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Abstract

Despite advancements in Neural Implicit models for 3D surface reconstruction,
handling dynamic environments with interactions between arbitrary rigid, non-
rigid, or deformable entities remains challenging. The generic reconstruction
methods adaptable to such dynamic scenes often require additional inputs like
depth or optical flow or rely on pre-trained image features for reasonable outcomes.
These methods typically use latent codes to capture frame-by-frame deformations.
Another set of dynamic scene reconstruction methods, are entity-specific, mostly
focusing on humans, and relies on template models. In contrast, some template-
free methods bypass these requirements and adopt traditional LBS (Linear Blend
Skinning) weights for a detailed representation of deformable object motions,
although they involve complex optimizations leading to lengthy training times.
To this end, as a remedy, this paper introduces TFS-NeRF, a template-free 3D
semantic NeRF for dynamic scenes captured from sparse or single-view RGB
videos, featuring interactions among two entities and more time-efficient than other
LBS-based approaches. Our framework uses an Invertible Neural Network (INN)
for LBS prediction, simplifying the training process. By disentangling the motions
of interacting entities and optimizing per-entity skinning weights, our method
efficiently generates accurate, semantically separable geometries. Extensive experi-
ments demonstrate that our approach produces high-quality reconstructions of both
deformable and non-deformable objects in complex interactions, with improved
training efficiency compared to existing methods. The code and models will be
available on our github page.

1 Introduction

With the rapid advancements in deep learning, the field of 3D geometry reconstruction of static and
dynamic scenes and objects has experienced significant transformation, largely due to its crucial role
in diverse applications such as Augmented Reality (AR), Virtual Reality (VR), robotics, autonomous
navigation systems, and human-robot interactions (HRI). While primarily focused on novel view
synthesis, Neural Implicit models (NeRFs) [1] have recently made remarkable strides in 3D surface
reconstruction due to their ability to learn detailed geometry without needing prior knowledge about
the shape of the scene elements or direct 3D supervisions [2, 3, 4, 5, 6]. Despite these advancements,
challenges remain in developing models that effectively generalize across varied real-world dynamic
environments, particularly those involving arbitrary rigid, non-rigid, or deformable entities (such as
humans or animals) engaged in complex interactions. Moreover, achieving semantic reconstruction
that accurately captures the geometry and positioning of each semantic scene element independently
is essential for enhancing functionalities in applications like AR, VR, and HRI.
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In NeRF-based dynamic scene reconstruction, the focus has predominantly been on human
reconstruction [7, 8, 9, 10], utilizing template models such as SMPL [11], and CAPE [12].
However, these methods struggle with generalizability to arbitrary deformable entities and
primarily concentrate on single-entity reconstructions, neglecting interactions among multiple
entities, such as interactions of humans with scene objects. Notably, HOSNeRF [13] by
Liu et al. addresses human-object interactions but remains dependent on the SMPL model.
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Figure 1: Existing dynamic-NeRF models struggle to generate
plausible 3D reconstructions for generic dynamic scenes featuring
humans and objects engaged in complex interactions. In this work,
we introduce a Neural Radiance Field model designed for 3D recon-
struction of such generic scenes, captured using a sparse/single-view
video, capable of producing plausible geometry for each semantic
element within the scene. In this figure, A: Input RGB, B: predicted
normal map, C: predicted semantic reconstruction, and D: predicted
skinning weight.

Concurrently, some dynamic NeRFs
[14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26] aim beyond human
and focus on either rendering or
geometry reconstruction of generic
scene/object. The surface reconstruc-
tion methods mostly require addi-
tional data, such as depth or opti-
cal flow, to optimize the underlying
3D. For instance, [16, 17] focus on
building shape-prior-free 3D mod-
els for deformable entities. How-
ever, besides requiring a large num-
ber of casual videos with diverse
view coverage of the subject, these
approaches heavily depend on high-
quality optical flow for supervision,
which makes their reconstruction
quality subject to the accuracy of
the pre-trained models for generat-
ing such data. Moreover, generally,
the dynamic NeRF methods use la-
tent codes to learn per-frame defor-
mations [15, 27], which may not be
sufficient for capturing accurate ar-
ticulation of arbitrary deformable ob-
jects. In a concurrent work, Li et al. [28] bypass the need for such additional information and develop
a template-free model from only sparse view RGB videos. They also learn a more accurate represen-
tation of body deformation, the forward LBS [11] (i.e., mapping of canonical points to posed or view
space), which helps them achieve impressive shape reconstruction results for different deformable
entities. However, their method suffers from a lengthy training convergence time. Furthermore, none
of these template-free approaches have focused on interactions between more than one entity nor
achieved semantic reconstruction of scenes, highlighting a gap in the current methodologies.

Our contributions: In this paper, we aim to develop a time-efficient 3D semantic NeRF for dynamic
scenes captured from sparse view RGB videos involving interactions between two rigid, non-rigid,
or deformable objects. Built upon [28], we propose a novel framework to learn the forward LBS
by utilizing INN [29] to bypass the computationally demanding root-finding approach used in [28].
This adjustment boosts the efficiency of our training process, which is shown with an experiment
in the results section. Additionally, our proposed framework can produce semantically separable
reconstructions for the scene entities. The challenge of building template-free 3D models for two
dynamic entities engaged in complex interactions is amplified by occlusions and their diverse shapes
or deformations. To tackle these challenges, we propose a strategy to disentangle the motions of
distinct entities within the scene. Specifically, we first perform semantic-aware ray sampling and
learn the independent transformation of each entity from the deformed space to the canonical space
to optimize per-entity skinning weight. This process allows us to accurately generate the individual
Signed Distance Fields (SDF) from the disentangled canonical points, enhancing our model’s ability
to handle complex dynamic environments under interactions effectively. The efficacy of our proposed
method is demonstrated through comprehensive experiments conducted on several datasets featuring
human-object, hand-object interactions, and animal movements. Results consistently show superior
performance compared to the best-performing state-of-the-art methods. Our noteworthy technical
contributions are, therefore:
- We introduce a time-efficient template-free NeRF-based 3D reconstruction method for dynamic
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scenes from sparse multi-view/single videos featuring two interacting entities.
- Our approach extends to the semantic reconstruction of dynamic scenes, emphasizing the detailed
capture of each entity’s explicit geometry within the scene.
- The efficacy of our proposed method is demonstrated through comprehensive experiments conducted
on diverse datasets featuring interaction between rigid, and non-rigid entities.

2 Related Works

Human-object reconstruction: Several model-based approaches [30, 31, 32, 33, 34, 35, 36] have
explored 3D reconstruction of humans and objects under interactions. However, a common limitation
is their reliance on parametric models (e.g., SMPL) for human reconstruction. While SMPL provides
a robust base, it limits flexibility in reconstructing diverse deformable entities and cannot generalize
beyond humans. Also, it does not capture finer details such as hair dynamics and clothing deforma-
tions. In contrast, NeRF-based reconstruction offers a promising alternative for capturing detailed
geometric information but mainly focuses on human reconstruction under a dynamic environment.
Yet, only a few NeRF-based methods [13, 37, 38] have addressed the reconstruction involving multi-
ple objects. For example, Jiang et al. [37] consider modeling the background, along with dynamic
human by designing two separate NeRFs i.e., human NeRF and background NeRF. In a recent work,
HOSNeRF, Liu et al. [13] introduce a NeRF-based approach for free-viewpoint rendering of dynamic
scenes featuring human-object interactions. Even using the NeRF-based approach, these methods
still rely on the SMPL model for initialization. Moreover, unlike our method, most of these methods
focus on novel view or pose synthesis and do not emphasize detailed geometry reconstruction.

Methods Template- No pre- Reconstructs
free trained

features
Vid2Avatar [39] ✗ ✓ single entity

AnimatableNeRF [7] ✗ ✓ single entity
SDF-PDF [8] ✗ ✓ single entity

HumanNeRF [40] ✗ ✓ single entity
HOSNeRF [13] ✗ ✓ multiple entities

NDR [15] ✓ ✓ single entity
HyperNeRF [27] ✓ ✓ single entity

D-NeRF [14] ✓ ✓ single entity
BANMO [16] ✓ ✗ single entity

RAC [17] ✓ ✗ single entity
TAVA [28] ✓ ✓ single entity

Ours ✓ ✓ multiple entities
with semantic

Table 1: Our approach vs. existing dynamic NeRFs.

Generic Scene Reconstruction:
Some NeRF-based methodologies
[14, 15, 27, 40, 39, 41, 25, 26] offer
generic scene reconstruction under
a dynamic environment without
relying on any parametric template
models, making them favorable
for extending to any deformable
object reconstruction. Pumarola et
al. [14] extend the traditional NeRF
framework by integrating time as an
additional input, which facilitates the
mapping of each frame’s deformed
scene to a canonical space. Building
on this, T-NeRF [42] utilizes time-
varying latent codes to condition the NeRF, improving training speed and rendering quality. Cai
et al. [15] propose using an INN to learn the mapping between deformed and canonical space and
show impressive surface reconstruction results optimized from RGB-D videos. HyperNeRF [27]
incorporates an additional Multilayer Perceptron to learn the frame-specific topology variations via
ambient codes, capturing scene deformations more effectively. However, these methods mainly
rely on latent codes to capture the relation between frames at different timestamps or topological
variations within a frame. A recent approach Tensor4D [25] represents dynamic scenes as a 4D
spatiotemporal tensor but does not account for the relative motions between scene elements. In
contrast, our approach considers learning the structural relations between different parts of the scene
or the object under reconstruction e.g., body parts of humans in case of human reconstruction, etc.

Reconstruction with predicted LBS: Several methods have recently emerged that aim to develop
generic NeRFs focusing on arbitrary deformable object reconstruction [16, 17, 28]. These methods
utilize more specific topological representation, i.e., LBS, that helps understand how different parts
of the deformable body are connected and how they deform from the canonical pose under motion.
Specifically, given the forward LBS weight w(xc) for a canonical point xc on the surface, the
corresponding deformed point xv (in the viewing space, i.e., per-frame observations) is computed
using a weighted combination of bone transformation matrices B [11] defined as,

xv = LBS(w(xc),B,xc) =

nb∑
b=1

w(xc).Bb.xc (1)
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Figure 2: Overview of the system. A: To produce a semantically separable reconstruction of each element,
first, we perform a semantic-aware ray sampling. Given a 2D semantic segmentation mask, we shoot two sets of
rays and sample two sets of 3D points for differentiating the deformable and non-deformable entities of the scene,
{xd

v}Ni=1, {xnd
v }Ni=1 under interactions. B: Next, each set of points is transformed from the deformed/view space

(input frame) to its respective canonical space by inverse warping enabled by the learned forward LBS (Details
are presented in Fig. 3. C: Then the individual geometry is predicted at the canonical space in the form of
canonical SDFs by two independent SDF prediction networks Fj

c−>Ω(θ) for the deformable and non-deformable
entities denoted as j ∈ {d, nd}. D: Finally, the output SDFs are used to predict a composite scene rendering.
Both these branches are optimized jointly using the RGB reconstruction loss.

where nb represents the total number of bones. Unlike human reconstruction NeRFs [7, 8, 9, 10],
these methods learn this skinning weight function w(xc), that allows for the flexible adaptation of
these models to any deformable objects. Yang et al. [16] learns a forward-backward deformation
field for mapping between canonical and deformed space and represents the skinning weight using
a set of Gaussians defined around the bones. Whereas Li et al. [28] and Chen et al. [41] learn the
skinning weights and formulate the mapping from deformed to canonical spaces as an iterative
root-finding problem. They solve this problem using Broyden’s method, which involves matrix-
vector multiplications and computationally expensive matrix inversions at each iteration, leading to a
lengthy training convergence time. Additionally, these methods consider reconstructing only a single
entity within the scene. In contrast, our method addresses the reconstruction of two moving objects
under complex interactions, which is more challenging due to the highly unconstrained nature of the
problem.

3 Methodology

Overview. Given sparse-/single-view videos of deformable objects, such as hands, humans, or
animals, interacting with non-rigid/rigid objects like balls or boxes, our goal is to accurately learn
the semantically separable geometry of each entity under interactions. Fig. 2 provides an illustrative
overview of our methodology, highlighting the following key components and steps involved in the
process. A) Semantic-aware ray casting and sampling to distinguish individual elements within the
scene (Fig. 2A), B) INN to learn the forward skinning and deformation of each element, enhancing
the efficiency of the training process (Fig. 2B), C) SDF module to independently learn the geometry
of each element (Fig. 2C) and D) RGB Renderer module to generate RGB values from individual
SDF volumes for the final rendering (Fig. 2D).

A. Semantic-aware ray sampling. To reconstruct semantically separable geometry, it is essential
that each 3D point in the reconstructed surface is tagged with a semantic label to denote its object
affiliation. Previous efforts [5] propose to model a compositional scene within a shared network
structure, which is challenging in the dynamic scenario for the following two reasons. First, it is hard
to supervise the SDF of each entity from different frames by 2D semantic segmentation due to its
dynamic nature. Second, the interaction between humans and objects in different frames is complex,
considering the occlusion between each other. These issues provoke us to design a network structure
with natural disentanglement for the compositional modeling.

To address these challenges, our network is designed with distinct modules for SDF prediction
for each entity, maintaining semantic continuity from the input space to facilitate the prediction of
semantically separable 3D geometry and joining them with the rendering module for composite
rendering. Specifically, leveraging the 2D semantic mask of the input image, we sample two sets
of rays surrounding the interacting objects. Along these rays, we sample 3D points to generate
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two distinct sets: one representing the deformable object, {xd
v}Ni=1, and the other representing the

non-deformable object, {xnd
v }Ni=1. However, only 2D semantic-aware ray sampling is not sufficient

for accurate disentanglement of the individual entities, as the rays can intersect both entities in their
path through the 3D space due to the occlusion of one object by the other. Hence, we also perform an
encoding of the 3D points based on their distance from the 3D skeletons of individual entities. Please
refer to Section 3C for more details about the semantic encoding of the 3D points. These points are
then processed through separate networks tailored to each object type to get separate geometry and
finally merged at the rendering module. This approach enhances our ability to effectively separate
and reconstruct individual elements, even in scenarios of strong occlusions. This meticulous sampling
strategy guarantees that supervision from individual entity’s observation only influences each SDF
prediction module.

B. View space to canonical space deformation. In dynamic NeRF, a common approach is mapping
each frame to a fixed canonical frame to learn the correspondence between frames. For deformable
objects, like humans, this is generally achieved by using pre-defined LBS weight from template
models like SMPL etc. [7, 8, 39, 40]. LBS is a technique used to deform the surface points on a
human mesh at the canonical pose to each frame’s pose based on the positions and orientations of
an underlying skeleton (Eqn. 1). A few methods, e.g., TAVA [28] and SNARF [41] extend this
approach beyond humans and learn the forward LBS for arbitrary deformable entities without using
any template model. However, for learning the forward LBS, defined in canonical space, the main
challenge lies in finding the correct correspondence in the canonical space for a given deformed
point because of the implicitly defined correspondences without an analytical inverse form of the
Eqn. 1. Hence, they formulate the problem of learning this correspondence as a root finding problem
and solve for xc s.t., LBS(w(xc),B,xc) − xv = 0. They solve it numerically using iterative
Broyden’s method [43], which involves matrix-vector multiplications and computationally expensive
matrix inversions at each iteration and must be optimized for multiple iterations for each iteration
of NeRF optimization. Hence, this makes the training process time-consuming. To overcome this
challenge, we replace this root finding problem and instead use an INN [29] for transforming the view
space points to canonical space and learn the skinning weight w(xc) simultaneously. Conditioned
by each frame’s pose, INN can correctly learn the bijective mapping between the deformed and
canonical space through a consistency loss and bypassing the iterative optimization process, resulting
in time-efficient training. Fig. 3 shows the workflow for the view to canonical space conversion
framework.
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Figure 3: Overview of the transformation from view space to canonical space.

First, function GINN
v−>c

is used to transform
the points from view
space to canonical
space using an INN
defined as [29]. To en-
hance the convergence
and provide a better initialization for the INN network, we first transform the deformed space points
xv to give an approximation of the canonical space points. Under the intuition that the sampled
points xv near the posed skeleton will remain close to the canonical skeleton at canonical space, xv

are transformed to xinit
c = (

∑nb

i=1 w
′.Bi)

−1.xv, where, w′ represents one-hot vectors defining the
nearest joint of the posed 3D skeleton Jp ∈ Rnb from the view space points xv. An ablation study is
presented in Tab. 6 to show the effectiveness of this initialization. The INN, GINN

v−>c is conditioned on
per frame 3D skeleton Jp. Then a skinning weight prediction network GW

xc−>w is used to predict the
skinning weight ws at canonical space from the predicted canonical points x′

c.

x′
c = GINN

v−>c(x
init
c ,J) ws = GW

xc−>w(x′
c) (2)

Finally, the canonical points are calculated as, xc = (
∑nb

i=1 ws.Bi)
−1.xv, that are given as input

to the SDF prediction network. This helps to constrain the skinning weight prediction network.
As skinning weight defines the weightage of underlying skeleton joints for the deformation of
each vertex on the mesh surface; it helps capture better articulation or deformation and surface
reconstruction under motion. Moreover, it implicitly learns the spatial relationship between the
surface points, resulting in smoother reconstruction compared to the approaches where no skinning
weight representation is learned. This is evident in Fig 5, given a comparison with such methods.
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C. Learning the SDF volume of individual elements. Given our aim to generate semantically
separable geometries of the scene entities, we use two independent SDF networks defined as
F j

c−>Ω(θΩ) for deformable and non-deformable objects j ∈ {d, nd}. The individual set of trans-
formed canonical points xc are passed through these geometry prediction networks, defined as
F j

c−>Ω(θ) : R3+3+nb → R1+256 (SDF and a global feature representation of dimension 256)
produces surface reconstruction at canonical space, Ωj

c.

The SDF prediction network is conditioned on the canonical skeletons Jp0 ∈ Rnb . Only semantic-
aware (based on a 2D semantic map) ray sampling is not sufficient to differentiate the points in
3D. For this purpose, to provide the SDF prediction network information about which object the
point belongs to, we assign a semantic label to each 3D point. This is defined as a weightage,
ωj = exp(−dist2/σ2) based on the distance of the point from the nearest 3D joints in the per entity
canonical skeletons Jj

p0. The points far from the canonical skeleton of either of the entities are
assigned to the background, with weight defined as ωbg = 1.0− clamp(

∑
j ω

j , 1.0). This semantic
label with dimensionality 3 is concatenated with canonical point and pose input (3 + 3 + nb) and
passed through the SDF prediction network that predicts SDF and a global feature representation.

D. Compositing for final rendering. We use a single RGB prediction network to predict the final
rendering. For this purpose, the predicted canonical points (3), normals calculated from SDFs (3)
[39], geometric features (256) and posed skeletons Jp0 (nb) for individual elements are concatenated
before sending through a unified RGB prediction network FΩ−>rgb Following Guo et al. [39] we
predict the texture in canonical space and condition the texture generation network with normal
calculated from SDFs to consider the deformation from view space points to canonical points. This is
defined as FΩ−>rgb : R3+3+np+256 → R3.
Training: All the modules defined above are trained jointly over all the frames of the given video.
The training losses used for the global optimization are defined as follows:
- Reconstruction loss: For optimizing the NeRF, reconstruction loss is defined between the rendered
RGB Ĉ(r) and the RGB C(r) of input pixel along the ray r, Lrgb =

∑
r∈R ∥Ĉ(r)− C(r)∥.

Due to the lack of direct supervision of the skinning weight prediction network or INN, several
incorrect combinations of canonical points and skinning weights can satisfy the forward LBS Eq. 1.
Hence, the following supervisions are used on the skeleton space to constrain these two networks.
- Pose loss: To ensure that the INN network learns a correct mapping between the view space and
the canonical space, a loss is defined on two sets of points (XJp0

, XJp
) sampled around the bones of

canonical (Jp0) and deformed skeletons (Jp) respectively. The following loss is applied to ensure
that the INN correctly transforms the point set XJp to XJp0 ,

Lpose =
∑
p∈P

|XJp0
− GINN

v−>c(XJp
)| (3)

where P is the total number of points sampled around the bones from each skeleton.
- Skinning weight loss: To constrain the skinning weight prediction network, a loss is applied to
ensure that the predicted skinning weight for the canonical joints is a one-hot vector (1 for the
respective joint and 0 for rests), ŵ.

LW = ||GW
xc−>w(Jp0)− ŵ||22 (4)

- Cycle loss: Conventional cycle consistency loss is used for optimizing the INN,

LINN = ||H(H−1(xv, Jp0), Jp)− xv||22 (5)
where H is the transformation learned by the INN between view and canonical space. The inverse
function H−1(xv, Jp0) transforms the view space point to canonical points, and the forward function
H(xc, Jp) transforms back the canonical points to deformed space conditioned by the posed skeleton.
- Consistency loss: To ensure that the INN transformed point x′

c and the final skinning weight
conditioned canonical points xc (Fig. 3) are close to each other we also minimize the L2 distance
between these two sets of points.

LConsis = ||x′
c − xc||22 (6)

- In shape loss: Following Guo et al. [39], to accelerate the learning process, a loss (Lshape) is
defined around a point cloud initialization for the individual entities. The point cloud is defined
around the canonical skeleton of individual elements. This loss ensures that the transformed points
xc that fall within this point cloud have the sum of weights predicted from NeRF densities α =1
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[39]. The full loss, minimized over each video frame, is defined as follows, where λskel, λW , λINN ,
Lconsis, λshape are empirically set to 2,10,1,1,0.03 respectively.

L = Lrgb + λskelLskel + λWLW + λINNLINN + LconsisLconsis + λshapeLshape (7)

Evaluation: As we learn the object geometry at canonical space, at inference time, we can directly
sample points around the canonical skeleton and pass through the SDF prediction network F j

c−>Ω(θ)
(Fig. 2C) to predict the canonical SDF. Then, for the canonical mesh vertices, we can predict the
skinning weights using the skinning weight prediction network GW

xc−>w (Fig. 3) and generate the
final posed mesh (viewing/deformed space) by following Eqn. 1.
Implementation Details: The overall network proposed in Fig 2 is trained end-to-end, with a learning
rate of 5.0e − 4. We use ADAM optimizer for the SGD optimization and PyTorch library for the
implementation of our method. All training and inference have been performed in NVIDIA RTX
4090 GPU. Details about the network architecture are presented in the Appendix.

4 Experiments

In this section, we first demonstrate the effectiveness of our method for precise 3D reconstructions of
deformable and non-deformable objects, as well as their interactions. Next, we present qualitative
and quantitative comparisons of our approach with relevant state-of-the-art methods. Additionally,
we conduct a comprehensive ablation study to analyze the impact of different network design choices
and loss formulations on our model’s performance. Finally, we discuss the efficiency of our method
in terms of training convergence time compared to existing approaches in the literature. Datasets.
To evaluate our reconstruction under multiple entity interactions, we select the BEHAVE [31] with
human-object interactions and HO3D-V3 [44] with hand-object interactions. We tested sequences
featuring large motions of humans and objects, training with 45-50 images per camera view to
optimize 3D geometry. Following [28], all methods utilize dataset-provided camera poses, body
poses, and masks for training. We also evaluate our method for reconstructing single deformable
entities (only human/animal) and use a similar setup as proposed in TAVA [28]. For this purpose,
we test performance on two datasets: the ZJU-MoCap dataset [9] for human reconstruction and a
synthetic dataset for animal reconstruction from [28].

Baseline. For human-object reconstruction, we choose methods that focus on generic scene recon-
struction without using any template 3D models for a fair comparison of our template-free model.
Specifically, we benchmark our approach against state-of-the-art generic scene reconstruction meth-
ods such as Tensor4D [25], NDR [15], HyperNeRF [27], and D-NeRF [14]. Additionally, we consider
the recent approach ResFields, which models large and complex temporal motions by introducing
temporal residual layers into the general NeRF architectures, showing significant improvements over
the baselines [45]. We train NDR [15], HyperNeRF [27], and D-NeRF [14] with and without ResField
layers on RGB videos. We haven’t trained our method with ResField. For human reconstruction, we
compare with methods that learn the skinning weight field [28, 27]. TAVA [28] learns the skinning
weight from scratch without using any template model, whereas AnimatableNeRF [9] initializes the
skinning weight from SMPL and learns a residual weight to optimize the final skinning weight field.

Evaluation metrics. For quantitative evaluation, following previous 3D reconstruction NeRFs [5, 6],
we measure distance metrics (after registration between predicted and ground-truth meshes) such as
Average Distance Accuracy (Dist. Acc.), Completeness, and Chamfer Distance (CD), along with
Precision, Recall, and F-score (defined with a threshold of 5cm). Following previous methods [39],
we use SMPL meshes provided in the ZJU-MoCap and BEHAVE datasets as ground-truth to evaluate
human reconstruction quality to obtain the quantitative results. Similarly, we utilize the ground-truth
object meshes within the BEHAVE dataset for object reconstruction evaluation.

XXXXXXXXXMethod
Metric Trained with Dist. Acc. ↓ Comp. ↓ Prec. ↑ Recal. ↑ F-score ↑ Chamfer ↓

ResField [45] (cm) (cm) (%) (%) (%) (cm)

Tensor4D [25] ✗ 4.152 2.441 69.413 91.642 78.993 3.297
NDR [15] ✗ 4.203 3.527 73.048 78.846 75.599 3.865

HyperNeRF [27] ✗ 4.125 3.362 73.510 80.683 76.661 3.742
D-NeRF [14] ✗ 7.074 7.301 48.324 45.781 46.301 7.188

NDR [15] ✓ 3.591 3.193 78.564 82.472 80.385 3.399
HyperNeRF [27] ✓ 3.879 3.313 76.099 81.578 78.619 3.596

D-NeRF [14] ✓ 3.927 3.364 75.774 81.453 78.398 3.646
Ours ✗ 2.721 2.142 89.120 93.853 91.343 2.431

Table 3: Scene reconstruction results on BEHAVE [31] dataset.

Results and discussions. - Recon-
struction of scenes with two enti-
ties under interactions: Our evalu-
ation methodology for human-object
reconstruction focuses on two crit-
ical dimensions: 1) Holistic Scene
Reconstruction: We assess the entire
scene’s reconstructed mesh quality
(human+object) against the ground
truth, providing a comprehensive measure of the scene’s accuracy (Tab. 3). 2) Semantic Reconstruc-
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XXXXXXXXXMethod
Metric Trained with Dist. Acc. ↓ Comp. ↓ Prec. ↑ Recal. ↑ F-score ↑ Chamfer ↓

ResField [45] (cm) (cm) (%) (%) (%) (cm)

Tensor4D [25] ✗ 4.409 2.419 69.402 91.680 79.000 4.414
NDR [15] ✗ 4.865 3.546 69.653 76.994 72.728 4.205

HyperNeRF [27] ✗ 4.794 3.363 70.276 79.531 74.202 4.078
D-NeRF [14] ✗ 6.515 6.132 53.013 52.745 52.071 6.324

NDR [15] ✓ 4.681 3.186 72.934 81.025 76.553 3.931
HyperNeRF [27] ✓ 4.265 3.394 73.864 79.642 76.331 3.831

D-NeRF [14] ✓ 4.729 3.403 71.211 79.244 74.706 4.066
Ours ✗ 1.761 1.863 97.225 93.624 95.343 1.812

Tensor4D [25] ✗ 4.390 2.523 56.953 91.683 70.260 3.956
NDR [15] ✗ 3.747 3.607 76.526 75.534 75.675 3.677

HyperNeRF [27] ✗ 3.647 3.508 78.171 76.892 77.144 3.586
D-NeRF [14] ✗ 4.675 5.529 64.88 54.095 57.748 5.102

NDR [15] ✓ 3.442 3.531 81.114 76.612 78.641 3.485
HyperNeRF [27] ✓ 3.451 3.282 80.551 80.720 80.174 3.379

D-NeRF [14] ✓ 3.565 3.362 79.379 79.155 78.875 3.464
Ours ✗ 3.571 2.121 82.762 92.410 86.991 2.741

Table 2: Semantic reconstruction results on BEHAVE [31] dataset. The upper and lower tables represent
quantitative human and object reconstruction evaluation.

tion: We asses the reconstruction quality of individual scene elements by comparing the accuracy
of reconstructed humans and objects to their respective ground truth meshes (Tab. 2). Our method
excels in holistic scene reconstruction across all metrics (Tab. 3) and delivers superior results in
semantic reconstruction, especially for humans (Tab. 2, upper rows) and most objects (Tab. 2, lower
rows). Competing methods, focusing on the prior-free linkage between observation and canonical
space, often neglect the topological relationships essential for dynamic scenes. While they are
effective for rigid entities, they underperform in reconstructing high-quality, deformable entities. Our
approach leverages learning skinning weights to capture the intricate relationships between body
parts, enhancing reconstructions for both deformable and non-deformable objects (Fig. 5).

-Reconstruction of scenes with hand-object reconstruction: We evaluate our method also
on the HO3D-V3 dataset [44] and present comparative results in Tab. 4. For this
purpose, we choose two baseline methods, i.e., NDR and HyperNeRF trained with Res-
Field, that best perform on the BEHAVE dataset. Tab. 4 compares semantic reconstruc-
tion quality. We use the ground-truth mesh for hand from the HO3D-V3 dataset and
the ground-truth mesh for objects from YCB-Video 3D models for calculating the metrics.
Our method achieves better reconstruction, showing superior performance on most metrics.

Hand reconstruction Object reconstruction
XXXXXXXXXMethod

Metric Trained with Dist. Acc. ↓ F-score ↑ Chamfer ↓ Dist. Acc. ↓ F-score ↑ Chamfer ↓
with ResField [45] (cm) % (cm) (cm) % (cm)

NDR [15] ✓ 1.419 94.051 1.217 1.154 93.782 1.279
HyperNeRF [27] ✓ 1.435 93.491 1.198 1.159 97.988 1.042

Ours ✗ 1.373 95.396 1.294 0.530 99.980 0.463

Table 4: Reconstruction results on HO3D-V3 dataset [44].

Also, we evaluate our method
for single-object reconstruc-
tion, including arbitrary
deformable entities,
- Human reconstruction:
We compare our human
surface reconstruction results
with TAVA [28] and AnimatableNeRF [7] on the ZJU-MoCap dataset [9] (Tab. 5, upper table). TAVA
employs a template-free approach, while AnimatableNeRF uses the SMPL body model. Our method
surpasses both TAVA and AnimatableNeRF in performance. The qualitative comparison, shown in
Fig. 4, highlights the superior surface reconstruction of our method on the ZJU-MoCap dataset. SDF
modeling contributes smoother surface reconstructions compared to models like [28, 7].

XXXXXXXXXMethod
Metric Dist. ↓ Comp. ↓ Prec. ↑ Recal. ↑ F-score ↑ Chamfer ↓

Acc.(cm) (cm) (%) (%) (%) (cm)

TAVA [28] 2.79 2.14 90.40 95.67 92.95 2.47
AnimatableNeRF [7] 3.63 2.39 81.57 93.32 88.30 2.81

Ours 2.47 2.01 92.15 95.99 93.97 2.24
TAVA [28] 0.92 0.53 99.65 100.00 99.83 0.73

Ours 0.81 0.61 99.99 100.00 99.99 0.71
Table 5: Reconstruction on ZJU-Mocap (upper) [9, 46] and synthetic animal dataset [28] (lower).

Ours TAVA [25] AnimatableNeRF[6]I/P

Figure 4: Qualitative comparison on ZJU-
Mocap dataset [9].

- Reconstruction of other deformable entities: To evaluate our reconstruction method on other
deformable entities, we employ a similar experimental setup as used in TAVA [28]. Tab. 5 (lower
table) presents the quantitative comparison using the synthetic animal dataset introduced by TAVA.
Our method shows comparable performance with the baseline method. Fig. 1 displays qualitative
results from one of the animal subjects in the dataset.
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Ours NDR [14] + ResField[41] NDR [14]I/P HyperNeRF [24] + ResField [41]HyperNeRF [24]

Figure 5: Qualitative comparison with SoTA methods on BEHAVE dataset.

Ablation studies: We present an ablation study for different network design choices and losses in
Tab. 6. Without initializing the INN with xinit

c : In this experiment, we use an MLP to learn the
initialization, following traditional INN networks [47], instead of initializing based on the distance of
the deformed points from the posed skeleton (see Section 3, B.). Our initialization method leads to
better reconstruction performance. With the same geometry head: Here, we use a unified network
architecture with a single INN for both deformable and non-deformable objects, for predicting
skinning weights and SDF. Rather than using semantic-aware ray sampling in image space for
disentangling motions and geometries of entities (see Section 3, A), a semantic logit is predicted
from the SDF and optimized with a semantic loss to produce semantically separable geometries
following [5]. This approach struggles with high occlusion and complex interactions, resulting in poor
reconstructions (Figure 6). Without LW and Lpose loss: These losses are crucial for constraining
the prediction networks. The LW has a significant impact, effectively constraining the INN and
skinning weight prediction, improving the reconstruction quality. Training convergence for W and
W/o Broyden method: We experiment to assess the efficacy of our INN network compared to the
Broyden-based LBS learning approach. For this purpose, we train our network to replace the INN
network and use the Broyden equation solver to solve the Eqn. 1 and report the progress of CD with
respect to time (Fig. 7). Our network, designed with INN, converges much faster than the Broyden
method used in [28, 41]. Also, our approach takes around 0.3 sec/frame with INN compared to 0.9
sec/frame with the Broyden approach.

hhhhhhhhhhhhhhMethod
Metric Dist. ↓ F-score ↑ Chamfer ↓

Acc. (cm) (%) (%)

W/o xinit
c (Section 3, B) 3.92 83.50 3.51

Same geometry heads (Section 3, A,B,C) 7.83 41.18 8.42
W/o LW (Equ. 4) 3.83 82.67 3.53

W/o Lpose (Equ. 3) 2.73 90.17 2.67
Ours 2.72 91.34 2.43

Table 6: Ablation on BEHAVE for holistic reconstruction.
Table 7: INN vs Broyden formu-
lation.

(a) (b)

Figure 6: (a) Using single SDF network for both entities. (b) Using
separate SDF networks for individual elements.

Further study and limitations:
Although we successfully dis-
entangle motions of the inter-
acting entities, our framework
currently employs separate net-
works for each entity, which
is not scalable for scenarios
involving more than two en-
tities. This limitation affects
its practicality for more com-
plex scenes with numerous interacting objects. A potential solution could involve the
integration of an occlusion map to better manage interactions among multiple entities.
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Evaluation Type of Dist. Acc. ↓ Comp. ↓ Prec. ↑ Recal. ↑ F-score ↑ Chamfer ↓
Proc. Mask/Pose (cm) (cm) (%) (%) (%) (cm)

Human Recon. GT 1.761 1.863 97.225 93.624 95.343 1.812
Pred. mask 2.002 2.248 96.003 90.619 93.233 2.125

Pred. mask + pose 3.290 3.392 81.831 83.512 82.662 3.341

Object Recon. GT 3.571 2.121 82.762 92.410 86.991 2.741
Pred. mask + pose 3.694 2.408 81.152 91.600 86.060 2.901

Scene Recon. GT 2.721 2.142 89.120 93.853 91.343 2.431
Pred. mask 2.832 2.439 87.193 89.609 88.158 2.635

Pred. mask + pose 3.283 3.143 80.765 85.364 83.001 3.213

Table 8: Reconstruction results on the BEHAVE dataset with pre-
dicted semantic masks and predicted pose.

Also, we further analyze the depen-
dency of reconstruction quality on
3D pose and semantic map accuracy
(Table 8). With predicted masks: For
this purpose, we have used a com-
bination of a state-of-the-art object
detection network, YOLOv8 [48],
for first detecting the objects under
reconstruction and then SAM [49]
for segmenting the respective objects
within the predicted bounding boxes given by YOLOv8. Results show that our method can generate
similar reconstruction results as dataset-given masks, because, in our method, the reconstruction qual-
ity for the semantically separable geometries is not solely dependent on the quality of input semantic
masks. We utilize information from both 2D semantic masks and 3D skeletons. While the rays are
sampled in image space within 2D bounding boxes around each entity, we also perform an encoding
for every 3D point on the sampled rays based on its distance from the 3D skeletons of individual
elements under reconstruction. With predicted pose: We generate these 3D skeletons by using the
state-of-the-art 3D pose estimation network [50]. As the results show, our method needs a good
quality 3D skeleton to constrain the shape and motions of the individual elements. Even though the re-
construction quality is not affected, the inaccuracies come from the predicted pose (Figure 7). So, this
is another limitation of our method, that it requires good quality 3D pose for correct reconstruction.

5 Conclusion

(a) (b) (c) (d)

Figure 7: (a) Input image, (b), (c) Reconstruction with ground-truth
and predicted pose, (d) pose inaccuracy.

This paper introduces TFS-NeRF, a
3D semantic NeRF framework for
dynamic scene reconstruction using
sparse/single-view RGB videos. Uti-
lizing INN, our approach signifi-
cantly streamlines the training pro-
cess, addressing the typically long
convergence times associated with
existing template-free methods. Our
method effectively disentangles the
motions of multiple entities, whether
rigid, non-rigid, or deformable, and optimizes per-entity skinning weights for accurate and seman-
tically distinct 3D reconstructions. We conducted extensive experiments across various datasets,
showcasing our approach’s superior capability to manage complex interactions between multiple
entities while ensuring high-quality reconstructions.

Broader Impact. Positive implications include advancements in digital media, robotics, and medical
imaging, to name a few. Potential negative impacts involve privacy concerns and bias in model
training, which can be mitigated by implementing strict data policies and ensuring diverse training
datasets. Our proposal promises significant benefits for various fields, though it requires careful
consideration of ethical and societal impacts.
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A Appendix / supplemental material

A.1 Neural Network architectures:

Invertible Neural Network: It transforms the view space points to canonical space (Fig. 3),
x′
c = GINN

v−>c(x
init
c ,J). We use realNVP [29] as the baseline of our Invertible Neural Network. This

network consists of 2 Coupling layers [29], each with scaling and translation prediction modules.
Each of these modules consists of 3 linear layers with dimensions 331× 512, 512× 512, and 512.
The input to the INN network is the deformed space points and it is conditioned on the skeleton pose.
The input points are first transformed using a projection layer to dimension 256 which is concatenated
with the skeletal pose (72) and passed as input to the scale and translation prediction networks. The
predicted scale and translation transform the deformed space points to canonical space.

Skinning weight prediction network: The transformed canonical points are passed through the
skinning weight prediction network ws = GW

xc−>w(x′
c) (Fig. 3). The skinning weight prediction

network consists of 3 linear layers with dimensions 3 × 256, 256 × 256, 256 × 24. The skinning
weight prediction network takes the transformed canonical points as input, hence, the dimension is
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3. The output defines the weightage of each skeleton joint on a 3D point for its deformation from
canonical space to deformed space. Hence, the dimension of the output layer is 256× 24. The output
activation layer is defined as softmax as the sum of individual weight should be 1. Two similar
architecture weight prediction networks are used for skinning weight prediction for individual entities.

SDF prediction network: Transformed canonical points are passed through the SDF prediction
network Fig. 2 for geometry prediction, F j

c−>Ω(θ) : R3+3+nb → R1+256. The SDF prediction
network consists of 8 linear layers each with a hidden size of 256. A skip connection is added at
layer 4. The dimensions of each layer are as follows 114× 256, 256× 256, 256× 256, 256× 217,
256× 256, 256× 256, 256, 256× 257. The input canonical points are transformed by a frequency
layer and mapped to dimension 39, which is concatenated with canonical joints represented as
24 × 3 (each entity is represented by 24 skeleton joints). Moreover, as discussed in the main
paper, each point is assigned a semantic label denoting which entity it belongs to i.e., deformable,
non-deformable object or background. The dimension of the semantic label is 3. Hence, the input
dimension is 39+ 72+ 3 = 114. The SDF prediction network generates an SDF value for each point
(dimension 1) and a feature representation of dimension 256, resulting in a total output dimension of
257. We use separate networks for the SDF prediction of different entities. However, use similar
architecture for both entities.

RGB rendering network: The RGB rendering network (Fig. 2) consists of 5 linear layers with
dimensions of 270 × 256, 256, 256, 256 × 256, and 256 × 3. The input to the rendering network
is canonical points with dimension 3, normals (calculated from predicted SDF) with dimension 3,
and per-frame skeleton pose (concatenated skeletal joints from both the entities with dimension of
(72 ⊕ 72) and the SDF predicted feature vector of dimension 256. A linear layer first transforms
the skeleton pose to a lower dimension (8). Hence, the input dimension of the rendering network is
3 + 3 + 8 + 256 = 270. The output of the network is the RGB value for each sampled point, hence,
the dimension of the output is 3. The output layer activation is defined as sigmoid.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, to correctly reflect the paper’s contribution and scope, the main claims are
made clear in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper discusses the limitation of the proposed work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results, hence no proof or assumptions
are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper disclose all the information required to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The paper does not open access the code during submission for review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper discusses all details regarding the experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:
Justification: We do not produce error bars or statistical studies for our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper mention about the computation resources used during training and
testing the method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform with the NeuRIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes the paper discuss the potential positive and negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for approach optimizing neural networks could enable people
to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not produce research in the above-mentioned areas, so there is
no risk of misuse of released data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper discuss about all the technical details of the proposed methods.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper experiments with open source datasets, but does not capture any
new data involving the human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper experiments with open source datasets, but does not capture any
new data involving the human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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