learning quantum states. In International
Conference on Algorithmic Learning Theory, pages 1481–1483. PMLR, 2023.

J. Zimmert, N. Agarwal, and S. Kale. Pushing the efficiency-regret pareto frontier for online learning
of portfolios and quantum states. In Conference on Learning Theory, pages 182–226. PMLR,
2022.

12

A Index, notation and algorithms

A.1 Index and notation

In this section we summarize the notation used in the proofs of Theorem 1 and 2, and recall some of
the definitions presented in the paper.

• [K] = {1, . . . ,K}.
• F the family of distributions supported on [b, B] ⊂ R.
• (F1, . . . , FK) ∈ FK denote the distribution of the K arms of a bandit problem. Their

expectations are denoted by µ1, . . . , µK . Without loss of generality we assume in the proofs
that µ1 = maxk∈[K] µk, and also define xk = µ1+µk

2 .

• For any F ∈ F , µ ∈ [b, B], KFinf(F, µ) = maxλ∈[0,1] EF
[
log
(

1− λX−µB−µ

)]
.

• At+1: arm selected by the learner at the beginning of round t+ 1.
• Nk(t): number of pulls of arm k up to (including) time step t.
• (Xk,n)k∈[K],n∈N: sequences of rewards: Xk,n is the n-th reward collected from arm k.

• Fk(t): empirical distribution of arm k at time t. We also denote for convenience by Fk,n
the empirical distribution of arm k after collecting n observations: Fk,Nk(t) = Fk(t).

• µk(t) and µk,n denote the empirical mean of arm k respectively at time t and after collecting
n observations.

• µ?(t) = maxk∈[K] µk(t), k?(t) = argmax
k∈[K]

µk(t).

• For a randomized algorithm, we use the shorthand notation pk(t) := P(At+1 = k|Ft),
where Ft denotes the σ-algebra generated by the rewards collected by the learner up to (and
including) time t. We call pk(t) the sampling probability of arm k at time t.

• We use “MED” a general terminology to call some existing bandit algorithms based on
the computation of KFinf(Fk(t), µ?(t)). Some of these algorithms are DMED [Honda and
Takemura, 2010], MED [Honda and Takemura, 2011] and IMED [Honda and Takemura, 2015].
Hence, MED denotes a specific algorithm and MED a general family of algorithms in this
paper.

FMED and FIMED:

• sk(t): time of the last pull of arm k at time t, formally sk(t) = inf{s 6 t : Nk(s) = Nk(t)}.
•

Kk(t) = KFinf(Fk(sk(t)), µ?(sk(t))) + λk(sk(t))(µ?(t)− µ?(sk(t))),

is a first order approximation of KFinf(Fk(t), µ?(t)) satisfying Kk(t) 6 KFinf(Fk(t), µ?(t)),
where for any s ∈ N

λk(s) = argmax
λ∈[0, 1

B−µ?(s)]

EFk(s) [log(1− λ(X − µ?(s)))] .

OMED and OIMED:

• `t: leader at round t, defined as `t ∈ argmax
k∈[K]

Nk(t). Ties are broken in favor of the arm with

the best empirical mean. If there are still several candidates choose one of them randomly.
• Challengers: all arms except the leader `t
• At+1: set of arms to pull at the beginning of round t+ 1

• Duel: comparison between a challenger arm k and the leader `t at a time t.
• Zk(t) = 0 if the duel for challenger k is a greedy comparison, Zk(t) = 1 otherwise

(e.g. if the index comparison of IMED is used). We use the expressions “greedy duel” and
“non-greedy duel” to distinguish the two cases.

13

• Ñk(t) =
∑t−1
s=1 I(k ∈ At+1, `s = `t, Zk(s) = 1): number of observations collected by

arm k as a challenger against the current leader `(t) and thanks to a non-greedy duel. We
denote by F̃k(t) the empirical distribution associated with these observations, and use the
shorthand notation F̃k,n for Ñk(t) = n.

• For any k ∈ [K], ` ∈ [K], n ∈ N, Xk,`,n is the n-th observation collected from arm k
against the leader ` after a non-greedy duel

• The online estimate used by arm k against leader ` with Ñk(t) = n is

Lk,`,n :=

n∑
i=1

log

(
1− λk,i

(
Xk,`,i − µ?(tk,`,i)
B − µ?(tk,`,i)

))
,

where tk,`,i is the time step satisfying {Ñk(t+ 1) = Ñk(t) + 1, Ñk(t) = n}, and (λk,i)i∈N
is provided by a portfolio selection algorithm.

•

Rk,`,n := max
λ∈[0,1]

n∑
i=1

log

(
1− λ

(
Xk,`,i − µ?(tk,`,i)
B − µ?(tk,`,i)

))
− Lk,`,n

is the portfolio regret.

• For any µ ∈ [b, B),

Bk,`,n(µ) := max
λ∈[0,1]

n∑
i=1

log

(
1− λ

(
Xk,`,i − µ?(tk,`,i)
B − µ?(tk,`,i)

))
− nKFinf(F̃n, µ)

is the bias of the portfolio selection sub-routine with respect to nKFinf(F̃n, µ).

• We also use Lk,`t(t) = Lk,`t,Ñk(t), Bk(t, µ) = Bk,`t,Ñk(t)(µ).

A.2 Detailed implementations

In this section we detail the implementations of the algorithms presented in the paper, along with
their main competitors. We start with the implementation of IMED and MED, presented respectively in
Algorithms 2 and 3. We then present FIMED and FMED, respectively in Algorithms 4 and 5. Finally,
we detail OMED in Algorithm 6, and recall that the implementation of OIMED is presented in Section 2
(Algorithm 1).

In Algorithm 7, we also detail the implementation of the discretization process proposed by Riou
and Honda [2020], that allows to map the rewards in a grid X = (x1, . . . , xM) without changing the
means of the arms.

Finally, for comparison we also detail the implementation of the two other existing optimal algorithms
for general bounded rewards: KL-UCB (Algorithm 8), implemented with parameter f : t 7→
log(t) + log log(t) , and NPTS (Algorithm 9).

Algorithm 2 Indexed Minimized Empirical Divergence (IMED)
Input: K arms, support upper bound B

1 Initialization: ∀k ∈ [K]: Nk = 0 (nb. of pulls), µ̂k = 0 (emp. mean), Kk = 0 (emp. KFinf).
2 for t ∈ N do
3 if t < K then
4 Set a = t

5 else
6 Set a = argmin

k∈[K]

NkKk + log(Nk) ; . Index comparison, break ties at random

7 Pull arm a, observe reward Xa,Na+1, update (or define) µ̂a, Na, F̂a (emp. distrib.).
If t > K: ∀k ∈ [K], set Kk = KFinf(F̂k,maxk∈[K] µ̂k). ; . KFinf update

14

Algorithm 3 Minimized Empirical Divergence (MED)
Input: K arms, support upper bound B

8 Initialization: ∀k ∈ [K]: Nk = 0 (nb. of pulls), µ̂k = 0 (emp. mean), Kk = 0 (emp. KFinf).
9 for t ∈ N do

10 if t < K then
11 Set a = t

12 else
13 Sample a ∼ Mult

(
e−N1K1

S , . . . , e
−NKKK

S

)
, with S =

∑K
j=1 e

−NkKk ; . Sampling

14 Pull arm a, observe reward Xa,Na+1, update (or define) µ̂a, Na, F̂a (emp. distrib.).
If t > K: ∀k ∈ [K], set Kk = KFinf(F̂k,maxk∈[K] µ̂k). ; . KFinf update

Algorithm 4 Fast Indexed Minimized Empirical Divergence (FIMED)
Input: K arms, support upper bound B

15 Initialization: ∀k ∈ [K]: Nk = 0 (nb. of pulls), µ̂k = 0 (emp. mean), Kk = 0 (emp. KFinf).
16 for t ∈ N do
17 if t < K then
18 Set a = t

19 else
20 Set a = argmin

k∈[K]

NkKk + log(Nk) ; . Index comparison, break ties at random

21 Pull arm a, observe reward Xa,Na+1, update (or define) µ̂a, Na, F̂a (emp. distrib.).
for k ∈ [K] do

22 if a = k then
23 If Nk > 1, set Kk = KFinf(F̂k,maxk∈[K] µ̂k) and K̃k = Kk,

where F̂k is the empirical distribution of (Xk1, . . . , XkNk).; . KFinf computation

24 Keep in memory µ̃?k = max µ̂k, and λ̃k the maximizer of (4) when computing Kk.
else

25 Set Kk = K̃k + λ̃k × (maxk∈[K] µ̂k − µ̃?k) ; . Fast update if k not pulled

Algorithm 5 Fast Minimized Empirical Divergence (FMED)
Input: K arms, support upper bound B

26 Initialization: ∀k ∈ [K]: Nk = 0 (nb. of pulls), µ̂k = 0 (emp. mean), Kk = 0 (emp. KFinf).
27 for t ∈ N do
28 if t < K then
29 Set a = t

30 else
31 Sample a ∼ Mult

(
e−N1K1

S , . . . , e
−NKKK

S

)
, with S =

∑K
j=1 e

−NkKk ; . Sampling

32 Pull arm a, observe reward Xa,Na+1, update (or define) µ̂a, Na, F̂a (emp. distrib.).
for k ∈ [K] do

33 if a = k then
34 If Nk > 1, set Kk = KFinf(F̂k,maxk∈[K] µ̂k) and K̃k = Kk,

where F̂k is the empirical distribution of (Xk1, . . . , XkNk).; . KFinf computation

35 Keep in memory µ̃?k = max µ̂k, and λ̃k the maximizer of (4) when computing Kk.
else

36 Set Kk = K̃k + λ̃k × (maxk∈[K] µ̂k − µ̃?k) ; . Fast update if k not pulled

15

Algorithm 6 Online Minimum Empirical Divergence (OMED)
Input: K arms, upper bound B, portfolio selection algorithm ALG (and its parameters), function f .

37 Initialization: ∀k ∈ [K]: Nk = 0 (total nb. of pulls), Ñk` = 0 (nb of pulls as a challenger after a
non-greedy duel against leader `), µ̂k = 0 (emp. mean), Lk` = 0 (emp. KFinf as a
challenger against leader `), λ̂k` = 1/2 (initialization for ALG).

38 for t ∈ N do
39 if t = 1 then
40 Set A = {1, . . . ,K} ; . Pull each arm once
41 else
42 Set A = {} ; . Initialize the set of arms to pull
43 Set S = argmaxj∈[K]Nj ; . Candidates for leadership
44 If |S| > 1, set S ← argmaxj∈S µ̂j ; . Tie breaking
45 Choose leader ` uniformly at random in S

for k 6= ` ; . Organize duels between ` and all challengers
46 do
47 if Ñk,` > f(N`) or µ̂` > µmax then
48 If µ̂k > µ̂` : add k to A, set Zk = 0 ; . Greedy duel if N` is too small
49 else
50 Draw W ∼ Ber(e−Lk,`), if Wk = 1 then
51 Add k to A, set Zk = 1 ; . MED duel if N` large enough

52 for k ∈ A do
53 Pull arm k, observe a reward X , update µ̂k, Nk.

if Zk = 1 then
54 Ñk,` ← Ñk,` + 1

Update λ̂k,` with ALG, knowing Ñk,` and B−X
B−µ̂` ; . Portfolio update

55 Lk,` ← Lk,` + log
(

1− λ̂k,` X−µ̂`B−µ̂`

)
.

Algorithm 7 Discretization algorithm from [Riou and Honda, 2020]
Input: Reward X , grid X = (x1, . . . , xM)

56 Set m = max{j ∈ [M] : xj < X} if X > x1, m = 1 otherwise.

Sample Z ∼ Ber
(

X−xj
xj+1−xj

)
Return: Y = xjI(Z = 0) + xj+1I(Z = 1)

Algorithm 8 KL-UCB [Cappé et al., 2013]
Input: K arms, support upper bound B

57 Initialization: ∀k ∈ [K]: Nk = 0 (nb. of pulls), function f .
58 for t ∈ N do
59 if t < K then
60 Set a = t

61 else
62 for k ∈ [K] do
63 Set µ̂k = max{µ ∈ [b, B] : NkKFinf(F̂k, µ) 6 f(t)}
64 Set a = argmax

k∈[K]

µ̂k ; . Index comparison, break ties at random

65 Pull arm a, observe reward Xa,Na+1, update (or define) µa, Na, F̂a (emp. distrib.).

16

Algorithm 9 Non-Parametric Thompson Sampling [Riou and Honda, 2020]
Input: K arms, support upper bound B

66 Initialization: ∀k ∈ [K]: Nk = 0 (nb. of pulls),Hk = {} (history).
67 for t ∈ N do
68 if t < K then
69 Set a = t

70 else
71 for k ∈ [K] do
72 Sample weights w ∼ Dir(1, . . . , 1) (Nk + 1 ones)

Set Ik =
∑Nk
i=1 wiXki + wNk+1B ; . Re-weighted mean

73 Set a = argmin
k∈[K]

Ik ; . Index comparison, break ties at random

74 Pull arm a, observe reward Xa,Na+1, setHa = Ha ∪ {Xa,Na+1}

B Proof of Theorem 1: regret analysis of the index policies

Before proving the theorem, we recall some useful properties from previous works.

B.1 Toolbox for bounded distributions.

In the proofs we use the following results, that come from several works on bounded distributions in
bandits (e.g. [Honda and Takemura, 2015, Cappé et al., 2013]), and are detailed in Appendix D.3 of
Baudry et al. [2023].
Lemma 2 (Useful properties of KFinf). Let F ∈ F be a distribution of mean µF . We denote by Fn
and µn respectively the empirical cdf and empirical mean corresponding to n i.i.d. observations
collected from F . It holds that

1. KFinf is continuous, non-decreasing and convex in its second argument (Theorem 7 of [Honda
and Takemura, 2010]).

2. There exists constants c > 0, δ0 > 0 such that ∀µ > µF , and δ ∈ (0, δ0] it holds that

P
(
KFinf(Fn, µ) 6 KFinf(F, µ)− δ

)
6 e−ncδ

2

.

3. For any ε > 0 and µ > µn + ε, it holds that

KFinf(Fn, µ)−KFinf(Fn, µ− ε) > δε :=
2ε2

(B − b)2
.

4. For any x > 0, it holds that (Lemma 6 from Cappé et al. [2013])

P(KFinf(Fn, µ1) > x) 6 e(n+ 2)e−nx.

5. For any ε > 0 (Hoeffding’s inequality),

P(µn 6 µF − ε) 6 e−2nε2 and P(µn > µF + ε) 6 e−2nε2 .

Proof. Property 3. can be deduced from Lemma 13 of Honda and Takemura [2010]. Using the
convexity of KFinf and Pinsker inequality we obtain that

KFinf(Fn, µ)−KFinf(Fn, µ− ε) > KFinf(Fn, µn + ε) > kl(µn, µn + ε) > 2ε2 ,

if the range is [0, 1]. The factor 1
(B−b)2 comes from using this result on rescaled distributions for

general ranges.

Then, property 2. can be obtained with a straightforward adaptation of the proof of Lemma 6
of Agrawal et al. [2021] (in their Appendix B.1). Indeed, in this paper the authors consider a
non-parametric family of distributions for which KFinf can be expressed in a very analogous way to
Equation (4).

17

B.2 Proof of Theorem 1

We introduce the notation sk(t) = inf{s 6 t : Nk(s) = Nk(t)}, which is simply the time step
corresponding to the last pull of arm k before time t, and k?(t) = argmax

k∈[K]

µk(t). We recall Theorem 1.

Theorem 1 (Regret bound for fast MED). Consider (F1, . . . , FK) ∈ FK and µ? = maxk∈[K] µk.
Then, for any time horizon T ∈ N and ε > 0, MED, IMED, FMED and FIMED all satisfy

E [Nk(T)] 6
log(T)

KFinf(Fk, µ
?)− ε

+ oε(log(T)) , (12)

where oε(log(T)) denotes a term that is asymptotically dominated by log(T) for a fixed ε, but with a
polynomial dependency in ε−1. Furthermore, all the algorithms are asymptotically optimal.

Proof. Equation (12) can be proved for all the algorithms with the same general proof scheme. Hence,
we propose a proof that tackle them all at once, explicitly mentioning which parts are specific to a
given algorithm. We start by proving a first general upper bound.

Lemma 3 (Generic regret upper bound). For each sub-optimal arm k and any ε > 0, FMED and
FIMED both satisfy

E[Nk(T)] 6 uε(T) + E

[
T−1∑
t=u

I(At+1 = k,Nk(t) > uε(T),Gk(t),Jk(t))

]
︸ ︷︷ ︸

Post-CV

+ E

[
T−1∑
t=u

I(At+1 = k,Nk(t) > u, µ?(t) 6 µ1 − ε0)

]
︸ ︷︷ ︸

Pre-CV

+Oε(1) ,

where uε(T) =
⌈

log(T)

KFinf(Fk,µ1)−ε

⌉
, and using the notation ε0 = B−µ1

4 ε and ε1 = ε2 = ε
2 we define

Jk(t) = {KFinf(Fk(t), µ1 − ε0) > KFinf(Fk, µ1)− ε1},

and

• For MED and IMED, Gk(t) = {µ?(t) > µ1 − ε0}.

• For FMED and FIMED, Gk(t) =
{
µ?(t) > µ1 − ε0, µ

?(sk(t)) > µ1 − ε0,
µ?(t)−µ?(sk(t))
B−µ?(sk(t)) > −ε2

}
.

Proof. Following for instance the regret analysis of the vanilla MED presented in [Baudry et al.,
2023], we upper bound the number of pulls by distinguishing several cases,

18

E [Nk(T)] 6 uε(T) + E

[
T−1∑
t=1

I(At+1 = k,Nk(t) > uε(T),G(t),Jk(t))

]
︸ ︷︷ ︸

Post-CV

+ E

[
T−1∑
t=1

I(At+1 = k,Nk(t) > uε(T), µ?(t) 6 µ1 − ε0)

]
︸ ︷︷ ︸

Pre-CV

+ E

[
T−1∑
t=1

I(At+1 = k,Nk(t) > uε(T),J k(t))

]
︸ ︷︷ ︸

CV-Emp

+ E

[
T−1∑
t=1

I
(
At+1 = k, µ?(t) > µ1 − ε0,

µ?(t)− µ?(sk(t))

B − µ?(sk(t))
6 −ε2

)]
︸ ︷︷ ︸

Var-Best (FMED and FIMED only)

+ E

[
T−1∑
t=1

I (At+1 = k, µ?(t) > µ1 − ε0, µ
?(sk(t)) 6 µ1 − ε0)

]
︸ ︷︷ ︸

Transition-Best (FMED and FIMED only)

.

This upper bound already exhibits uε(T), Post-CV and Pre-CV. It remains to prove that the additional
terms are upper bounded by constants depending on ε. The term CV-Emp is necessary for all
algorithms, while the two last terms are specific to FMED and FIMED. Indeed, they tackle the cases
where the sub-optimal arm k is pulled due to a value of µ?(sk(t)) that deviates from µ1 and/or µ?(t).
We start by upper bounding CV-Emp, writing

CV-Emp 6
T−1∑
t=1

T−1∑
n=uε(T)

E
[
I(At+1 = k,Nk(t) = n,J k,n)

]
6

T−1∑
n=uε(T)

P
(
KFinf(Fk,n, µ1 − ε0) 6 KFinf(Fk, µ1)− ε1

)
6

T−1∑
n=uε(T)

P
(
KFinf(Fk,n, µ1) 6 KFinf(Fk, µ1) +

ε0

B − µ1
− ε1

)
,

where the last line comes from Lemma 4 of Cappé et al. [2013]. We choose ε1 = 2 ε0
B−µ1

, and obtain
that CV-Emp= Oε0(1) thanks to property 2. of Lemma 2. This concludes the proof of Lemma 3
regarding MED and IMED. We now consider the terms specific to FMED and FIMED.

We start with Var-Best, and analyse more precisely the implications of the event

Bk(t) =

{
µ?(t) > µ1 − ε0,

µ?(t)− µ?(sk(t))

B − µ?(sk(t))
6 −ε2

}
.

We first prove that the combination of these two events ensure that µ?(sk(t)) > µ1 with a proper
tuning of ε0 and ε2, since

µ?(t)− µ?(sk(t))

B − µ?(sk(t))
6 −ε2 ⇒ µ?(t)− µ?(sk(t)) 6 −ε2(B − µ?(sk(t)))

⇒ µ?(sk(t)) >
µ?(t) + ε2B

1 + ε2
>
µ1 − ε0 + ε2B

1 + ε2

⇒ µ?(sk(t)) > µ1 +
ε2(B − µ1)− ε0

1 + ε2
.

19

Hence, we choose ε2 = 2 ε0
B−µ1

to obtain µ?(sk(t)) > µ1 + ε0
3 , if it holds that ε0 6 B − µ1. Then,

we also remark that this event also implies some variation of the best empirical mean between sk(t)
and t. Hence, only two scenarios can make Bk(t) hold:

• k?(sk(t)) is pulled between sk(t) and t, and µ?(sk(t)) > µ1 + ε0
3 .

• k?(sk(t)) is not pulled between sk(t) and t, k?(t) = j for some j 6= k?(sk(t)). In that
case, j has been pulled between sk(t) and t and it holds that µj(t) = µ?(t) > µ?(sk(t)) >
µ1 + ε0

3 .

As each of these scenario can cause at most one pull of arm k, we can upper bound Var-Best by
simply counting the number of times an arm j ∈ [K] is pulled (at time t) and either µj(t) > µ1 + ε0

or µj(t+ 1) > µ1 + ε0. We hence obtain that

Var-Best 6
K∑
j=1

T−1∑
t=1

E
[
I
(
At+1 = j,

{
µj(t) > µ1 +

ε0

3

}
∪
{
µj(t+ 1) > µ1 +

ε0

3

})]

6
K∑
j=1

T−1∑
t=1

T−1∑
n=1

E
[
I
(
At+1 = j,Nj(s) = n,

{
µj,n > µ1 +

ε0

3

}
∪
{
µj,n+1 > µ1 +

ε0

3

})]

6 2

K∑
j=1

+∞∑
n=1

P
(
µj,n > µ1 +

ε0

3

)
= Oε0(1) .

We can apply the exact same arguments for transition-best, except that this time we deduce that k?(t)
was pulled between sk(t) and t, and that (if Nk?(t) = n) µj,n 6 µ1 − ε0 and µj,n+1 > µ1 + ε0.
Depending on the identity of k?(t) one of these two events has exponentially decreasing probability.
Formally, we obtain that

Transition-best 6
∑

j:µj<µ1

+∞∑
n=1

P(µj,n > µ1 − ε0) +
∑

j:µj=µ1

+∞∑
n=1

P(µj,n 6 µ1 − ε0)

= Oε0(1) .

This concludes the proof of Lemma 3 by choosing ε0 = B−µ1

4 ε.

Building on Lemma 3, we finish to prove Theorem 1 by upper bounding the post-convergence and
pre-convergence terms for all algorithms.

Upper bounding the post-convergence terms Under Gk(t) and Jk(t), it holds thanks to property
1. of Lemma 2 that KFinf(Fk(t), µ?(t)) > KFinf(Fk, µ1)− ε. Hence, MED satisfies

Post-CVMED 6 E

[
T−1∑
t=1

I(Nk(t) > uε(T),Gk(t),Jk(t))× pk(t)

]

6 E

[
T−1∑
t=1

I(Nk(t) > uε(T),Gk(t),Jk(t)) exp (−Nk(t)Kk(t))

]
6 T exp

(
−uε(T)(KFinf(Fk, µ1)− ε)

)
6 1 ,

20

by definition of uε(T)
⌈

log(T)

KFinf(Fk,µ1)−ε

⌉
. Similarly, the design of Gk(t) for FMED also ensure that

Kk(t) > KFinf(Fk, µ1)− ε and Post-CVFMED 6 1 by the same arguments. For IMED, we obtain that

Post-CVIMED 6 E

[
T−1∑
t=1

I(Ik(t) 6 Ik?(t)(t), Nk(t) > uε(T),Gk(t),Jk(t))

]

6 E

[
T−1∑
t=1

I(Nk(t)Kk(t) 6 log(Nk?(t)(t)) < log(T), Nk(t) > uε(T),Gk(t),Jk(t))

]

6 E

[
T−1∑
t=1

I(uε(T)(KFinf(Fk, µ1)− ε) < log(T))

]
= 0 ,

so arm k is never pulled in the post-convergence regime with IMED. Again, these arguments directly
translate to Post-CVFIMED.

Upper bounding pre-convergence term Interestingly, the design of Kk(t), satisfying Kk(t) >
KFinf(Fk(t), µ?(t)), makes FMED and FIMED more exploratory than MED and IMED. Hence, we can
unify the proof for the vanilla algorithms and their fast update in this part.

We start with MED, following Baudry et al. [2023] we first use that for any sampling probability pk(t)

it holds that pk(t) 6 pk(t)
p1(t)p1(t) 6 1−p1(t)

p1(t) p1(t), and obtain that

Pre-CVMED := E

[
T−1∑
t=u

I(Nk(t) > u,At+1 = k, µ?(t) 6 µ1 − ε0)

]

= E

[
T−1∑
t=u

I(Nk(t) > u, µ?(t) 6 µ1 − ε0)pk(t)

]

6 E

[
T−1∑
t=u

I(µ1(t) 6 µ1 − ε0)

(
1

p1(t)
− 1

)
p1(t)

]

= E

[
T−1∑
t=u

I(At+1 = 1, µ1(t) 6 µ1 − ε0)

(
1

p1(t)
− 1

)]
.

Let us denote by pFMED1 (t) the sampling probability of arm 1 under FMED. Using that
∑K
k=1 e

Nk(t)Kk(t)

we obtain that

pFMED1 (t) >
1

K
exp (−N1(t)K1(t)) >

1

K
exp

(
−N1(t)KFinf(F1(t), µ?(t))

)
:= pMED1 (t) .

where pMED1 (t) is itself a lower bound on the sampling probability of arm 1 under MED (we use this
notation with a slight abuse). If follows that Pre-CVFMED admits the same upper bound as Pre-CVMED.
The rest of the proof can be found in Baudry et al. [2023], we briefly recall it from completeness. We
first obtain that

Pre-CVMED 6 K

T−1∑
n=1

E
[
enK

F
inf(F1,n,µ1−ε0) − 1

]
+ (K − 1)

T−1∑
n=1

P(µ1,n 6 µ1 − ε0)

6 K

T−1∑
n=1

E
[
enK

F
inf(F1,n,µ1−ε0) − 1

]
+Oε0(1) .

21

Then using properties 3. and 4. from Lemma 2 and KFinf(F1,n, µ1) 6 K+ := log
(
B−b
B−µ1

)
we

conclude that

Pre-CVMED 6 K

T−1∑
n=1

∫ enK
+
−1

0

P
(
KFinf(F1,n, µ1) > δε0 +

log(1 + x)

n

)
dx

6 K

T−1∑
n=1

e(n+ 2)

∫ enK
+
−1

0

e−nδε0

1 + x
dx

= Ke log

(
B − b
B − µ1

)
×
T−1∑
n=1

n(n+ 2)e−nδε0

= Oε0(1) ,

with δε0 =
2ε20

(B−b)2 . As a consequence, Pre-CVFMED = Oε0(1) too. For FIMED the relationship with
the pre-convergence term of IMED is even more straightforward,

Pre-CVFIMED 6 E

 T−1∑
t=uε(T)

I(N1(t)K1(t) + log(N1(t)) > log(Nk(t)), Nk(t) > uε(T), µ?(t) 6 µ1 − ε0)


6 E

 T−1∑
t=uε(T)

I(N1(t)KFinf(F1(t), µ?(t)) + log(N1(t)) > log(Nk(t)), Nk(t) > uε(T), µ?(t) 6 µ1 − ε0)


= Pre-CVIMED = Oε0(1) .

The last statement can be deduced from the regret analysis presented in [Honda and Takemura, 2015],
but we now propose a simpler proof of independent interest. We use that if At+1 = k, then the index
of arm k is smaller than the index of arm 1, and that Nk(t) > uε(T) to first write that

Pre-CVIMED 6 E

[
T∑
t=1

I (At+1 = k,Nk(t) > uε(T), I1(t) > log(Nk(t)))

]

6 E

 T∑
t=uε(T)

T∑
n1=1

T∑
nk=uε(T)

I (At+1 = k,Nk(t) = nk, N1(t) = n1, I1(t) > log(nk))


6 E

 T∑
n1=1

T∑
nk=uε(T)

I
(
n1KFinf(F1,n, µ1 − ε0) + log(n1) > log(nk)

) .

To further upper bound this term, we observe that sinceKFinf(F1,n, µ1−ε0) 6 log
(

B−b
B−µ1+ε0

)
:= K+

ε0 ,

the events considered above cannot happen if n1K+
ε0 + log(n1) 6 log(uε(T)) 6 log(nk). Hence,

there exists a function g : T 7→ N satisfying g(T) → +∞ (g(T) would be of order log log(T)
without the additional log(n1)) such that

Pre-CVIMED 6 E

 T∑
n1=g(T)

T∑
nk=uε(T)

I
(
n1KFinf(F1,n, µ1 − ε0) + log(n1) > log(nk)

) .

22

Then, using again properties 3. and 4. of Lemma 2 we obtain that

Pre-CVIMED 6
T∑

n1=g(u)

T∑
nk=u

e(n1 + 2)e−(n1δε0+log(nk)−log(n1))

6 e

 T∑
n1=g(T)

n1(n1 + 2)e−n1δε0

(T∑
nk=u

1

nk

)

6 e

 +∞∑
n1=g(T)

n1(n1 + 2)e−n1δε0

 log

(
T

uε(T)

)
= oε0(log(T)) ,

where the conclusion comes from the fact that the remaining sum is the remainder of a convergent
series, or in other words Pre-CVIMED 6 aT log(T) where aT → 0. This is sufficient to conclude
the proof, by noting that a careful tuning of ε0 (for instance as log log(T) allows to obtain that
lim sup E[Nk(T)]

log(T) 6 1
KFinf(Fk,µ1)

.

C Proof of Theorem 2: regret analysis of OMED and OIMED

We first recall the theorem.

Theorem 2 (Regret bound for online MED algorithms). Consider (F1, . . . , FK) ∈ FK , and µ? =
maxk∈[K] µk < µmax, for a known µmax < B. Assume that OMED and OIMED use a portfolio selection
algorithm ALG that satisfies for any (k, `) ∈ [K]2 and n ∈ N the deterministic guarantee

|Rk,`,n| = o(n) (sub-linear absolute portfolio regret) . (13)

Then, both OMED and OIMED satisfy Equation (12) (with a different second-order term) and are
asymptotically optimal: they enjoy the same asymptotic guarantees as MED and IMED.

Proof. As for the proof of Theorem 1 we start by proving a first regret upper bound that holds for
both algorithms.

Lemma 4 (Generic upper bound). For any sub-optimal arm k, for any ε > 0 it holds that

E[Nk(t)] 6uε(T) + E

[
T∑
t=1

I(k ∈ At+1, `t = 1, Ñk,1(t) > uε(T), Zk(t) = 1,Gk(t))

]
︸ ︷︷ ︸

Post-CV

+ 4 log(4)E

[
T∑
t=1

I(1 /∈ At+1, `t 6= 1, Z1(t) = 1)

]
︸ ︷︷ ︸

Pre-CV

+Oε(1) ,

where uε(T) = log(T)

KFinf(Fn,µ1)−ε , and Gk(t) =
{
Lk,1(t) > Ñk,1(t)(KFinf(Fk, µ1)− ε)

}
.

Before proving this result, let us detail some intuitions. First, we remark that the two expectations
need to be second order terms to make the algorithms asymptotically optimal. The first expectation
corresponds to pulls of arm k in a post-convergence regime, where arm 1 is the leader and the
empirical distribution of arm k is close to Fk. On the contrary, the second term is the expected
number of duels lost by arm 1 as a challenger, against a sub-optimal leader. For this reason, we name
these two terms respectively Post-CV and Pre-CV (where CV abbreviates convergence). Note that
Lemma 4 actually holds for any bandit algorithms that would use the same duel-based structure,
independently of what they do during the non-greedy duels.

23

Proof. We start the proof by introducing some notation. Due to the specific structure of the duel-based
algorithm we define for a challenger/leader pair (k, `) a pseudo-count Ñk,`(t) and a corresponding
empirical cdf F̃k,`(t): they are computed by considering only the observations of arm k that have been
collected when arm k was pulled after a non-greedy duel (Zk(t) = 1) performed against the leader
`t = `. Hence, Ñk,`(t) 6 Nk(t). In several parts of the proof we also use constants xk ∈ (µk, µ1),
that we arbitrarily set to µk+µ1

2 . Finally, we introduce two ways to denote the rewards: we continue
to call Xk,n the n-th reward received by arm k, but we also introduce the notation Xk,`,n for the n-th
reward received by arm k after a non-greedy duel against the leader `.

We start the analysis by considering the case when the best arm is the leader, and the alternative. For
each sub-optimal arm k, it holds that

E[Nk(T)] = 1 + E

[
T−1∑
t=1

I(k ∈ At+1, `t = 1)

]
︸ ︷︷ ︸

A1

+E

[
T−1∑
t=1

I(k ∈ At+1, `t 6= 1

]
︸ ︷︷ ︸

A2

We then consider the favorable case where arm 1 the leader, splitting the cases according to the value
of Zk(t).

A1 6 E

[
T−1∑
t=1

I(k ∈ At+1, `t = 1, µ1(t) 6 µk(t))

]
︸ ︷︷ ︸

B1 (greedy duels)

+E

[
T−1∑
t=1

I(k ∈ At+1, `t = 1, Zk(t) = 1)

]
︸ ︷︷ ︸

B2 (non-greedy duels)

.

We now upper bound B1 using that if `t = 1 thenN1(t) > t/K, and that if µk(t) > µ1(t) then either
µk(t) > xk or µ1(t) 6 xk. By starting Nk(t) at 1 we cover all possible scenarios for Zk(t) = 0
(including µ`t(t) > µmax). We then obtain

B1 6 E

[
T−1∑
t=1

I(`t = 1, µ1(t) 6 xk)

]
+ E

[
T−1∑
t=1

I(k ∈ At+1, µk(t) > xk)

]

6
+∞∑
t=1

+∞∑
n=t/K

P(µ1,n 6 xk) +

+∞∑
n=1

P(µk,n > xk) = O(1) .

We then considerB2. We use that for any n, {k ∈ At+1, Zk(t) = 1, Ñk,1(t) = n} = {Ñk,1(t+1) =

Ñk,1(t) + 1, Ñk,1(t) = n} and can happen only once. For any uε(T) ∈ N, we hence obtain that

B2 6 uε(T) +

T−1∑
t=1

E
[
I(Ñk,1(t+ 1) = Ñk,1(t) + 1, Ñk,1(t) > uε(T))

]
.

We then upper bound B2 by considering separately cases when Gk(t) holds or not,

B2 6 u+ E

[
T∑
t=1

I(Ñk,1(t+ 1) = Ñk,1(t) + 1, Ñk,1(t) > u,Gk(t))

]
︸ ︷︷ ︸

Post-CV

+ E

[
T∑
t=1

I(Ñk,1(t+ 1) = Ñk,1(t) + 1, Ñk,1(t) > u, Ḡk(t))

]
︸ ︷︷ ︸

B′2

.

24

We remark the first term is exactly the post-convergence term that we introduced in the lemma. Hence,
we leave this expression as it is for this first result. We then consider B′2. We use Equation (14), for
any ε0 > 0 it holds that

Lk,1,Ñk,1(t) = Ñk,1(t)KFinf(F̃k(t), µ1 − ε0) +Rk,1,Ñk,1(t) +Bk,1,Ñk,1(t)(µ1 − ε0).

Hence, we obtain that

Ḡk(t) ⊂

{
max

{
Bk,1,Ñk,1(t)(µ1 − ε0)

Ñk,1(t)
,
Rk,1,Ñk,1(t)

Ñk,1(t)
,KFinf(Fk, µ1)−KFinf(F̃k(t), µ1 − ε0)

}
>
ε

3

}
.

Note that we could have stated different thresholds for each term, but we choose ε/3 in each case for
simplicity.

We use the first side of our assumption on the regret of the portfolio algorithm: if Rn = o(n), then
there exists n0 ∈ N large enough such that for n > nε, Rn 6 nε

3 . Hence, by defining uε(T) > nε
we ensure that Ḡk(t) is not due to a large portfolio regret.

We now consider the term involving KFinf(F̃k(t), µ1 − ε0), which is analogous to the CV-Emp term of
the proof of Theorem 1 (Appendix B). We hence directly write that

E

[
T∑
t=1

I
(
Ñk,1(t+ 1) = Ñk,1(t) + 1, Ñk,1(t) > uε(T),KFinf(F̃k(t), µ1 − ε0) 6 KFinf(Fk, µ1)− ε

3

)]

6
+∞∑

n=uε(T)

P
(
KFinf(F̃k,n, µ1) 6 KFinf(Fk, µ1) +

ε0

B − µ1
− ε

3

)
= Oε(1) ,

by choosing ε0 = (B − µ1) ε6 . Finally, we use that Bk,1,Ñk,1(t)(µ1 − ε0) > Ñk,1(t)ε/3 is possible
only if at least one empirical mean computed with a “reasonable” sample size deviates. More
precisely,

Bk,1,Ñk,1(t)(µ1 − ε0) > Ñk,1(t)
ε

3
⇒ ∃n > Ñk,1(t)

ε

3
: µ1(tk,1,n) 6 µ1 − ε0

⇒ ∃n > f
(
Ñk,1(t)

ε

3

)
: µ1,n 6 µ1 − ε0 ,

where we used that, thanks to our algorithm, at any time s for which the estimate Lk,1(t) was
incremented N1(s) > f(Ñk,1(s)) was satisfied (check to decide that the duel is non-greedy).
Interestingly, we now get an event that only depends on Ñk,1(t). Using Lemma 1 we finally get that

E

[
T∑
t=1

I
(
Ñk,1(t+ 1) = Ñk,1(t) + 1, Ñk,1(t) > uε(T), Bk,1,Ñk,1(t)(µ1 − ε0) > Ñk,1(t)

ε

3

)]

6
+∞∑

t=uε(T)

P
(
Ñk,1(t+ 1) = Ñk,1(t) + 1, Ñk,1(t) > uε(T),∃s > f

(
Ñk,1(t)

ε

3

)
: µ1,s 6 µ1 − ε0

)

6
+∞∑

n=uε(T)

P
(
∃s > f

(
n
ε

3

)
: µ1,s 6 µ1 − ε0

)

6
+∞∑

n=uε(T)

+∞∑
s=f(n ε3)

P (µ1,s 6 µ1 − ε0) = Oε(1) ,

thanks to Hoeffding’s inequality. This last step allows to conclude that B′2 = Oε(1), using that
f(s) > s for any s ∈ N.

Remark 1. We can see that at this step N1(s) > Nk(s) was sufficient, the enforcement of N1(s) >
f(Nk(s)) is necessary only in the “pre-convergence” analysis.

25

Upper bounding A2, `t 6= 1: For this part of the proof, we mainly use techniques from [Chan,
2020, Baudry et al., 2021b]. In particular, we use that if the current leader is a sub-optimal arm then
either 1 has already been leader and has lost leadership or 1 has never been leader. Formally, we
define the event

Dt =

{
∃r ∈

[
t

4
, t

]
: `r = 1

}
.

Then, we first upper bound the term

C1 :=

T−1∑
t=1

E [I (k ∈ At+1, `t 6= 1,Dt)] .

We use that if Dt holds and `t 6= 1 then arm 1 was the leader at some point between t/4 and t and
lost its leadership. Furthermore, a change of leadership from 1 to j at time s can only happen if (1)
arm j has been pulled at the previous round, (2) the two arms now satisfy N1(s) = Nj(s) = n for
some n > s/K > t/(4K), and (3) µ1,n 6 µj,n. Thanks to these properties, we obtain with some
union bounds that

C1 6
K∑
j=2

T−1∑
t=1

t∑
s=dt/4e

t∑
n=ds/Ke

E [I (j ∈ As, N1(s) = Nj(s) = n, µj,n > µ1,n)]

6
K∑
j=2

T−1∑
t=1

t∑
n=dt/Ke

E

I (µj,n > µ1,n)

t∑
s=dt/4e

I(j ∈ As, Nj(s) = n)


6

K∑
j=2

T−1∑
t=1

t∑
n=dt/Ke

P (µj,n > µ1,n)

=

K∑
j=2

T−1∑
t=1

t∑
n=dt/Ke

(P (µj,n > xj) + P (µ1,n 6 xj)) = O(1) .

We now upper bound the term

C2 :=

T−1∑
t=1

E
[
I
(
k ∈ At+1, `t 6= 1, D̄t

)]
.

Following Chan [2020], we use that if arm 1 has never been leader between t/4 and t, then it has
necessarily lost at least t/4 duels in that time interval. Using Markov inequality, we hence obtain that

C2 6
T−1∑
t=1

P

I

 t∑
s=t/4

I(1 /∈ As+1, `s 6= 1) >
t

4


6
T−1∑
t=1

4

t

t∑
s=t/4

E [I(1 /∈ As+1, `s 6= 1)]

6
T−1∑
s=1

(
T−1∑
t=1

4

t
I(t ∈ [s, 4s])

)
E [I(1 /∈ As+1, `s 6= 1)]

6 4 log(4)

T−1∑
t=1

E [I(1 /∈ At+1, `t 6= 1)] .

Thank to these simple tricks, we are back to upper bounding the total number of duels lost by arm 1
while not being the leader at the cost of a multiplicative constant, which is close to the remaining

26

term in our statement. The last step of this first generic analysis consists in upper bounding the regret
caused by Z1(t) = 0 by a constant. We denote by f−1 the function satisfying f−1(f(s)) = s for
any s ∈ N. We use that the greedy duel is caused by either µ`t(t) > µmax or Ñ1,`t(t) > f−1(t/K),

D1 :=

T−1∑
t=1

E [I (1 /∈ At+1, `t 6= 1, Z1(t) = 0)]

6
T−1∑
t=1

E
[
I
(
∪Kj=2

{
µ1(t) 6 xj ∪ µj(t) > xj , Ñ1,j(t) > f−1(t/K), Nj(t) > t/K

})]
+

T−1∑
t=1

E
[
I
(
∪Kj=2 {µj(t) > µmax} , `t = j

)]
6
T−1∑
t=1

E
[
I(µ1(t) 6 xj , N1(t) > f−1(t/K))

]
+ 2

K∑
j=2

E [I(µj(t) > xj , Nj(t) > t/K)]

6
T−1∑
t=1

t∑
n=f−1(t/K)

P(µ1,n 6 xj) + 2

K∑
j=2

T−1∑
t=1

t∑
nj=t/K

P(µj,n > xj) = O(1) ,

where we grouped upper bounded the terms corresponding to µj(t) > µmax by the terms correspond-
ing to µj(t) > xj for simplicity. Finally, the remaining term of our upper bound is exactly

Pre-CV := 4 log(4)

T−1∑
t=1

E [I (1 /∈ At+1, `t 6= 1, Z1(t) = 1)] ,

as stated in the Lemma 4. This concludes the proof of the lemma,
E[Nk(T)] 6 uε(T) + Post-CV + Pre-CV +Oε(1) .

We now prove the following lemma, that concludes the proof of Theorem 2.

Lemma 5. OMED and OIMED both satisfy
Post-CV = Oε(1) and Pre-CV = O(1) .

Proof. We need to upper bound four terms. We start with the upper bounds of the two post-
convergence terms, that are straightforward thanks to the tuning of uε(T) and the definition of
Gk(t).

Upper bounding Post-CV We start with OMED,

Post-CVOMED = E

[
T∑
t=1

I(k ∈ At+1, `t = 1, Ñk,1(t) > uε(T), Zk(t) = 1,Gk(t))

]

6

[
T∑
t=1

e−Ñk,1(t)(KFinf(Fk,µ1)−ε)I(Ñk,1(t) > uε(T), Zk(t) = 1,Gk(t))

]
6 Te−uε(T)(KFinf(Fk,µ1)−ε)

6 1 ,

thanks to the definition of uε(T). For OIMED, we obtain

Post-CVOIMED 6 E

[
T∑
t=1

I(k ∈ At+1, `t = 1, Ñk,1(t) > uε(T), Zk(t) = 1,Gk(t))

]

6

[
T∑
t=1

I(Ñk,1(t)(KFinf(Fk, µ1)− ε) < log(T), Ñk,1(t) > uε(T))

]
= 0 ,

27

again thanks to the definition of uε(T).

Upper bounding Pre-CV, OMED We recall that

Pre-CVOMED :=

T−1∑
t=1

E
[
I
(

1 /∈ At+1, `t 6= 1, Ñ1,`t(t) 6 f−1(Nj(t))
)]

.

We use the notation p1(t) = p1,j,Ñ1,`t (t)
, and p1,j,n = e−L1,j,n . Then, with the same arguments as

for the regret analysis of the vanilla MED (Baudry et al. [2023], Appendix B) we obtain that

Pre-CVOMED =

T−1∑
t=1

E
[
I
(
`t 6= 1, Ñ1,`t(t) 6 f−1(Nj(t))

)
(1− p1(t))

]
=

T−1∑
t=1

E
[
I
(

1 ∈ At+1, `t 6= 1, Ñ1,`t(t) 6 f−1(Nj(t))
) 1− p1(t)

p1(t)

]

6
K∑
j=2

T∑
n=1

E
[

1

p1,j,n
− 1

]

:=

K∑
j=2

T∑
n=1

E
[
eL1,j,n − 1

]
.

Now, thanks to Equation (14) we can relate L1,j,n to KFinf(Fn, x) for any x ∈ R. We again choose xj
for convenience, and obtain that

Pre-CVOMED 6
K∑
j=2

T∑
n=1

E
[
e(nKFinf(F̃1,j,n,xj)−R1,j,n−B1,j,n(xj))+ − 1

]
.

To relate to the proof for MED we need the portfolio regret and bias to be small enough. We use the
second side of our assumption on the regret, which is that −R1,j,n = o(n) for any j, n. Hence, for n
large enough it holds for instance that −R1,j,n 6 δj

3 n, with

δj = inf
F∈F
KFinf(F, µ1)−KFinf(F, xj) > 0 ,

where δj > 0 is ensured by property 3. of Lemma 2. For the bias, we first obtain with Lemma 1 that

−B1,j,n(xj) 6
n∑
i=1

I(µj(t1,j,n) > xj) .

We then define a “good event” under which the bias is controlled,

Bj,n =

{
n∑
i=1

I(µj(t1,j,n) > xj) 6 n
δj
3

}
.

We then use a similar proof as for the post-convergence term. We first consider

P1 :=

K∑
j=2

T∑
n=1

E
[(
eL1,j,n − 1

)
I(Bj,n)

]
=

K∑
j=2

T∑
n=1

E
[
enK

F
inf(F̃1,j,n,xj)+n

2δj
3 − 1

]
,

that can be upper bounded with the same proof as the vanilla MED from [Baudry et al., 2023]. Using
properties 3. and 4. of Lemma 2, we obtain that

28

P1 6
K∑
j=2

T∑
n=1

∫ e
nK+

j
+

2δj
3 −1

0

P
(
KFinf(F̃1,j,n, xj) >

δj
3

+
1

n
log(1 + x)

)
dx

6
K∑
j=2

T∑
n=1

en(n+ 1)

(
K+
j +

2δj
3

)
e−n

δj
3

= O(1) ,

with K+
j = log

(
B−b
B−xj

)
. We then tackle the case where Bj,n does not hold, which is possible only if

µj,s > xj for some s > (nδj)
2. Furthermore, we also use the trivial bound −B1,j,n(xj) 6 n thanks

to Lemma 1. We then obtain

P2 :=

K∑
j=2

T∑
n=1

E
[(
e(nKFinf(F̃1,j,n,xj)−R1,j,n−B1,j,n(xj))+ − 1

)
I(B̄j,n)

]

6
K∑
j=2

T∑
n=1

E
[(
enK

F
inf(F̃1,j,n,xj)+n(1+δj) − 1

)
I(∃s > f(nδj) : µj,s > xj)

]

6
K∑
j=2

T∑
n=1

E
[(
enK

F
inf(F̃1,j,n,xj)+n(1+δj) − 1

) e−f(nδj)I1(xj)

1− e−I1(xj)

]
,

We can conclude at this step using that en(1+δj)−f(nδj)I1(xj) → 0, as we ensured that n = o(f(n)),
so it simply holds that

P1 = O(1)⇒ P2 = O(1) .

Upper bounding Pre-CV, OIMED We again consider the two cases, depending on if B(t) holds
or not. When this is true, we can use a similar proof to the one of vanilla IMED that we propose in
Appendix B,

Q1 :=

K∑
j=2

T−1∑
t=1

E
[
I
(
Ñ1,j(t)KFinf(F̃1,j,n, xj) + log(Ñ1,j(t)) > log(Nj(t))− Ñ1,j(t)

2δj
3
, Nj(t) > t/K

)]

6
K∑
j=2

T−1∑
t=1

T−1∑
n=log(t/K)/K+

P
(
nKFinf(F̃1,j,n, xj) > log(t/K)− n2δj

3
− log(n)

)

6
K∑
j=2

T−1∑
t=1

T−1∑
n=log(t/K)/K+

Ken(n+ 2)

t
e−n

δj
3

6 K2e

T−1∑
t=1

T−1∑
n=log(t/K)/K+

n(n+ 2)

t
e−n

δj
3 ,

where we again used properties 3. and 4. of Lemma 2 to upper bound the probability. The convergence
of this term is ensured by the fact that the sum on n starts at log(t/K)

K+ . To formally prove this we can
for instance use that there exists a constant Cj (that typically scales in O(δ−2

j) up to logarithm terms)

such that ∀n ∈ N, n(n+ 2) 6 Cje
n
δj
6 for any n ∈ N, so

29

Q1 6 CjK
2
T−1∑
t=1

T−1∑
n=log(t/K)/K+

e−n
δj
6

t

6 CjK
2+

δj

3K+
1

1− e−
δj
6

T−1∑
t=1

1

t1+
δj

6K+

= O(1) .

We then consider B̄(t), under which the bias can be up to Ñ1,j(t). In that case, we use the same proof
techniques as for OMED, with

Q2 :=

K∑
j=2

T−1∑
t=1

E
[
I(Ñ1,j(t)KFinf(F1,j,n, xj) > log(Nj(T))− Ñ1,j(t)(1 + δj), Nj(t) > t/K, B̄(t))

]

6
K∑
j=2

T−1∑
t=1

T−1∑
n=log(t/K)/K+

K

t
e−nδj × e

n
(

1+
δj
3

)
−(nδj)

2I1(xj)

1− e−I1(xj)
.

We then use that the right-hand term converges to 0, so Q1 = O(1)⇒ Q2 = (1).

Remark 2. The enforcement of a sufficient sample size for the leader is justified by the analysis of
the pre-convergence term. In this regime a linear bias may cost up to en for each sample size n.
Hence, a concentration of the mean with a rate e−cn is not sufficient, especially if c is small (which
happens if the gaps are small). Furthermore, this kind of rate cannot be avoided without actively
controlling the sample size of the leader at each update.

This concludes the proof of Theorem 2.

D Accuracy of KF
inf approximation and discretization trick

In this section we provide more details on the discussion of Section 1. In particular, we elaborate
on the discretization trick proposed in Riou and Honda [2020] and on the sub-optimality of the
algorithms that do not target KFinf specifically.

For simplicity we assume that b = 0 and B = 1, and all results hold for general ranges [b, B] ⊂ R up
to a rescaling of the rewards: X ∈ [b, B]⇒ X−b

B−b ∈ [0, 1].

Sub-optimality of 2∆2 and kl We denote by kl : [0, 1]× [0, 1)→ R+ the KL divergence between
two Bernoulli distributions, expressed in terms of their expectations by

∀µ? > µ : kl(µ, µ?) := µ log

(
µ

µ?

)
+ (1− µ) log

(
1− µ
1− µ?

)
. (16)

Consider F ∈ F of mean µ ∈ [0, 1) and µ? ∈ [µ, 1), and let us define ∆ = µ?−µ. First, it is known
(see e.g. Cappé et al. [2013]) that

KFinf(Fµ
?) > kl(µ, µ?) > 2∆2 . (17)

This result (partially) explains why bandit algorithms adapted for 1/4-sub-gaussian or Bernoulli
distributions work for general bounded distributions (UCB1 [Auer et al., 2002], kl-UCB [Cappé
et al., 2013]), since a smaller constant means a more exploratory algorithm. A natural question is to
determine how sub-optimal these algorithms can be in the general case. In the following we assume
that ∆ is small to perform some first-order approximations.

First, a simple computation shows that kl(µ, µ?) ≈ ∆2

µ(1−µ) : kl adapts to the true variance of the
Bernoulli distributions, exploiting better the geometry of F . The sub-gaussian approximation is tight

30

only if µ is close to 1/2 but not near the boundaries of the support, which is not surprising. We
now investigate the gap between KFinf and kl, and recall that the two quantities match for Bernoulli
distributions. The following result demonstrates that the ratio between the two can be arbitrarily large
if the distributions are in fact “far” from being Bernoulli.

Lemma 6 (kl vs KFinf). For µ ∈ (0, 1) and F ∈ F[0,1] of mean µ−∆, the scaling of
KFinf(F,µ)

kl(µF ,µ) can be
as large as µ

∆ , with the maximum achieved when F is the Dirac distribution with support µ−∆.

Proof. First, Jensen inequality and equation (4) provide that

KFinf(F, µ) 6 log

(
1 +

∆

1− µ

)
= KFinf(δµ−∆, µ) ,

where δx is the Dirac distribution at x. Then, approximating KFinf(F, µ) by ∆
1−µ we obtain that

for small ∆ > 0,
KFinf(δµ−∆, µ)

kl(µ−∆, µ)
≈
(

∆

1− µ

)
×
(
µ(1− µ)

∆2

)
=
µ

∆
→

∆→0
+∞ .

We could argue that Dirac (or highly concentrated) distributions may be unlikely in most applications,
however the use-case presented in Section 1 (Figure 1) shows that large ratios KFinf/kl may already be
observed with more natural examples. Finally, to compare the impact of the approximation on the
asymptotic guarantees of an algorithm on a K-armed bandits we can compare

∑
k:∆k>0

∆k

KFinf(Fk,µ
?)

and
∑
k:∆k>0

1
∆k

.

Discretization trick We now detail the trick proposed by Riou and Honda [2020], and inspired for
instance by the binarization trick of Agrawal and Goyal [2012]. For any M ∈ N, we fix an arbitrary
grid XM = (x1 = 0 < x2 < · · · < xM = 1) ∈ [0, 1]M . Then, the trick consists in transforming any
incoming reward X /∈ XM in a discrete reward Y ∈ XM , as follows:

1. Let m ∈ N satisfy xm < X < xm+1 , and define p = X−xm
xm+1−xm .

2. Sample Z ∼ Ber(p) and define Y = xmI(Z = 0) + xm+1I(Z = 1).

If this procedure is used with all rewards collected, one can use a bandit algorithm calibrated for
multinomial distributions with support Xm. It is easy to see that E[Y] = X , so the order of the
arms do not change with this discretization. Furthermore, the bandit problem becomes equivalent
to a problem where the distributions would be exactly (FXM1 , . . . , FXMK) ∈ FK where, for each
k ∈ [K], FXMk is the distribution of the discretized rewards (with reference grid XM) generated with
i.i.d. samples from Fk. It is hence clear that an asymptotically optimal bandit algorithm for (general
bounded distributions) is guaranteed an asymptotic regret scaling in

∑
k:∆k>0

∆k

KFinf(F
XM
k)

log(T), and

be optimal if the distributions F1, . . . , FK are already supported on XM only.

We now discuss the performance that can be achieved with such discretization. Let us assume that
a constant step xm+1 − xm = B−b

M−1 is chosen for all m ∈ [M − 1]. First, due to the compactness
of F we can state that there exists a distribution G? satisfying KFinf(Fk, µ

?) = KL(Fk, G?). We
then denote by GXM? its corresponding discretized distribution on the grid XM . Thanks to the data
processing inequality, we obtain that

KFinf(Fk, µ
?) = KL(Fk, G?) > KL(FXMk , GXM?) ,

which is itself larger than KFinf(F
XM
k , µ?) by definition, since E

X∼GXM?
[X] = EX∼G? [X] > µ?.

Finally, using that FXMk cannot be “closer” to µ? than a translation of Fk by η, and Lemma 4 of
Cappé et al. [2013], we obtain that

KFinf(Fk, µ
?) > KFinf(F

XM
k , µ?)

> KFinf(Fk, µ
? − η) > KFinf(Fk, µ

?)− η

B − µ?

= KFinf(Fk, µ
?)− 1

M − 1
× B − b
B − µ?

.

31

Hence, we see that the approximation can be good for large M . However, if KFinf(Fk, µ
?) 6

1
M−1 ×

B−b
B−µ? (which is possible since M is fixed without knowing the distributions) then the

lower bound is vacuous. In fact, we can extend Lemma 6 to any discretization process: small gaps
(compared to M−1) can make the ratio KFinf(Fk, µ

?)/KFinf(F
Xm
k , µ) arbitrarily large. Hence, even if

this technique has some convenient properties, it is not entirely satisfying. This justifies our quest for
alternatives that would preserve the asymptotic optimality of the algorithms.

E Online KF
inf computation with portfolio optimization algorithms

In this section we provide additional details regarding OMED and OIMED. We first prove Lemma 1, that
is essential to their regret analysis, then we detail the Soft-Bayes algorithm [Orseau et al., 2017] that
we choose in our practical implementation of the algorithms.

E.1 Proof of Lemma 1

Lemma 1 (Deviations of Bk,`,n(µ)). Let µ ∈ (0, 1), and set Ck,`,i =
B−µ`(tk,`,i)

B−µ it holds that

−
n∑
i=1

log
(
C−1
k,`,i

)
I(µ`(tk,`,i) > µ) 6 Bk,`,n(µ) 6

n∑
i=1

log (Ck,`,i) I(µ > µ`(tk,`,i)) . (15)

Proof. We introduce some notation for convenience. First, we denote Xk,`,i by Xi and µ?(tk,`,i) by
µ?(i). Then, we define Yi = Xi−µ?(i)

B−µ?(i) , Zi = Xi−µ
B−µ , and λ = argmax

λ∈[0,1]

∑n
i=1 log(1− λZi).

We use two elementary analysis properties. First, 1−λZi
1−λYi is positive and non-decreasing if Yi > Zi.

Then, Yi > Zi only if µ?(i) 6 µ. Otherwise, log(1− λZi)− log(1− λYi) 6 0. Hence, it holds that

Bk,`,n(µ) :=

n∑
i=1

(log(1− λZi)− log(1− λYi)) =

n∑
i=1

log

(
1− λZi
1− λYi

)

6
n∑
i=1

log

(
1− Zi
1− Yi

)
I(µ > µ?(i)) .

We then plug the expression of Yi and Zi in this bound, obtaining that

Bk,`,n(µ) 6
n∑
i=1

log

(
B−Xi
B−µ
B−Xi
B−µ?(i)

)
I(µ > µ?(i)) =

n∑
i=1

log

(
B − µ?(i)
B − µ

)
I(µ > µ?(i)) ,

which gives the result. Applying the exact same steps provides the other direction,

−Bk,`,n 6
n∑
i=1

log

(
B − µ

B − µ?(i)

)
I(µ?(i) > µ)

E.2 Soft-Bayes

In this section we detail the Soft-Bayes algorithm, proposed in Orseau et al. [2017]. We recall that
the KFinf estimation is a portfolio optimization problem of dimension 2. At each step n, the portfolio
algorithm decides an allocation (1− λn, λn) between two assets, that provide a payoff (1, Yn). We
use in this section Yn to denote for simplification B−Xk,`,n

B−µ?(tk,`,n) , that is used in our implementation of
the estimate Lk,`,n for the challenger/leader pair (k, `).

For the anytime version of the algorithm, a sequence of learning rates (ηn)n∈N is provided as an input
of the algorithm. We then define the update rule of the anytime Soft-Bayes in Algorithm 10 below.

32

Algorithm 10 Anytime Soft-Bayes [Orseau et al., 2017]
Input: Parameter λn, sequence of learning rates (ηn)n∈N, initial parameter λ1 = 1/2

75 Return: λn+1 = λn ×
(

1− ηn + ηn
Yn

1−λn(1−Yn)

)
+
(

1− ηn+1

ηn

)
λ1

Orseau et al. [2017] prove that defining the learning rate as ηn =
√

log(2)
4n ensures an upper bound on

the portfolio regret

RN = 4
√

log(2)N + (1 + log(2)) log(N + 1) + log(2) .

However, they do not provide a lower bound on the regret.

F Supplementary experimental results

F.1 Detail of the costs of each algorithm

We start this section by detailing the computation of the costs of the algorithms presented in Table 2.
We first recall the results that we want to prove.

Algorithm Run time Memory Optimality

KL-UCB [Cappé et al., 2013] O(n log(n)2) n Opt.
kl-UCB O(log(n)) O(1) Sub-opt. (kl)

UCB [Auer et al., 2002] O(1) O(1) Sub-opt. (2∆2
k)

NPTS [Riou and Honda, 2020] O(n) n Opt.

MED/IMED
[Honda and Takemura, 2010, 2015] O(n log(n)) n Opt.

Mult. MED/IMED (M items) O(M log(n)) O(M) Sub-opt. (KF
inf mult.)

FMED/FIMED
(this paper)

O(n log(n)) if pulled,
O(1) otherwise. n

Opt.
(Theorem 1)

OMED/OIMED
(this paper) O(1) O(K)

Opt. w. assumptions
of Theorem 2

Table 3: Comparison of memory and run time needed per step and for an arm k with n observations

In the table, n is a number of observations for 1 arm, and the costs are computed for this arm only for
simplicity.

Memory cost We start with the memory, which is easier to estimate. Most optimal algorithms
(KL-UCB, NPTS, MED/IMED, FMED/FIMED) require to store all the observations, for a cost of n. On
the contrary, UCB and kl-UCB require constant memory, since they just need to store the number
of pulls and the empirical means of each arm. Finally, the multinomial version of the algorithms
have a memory cost of M : they need to store the total number of pulls, the frequency of each item
(x1, . . . , xM) on the chosen grid, and the empirical means.

Finally, K appears in the memory cost of OIMED because for each arm k we need to store (at most)
K online estimates of KFinf and pseudo-counts, in addition to the total number of pulls and empirical
mean of the arm. This is a worst-case memory, in case each arm have been leader at least once. The
total memory cost of OIMED (summing over all arms) is then at most O(K2), while it is O(T) for the
optimal algorithms that store all observations.

Computation costs First, we assume that any algorithm that use only quantities that can be updated
sequentially has a cost of O(1). We include in this category updates of means, number of pulls, or
the output of a portfolio algorithm with a running time independent of n. We insist that in practice
the cost of these algorithms is not exactly the same, but it can be verified that they remain constant
over time.

33

We now consider NPTS: the main cost comes from the sampling of n+ 1 weights from a Dirichlet
distribution of parameter (1, . . . , 1) (n ones). This sampling is linear in n, since it can be done by
sampling n+1 i.i.d. samplesR1, . . . , Rn+1 from the exponential distribution E(1), and then defining
wi = Ri∑n+1

j=1 Rj
for any i ∈ [n+ 1]. This justifies the cost in O(n) in the table.

The remaining algorithms (KL-UCB and MED algorithms) require to solve the optimization problem
defined by (4) to compute empirical KFinf. This can be done with any search algorithm, which costs
n log(1/ε) where ε is the precision asked for the solution. In the implementations we always choose
ε = 1/n, so that the precision is enough to preserve the theoretical guarantees of the algorithms. This
already provides the cost of the MED algorithms, that require to compute exactly one KFinf for each
arm at each time step. For FMED/FIMED, we precise that this computation happens only if the arm
wad pulled. Finally, for the discretized version of the algorithms the computation time becomes linear
in M instead of n, but the log(n) is kept since the precision is still 1/n.

For KL-UCB and kl-UCB, another optimization procedure is needed: for a given function f we
solve max

{
µ ∈ [b, B] : Nk(t)KFinf(Fk(t), µ) 6 f(t)

}
. We also set the precision of this search to

1/n, which gives the supplementary multiplicative log(n) factor compared with MED algorithms:
each KFinf computation costs O(n log(n)), and we perform O(log(n)) such computations for a step
of KL-UCB. This is also the reason why the cost of kl-UCB is not constant: we perform O(log(n))
computations of kl.

Remark 3 (Total computation time). We detailed the cost for one arm and one step of the algorithms
only for simplicity, however for those depending on n there are some differences when considering the
total computation time. Indeed, for MED algorithms we do not compute KFinf for the best empirical
arm. However, this arm is expected to converge to the true best arm and to be sampled linearly. Hence,
if there is only one best arm the costs presented in Table 3 will be paid only for n = O(log(T)). On
the contrary, KL-UCB and NPTS will pay their cost for all arms, including the best empirical arm,
so one of them satisfy n = Ω(T). The analysis of these algorithms suggest that this cost may not
be necessary (see Remark 3 of [Riou and Honda, 2020]), nonetheless this is how they are typically
implemented in the literature.

F.2 DSSAT distributions

The DSSAT problem was presented in Section 1 and the experimental results in the last Section 4.
To give the reader the full picture of the problem, we plot in Figure 5 all the densities of the seven
distributions.

0 2000 4000 6000 8000 10000
value

0

1

2

3

4

5

de
ns

it
y

1e 5

Figure 5: DSSAT distributions

34

This plot visually confirms the multimodality of all distributions and the difficulty to fit this problem
into a parametric framework. We complete the Table 1 presented in the introduction by listing in
Table 4 all ratios of the form KFinf

kl and K
F
inf

2∆2 , thus confirming the theoretical importance of using the
true KFinf quantities over their usual relaxed versions.

KFinf(Fk,µ
?)

kl(µk,µ?) 4.39 5.22 12.04 10.19 11.73 11.04

KFinf(Fk,µ
?)

2∆2
k

4.72 5.55 12.73 10.87 12.44 11.63

Table 4: List of all ratios for the DSSAT bandit problem

To ground this theoretical analysis, we plot again the regret curves and average run time of tested
algorithms (Figure 6) as well as Table 5 that compiles the average regret and average run time on the
DSSAT experiment at the horizon 10 000. Reading this table, it is clear that FIMED improves the run
time of IMED without compromising the regret and that OIMED improves the run time even further,
close to the one of UCB, but at the cost of loosing a bit in the regret term. However, of the fastest
methods (those in O(1) run time), OIMED clearly has the smallest regret. If the practitioner is willing
to pay a bit more time complexity and space complexity, then our proposed FIMED seems to be the
best algorithmic method.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
eg

re
t

UCB
NPTS
IMED
IMED-kl
OIMED
FIMED
kl-UCB
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 6: Average regret (left) and run time (right) of the algorithms on the DSSAT bandit problem

Algorithm UCB NPTS IMED IMED-kl OIMED FIMED kl-UCB KL-UCB

Regret 252 49 41 148 100 40 74 60

Run time (sec.) 0.38 14 61 0.51 0.47 6 6.8 226

Table 5: Average regret and run time at horizon 10 000 on DSSAT

F.3 Additional bandit experiments

Here, we confirm the analysis of the previous section. First, we benchmark our FIMED and OIMED
algorithms against IMED using the experimental setting of the original paper by Honda and Takemura
[2015] in which the IMED algorithm is introduced. Then, we run two sets of experiments: one with
Bernoulli distributions to complete our main experiment presented in Section 4, Figure 3, and another
one with Beta distributions.

F.3.1 Original testbed of IMED

Negative exponential We consider the negative exponential setting in which the law of an arm
k is such that Xk = 1 − X ′k where X ′k is an exponential random variable with parameter µ′k. In
that case, the expected reward of arm k is µk = 1− µ′k and its support is in (−∞, 1]. In Figure 7,
we show simulation result of an experiment on a 5-armed negative exponential bandit problem

35

where, following the setting of Honda and Takemura [2015], {µ′k}k = {1/5, 1/4, 1/3, 1/2, 1}, i.e.
{µk}k = {4/5, 3/4, 2/3, 1/2, 0}.

regret_linear_quantile.pdf

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

M
ea

n
re

gr
et

IMED
R=24.40
FIMED
R=24.50
OIMED
R=43.91

time.pdf

0 2000 4000 6000 8000 10000
number of samples

0

10

20

30

40

ru
n

tim
e

IMED
T=36.0 s
FIMED
T=4.3 s
OIMED
T=1.3 s

Figure 7: Average regret (left) and run time (right) of the algorithms on a 5-arms negative exponential
bandit problem with means {4/5, 3/4, 2/3, 1/2, 0}.

On this setting, the benefit of the FIMED algorithm over the original IMED can easily be read from
Figure 7. FIMED enjoys the same regret as IMED while having an order of magnitude smaller compu-
tational time, confirming our theoretical analysis of FIMED. OIMED further reduce the computational
time (and space) complexity, however at the cost of a larger experimental regret. The regret still ex-
hibit the logarithmic shape in a reasonable experimental time and the choice is left to the practitioner
whether to trade regret against time and space complexity or not.

Truncated Gaussian We continue benchmarking our algorithms using the original testbed
of Honda and Takemura [2015], we run two experiments where arms are truncated Gaus-
sian distributions. In the first experiment, Figure 8, the distributions are truncated on [0, 1].
In the second experiment, Figure 9, the distributions are truncated on (−∞, 1]. In both
experiments, we use the same set of Gaussian distributions, of means (before truncation)
{0.6, 0.5, 0.5, 0.4, 0.4} and variances {0.4, 0.2, 0.4, 0.2, 0.4}. After truncation on [0, 1], the expected
values are {0.519, 0.5, 0.5, 0.465, 0.481}, and after truncation on (−∞, 1], the expected values are
{0.319, 0.390, 0.265, 0.320, 0.206}.

regret_linear_std.pdf

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

M
ea

n
re

gr
et

IMED
R=31.05
FIMED
R=30.06
OIMED
R=46.60

time.pdf

0 2000 4000 6000 8000 10000
number of samples

0

10

20

30

40

ru
n

tim
e

IMED
T=40.0 s
FIMED
T=6.5 s
OIMED
T=3.1 s

Figure 8: Average regret (left) and run time (right) of the algorithms on a 5-arms [0, 1]-truncated
Gaussian bandit problem with means {0.519, 0.5, 0.5, 0.465, 0.481}.

Quite accordingly to the intuition, the regret of all algorithms are better on the [0, 1]-truncated bandit
problem than on the (−∞, 1]-truncated one. Indeed, the variance of the former is smaller than the
variance on the latter and an increased variance, all things being equal, tend to decrease the divergence
between distributions, increasing the need for exploration. Both on Figure 8 and Figure 9, the regret
pf FIMED is on par with that of IMED while being much faster. Following our analysis of running
times, OIMED indeed is experimentally the fastest but does seem to trade this speed for a larger regret.
However, one can see that in Figure 9 that the regret gap is smaller than in Figure 9, probably because
the variance is larger. This variance interpretation is confirmed by the experiment on a Bernoulli
bandit that is presented in Honda and Takemura [2015].

36

regret_linear_std.pdf

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

70

80

M
ea

n
re

gr
et

IMED
R=43.92
FIMED
R=43.50
OIMED
R=56.61

time.pdf

0 2000 4000 6000 8000 10000
number of samples

0

10

20

30

40

50

ru
n

tim
e

IMED
T=39.9 s
FIMED
T=8.2 s
OIMED
T=3.2 s

Figure 9: Average regret (left) and run time (right) of the algorithms on a 6-arms (−∞, 1]-truncated
Gaussian bandit problem with means {0.319, 0.390, 0.265, 0.320, 0.206}.

Bernoulli In Figure 10, we show simulation results for a 10-arms bandit with Bernoulli rewards
with expected values {0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01}. It can be seen that the
performance gap between OIMED and IMED is larger than in any of the previous experiments. It can be
attributed to the fact that all the rewards are all very close to zero and the variance of the distributions
are small. However, the learning rate of the portfolio algorithm does not take those information into
account, and it takes some time for the portfolio algorithm to converge, a time that can be seen in
Figure 10 where the regret of OIMED is close to linear with no variance (pure exploration) for the
3 500 first time steps. In contrast, IMED and OIMED, which do not rely on a learning rate that is
independent of the variance, have a much smaller regret.

regret_linear_quantile.pdf

0 2000 4000 6000 8000 10000
Number of samples

0

100

200

300

400

500

M
ea

n
re

gr
et

IMED
R=70.82
FIMED
R=69.79
OIMED
R=381.99

Figure 10: Average regret (left) and run time (right) of the algorithms on a 10-arms Bernoulli bandit
problem with means {0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01}.

Reproducing the experiments of the original IMED Honda and Takemura [2015], we confirmed that
our theoretical analysis is experimentally supported. FIMED always seem to be on par with the original
IMED algorithm while enjoying an order of magnitude faster numerical complexity, as proven in the
analysis of running times. OIMED enjoys competitive regret, albeit experimentally larger than the
original IMED. However, it has the smallest computational time complexity and its space complexity
also is minimal. Therefore, it seems like there is currently a trade-off between achieving the smallest
empirical computational complexity (and space complexity) and achieving the smallest cumulative
regret. The original IMED lies at one extreme, OIMED at the other extreme and FIMED sits in-between.
The algorithms studied in this paper allows the practitioner to choose the trade-off that suit her the
best. Whether one can find an algorithm as fast as OIMED with experimental regret guarantees that
exactly match IMED is a question for future work.

37

F.3.2 Bernoulli bandits

In Section 4, we studied a Bernoulli bandit problem where all the means are close to 0.5 (Figure 3),
identified as a “difficult” problem because the variance of the distributions in maximized among those
supported in [0, 1]. Here, we explore two Bernoulli bandit problems, one where the means are located
close to 1 (Figure 11, Table 6) and another hereafter where means are located close to 0 (Figure
12, Table 7). For each experiment, we plot the regret curves, the run time curves, as well as a table
compiling the average regrets and run times of tested algorithms at the time horizon T = 10000.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

R
eg

re
t

UCB
NPTS
IMED
OIMED
FIMED
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

2

4

6

8

10

12

14

16

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 11: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit
problem with means {0.4, 0.6, 0.7, 0.85, 0.9, 0.95}.

Algorithm UCB NPTS IMED/IMED-kl OIMED FIMED kl-UCB/KL-UCB

Regret 289 33 30 43 30 95

Run time (sec.) 0.51 15 0.74 0.67 4.2 7

Table 6: Average regret and run time at horizon 10 000 on on a 6-arms Bernoulli bandit problem with
means {0.4, 0.6, 0.7, 0.85, 0.9, 0.95}

We recall that for Bernoulli bandit, IMED and kl-IMED are the same algorithms (we assume that
IMED is implemented as kl-IMED while only 0s and 1s are observed). For FIMED we could have
done the same thing to improve its run time without changing its regret in order to emphasize that
FIMED is always faster (or as fast as) kl-UCB, even when using the Bernoulli kl. While the regret and
time values change from one experiment to another, the conclusions that can be drawn from them
do not, especially when considering the confidence intervals represented by the 10%-90% quantiles.
Experimentally, OIMED (or OMED, see Section F.4) should be the preferred O(1) method and FIMED
(or FMED, see Section F.4) should be preferred if we really target an empirically optimal regret without
compromising too much on the running time.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
eg

re
t

UCB
NPTS
IMED
OIMED
FIMED
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

2

4

6

8

10

12

14

16

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 12: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit
problem with means {0.05, 0.1, 0.15, 0.2, 0.22, 0.25}

38

Algorithm UCB NPTS IMED/IMED-kl OIMED FIMED kl-UCB/KL-UCB

Regret 328 87 82 116 81 98

Run time (sec.) 0.51 15.4 0.75 0.69 5.6 5.9

Table 7: Average regret and run time at horizon 10 000 on on a 6-arms Bernoulli bandit problem with
means {0.05, 0.1, 0.15, 0.2, 0.22, 0.25}

F.3.3 Beta bandits

Beta distribution of a given mean can have different shapes. In particular, a Beta distribution can
be close to a Bernoulli distribution (shape parameter close to zero) with most of the density located
around 0 and 1, close to a Dirac distribution (shape parameter significantly larger than one) with
most of the density located around the mean, and close to a truncated Gaussian distribution (shape
parameter larger than one) with the characteristic bell shape distribution around the mean.

In Section 4, we studied a Bernoulli bandit problem where all the means are close to 0.5 (Figure 3).
Here, using the same set of means, {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}, we run two experiments, one on
Beta distributions with an intermediate shape parameter of 5 (Figure 13) and another where Beta
distributions have a shape parameter of 50 (Figure 15), hence with highly piked distributions. We do
so to illustrate the effect of changing the shape of distributions without changing the set of means.

0.0 0.2 0.4 0.6 0.8 1.0
value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

de
ns

it
y

Figure 13: Beta bandit distributions with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter
of 5

39

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
eg

re
t

UCB
NPTS
IMED
IMED-kl
OIMED
FIMED
kl-UCB
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 14: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit
problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

Algorithm UCB NPTS IMED IMED-kl OIMED FIMED kl-UCB KL-UCB

Regret 322 35 29 103 63 30 100 49

Run time (sec.) 1.2 14.5 53.5 1.5 1.4 5.2 7.7 284

Table 8: Average regret and run time at horizon 10 000 on on a 6-arms Beta bandit problem with
means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

Comparing the regret curves of Figure 3, Figure 14, and Figure 16, it is clear that the Bernoulli
distributions does induce the larger variance on the regret curves as we identified while the Beta
distributions with the largest shape parameter (more concentrated around their means) induce the
smallest variance on the regret curve. This, once again, confirms our theoretical findings. While
the order of regret curves is globally preserved, one can see on Figure 3 that, except for UCB, the
Bernoulli experiment makes all curves to be very similar, which is normal since, except for UCB, all
algorithms are roughly solving the same problem (all sample are 0s and 1s). When dealing with Beta
distributions, IMED is different than kl-IMED and KL-UCB is different than kl-UCB.

0.0 0.2 0.4 0.6 0.8 1.0
value

0

1

2

3

4

5

6

de
ns

it
y

Figure 15: Beta bandit distributions with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter
of 50

40

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

R
eg

re
t

UCB
NPTS
IMED
IMED-kl
OIMED
FIMED
kl-UCB
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 16: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit
problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 50

Algorithm UCB NPTS IMED IMED-kl OIMED FIMED kl-UCB KL-UCB

Regret 323 20 15.9 103.9 55.8 15.8 95 19.2

Run time (sec.) 1.2 14.4 70.8 1.5 1.4 5 7.8 303

Table 9: Average regret and run time at horizon 10 000 on on a 6-arms Beta bandit problem with
means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 50

Those experiments confirm our numerical findings that OIMED (or OMED, see Section F.4) should be
the preferred method with O(1) computation time, and FIMED (or FMED, see Section F.4), should be
preferred if we really target an empirically optimal regret.

F.4 Comparison of MED and IMED versions

In this paper, we derived algorithmic and theoretical results for modification of both IMED and MED
algorithms. In this section, we compare IMED, its modifications FIMED and OIMED, MED, and its
modifications FMED and OMED. The comparison is made on three experimental setting, the DSSAT
bandit problem and Bernoulli bandit problem presented in the main experimental Section 4, as well
as a Beta bandit problem with an intermediate shape parameter of 5 and centered means equal to the
Bernoulli setting.

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

100

120

R
eg

re
t

IMED
FIMED
OIMED
MED
FMED
OMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

70

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 17: Average regret (left) and run time (right) of the algorithms on DSSAT

Algorithm IMED FIMED OIMED MED FMED OMED

Regret 41.7 40.4 100.5 55.1 55.6 87

Run time (sec.) 60.8 5.9 0.5 60.8 6.6 0.6

Table 10: Average regret and run time at horizon 10 000 of the algorithms on DSSAT

41

In Figure 17 and Table 10, we observe that IMED slightly overperforms MED. Consequently, FIMED
also slightly overperforms FMED for the regret metric. Regarding the running time, the MED versions
of algorithms are a bit slower than the IMED versions due to the numerical complexity of sampling,
larger than that of computing the argmin of IMED indexes. Interestingly, OMED overperforms OIMED in
terms of average regret performance. As we can see in Figure 18 and Table 11 presenting the results
of the Bernoulli experiment, this is not a general rule.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

R
eg

re
t

IMED
FIMED
OIMED
MED
FMED
OMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 18: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit
problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}

Algorithm IMED FIMED OIMED MED FMED OMED

Regret 105.8 106.6 123.3 141.5 145.2 140.1

Run time (sec.) 39 6 0.7 39.3 6.8 0.8

Table 11: Average regret and run time at horizon 10 000 of the algorithms on a 6-arms Bernoulli
bandit problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

R
eg

re
t

IMED
FIMED
OIMED
MED
FMED
OMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 19: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit
problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

Algorithm IMED FIMED OIMED MED FMED OMED

Regret 30 29.7 63.7 40 41.4 64.7

Run time (sec.) 53 5.2 1.4 54 5.4 1.6

Table 12: Average regret and run time at horizon 10 000 of the algorithms on a 6-arms Beta bandit
problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

The experiment on Beta distribution, Figure 19 and Table 12, confirms that the regret loss incurred by
the transition from MED to OMED is smaller than the one of transitioning from IMED to OIMED. It may

42

be because the sampling strategy of MED is better to handle the statistical approximation of portfolio
algorithms.

F.5 Stability of OIMED with respect to the learning rate

The portfolio algorithm, Soft Bayes, behind OIMED and OMED depends on a hyperparameter, η, the
learning rate. A learning rate scheme is prescribed in Theorem 3 of [Orseau et al., 2017] with

η(n) =

√
log(2)

4n

where n is the number of collected samples. In section, we test the numerical stability of our OIMED
algorithm with respect to the learning rate. To do so, we will replace this original η by

ηr(n) =

√
r log(2)

4n

where r will range from 0.01 to 100. We illustrate the stability of OIMED on three bandit settings: the
DSSAT bandit problem and Bernoulli problem that were introduced in the main Section 4 and a Beta
bandit problem where all the means are centered around 0.5 and the same as in the Bernoulli bandit.

First, we test the stability of our OIMED algorithm on the DSSAT bandit problem that we already used
in the main experimental Section 4 and Appendix F. On Figure F.5, the average regret ranges from
103.5 for the smallest values of the parameter r to 88.5 for the largest value of r with an intermediate
regret of 99.5 for our original value r = 1. On this same plot, it is interesting to see that despite
the large range of tested parameter size, the quantile tubes remain of roughly the same size with no
evident bad behavior. While the effect of changing r may seem important, in the range of tested
parameter, the effect of changing r would not have affected the ranking of algorithms in the original
experiment, Figure 2 and Table 5. This experiment shows the stability of OIMED with respect to the
learning rate, in the sense that a multiplicative constant does not seem to be able to dramatically
deteriorate its performance.

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

100

120

140

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

Figure 20: Average regret of the algorithms on DSSAT

Those findings are confirmed on a second experiment performed on a Bernoulli bandit problem
with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}. The regret changes from 107 to 124 when varying the
parameter r from 0.01 to 100, and, while the upper quantile is larger for small value of r, we still
observe a logarithmic curve which confirms the stability of OIMED.

43

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

Figure 21: Average regret at horizon 10 000 of the algorithms on a 6-arms Bernoulli bandit problem
with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}

Finally, we check the effect of the learning rate on two Beta bandit problems where means are
{0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and one problem has Beta distributions with shape parameter 5 and
the other with shape parameter 50. Those two Beta bandit problems are presented in Appendix F.3.3.

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

Figure 22: Average regret of the algorithms on two 6-arms Beta bandit problems with means
{0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5 (left) and 50 (right)

When the variance of the distributions is smaller (large shape parameter), we can see that regret curves
are better separated and the the bonus of choosing a larger learning rate parameter r is amplified.
When the variance is larger (small shape parameter), regret curves are closer to each other and more
within each others quantile tubes. This last experiment confirms all our previous findings about the
numerical stability of OIMED.

F.6 IMED with discretized rewards

In Section 1 of this paper we introduced a known trick to reduce the time and memory complex-
ities of MED/IMED. It consists in using algorithms designed for multinomial rewards, by using a
discretization procedure on the collected rewards. We furthermore detailed this technique in Ap-
pendix F.1, and proved its inevitable sub-optimality for some problems. We end this section by
experimenting with multinomial IMED, comparing the empirical performance and computation time
of several instances using different grids. In each case, we fix a number of ticks M , and use the grid{

0, 1
M−1 , . . . ,

M−2
M−1 , 1

}
({0, 1} if M = 2). Our objective is to identify the number of ticks needed

44

to get a regret close to IMED, and the evolution of the computation time with the number of ticks.
We first run an experiment on the DSSAT bandit problem, and then on a Beta bandit problem where
means are close to zero.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

R
eg

re
t

Mult. IMED - 2 ticks
Mult. IMED - 3 ticks
Mult. IMED - 5 ticks
Mult. IMED - 7 ticks
Mult. IMED - 10 ticks
Mult. IMED - 20 ticks
IMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

70

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 23: Average regret (left) and run time (right) of the algorithms on DSSAT

Alg. (ticks) IMED (2) IMED (3) IMED (5) IMED (7) IMED (10) IMED (20) IMED

Regret 151.5 75.7 50.9 45.2 44.1 40.25 40.25

Run time 32.8 33.1 36.8 39.4 42.2 44.8 61.1

Table 13: Average regret and run time at horizon 10 000 of the algorithms on DSSAT

Unsurprisingly, the more ticks, the better the regret and the larger the running time, with IMED and
kl-IMED providing the range for both metrics. For this problem, M = 20 (intervals of length ≈ 0.05
between each tick) seems to be enough to make the algorithm using discretized rewards almost match
the true IMED in terms of regret, while being 25% faster.

We remark that the evolution of the time complexity per time step is not linear in the number of ticks.
This is likely because it is actually dependent of the “effective” number of ticks used in memory, i.e.
those that contain at least 1 samples. Getting at least 1 sample for each tick/arm takes some time, that
depends on the shape of the distributions on the [0, 1] support.

We run a final experiments on a Beta bandit problem that confirms our findings. IMED and kl-IMED
again provide the range for both computation time and regret, and for this problem M = 20 is also
the value from which IMED and discretized IMED start to match in terms of regret, while the latter is
approximately 20% faster.

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

100

120

R
eg

re
t

Mult. IMED - 2 ticks
Mult. IMED - 3 ticks
Mult. IMED - 5 ticks
Mult. IMED - 7 ticks
Mult. IMED - 10 ticks
Mult. IMED - 20 ticks
IMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

70

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 24: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit
problem with means {0.05, 0.1, 0.15, 0.2, 0.22, 0.25} and shape parameter of 5

45

Alg. (ticks) IMED (2) IMED (3) IMED (5) IMED (7) IMED (10) IMED (20) IMED

Regret 81.8 43.8 32.9 30.8 29.6 29.2 29.2

Run time 31.3 41.5 45.5 46.4 49.2 51.2 62.5

Table 14: Average regret and run time at horizon 10 000 of the algorithms on a 6-arms Beta bandit
problem with means {0.05, 0.1, 0.15, 0.2, 0.22, 0.25} and shape parameter of 5

46

	Introduction
	Fast MED algorithms
	On-access update and linearization: FMED and FIMED
	Sequential update: OMED and OIMED

	Theoretical guarantees
	Experiments
	Conclusion
	Index, notation and algorithms
	Index and notation
	Detailed implementations

	Proof of Theorem 1: regret analysis of the index policies
	Toolbox for bounded distributions.
	Proof of Theorem 1

	Proof of Theorem 2: regret analysis of OMED and OIMED
	Accuracy of KinfF approximation and discretization trick
	Online KinfF computation with portfolio optimization algorithms
	Proof of Lemma 1
	Soft-Bayes

	Supplementary experimental results
	Detail of the costs of each algorithm
	DSSAT distributions
	Additional bandit experiments
	Original testbed of IMED
	Bernoulli bandits
	Beta bandits

	Comparison of MED and IMED versions
	Stability of OIMED with respect to the learning rate
	IMED with discretized rewards

