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ABSTRACT

In the recent studies of data augmentation of neural networks, the application of test
time augmentation has been studied to extract optimal transformation policies to
enhance performance with minimum cost. The policy search method with the best
level of input data dependency involves training a loss predictor network to estimate
suitable transformations for each of the given input image in independent manner,
resulting in instance-level transformation extraction. In this work, we propose a
method to utilize and modify the loss prediction pipeline to further improve the
performance with the cyclic search for suitable transformations and the use of the
entropy weight method. The cyclic usage of the loss predictor allows refining each
input image with multiple transformations with a more flexible transformation
magnitude. For cases where multiple augmentations are generated, we implement
the entropy weight method to reflect the data uncertainty of each augmentation
to force the final result to focus on augmentations with low uncertainty. The
experimental result shows convincing qualitative outcome and robust performance
for the corrupted conditions of data.

1 INTRODUCTION

Test time augmentation (TTA) is a field of data augmentation, which involves transforming an input
image to augment different versions of itself for neural network prediction during test time. This
generates multiple softmax outputs, which can be integrated by averaging them to extract the final
single output. Such a method has been known to result in more robust and better performance of the
neural network (Krizhevsky et al., 2012; Ashukha et al., 2020). Conventionally, which transformations
to use are heuristically set in global-level (i.e. performing the same types of augmentation to all the
input data) for the domain.

However, there are limitations for conventional TTA. The major concern is the cost. TTA policy
refers to the scheme of how many augmentations of what transformations with what magnitude for
each augmentation would be utilized (Molchanov et al., 2020). While increasing the number of
augmentation in the policy usually results in better performance, the cost requirement has to increase
in a multiplicative manner. Because of such cost efficiency, many TTA predictions can be found in
tasks where accuracy plays an important role, such as artificial intelligence competitions and medical
or biological image processing (Krizhevsky et al., 2012; Perez et al., 2018; Matsunaga et al., 2017;
Moshkov et al., 2020).

Another concern involves the inflexibility of the policy. While the suitable policy should maintain
intra-class invariance (i.e. invariance of the label under transformation) and inter-class distinctiveness
(i.e. ability to maintain distinctive features to distinguish between classes) of input data to the model
(Sato et al., 2015; Shanmugam et al., 2020), in conventional scheme, the policy is found heuristically
and applied in global-level. This could bring disruption and inconvenience to the policy establishment.
For example, a horizontal flip is known to be a common and effective TTA transformation with intra-
class invariance and inter-class distinctiveness for most images from ImageNet dataset (Krizhevsky
et al., 2012; Deng et al., 2009). However, from MNIST dataset (Deng, 2012), while visually
symmetric numbers (e.g"1","8") could be acceptable to such transformation, orientation-sensitive
images (e.g"7","6","2","5") could lose their intra-class invariance and inter-class distinctiveness from
the flipping, losing features to classify them as their original labels.
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To overcome such limitations, trainable TTA policy search methods were introduced. These ap-
proaches aim to structure the most suitable TTA policy as an optimization problem, finding the most
helpful augmentations from various candidates of transformations and their magnitudes. From Greedy
Policy Search (GPS) (Molchanov et al., 2020), multiple augmentations can be generated in the policy,
with each augmentation is regarded as a sub-policy, capable of consisting multiple transformations
with corresponding magnitudes. While GPS had a global-level TTA scheme, some of the studies
aim to find more specific level of data dependency of TTA consideration, namely class-level and
instance-level (i.e. applying transformations to the input image depending on individual input data
condition).

Trainable TTA policy has also contributed to the robustness of neural network prediction. On contrary
to the promising performance of neural networks, it has been studied that they could be vulnerable to
perturbations or corruptions in data (Goodfellow et al., 2015; Hendrycks & Dietterich., 2019). Many
studies in data augmentation methods have achieved strong robustness (Dan et al., 2020; Cubuk et al.,
2019; Lim et al., 2019) against the damages. Previous works (Kim et al., 2020; Molchanov et al.,
2020) showed that TTA could also improve the robustness. With a suitable TTA policy, corruption
in the image could be suppressed by modifying the test image directly via suitable transformations.
Kim et al. (2020) recently introduced the first instance-level TTA policy search method, where which
transformation to proceed is determined by the condition of each instance of input image. With the
application of a loss predictor, their work was able to achieve robustness improvement with only a
small amount of additional computation cost.

In this work, we introduce cyclic TTA with entropy weight method (EWM) in classification task
by implementing multiple transformations and reflecting uncertainty directly to each prediction
result from augmentations. As we follow the instance-level TTA is the effective level of the data
dependency, we believe that there are more potential rooms for improvement to the loss prediction
pipeline (Kim et al., 2020) in terms of the flexibility. With an iterative maneuver of the loss predictor,
each image can be assigned with multiple transformations with a more flexible magnitude. For
multiple augmentations case, we also introduce the implementation of modified EWM to attenuate
the softmax output with high data uncertainty. Because the cost for the calculation of the entropy is
relatively minor, the EWM can easily be adapted to improve the robustness of network prediction.

2 RELATED WORKS

Test time augmentation. TTA for neural network prediction has been used for a while. Many
innovative neural network performances on ImageNet dataset (Deng et al., 2009) used TTA method
(Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan & Zisserman, 2015; He et al., 2016) for
their records, using augmentations of numerous cropped patches from the original images. This
helped to result in accuracy improvement with the multiplicative cost increase. For TTA’s capability
to directly modify the data during test time, TTA has been studied to possess more potentials, such
as uncertainty estimation to data distillation (Wang et al., 2019; M.S. & Berens, 2018; Radosavovic
et al., 2018). TTA policy search is one of the attempts to find the solution to the cost limitation and
further improvement of its effectiveness. Sato et al. (2015) were the one of the first to analyze TTA
policy, building an optimal decision rule to achieve improvement in generalization. GPS (Molchanov
et al., 2020) was introduced as a learnable global-level TTA policy search method, greedily building
a global-level policy. GPS showed excellent improvement in accuracy and robustness, performing
multiple transformations with flexible magnitude to each sub-policy. Shanmugam et al. (2020)
proposed a TTA policy with class-level data dependency. Their work involves training a set of
parameters to learn the relation between class and each augmentation and to use it as post-processing
to extract one final prediction from the multiple predictions. Recently, Kim et al. (2020) proposed
a TTA policy with instance-level data dependency. They trained a loss predictor to be capable of
predicting which transformation would be suitable for the target network (i.e. the main classifier
used for the task). Their contribution is that such a pipeline is very cost-efficient, even with a single
augmentation could increase the robustness effectively. However, unlike GPS, such a pipeline could
not implement multiple transformations with flexible magnitude, each sub-policy to intake a single
transformation from a set of predefined transformations.

Robustness to Corruption. While modern days neural networks achieve high performance, ex-
ceeding human capabilities, many studies show that they can easily malfunction for corruptions
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and perturbations from various sources from real-life implementations (Goodfellow et al., 2015;
Hendrycks & Dietterich., 2019). Hendrycks & Dietterich. (2019) introduced a benchmark for
corruptions with ImageNet data, namely ImageNet-C, simulating 19 different types of corruption
for network robustness evaluation. Many data augmentation approaches (Dan et al., 2020; Cubuk
et al., 2019; Lim et al., 2019) were introduced to enhance the robustness, resulting in significant
improvement for various kinds of corruptions.

Uncertainty Estimation. Uncertainty estimation acts as an indicator for the confidence of network
prediction. Many applications in deep learning involve implementation of the uncertainty to provide
additional information to the final prediction (Gal, 2016). In field of active learning, where uncertain
data are queued to be labeled from a set of unlabeled data, a loss value can used as a mean for
estimation of the uncertainty. In the case of active learning classification (Yoo & Kweon, 2019), a
separate loss predictor module can be trained to estimate expected loss magnitude with much less
cost, providing a faster and more efficient method to find samples with high expected loss value
to queue and select the uncertain unlabeled data. In this case, the loss value can be regarded as an
indication of how much uncertain the data is to the target network (the classifier), for samples with
high loss value brings a relatively major change to the condition of neural network.

From another point of view, according to the previous work by Malinin et al. (2020), overall
uncertainty measurement from neural network prediction can be divided into knowledge uncertainty
and data uncertainty. In this paper, we focus on the data uncertainty, irreducible uncertainty due to the
nature of complexity or noise in the data. In the classification task, data uncertainty can be calculated
as the expected entropy value of softmax outputs. The expectancy can be calculated by averaging the
multiple prediction (softmax outputs) by multiple models from an input data.

Entropy Weight Method. In the field of decision making, EWM is used to reflect the disorder
degree of a system (Amiri et al., 2014; Liu et al., 2010). Many studies in water quality assessment
use EWM to reflect the uncertainty among the samples to diminish the importance weights of
uncertain assessment parameters. The weights indicate the importance of parameters (for the quality
assessment) and are calculated to be large for low entropy and vice versa. For example, a type of
substance (i.e. a parameter) detected with a uniform amount from the majority of samples would
gain less weight value than other parameters, due to the high entropy from the uniformity. With
some adaptive modification from previous EWM, we observe that a network prediction might be
similarly regarded as a sample from the field of decision making. By reflection of the entropy to the
network predictions, we seek to improve the robustness of the predictions with only a small extra
cost to calculate the entropy.

3 METHOD

Our method includes cyclic modification of the loss prediction pipeline and implementation of the
EWM. In section 3.1, we introduce our baseline, the previous loss prediction pipeline illustrated in
Figure 1, and the modifications for our method. The cyclic application of the loss predictor will be
explained in section 3.2. The iterative manner of transformations tries to find an optimal condition
for a given input image. Compare to the previous work, such application contributes to additional
flexibility of transformations in TTA policy. The difference between the former method is illustrated
in Figure 2. In section 3.3, the modifications and implementation of EWM are explained. In case
of multiple augmentation case, where more than one augmentation are used for TTA policy, we
aim to reflect the data uncertainty to each augmentation. We refer to the well-stated definition of
the uncertainty (Malinin et al., 2020), considering the entropy from softmax output could represent
the data uncertainty with a difference in that we only use a single network to calculate the data
uncertainty.

3.1 LOSS PREDICTION FOR THE TRANSFORMATION ESTIMATION

Kim et al. (2020) introduced an innovative loss prediction pipeline for instance-level image augmenta-
tion during test time. As presented in Figure 1, a loss predictor aims to find a suitable transformation
among predefined transformations for an input image to be prepared for the target network (i.e.
classifier). During the test time, an input image is resized and evaluated by the loss predictor. The
loss predictor predicts the expected losses for each of the presumable target network predictions
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Figure 1: Illustration of the loss prediction pipeline (Kim et al., 2020). (a) Loss prediction for
which transformation T to take on the corrupted image of "chiton" during testing. τa,b indicates the
predefined transformation of type a with its magnitude b. (b) Training algorithm of the loss predictor
θLP . During the training, an input image x is transformed into all of the predefined transformations
τ to produce loss values yloss(τ(x)) by making predictions with the target network θtarget. These
loss values are given to the loss predictor θLP as target values after softmax normalization and as
Spearman correlation ranking loss (Engilberge et al., 2019). The loss predictor intakes the resized
input image to learn the correlation between the target network results from the transformed images
and the downsized original image condition.

with transformed augmentations from the predefined set of transformations. In other words, the loss
predictor tells of what transformation would result in the best outcome for the target network, in
scores of minimum the better. The transformation corresponding to the minimum predicted loss is
selected as the top 1 choice for the sub-policy. In the case of a single augmentation, such a pipeline
guides an input image to go through suitable pre-processing, making a classifier prediction from the
transformed condition of the image.

Training the loss predictor. Training the loss predictor requires the target network to make predic-
tions with an input image in multiple augmented forms in the manner of predefined transformations.
During the training, the target network is frozen, only making predictions. For each prediction, cross-
entropy loss values are calculated. The loss values from the augmentations are softmax normalized
and are fed to the loss predictor as the target values, as Spearman correlation ranking loss (Engilberge
et al., 2019). Ultimately, the loss predictor learns to find which transformation is required to result in
the least loss value, as the image is evaluated by the target network. Being able to predict with suitable
transformation to extract the least loss value, the input image has more chances to be classified with
the correct answer.

For training the loss predictor on the ImageNet dataset, training data used for training the target
network are reused. Although training the loss predictor with a separate validation set seems to
be more suitable, for the loss values by the target network prediction from training data would not
perfectly simulate the actual test condition, regardless, it has been reported that they do not make
much difference in performance.

Loss predictor architecture. For the network architecture of the loss predictor, EfficientNet-B0 (Tan
& Le., 2019) is used as the backbone. Architectural modifications were taken to utilize multi-level
features of input as the active learning loss predictor (Yoo & Kweon, 2019). The loss prediction
pipeline is stated to be cost efficient because the cost for the loss prediction with such a network
architecture is relatively negligible to that of the target networks used for the classification (Kim et al.,
2020). Downsizing the image into 64 by 64 pixels has allowed such cost efficiency and aimed for the
loss predictor to learn low level features as well.

Transformation candidates. As for predefined transformations, in our method, we have modified the
transformation magnitudes to simulate more flexible outcome. The types of transformation include:
Identity, Rotation, Zoom, Auto Contrast, Blurring, Sharpening, and Color Saturation. Including the
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Figure 2: Top: Comparison between the previous method (left) and the cyclic (right) loss prediction
pipeline. Tt indicates the suggested transformation at iteration t. Bottom: Expanded illustration of
the cyclic loss prediction. The input image of a "king snake" is corrupted with snow corruption. The
image goes through iterative loss prediction cycles until it meets the exit signal. tτidentity

indicates
the iteration when the loss predictor suggests identity transformation, which is an exit signal.

magnitude configurations for each transformation, our method composes 12 different transformation
candidates. In Appendix A, we explain the details about the transformations. Overall, the loss
predictor suggests one of these transformations with the least expected loss value, which then the
transformations takes place to be ready for the target network prediction.

Additionally, in order to build robustness to corruptions, random sequences of corruption, from
the previous study by Hendrycks & Dietterich. (2019), were given to the input images, simulating
various types of real-life conditions of the images. In the case of k > 1 number of augmentations
are used, the top k transformations from the loss predictor suggestion are selected to generate the
corresponding k number of augmentations. In case of not using the EWM, classification results from
the augmented images are integrated in a conventional manner, averaging the softmax outputs.

3.2 CYCLIC TTA

Cyclic loss prediction. Contrary to the former study, our work utilizes the loss predictor in a cyclic
manner as shown in Figure 2. Once the image is transformed according to the prediction by the loss
predictor, instead of being directly processed by the target network, the modified image is again fed
to the loss predictor, forming a cycle. The image goes through the cycle continuously, until the exit
signal is activated. We set two conditions for the exit signal to be activated. The first is when the loss
predictor predicts the input image should perform identity transformation. This indicates that the
image no longer requires additional transformations to result in better condition, ideally presuming an
optimal condition of the image. The second condition is when the number of cyclic iteration reaches
the predefined hyper parameter of maximum number of the iteration. Because our loss predictor is not
perfect to predict the suitable transformation, to prevent rarely happening unbounded continuity of
the cyclic loss predictions, we set certain limitation to the number of cycle the loss predictor iterates.
Such simple modification can expand the transformation space into a much larger volume of possible
combinations from the set of predefined transformations. Given that T and m stands for the number
of transformation candidates and maximum number of iteration respectively, transformation space in
our method can be written as Tm − Tm−1 + 1. While our baseline had m = 1 to have the T number
of transformation possibilities, it can be shown that larger m in our method opens for more potential
candidates for the input image to be transformed into.
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For a corrupted input image, a single iteration of transformation might not be sufficient to suppress
the corruption. For example, if an image should be corrupted by a severe Gaussian noise, following
the former method, a blurring transformation would be selected and performed to remove the noise.
However, it is possible to leave the residual noise component, for the magnitude of the transformation
is predefined and only performed once. On the other hand, cyclic iterations of transformation could
continuously try to remove the noise until the loss predictor predicts the condition of the image to be
well suited for the classification. In such behavior, it is possible for the cyclic TTA to provide more
flexible and multiple types of transformation maneuver as a preprocessing for the task.

Multiple augmentations. In case of k > 1 augmentations, we prepare k number of original images
to be processed. In the first iteration of t = 1, each image is transformed according the top k
transformations from the loss prediction respectively. Starting from the second iteration, unless the
exit signal is activated for each augmentation, each image will proceed as normal cyclic behavior,
each selecting the top 1 suggestion from their each loss predictions. In short, each of k augmentations
starts with different transformation at t = 1 and proceeds the cyclic TTA independently. Ideally to
say, if the loss predictions were to be very accurate, all k transformed images would present similar
features, for assuming that there is only one optimal condition of the input image to be prepared
for the classification. In the end, k number of target network predictions are generated as softmax
outputs. Assuming the EWM is not used, these are averaged to extract a final prediction for each
input image.

Cyclic TTA cost. As previously mentioned, the cost for the loss prediction is relatively trivial to
that of the target network prediction. For example, our experiments on ImageNet involves a target
network takes 4.1 GFLOPs, whereas loss predictor with downsized input image only requires 2.6
MFLOPS. Although our cyclic loss prediction requires multiple iteration of the loss prediction and
transformation, because the number of iteration can be controlled with hyper parameter of maximum
number of iteration and the cost of the loss prediction is relatively small, such pipeline can sustain
somewhat similar cost efficiency compare to that of our baseline.

3.3 ENTROPY WEIGHTED SUMMATION

In conventional case of using multiple augmentations for TTA, the integration of the softmax outputs
is performed by averaging them. In case of classification task with n classes and m augmentations
are used, conventional method to extract the final prediction score for class j (≤ n) can be calculated
as

pfinalj = 1
m ·

m∑
i=1

pi,j , (1)

where i represents the augmentation index and pi,j indicates softmax output element of class j
from augmentation i. Then, the final classification is decided by choosing the class index j with
the maximum value of pfinalj . Such integration implies weighting each prediction with the same
importance. On contrary, we see that certain augmentations can be more important to provide correct
prediction (Shanmugam et al., 2020). For example, for cropping multiple image patches from an
original input image, augmentations can be generated each with a different view. Certain patches
might not contain essential features, for parts of the original image could be excluded from cropping.
In this case, considering these augmentations as the same importance as the others with more correct
information could bring disturbance to the final prediction. The illustrations of such cases are present
in Appendix C.

Inspired by previous works from the field of decision making (Amiri et al., 2014; Liu et al., 2010;
Zhu et al., 2020), we state that each prediction made by corresponding augmentation can be regarded
as a sample data with a probability distribution for which decision to make with corresponding
implicit uncertainty. We modify the previously established EWM to implement in the neural network
prediction. While EWM calculates the entropy among samples of data to calculate weights for
evaluation parameter, we calculate the entropy Ei of augmentation i as

Ei = −
n∑
j=1

pi,j · ln pi,j . (2)
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The entropy is then used to extract the weight wi with softmax normalization for each augmentation
i:

wi =
(

eEi∑m
i=1 e

Ei

)−1

. (3)

By having the reciprocal of softmax entropy to calculate weights, each weight represents how much
each augmentation is certain for its prediction. As for the integration of the predictions from the m
augmentations, the final prediction score for class j element is calculated as

pfinalj =

m∑
i=1

wi · pi,j . (4)

As same as the conventional method, final classification done by choosing the class index with the
maximum value of pfinalj . Considering the definition of the data uncertainty by Malinin et al. (2020),
modified EWM can be regarded as a reflection of data uncertainty to each augmented data, focusing
more on less uncertain augmentation and vice versa. Ideally to say, calculation for more accurate level
of data uncertainty involves using more than one neural network. Regardless, with such reflection of
the uncertainty, our experiments show that the network prediction can extract more robust predictions
to the corrupted data in case of using multiple number of augmentations.

4 EXPERIMENTS

4.1 IMAGENET CLASSIFICATION

We experiment the effect of cyclic behavior of the loss predictor and EWM on ILSVRC 2012 dataset
(Deng et al., 2009). ImageNet contains 1.2 million images with 1000 classes of real life objects.
In addition to the clean condition of the data, we also evaluate our method on ImageNet-C dataset
(Hendrycks & Dietterich., 2019), where various types of corruption are simulated with 5 different
severity. The corruptions from the ImageNet-C include 19 different types of algorithmically generated
corruptions from noise, blur, weather, digital, and extra categories. While typical error rate is used
for the evaluation in clean data, to evaluate the robustness of neural network performance, mean
corruption error (mCE) metric is used (Hendrycks & Dietterich., 2019). Overall, in order to evaluate
a single iteration of mCE, 50,000 (ImageNet validation data size) × 5 × 19 samples with size of
224 × 224 are used.

In Table 1, we show performance with using ResNet-50 (He et al., 2016) as the target networks
for the pipeline. The networks are trained in two different fashions: standard and Augmix (Dan
et al., 2020). Performances from each data augmentation are presented. For comparison, typical
TTA methods are selected (the typical TTA methods are described in detail in Appendix A). These
methods are widely and frequently used conventional TTA methods shown to improve accuracy in
many cases (Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan & Zisserman, 2015; He et al.,
2016). Additionally, we compare our methods to the previous method (Kim et al., 2020), making
a single transformation prediction for each image. For each test case, relative costs are presented.
These costs only concern the computation load for the classification, for the load for transformations
and loss prediction is relatively menial. For the integration method of how multiple predictions
extract the final single prediction, we compare conventional average summation to our EWM method.
Performance on the clean condition and the corrupted conditions are labeled as Clean and mCE
respectively. Smaller value indicates better performance.

4.2 EVALUATION

In the results from the clean condition of ImageNet, we observed that the loss prediction pipeline has
a little and inconsistent impact on the error rate. In most cases, identity transformation is selected by
the loss predictor, indicating the data are already in decent condition for prediction. For the corrupted
data, as the single prediction reduces the mCE, cyclic TTA contributes to further improvement. For
the target network trained with Augmix, the network has already built strong robustness from the
corruption. In this case, both loss prediction pipeline shows minor improvement.

For EWM, while cases of clean data are minorly affected as well, it showed general improvement in
the corrupted data. For convention TTA with EWM, as the number of augmentations increases from
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Train Time Augmentation TTA Method Cost
Average EWM (Ours)

Clean mCE Clean mCE

Standard

Center Crop 1 24.14 75.79
Horizontal Flip 2 23.76 74.77 23.78 74.75

5 Crops 5 23.57 74.37 23.47 74.22
10 Crops 10 23.04 73.57 23.05 73.34

Single
1 24.15 74.14
2 24.04 73.36 24.03 73.26
3 23.84 73.23 23.85 73.08

Cyclic (Ours)
1 24.15 73.69
2 24.04 73.13 24.06 73.08
3 23.81 72.74 23.81 72.68

Augmix

Center Crop 1 22.39 65.07
Horizontal Flip 2 22.15 64.35 22.16 64.31

5 Crops 5 21.69 63.56 21.68 63.35
10 Crops 10 21.56 63.05 21.49 62.76

Single
1 22.37 64.34
2 22.31 63.82 22.30 63.77
3 22.33 63.86 22.34 63.73

Cyclic (Ours)
1 22.37 64.14
2 22.33 63.77 22.31 63.74
3 22.33 63.68 22.31 63.62

Table 1: Performance comparison of the previous methods with the proposed method on ImageNet
and ImageNet-C. Fourth column indicates averaging for integrating the predictions from multiple
augmentations. Fifth column shows the performance with the EWM. Single TTA method refers to
the previous method by Kim et al. (2020). Cyclic refers to our method. It is bold when either cyclic
method or EWM method shows performance improvement of 0.2% or more.

horizontal flip to 10 crops, the improvement in mCE has increased. This indicates that, as more
augmentations are used, more candidates to reflect the uncertainty are available to extract certain and
correct answers.

4.3 CYCLIC USAGE OF ORACLE-TTA

Kim et al. (2020) suggested a hypothetically perfect loss predictor named Oracle-TTA to simulate
the performance upper bound for the loss prediction pipeline. Oracle-TTA is assumed to be able
to accurately predict which transformation is required for the input image to result in the least loss
value. Hypothetical performance using the Oracle-TTA suggests the potentials in the pipeline. As for
comparison, we suggest that cyclic usage of the Oracle-TTA can further improve the upper bound, for
the flexibility in the transformation can provide more optional conditions to the input image for the
target network. In appendix D, we compare the upper bound for cyclic TTA to that of our baseline.
The performance records show that, with a well trained loss predictor, more rooms for improvements
are available as the number of maximum transformation for the cyclic TTA increases.

4.4 DISCUSSION

In Appendix B, we illustrate the visual comparison of image conditions between center crop, single
iteration, and cyclic iteration methods. We examined that corrupted images can restore some of
their features to become closer to their clean condition via multiple iterations of transformations.
Additionally, even clean images with ambiguity tend to restore their features, becoming to have
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similar features to the images of the same class. In our experiment, we have analyzed the results to
conclude that cyclic TTA was more effective on corrupted images with higher corruption severity and
less effective on that of lower corruption severity than our baseline. This is because data with the
high severity clearly requires more transformations to restore their features. Moreover, being less
well on the lower severity indicates that current cyclic TTA is not well on stopping the iteration at the
right time. Without limiting the number of cyclic iteration (the maximum number of iteration), we
see that sometimes the image is nearly destroyed, losing much of its features. This indicates that if
the loss prediction pipeline is not perfectly well-functional, presence of further unwanted corruption
is possible. These indicate that maximum number of iteration parameter should be proportional to
the wellness of the loss predictor and additional exit signals should be required to prevent additional
unwanted corruptions.

From our experiment, we have observed that well functional loss predictor contributes to even better
performance in the cyclic TTA pipeline than in our baseline. On the other hand, the poor performance
leads to even more deteriorating result in the cyclic TTA performance, which refers that accuracy of
the loss predictor can lead to more drastic reflection to the performance in the cyclic maneuver. With
such observation, it is evident that, the key factor to reach the cyclic Oracle-TTA performance is to
train a loss predictor with high accuracy, which involves finding a suitable transformations candidates
those are well learnable by the loss predictor and finding a suitable training configuration for the loss
predictor.

From the EWM performance difference in the clean and the corrupted condition, we suggest that
the measurement of the data uncertainty is more evident in corrupted condition for the given target
network. Considering the data uncertainty should be extracted from multiple number of the target
network predictions (Malinin et al., 2020), it is possible that the calculated entropy could not have
reflected the data uncertainty to an accurate level. From examining the entropy values from “10 crops"
case, while the clean data generated relatively uniform entropy values among the augmentations, in the
corrupted case, often outlying entropy values was found, which refers to the uncertain augmentations.
This indicates that while such data uncertainty reflection could be effective in case of evident distortion
in the input image, more precise and accurate measurement of the uncertainty should be required to
take the advantage in clean condition of the data.

5 CONCLUSION

In this work, we have introduced the cyclic modification of the loss prediction pipeline to implement
flexible transformations to the input image and implementation of EWM for TTA policy. Given that
the loss predictor learns the implicit features of the corrupted condition of the image to to predict
the most suitable transformation, we state that the multiple iterations to find the suitable condition
of a corrupted image can be considered as part of iterative optimization process, and able to restore
part of its original quality for network prediction. Our main contribution is to suggest cyclic loss
prediction pipeline to expand the transformation space of the input image and the upper bound of the
loss prediction pipeline via achieving the flexibility of the transformations.

For EWM, we show that direct reflection of data uncertainty could be effective against the corrupted
condition of data. As augmentations are given, each of them can contribute with variable weights, for
their importance for network prediction are different.

Although we have suggested that such pipeline holds much potential for performance improvement,
there is much gap from the ideal Oracle-TTA performance. Therefore, our future work will be
of configuring and training the loss predictor with high performance. As for the transformation
candidates, even though we have used a similar set of predefined transformations to our baseline, in
order to search for a better condition of the input image, it is possible for more transformations with a
wider range of magnitude are more suitable. Thus, we plan to experiment with generative models
to restore the corrupted condition with respective to the target network. We expect to proceed the
transformations without setting the predefined set in future works.
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A APPENDIX : DETAILS OF TTA POLICY

A.1 PREDEFINED TRANSFORMATIONS

In this study, we use predefined transformations, similar to the baseline. However, in order to leverage
the effect from the iterative transformation of cyclic mechanism, we change the magnitudes and
establish a modified set of transformations as Figure 3. The 12 transformations include: identity,
rotation, zooming, contrast adjustment, sharpness adjustment, and color saturation change. The
transformations were performed using functions from torchvision and PIL libraries. For identity
transformation no actual transformation of image is conducted for the image, leaving no changes.
Rotation refers to clock/counter clock wise rotational transformation with magnitude of 20 or -20
degrees. Zoom transformation refers to resizing the image and cropping the central part of the
image. Auto contrast transformation calculates the color histogram and stretches it to achieve uniform
contrast level. Sharpness transformation refers to adjustment in sharpness, less than 1.0 meaning
edges will be blurred and larger than 1.0 refers to sharpening of the edges. Color saturation changes
the the saturation values of each pixel color values. For all the padding-requiring transformations,
symmetrical padding was used.

Figure 3: Illustration of the 12 predefined transformations on an image of a bulbul from ImageNet.
12 different transformations were used, identity transformation being the exit signal in cyclic TTA.

A.2 CONVENTIONAL TEST TIME AUGMENTATION

The typical conventional TTA includes center crop, horizontal flip, "5 crops", and "10 crops". Many
performances on ImageNet competitions have used such schemes for performance improvement
(Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan & Zisserman, 2015; He et al., 2016). Center
crop method basically utilizes the central cropped patch from an original image. Horizontal flip refers
to utilizing a horizontally flipped image with addition to the center cropped image. "5 crops" takes
the four corner image patches and central cropped image patch to fully examine the entire area of the
original image. "10 crops" refers to composing 5 additional cropped image patches from horizontally
flipped version of the original image to the original 5 crops, in total of 10. The demonstration is
presented in Figure 4.

A.3 IMAGENET-C CORRUPTIONS

In this study we have used ImageNet-C benchmark, corrupted version of ImageNet by Hendrycks
& Dietterich. (2019). ImageNet-C simulates 19 different types of corruptions: Gaussian Noise,
Shot Noise, Impulse Noise, Defocus Blur, Glass Blur, Motion Blur, Zoom Blur, Snow, Frost, Fog,
brightness, Contrast, Elastic Transform, Pixelate, JPEG, Speckle, Gaussian Blur, Spatter, and Saturate.
Each of these corruptions is simulated in 5 different severities. The performance on this dataset is
calculated with mean Corruption Error, mCE. The mCE is calculated as average error rate of a
neural network to the error rate of Alexnet (Krizhevsky et al., 2012). Thus, for mCE, 100% indicates
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Figure 4: Demonstration of the conventional TTA policies. The cost (number of input images)
increases from 1 to 2, 5, and 10 as goes from center crop to horizontal flip, “5 crops", and “10 crops".

a neural network performance of equal robustness to the Alexnet, and 0 being a perfectly robust
neural network. Illustration of all the types of corruption on a single image is presented in Figure 5.

B APPENDIX : DIFFERENCE BETWEEN SINGLE ITERATION TO CYCLIC
ITERATION

As we explained in the main material, single iteration and cyclic iteration differ in number of
transformation on a single image. While single method selects a single transformation from the set of
the predefined transformations, the cyclic method could select combination of multiple number of
transformations for a single image. The illustration is presented in Figure 6.

C APPENDIX : DEMONSTRATION OF ENTROPY WEIGHT METHOD

In this section, we will demonstrate how visually EWM corresponds to TTA. EWM calculates
relative entropy of each augmentation and inversely reflects the entropy to the augmentation, as the
uncertainty. The importance of each augmentation is represented by respective weight value, which
corresponds to the “certainty". The demonstration of EWM is presented in Figure 7, 8, and 9.

D APPENDIX : ORACLE-TTA PERFORMANCE

In this section, we demonstrate Oracle-TTA performance on ImageNet and ImageNet-C dataset.
Oracle is hypothetically well trained loss predictor, which is able to perfectly predict which of
transformation candidates is needed to result in the least loss value by the target network. The
following experiment in Table 2 suggests the upper bound and potential rooms for improvement in the
loss prediction pipeline. Cyclic behavior allows more opportunities for the the pipeline to generate
well conditioned image, resulting in lower error rate as the maximum number of iteration increases.
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Figure 5: Illustration of the 19 different types of corruptions from ImageNet-C with a picture of an
eagle.
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Figure 6: Illustration of exemplary cases of the loss prediction pipeline. The blue bordered images
refers to the finalized input images by the previous method (Kim et al., 2020) with single iteration.
That of green refers to the transformed input images by ours.
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Figure 7: Demonstration of EWM on two images from ImageNet-C with 10 crops TTA policy.
Numerical values below the each image refers to relative entropy, calculated by the target network.
Red border refers to the patches with high entropy (uncertainty). Top: An image of dogs, divided
into 10 patches. The red bordered patches contain image of a dog with exclusion of head part in the
central dog’s face. Bottom: An image of a man, divided into 10 patches. The red bordered patches
have missing part of the facial feature, leaving relatively high uncertainty.

TTA Method Iteration Clean mCE

Center Crop 0 22.39 65.07
Oracle-TTA 1 15.99 53.28

Cyclic Oracle
2 13.06 47.20
3 11.68 44.02

Table 2: Performance using hypothetically perfect loss predictor named Oracle-TTA. Resnet-50
trained with the augmix data augmentation method was used as the target network. “Iteration" refers
to the number of loss prediction done to each image. Clean and mCE refers to the error rate from
ImageNet dataset and the mean corruption rate from ImageNet-C dataset. The lower values represent
better performance. The correlation between the “Iteration" and the performance indicates that, upon
selecting suitable transformation, more opportunities for transformation allows the input image to be
better ready for the target network, which increases the upper bound of the general performance.
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Figure 8: Demonstration of EWM on two images from ImageNet-C with baseline loss prediction
TTA policy Kim et al. (2020) with single iteration of transformation prediction. 3 augmentations
were used as hyper parameter, resulting in 3 input images in total. Numerical value below the each
image refers to relative entropy, calculated by the target network. Top: With a symmetrical padding,
the zoom out transformation has presented more coherent level of feature in bird’s facial structure
(i = 3), as it had minor cut by the border of the image. Bottom: An image of a yawl is also aided by
zoom out transformation (i = 1), the padding has created the fake reflection of the yawl to the water,
resulting in less entropy (uncertainty). The set of predefined transformation from previous method
was used.

Figure 9: Demonstration of EWM on an images from ImageNet-C with our cyclic TTA method. 3
augmentations were used as hyper parameter, resulting in 3 input images in total. Each image has
tried to remove the Gaussian noise by performing blurring and zoom out. The entropy among the
images show somewhat relatively uniform values.
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