
Under review as a conference paper at ICLR 2024

FULLY IDENTICAL INITIALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs) have achieved numerous remarkable accomplish-
ments in practice. The success of these networks hinges on effective initialization
methods, which are vital for ensuring stable and rapid convergence during train-
ing. Recently, initialization methods that maintain identity transition within layers
have shown good efficiency in network training. These techniques (e.g., Fixup) set
specific weights to zero to achieve identity control. However, settings of remain-
ing weight (e.g., Fixup uses random values to initialize non-zero weights) will
affect inductive bias that is achieved only by a zero weight, which may be harm-
ful to training. Addressing this concern, we introduce fully identical initialization
(IDInit), an innovative method that preserves identity in both the main and sub-
stem layers of residual networks. IDInit employs a padded identity-like matrix to
overcome rank constraints in non-square weight matrices. Furthermore, we show
a convergence problem of an identity matrix can be solved by adding a momen-
tum term into the optimizer. Additionally, we explore enhancing the universality
of IDInit by processing higher-order weights and addressing dead neuron prob-
lems. IDInit is a straightforward yet effective initialization method, promising im-
proved convergence, stability, and performance across various settings, including
large-scale datasets and deep models. It stands as a novel solution for initializing
non-standard weight matrices, offering significant advantages in network training.

1 INTRODUCTION

Deep neural networks (DNNs) have attracted significant attention due to their versatility in various
applications (He et al., 2016; Li et al., 2021). Behind these successes, initialization methods play
a crucial role in promoting stable and fast-convergent training processes for networks (Sutskever
et al., 2013; Arpit et al., 2019; Huang et al., 2020; Pan et al., 2022). Usually, initialization methods
make effects by controlling the magnitude of signals. For example, Xavier (Glorot & Bengio, 2010)
initialization is originally proposed to maintain signals in the non-saturated region of the sigmoid
activation function by restricting signal variances, which greatly solved the difficulty of training.
Then, Gilboa et al. (2019); Poole et al. (2016) propose to initialize network weights by constraining
signals on the edge of chaos through dynamical isometry, which can further benefit the network
training. Later, Hardt & Ma (2017) analyzed the optimization landscape of linear residual networks,
and found that weights that transit identity in layers can help networks converge fast as their F-norm
is close to that of the final converged weights. And identity transition also corresponds to isometry
theory (Zhang et al., 2019), thereby, contributing to avoiding gradient explosion and diffusion.

Identity-Control:

Figure 1: A case of identity-control initial-
ization. In default, W1 and W2 are usually
initialized with the Xavier method. Identity
transition is achieved if W2 = 0.

An instance of preserving identity across neural net-
work layers, known as ”identity-control,” is depicted
in Figure 1 and formally expressed as Y = X .
This type of initialization can be implemented by
setting specific weights (e.g., W2) to 0, thereby en-
suring zero output in the sub-stem, as elucidated by
Hardt & Ma (2017). This approach, however, poses
challenges in configuring the remaining weight W1.
Previous work such as Fixup (Zhang et al., 2019)
and ZerO (Zhao et al., 2021) initialize W1 using the
Xavier and Hadamard methods, respectively. These
initializations can adversely affect the inductive bias already established by setting W2 = 0, a set-
ting beneficial for training. As evidenced in Figure 2, both Xavier and Hadamard methods cause

1

Under review as a conference paper at ICLR 2024

Random Hadamard Partial Identity IDInit

0.14 0.05

0.06 0.03

0.04 -0.01

0.05 -0.03

1 1

1 -1

1 1

1 -1

1 0

0 1

0 0

0 0

1 0

0 1

1 0

0 1

(a) Initialization methods.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Identity-1
Random
Hadamard
IDInit

(b) Square Loss.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Default
Random
Hadamard
Partial Identity
IDInit

(c) Rectangle Loss.

Figure 2: Analyzing effect of initializing W1 while W2 = 0. The experiment uses Cifar10 and
blocks in Figure 1, and more details are in Appendix C.4. (a) The initialization methods for W1 in
a rectangular format. Fixup: “Random”; ZerO: “Hadamard”. And “Partial Identity” and “IDInit”
denote padding 0 and I to an identity matrix, respectively. (b) Set W1 ∈ R240×240 and W2 ∈
R240×240 as square matrices. “Identity-1” represents a configuration where only one weight is
initialized as 0. Interestingly, while “Random” and “Hadamard” methods may outperform “Identity-
1” in initial training epochs due to more network weights, they are hard to capture the inductive bias
of “Identity-1”, resulting in convergence difficulties. In contrast, IDInit can effectively leverage the
training dynamics associated with “Identity-1”. (c) Set W1 ∈ R280×240 and W2 ∈ R240×280 as
rectangle matrices. “Default” means W1 and W2 are initialized with Xavier. However, “Default”
proves ineffective for training, as it conflicts with dynamical isometry. Furthermore, even though
“Partial Identity” exhibits the capability to transmit partial signals, it performs poorly due to rank
constraint issues. Finally, IDInit maintains well-training conditions by padding the identity matrix.

difficulties in achieving convergence. Observing this, we propose initializing W1 with an identity
matrix I , which retains the inductive bias as IW2 ≡ W2. Moreover, I also achieves dynamical
isometry in the sub-stem layer as discussed by Zhao et al. (2021). Figure 2 demonstrates that using
an identity matrix significantly aids in training convergence. Nonetheless, the practical application
of an identity matrix faces two primary obstacles. First, an identity matrix requires square-shaped
weights, a condition seldom met in practical networks. While a partial identity matrix (by padding
0 to an identity matrix) offers a workaround, it leads to rank constraints issues (Zhao et al., 2021)
when the output dimension exceeds the input dimension, impairing network generalization. The
second obstacle concerns the convergence capability. As Bartlett et al. (2019) pointed out, weights
initialized with an identity matrix are difficult to converge to the ground truth, of which eigenvalues
contain negative values. This convergence problem is important as it indicates a limited universality
of applying an identity matrix as an initialization method.

IDInit. In light of the preceding discussion, we are going to address the two major obstacles. To
handle a non-square matrix, we pad a new identity matrix in adjacency to an identity matrix. We
theoretically demonstrate this operation can resolve the rank constraint problem. Then, to alleviate
the replica problem induced by this padding scheme, we impose a loosening condition on the padded
identity-like matrix. Turning to the matter of convergence, we conduct an experiment to analyze it.
Interestingly, we find that the convergence problem can be solved by adding a moment in an opti-
mizer (e.g., the stochastic gradient descent optimizer), which is the most general setting for training
neural networks. By introducing the identity-like matrix into the identity-control framework, we
implement a fully identical initialization (IDInit), which ensures identity transition across both main
and sub-stem layers. Moreover, we explore two additional techniques for improving the universality
of IDInit and the identity-control framework:

(1) Higher-order Weights: An identity matrix is a 2-D array and it is necessary to consider an
efficient method to transfer the identity matrix to a higher-order weight (e.g., a 4-D convolution). A
previous strategy is to keep identity along the channel (see Sec. 3.3.1). However, this method causes
diversity loss in channels, which is harmful to performance. To remedy this shortage, we propose to
keep identity in patches alternatively for more diversity in channels to achieve improvement.

(2) Dead Neurons: As an identity-control method, IDInit sets the last layer of the sub-stem to 0
for transiting identity in the main branch. However, a dead neuron problem is possibly caused
by directly this setting, especially for residual convolutional neural networks, (Zhang et al., 2019;

2

Under review as a conference paper at ICLR 2024

Zhao et al., 2021). Addressing this, we select some elements to a small numerical value ε to increase
trainable neurons as in Figure 6.

To our knowledge, IDInit is the first successful trial to maintain identity in both main- and sub-stems
by breaking the rank constraints, which promise the expressive power of IDInit. Then, we address
the replica problem by adding small noise while maintaining the dynamical isometry. By further
proposing modifications to CNNs and solutions to dead neuron problems, we have significantly
improved accuracies by 3.42% and 5.89% respectively (see Section 4.4). Note that, although the
identity matrix is used as initialization in prior work, it was only used for square matrix, e.g., Le
et al. (2015) set a hidden-to-hidden layer in a recurrent neural network with an identity matrix for
better performance. IDInit is novel for the consideration of non-standard situations, e.g., non-square
matrix. On ImageNet, IDInit can achieve almost all the best performance (with an average 0.55%
improvement) and the fastest convergence on various settings. IDInit can accelerate the training
procedure of BERT-Base, manifesting an 11.3% reduction in computational cost. Therefore, our
approach yields consistently significant advantages in the training of neural networks.

2 RELATED WORK

Given an L-layer residual network with two parameters in each residual stem and an input signal
x(0), the i-th layer can be formulated as

x(i+1) = a(I + θ(i,0)θ(i,1))x(i), (1)

where a(·) denotes the activation function, x(i) means an input of i-th residual block in a network,
I is an identity matrix denoting residual connection, and θ(i,0) and θ(i,1) are weights in the i-th
residual stem of a residual block.

Dynamical Isometry. Assuming signal magnitude (e.g., σ2(x(i))) of each layer changing in a
scale α, the last signal magnitude can reach αL (e.g., σ2(x(L)) = αLσ2(x(0))), making it easy to
cause signal explosion and diffusion, especially for large L. Dynamic isometry is also a mechanism
that comes from mean-field theory (Pennington et al., 2017; 2018). By utilizing this paradigm, it is
usually to consider the input-output Jacobian

Jio =
∂x(L)

∂x(0)
, (2)

whose mean squared singular value is χ. (Pennington et al., 2017) and (Bachlechner et al., 2021)
show that χ > 1 indicates that the model is in a chaotic phase, and back-propagated gradients
will explode exponentially. By contrast, χ < 1 means a model in an ordered manner that back-
propagated gradients vanish exponentially. χ = 1 is a critical line of initialization, avoiding van-
ishing or exploding gradients. The isometry can provide sufficient robustness for the network train-
ing (Gilboa et al., 2019; Poole et al., 2016; Yang & Schoenholz, 2017).

Network Initialization. Common initialization methods are Xavier (Glorot & Bengio, 2010) and
Kaiming initialization (He et al., 2015). Especially for residual networks efficiency, Hardt & Ma
(2017) theoretically demonstrates that network training benefits from keeping identity. Le et al.
(2015) set a hidden-to-hidden layer in a recurrent neural network with an identity matrix for better
performance. Fixup (Zhang et al., 2019) and ZerO (Zhao et al., 2021) both set residual stem to 0
(not residual connections) to guarantee the identity of signals, thereby initializing ResNets success-
fully. SkipInit (De & Smith, 2020) replaces Batch Normalization with a multiplier whose value is 0.
ReZero (Bachlechner et al., 2021) directly adds extra parameters of value 0 to keep identity, leading
to fast convergence.

Identity-Control Training Framework. Net2Net (Chen et al., 2016) proposes to expand network
depth by maintaining identity. DiracNet (Zagoruyko & Komodakis, 2017) maintains an identity
for propagating information deeper into the network. However, it suffers from reducing residual
connection, causing performance loss. ISONet (Qi et al., 2020) is an isometric learning framework
that contains an identical initialization (i.e., the Dirac function that is also used in ZerO (Zhao et al.,
2021) by padding 0 in a non-square matrix case), and isometric regulation in training. ISONet
multiplies 0 to the residual stem like Fixup (Zhang et al., 2019). ISONet lacks the flexibility for
various convolutions as it specifies the net without normalization, and requires SReLU.

3

Under review as a conference paper at ICLR 2024

3 IDENTICAL INITIALIZATION

In this section, we first discuss the convergence problem in Sec. 3.1. Then, we describe the way
to maintain the stability for non-square identity-like matrices in Sec. 3.2. At last, we introduce
an efficient reshaping strategy to significantly enhance convolution performance and the method to
tackle the dead neuron problem in identity transition in Sec. 3.3.1 and Sec. 3.3.2, respectively.

3.1 CONVERGENCE ABILITY OF IDINIT

Table 1: Results of the convergence problem.
Method Solution w/o Momentum w/ Momentum

LS 1e-4 - -
Xavier - 1e-4 1e-4
Identity - 1 1e-4

To address the convergence problem proposed by
Bartlett et al. (2019), we conduct an experiment
to elaborate on this problem. We set the target
matrix as −I ∈ R10×10. We use a 3-layer net,
weights in which are W0,W1,W2 ∈ R10×10. We
randomly generated 4000 data pairs {Xi, Yi} by
Yi = −IXi + ξ, where Xi, Yi ∈ R10, and ξ is
noise with mean 0 and std 1e-2. We use 2000 samples for solving the least square (LS) matrix or
training the network. We use the other 2000 samples for testing. Mean squared error (MSE) is used
as the loss function.

As shown in Table 1, SGD w/o momentum is hard to optimize a network initialized with the identity
matrix, which corresponds to Bartlett et al. (2019). However, when used in conjunction with mo-
mentum, SGD is able to successfully optimize the network. It’s worth noting that while a network
initialized with Xavier can be optimized by SGD without momentum, wider and deeper networks
still cannot be well optimized under the same conditions (Sutskever et al., 2013). As such, momen-
tum is crucial in training deep networks. In conclusion, although IDInit may have trouble achieving
convergence with pure SGD, it can be optimized effectively with momentum, which is the most
commonly used setting.

3.2 MAINTAINING IDENTITY BY PADDING IDENTITY

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Figure 3: An overview of IDIτ . Di means an in-
put dimension and Di+1 denotes an output dimen-
sion. τ is usually set to 1 to maintain identity.

A standard identity matrix can naturally satisfy
identity transition. However, in a non-square
situation, this natural advantage is lost. To ad-
dress this problem, we pad the identity matrix
on an identity matrix to fit a non-square matrix.
Specifically, for a fully-connected layer trans-
formed from Eq. (1) as x(i+1) = θ(i)x(i), we
set the weight θ(i) ∈ RDi+1×Di to

θ
(i)
m,j =

{
τ, if m ≡ j (mod Di),

0, otherwise.
(3)

The initialization formulated as Eq. (3) is termed as IDIτ , where IDI means the identical initial-
ization function, and τ is calculated by considering the activation function, e.g., τReLU = 1

2 and
τsigmoid = 1 for ReLU and sigmoid activation functions respectively. As in Figure 3, setting τ = 1
can form IDI1 initialization. Moreover, we provide a trainability analysis on the non-squared con-
dition of IDIτ in Sec. A.2 of the appendix.

3.2.1 ON RANK CONSTRAINT PROBLEM

ZerO (Zhao et al., 2021) points out that a dimension-increasing matrix (i.e., Di+1 > Di) can en-
counter a rank constraint problem if padding zero values.

Rank Constraint Problem. Consider an L-layer network with the formulation of the i-th layer
(i ∈ {0, 1, . . . , L − 1}) as x(i+1) = θ(i)x(i), where x(0) ∈ RD0 , x(0) ∈ RDL , θ(0) ∈ RDh×D0 ,
θ(L−1) ∈ RDL×Dh , θ(k) ∈ RDh×Dh where k ∈ {1, 2, . . . , L − 2}, and Dh > D0, DL. Define
residual component θ̂(k) = θ(k) − I . When initializing the dimension-increasing weight θ(0) by
padding zeros values, the rank constraint problem is performed as

rank(θ̂(k)) ≤ D0, (4)

4

Under review as a conference paper at ICLR 2024

where k ∈ {1, 2, . . . , L − 2}. IDIτ can simply break the rank constraint as in Theorem 3.1. We
defer the proof in Appendix A.3.

Theorem 3.1. If initializing all weights {θ(i)}L−1
i=0 with IDI1, the rank of middle layers can attain

rank(θ̂(k)) ≥ D0, where k ∈ {1, 2, . . . , L− 2}, (5)

which breaks the rank constraint.

Padding Zero
(PZ)

Padding Identity
(PI)

(a) Padding schemes.

0 2000 4000 6000 8000 10000
Iterations

0

200

400

600

800

1000

Ra
nk

input_dim=784
PZ
Loose PZ
Hadamard
PI
Loose PI

(b) Rank plot.

Figure 4: Two padding schemes and their influ-
ence on ranks of a layer. We trained a 3-layer net-
work on MNIST, and set D0 = 768 and Dh =
2048. We plot rank(θ(1)) ∈ RDh×Dh in (b). As
shown in (b), padding identity can achieve more
than a rank of 768 like Hadamard, while padding
zero is limited under 768. The loose condition can
lead to better rank performance, however, cannot
solve the rank constraint problem of padding zero.

Notably, ZerO (Zhao et al., 2021) claimed that
ranks of weights are always limited to D0 when
the non-linearity like ReLU is not applied,
which seems to contradict Theorem 3.1. How-
ever, this claim is tenable in the initial state.
After training for several steps, an IDInit ini-
tialized network can break this constraint.

Replica Problem. When recurrently padding
the identity matrix, the output features are still
replicated. According to Blumenfeld et al.
(2020), such a replica problem can be solved
by adding noise to weights. Inspired by that,
we loosen the identity condition to generate
τ ∼ N(τ, ϵτ), while keeping most identity. ϵτ
is a small value and set to 1e-6 in this paper.
With this loose condition, IDInit can give addi-
tional noise to output features and bring more
feature diversity. Profiting from the feature diversity, IDInit therefore can increase the rank values
as shown in Figure 4(b).

3.3 ADDITIONAL TECHNIQUES FOR IDINIT

In this part, we introduce two techniques to enhance the universality of IDInit for practical situations.

3.3.1 PATCH-MAINTAIN CONVOLUTION

Convolution layers are important structures in deep neural networks. Here, we will explore an
initialization pattern for convolution with identity transition. A convolution kernel is usually defined
as C ∈ Rk×k×cin×cout , where cin and cout are channels of input and output separately, and k means
convolutional kernel size. Similar to an identity matrix, Zhao et al. (2021) consider a convolution
layer that transits identity by setting 0-filled C through IDIτ (Cn,n,:,:), where n ∈ N+ and k =
2n + 1. As a convolutional kernel window size, k is usually an odd number. When cin = cout,
the convolution maintains the identity. When cin > cout or cin < cout, C will under-sample and
over-sample on an input feature along channel respectively. Keeping identity is usually considered
an efficient way to improve model performance, however, we find that this setting can lead to a fatal
performance degeneration (see Sec. 4.4).

Patch-Maintain Convolution. Inspired by Han et al. (2020) that enhance model performance
by increasing feature diversity, we propose to fuse spatial information by simply reshaping a
matrix initialized with IDIτ . Specifically, we reshape the convolutional kernel C into a matrix
C ∈ Rcout×kkcin . We initialize C as

IDIτ (C). (6)

Then by reshaping C into C ∈ Rk×k×cin×cout , our initialization for a convolution is completed.
This reshaping strategy can shift spatial features, thereby increasing feature diversity. We utilize
IDICτ to denote such a reshaping process. A detailed description is in Figure 11 in the Appendix.

3.3.2 TACKLING DEAD NEURONS

At present, residual blocks become the most popular module in almost all the neural network (e.g.,
Mixers (Liu et al., 2021a; Tolstikhin et al., 2021), Convolutions (He et al., 2016; Zhang et al., 2019),

5

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250

0

20

(a) Weight initialized with numerical value 0.
0 50 100 150 200 250

0

20

(b) Weight initialized with IDIZ1e−6.

Figure 5: The last weight in a residual block of a trained ResNet. More than half of elements in (a)
are not trained, which is known as the dead neuron. By contrast, IDIZ1e−6 successfully solves the
dead neuron problem and makes all the elements in (b) trainable.

and Transformers (Liu et al., 2021b; Vaswani et al., 2017)). A residual block is usually constructed
with a residual connection and several transformations in the residual stem.

Given a residual network formulated by Eq. (1), recent research (Zhang et al., 2019; Zhao et al.,
2021) directly sets the last transformation in the residual stem to 0, i.e., θ(i,0) = 0, thereby main-
taining an identity as

x(i+1) = (I + 0)x(i) = x(i). (7)

However, the setting can possibly cause a dead neuron problem.

0

0

0

0

0

0

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0

Figure 6: An overview of IDIZε. Di means an
input dimension and Di+1 denotes an output di-
mension. We set ϵ to 1e-6 to transit zero.

Dead Neuron Problem. Fixup (Zhang et al.,
2019) only uses a multiplier of 1 after θ(i,0) =
0, thereby obtaining non-zero gradients. How-
ever, in a realistic implementation of neural net-
works, the multiplier of Batch Normalization
can be set to 0 (Goyal et al., 2017), and down-
sampling operation can also cause 0 filled fea-
tures12. Under the implementations, θ(i,0) al-
ways acquires gradients with 0 values, known
as the dead neuron problem, which causes
failed weight updating.

Tackling this problem, we generate small values on θ(i,0) to assist in training. Recall the goal of
identity-control initialization that outputs 0. Therefore, we build a calculation to get the expectation
and variance of outputs approaching 0. Considering two i.i.d variables, v1 and v2, whose variances
are σ2(v1) = σ2(v2) = φ and means are µ(v1) = µ(v2) = γ, the variable v = ε(v1− v2) have{

µ(v) = 0,

σ2(v) = 2φε2,
(8)

where ε is a coefficient, and σ2(v) will be limited to 0 when ε is sufficiently small. Assuming
elements of x(i) are i.i.d to each other, by applying subtraction on any two elements, the result has
a mean of 0, and a variance related to ε. We also take θ(i,0) ∈ RDi+1×Di as an instance. At first,
we initialize θ(i,0) with IDIε. Then consider two cases: (i) if Di+1 < Di, setting θ

(i)
:,Di+1+1:Di

with

IDI−ε; (ii) if Di+1 ≥ Di, set θ(i)m,j = −ε, when m%Di = j − 1. Therefore, we can obtain a
variance of 0 by setting ε to a small value. This method is termed as IDIZε, and we illustrate some
cases in Figure 6. In this paper, we set ε = 1e − 6 everywhere. As shown in Figure 5, IDIZ1e−6

successfully initializes the last weight in a residual block. In addition, we also transform IDIZε to a
convolution form IDIZCε through the patch-maintain scheme.

We conclude the whole IDInit as (1) Non-Residual Networks. Directly applying IDIτ and IDICτ to
all the fully-connected and convolutional layers, respectively; (2) Residual Networks. (i) Applying
IDIτ and IDICτ to all the fully-connected and convolutional layers, respectively; (ii) Applying
IDIZε and IDIZCε to the fully-connected and convolutional layers in the last position of residual
blocks, and the position of last classification layer.

1https://github.com/hongyi-zhang/Fixup/blob/master/cifar/models/resnet_
cifar.py

2https://github.com/akamaster/pytorch_resnet_cifar10/edit/master/
resnet.py

6

https://github.com/hongyi-zhang/Fixup/blob/master/cifar/models/resnet_cifar.py
https://github.com/hongyi-zhang/Fixup/blob/master/cifar/models/resnet_cifar.py
https://github.com/akamaster/pytorch_resnet_cifar10/edit/master/resnet.py
https://github.com/akamaster/pytorch_resnet_cifar10/edit/master/resnet.py

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

In this section, we construct a set of experiments to validate the proposed IDInit. Firstly, we conduct
experiments on non-residual convolution and residual convolution in Sec. 4.1 and Sec. 4.2, respec-
tively. Then we conduct image classification on ImageNet in Sec. 4.3. Next, we implement an
ablation experiment in Sec. 4.4 to show the effect of the proposed two modifications in Sec. 3. Later
we conduct a text classification experiment in Sec. 4.5. At last, we employ a pre-training experi-
ment on the large-scale dataset WuDaoCorpora in Sec. 4.6 separately. We also analyze the variance
amplification in Sec. C.2, weight distribution in Sec. C.3, and dynamical isometry in Sec. C.4.

4.1 VALIDATION ON NON-RESIDUAL CONVOLUTION

We use this experiment to show IDInit can achieve a good initial state for training. In this ex-
periment, we use Cifar10 as the benchmark dataset. We use nine convolutional layers named All-
Conv (Springenberg et al., 2015). We show the structure of AllConv in Table 6 in the appendix. The
optimizer is Stochastic Gradient Descent (SGD) with momentum 0.9, weight decay 5e-4, and learn-
ing rate 1e-1. The learning rate scheduler adopts a warm-up cosine reduction strategy. We run the
model in 300 epochs on one Nvidia A100. We adopt Kaiming initialization and IDInit w/o IDICτ

initialization for comparison.

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

IDInit-0
IDInit-10
Kaiming-10
Kaiming-40
Kaiming-60

(a) Test Top-1

0 10 20 30 40 50 60
Warmup Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
es

t
A

cc
ur

ac
y

IDInit
Kaiming
IDInit w/o IDICτ

(b) Test Best

Figure 7: Results of AllConv on Cifar10. The number be-
hind the initialization denotes the warm-up epochs.

Results are shown in Figure 7, with-
out a warm-up strategy which is a
strong trick for training, both Kaim-
ing and IDInit w/o IDICε fail to train
the model. By contrast, our initial-
ization can train AllConv and main-
tain the highest performance in all
situations, showing a strong effect
on stability and performance. As
IDInit w/o IDICε performs poorly,
we demonstrate the patch-maintain
strategy mentioned in Sec. 3.3.1 can be good for increasing feature diversity. This experiment shows
the identical method can be a feasible initialization for non-residual networks.

Table 2: Results on Cifar10. ZerO performs worse for zero down-sampling as mentioned in
Sec. 3.3.2. IDInit can always achieve fast convergence.

56 Layer (SGD/Adam) 110 Layer (SGD/Adam)

Initialization Acc. Epochs to 80% Acc. Acc. Epochs to 80% Acc.
Zero γ 92.32±0.19/87.37±0.43 57±7/63±4 93.07±0.28/88.30±0.31 36±2/56±7

ZerO 90.57±0.31/83.53±0.42 57±3/85±4 91.71±0.21/84.24±0.10 55±3/76±2

Fixup 93.24±0.82/89.50±0.18 31±3/55±3 93.32±0.23/90.67±0.12 33±3/49±2

SkipInit 92.29±0.30/85.45±0.74 26±1/81±3 92.67±0.16/87.18±0.94 31±5/70±7

ReZero 93.06±0.54/89.26±0.30 33±2/44±3 94.03±0.26/90.25±0.20 35±5/38±3

Kaiming 93.36±0.14/87.55±0.32 34±3/50±2 94.06±0.18/87.89±0.41 33±4/56±3

IDInit 93.41±0.10/90.01±0.32 26±1/34±1 94.04±0.24/90.53±0.10 27±1/36±2

4.2 VALIDATION ON RESIDUAL CONVOLUTION

In this experiment, we validate the proposed initialization with the comparison with existing initial-
ization, including (1) Fixup; (2) SkipInit; (3) ReZero; (4) Kaiming; (5) Zero γ (Setting the scale in
Batch Normalization (BN) to 0) (Goyal et al., 2017); (6) ZerO. We use ResNet-56/110 as backbones
on Cifar10. To verify the universality, we use two settings, namely w/ and w/o BN. For analyzing
convergence, we adopt both SGD and Adam optimizer for updating models. We set SGD, with the

7

Under review as a conference paper at ICLR 2024

momentum 0.9, the weight decay 5e-4, and the learning rate 0.2. For Adam, the learning rate is
0.001, β1 is 0.9 and β2 is 0.999. We train models for 200 epochs.

Results are shown in Table 2. Although ZerO uses the Hadamard matrix to break the rank constraint
problem, it can be damaged by zero down-sampling as mentioned in Sec. 3.3.2. Therefore, we
reclaim the importance of using IDIZε and IDIZCε for avoiding such potential damage. Compared
with baselines, IDInit derives the best accuracies in most cases. In addition, IDInit can achieve the
least epochs to reach 80% accuracy in all settings, which shows a good convergence ability.

4.3 IMAGE CLASSIFICATION ON IMAGENET

50 100 150 200 250 300
Epoch

0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72

Te
st

 A
cc

ur
ac

y

Default
IDInit

(a) ViT-B/32

0 20 40 60 80
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(b) RN-50

Figure 8: Some results on ImageNet. “Default” means
the default initialization of models.

We validate ViT-B/32 (Dosovitskiy et al.,
2021), ResNet-50/152 (RN-50/152) and
Se-ResNet-50 (SRN-50) as backbones on
ImageNet in this experiment. For ViT-
B/32, the optimizer is AdamW with a
learning rate 1e-3 and a weight decay 5e-
2. The training epochs is 300. We use 30
epochs for warm-up. For RN-50/152 and
SRN-50, we use SGD with a learning rate
1e-1 and a weight decay 1e-4 for 90-epoch
training. We use 9 epochs for warm-up.
For all models, the batch size is 1024, and
we apply data augment including cutmix (Yun et al., 2019) with α = 1.0, mixup (Zhang et al., 2018)
with α = 0.8, the switching probability is 0.5 and a label smoothing with 0.1.

Table 3: Results on ImageNet. The value in brackets means “Epochs to
60% Acc”. On average, IDInit enhances accuracy by 0.55% compared to
the baseline and expedites model convergence by 7.4 epochs.

Model ViT-B/32 RN-50 (Adamw) RN-50 SRN-50 RN-152 Avg (∆)

Default 71.05 (44) 76.20 (20) 75.70 (38) 76.30 (32) 78.76 (28) 0 (0)

IDInit 71.60 (42) 76.71 (14) 76.72 (24) 76.93 (22) 79.10 (23) 0.55 (7.4)

Results are shown in
Figure 8 and Table 3.
On three types of net-
works, i.e., ViT, ResNet
and Se-ResNet, and
multiple depths, IDInit
always achieves faster
convergence and better performance than the baseline. And when training RN-50 with Adamw,
the convergence of IDInit is still consistently fast. Compared with RN-50, our initialization shows
a faster convergence speed. IDInit has an average improvement of 0.55%, which is significant to
be in practice. This experiment shows the good practicability and promising probability of IDInit,
which is beneficial to the artificial intelligence community.

4.4 ABLATION EXPERIMENT

We conduct this experiment to validate the effect of the proposed two improvements. The dataset is
Cifar10 and the backbone is ResNet-20. We run four times following settings: (i) IDInit w/o IDICτ

and w/o IDIZCε; (ii) IDInit w/o IDICτ and w/ IDIZCε; (iii) IDInit w/ IDICτ and w/o IDIZCε; (iv)
IDInit. We choose SGD with momentum 0.9, weight decay 5e-4 and learning rate 0.1 to train the
models for 200 epochs. The learning rate is reduced with a cosine function.

Table 4: Results of the ablation experiment on ResNet-20.
Setting (i) (ii) (iii) (iv)
Accracy 87.01±0.29 92.9±0.18 90.43±0.14 93.22±0.05

As shown in Table 4, by applying
the identity matrix directly, (i) ob-
tains the lowest accuracy of 87.01%
among all cases. Regarding results
of (ii) and (iii), both the two settings can make significant improvements of nearly 5.89% and 3.42%
from (i), respectively. And IDIZCε can make a deeper effect than IDICτ . Equipping IDICτ and
IDIZCε, IDInit will improve performance further, which demonstrates our modification is efficient.

4.5 TEXT CLASSIFICATION

We implement text classification on SST2 (Socher et al., 2013) and TREC-6 (Li & Roth, 2002) and
select TextCNN (Kim, 2014), TextRNN (Lai et al., 2015) and Transformer (Vaswani et al., 2017) for
comparison. For TextCNN and TextRNN, we use AdaDelta (Zeiler, 2012) optimizer with a learning

8

Under review as a conference paper at ICLR 2024

Table 5: Results of TextCNN and TextRNN on SST2 and TREC-6. The subscript G denotes the
embedding layer is initialized by Glove while W indicates Word2Vec. “Default” means the default
initialization of models, specifically, Kaiming for TextCNN, and Xavier for both TextRNN and
Transformer. Std values larger than 1.0 are marked in red. More results can be found in Table 7.

Datasets Init. TextCNNG/W TextRNNG/W TransformerG/W

SST2
Default 81.40±0.66/84.56±0.43 81.69±0.30/84.29±0.70 80.97±1.20/83.36±0.76

Orthogonal 82.24±0.44/84.37±0.38 81.86±0.55/84.61±0.78 82.22±0.87/83.99±0.23

IDInit 82.60±0.24/85.67±0.41 82.66±0.16/85.49±0.33 82.48±0.55/84.51±0.24

TREC-6
Default 90.80±0.94/92.06±1.00 86.34±1.04/90.52±1.54 86.68±2.68/89.20±1.20

Orthogonal 90.34±0.72/92.72±0.84 85.86±0.90/89.88±1.54 86.90±1.51/89.26±0.86

IDInit 91.22±0.54/92.94±0.48 87.04±0.26/90.60±0.58 87.32±0.78/90.06±0.60

rate 1.0 and adopt Adam (Kingma & Ba, 2015) for Transformer with a learning rate 1e-4. For the
embedding layer, we utilize Glove (Pennington et al., 2014) and Word2Vec(Mikolov et al., 2013) to
initialize the embedding weights. All models are trained up to 10 epochs for 5 times.

As shown in Table 5, all the initialization methods can work normally. Default random initialization
obtains the lowest accuracy in most cases on both SST2 and TREC-6. Orthogonal initialization
always derives modest results. By contrast to baselines, IDInit can achieve the highest accuracy in all
conditions. In addition, IDInit always obtains the smallest std values, showing stable performance.

4.6 PRE-TRAINING ON LANGUAGE MODEL

1 3 5 7
FLOPs (1e19)

1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

M
LM

 L
os

s

5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25
1e19

1.44

1.46

1.48

1.50

11.3% 0%

Default
IDInit

Figure 9: Results of BERT-Base.

Pre-training plays an important role in various applica-
tions. We conduct the experiment to show the fast conver-
gence on BERT (Devlin et al., 2019). The dataset is the
concatenation of English Wikipedia and Toronto Book
Corpus Zhu et al. (2015). We train the BERT-Base for
40 epochs with 768 batch size. The optimizer is set to
AdamW with learning rate 1e-4 and weight decay 1e-2.
32 NVIDIA V100s are used.

As shown in Figure 9, “Default” means the default initial-
ization of models for BERT-Base. IDInit achieves faster
convergence. Specifically, IDInit shows an 11.3% accel-
eration ratio in terms of FLOPs. Moreover, IDInit can
derive a lower loss of 1.46 in the end. As a result, IDInit
is promising used in practice for enhancing convergence ability and performance.

5 CONCLUSION

An efficient initialization approach is crucial for training deep neural networks. In this paper, we
introduce a fully identical initialization (IDInit) that is based on the identity matrix. Addressing
the problems encountered when developing IDInit, i.e., dead neurons and performance degenera-
tion, we give two concise solutions, namely using small numerical values to wipe off dead neurons
and reshaping an identity-like matrix into a tensor thus increasing feature diversity, leading to a
performance improvement. With good performance on wide generality, high stability, and fast con-
vergence, IDInit is promising to be applicable in practice. In the future, we hope that this identical
design can motivate the AI community to implement more novel initialization methods.

Limitation. We defer the limitation of the proposed IDInit in Appendix D.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Devansh Arpit, Vı́ctor Campos, and Yoshua Bengio. How to initialize your network? robust initial-
ization for weightnorm & resnets. In NeurIPS, pp. 10900–10909, 2019.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Gary Cottrell, and Ju-
lian J. McAuley. Rezero is all you need: fast convergence at large depth. In UAI, volume 161 of
Proceedings of Machine Learning Research, pp. 1352–1361. AUAI Press, 2021.

Peter L. Bartlett, David P. Helmbold, and Philip M. Long. Gradient descent with identity initializa-
tion efficiently learns positive-definite linear transformations by deep residual networks. Neural
Comput., 31(3), 2019.

Yaniv Blumenfeld, Dar Gilboa, and Daniel Soudry. Beyond signal propagation: Is feature diversity
necessary in deep neural network initialization? In ICML, volume 119 of Proceedings of Machine
Learning Research, pp. 960–969. PMLR, 2020.

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. In ICLR, 2016.

Soham De and Samuel L. Smith. Batch normalization biases residual blocks towards the identity
function in deep networks. In NeurIPS, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186. As-
sociation for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR. OpenReview.net, 2021.

Dar Gilboa, Bo Chang, Minmin Chen, Greg Yang, Samuel S. Schoenholz, Ed H. Chi, and Jef-
frey Pennington. Dynamical isometry and a mean field theory of lstms and grus. CoRR,
abs/1901.08987, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, volume 9 of JMLR Proceedings, pp. 249–256. JMLR.org, 2010.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More
features from cheap operations. In CVPR, pp. 1577–1586. Computer Vision Foundation / IEEE,
2020.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In ICLR (Poster). OpenReview.net,
2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, pp. 1026–1034. IEEE Computer
Society, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778. IEEE Computer Society, 2016.

Xiao Shi Huang, Felipe Pérez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 4475–4483. PMLR, 2020.

Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, pp. 1746–1751.
ACL, 2014.

10

Under review as a conference paper at ICLR 2024

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In AAAI, pp. 2267–2273. AAAI Press, 2015.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks
of rectified linear units. CoRR, abs/1504.00941, 2015.

Nannan Li, Yu Pan, Yaran Chen, Zixiang Ding, Dongbin Zhao, and Zenglin Xu. Heuristic rank
selection with progressively searching tensor ring network. Complex & Intelligent Systems, pp.
1–15, 2021.

Xin Li and Dan Roth. Learning question classifiers. In COLING, 2002.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention to mlps. In NeurIPS, pp.
9204–9215, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp. 9992–
10002. IEEE, 2021b.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. In ICLR (Workshop Poster), 2013.

Yu Pan, Zeyong Su, Ao Liu, Jingquan Wang, Nannan Li, and Zenglin Xu. A unified weight initializa-
tion paradigm for tensorial convolutional neural networks. In ICML, volume 162 of Proceedings
of Machine Learning Research, pp. 17238–17257. PMLR, 2022.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532–1543. ACL, 2014.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In NIPS, pp. 4785–4795, 2017.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. The emergence of spectral univer-
sality in deep networks. In AISTATS, volume 84 of Proceedings of Machine Learning Research,
pp. 1924–1932. PMLR, 2018.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Expo-
nential expressivity in deep neural networks through transient chaos. In NIPS, pp. 3360–3368,
2016.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning for
visual recognition. In ICML, volume 119 of Proceedings of Machine Learning Research, pp.
7824–7835. PMLR, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pp. 1631–1642. ACL, 2013.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving
for simplicity: The all convolutional net. In ICLR (Workshop), 2015.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In ICML (3), volume 28 of JMLR Workshop and
Conference Proceedings, pp. 1139–1147. JMLR.org, 2013.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In NeurIPS, pp. 24261–
24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

11

Under review as a conference paper at ICLR 2024

Greg Yang and Samuel S. Schoenholz. Mean field residual networks: On the edge of chaos. In
NIPS, pp. 7103–7114, 2017.

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, pp.
6022–6031. IEEE, 2019.

Sergey Zagoruyko and Nikos Komodakis. Diracnets: Training very deep neural networks without
skip-connections. CoRR, abs/1706.00388, 2017.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR (Poster). OpenReview.net, 2018.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. In ICLR (Poster). OpenReview.net, 2019.

Jiawei Zhao, Florian Schäfer, and Anima Anandkumar. Zero initialization: Initializing residual
networks with only zeros and ones. CoRR, abs/2110.12661, 2021.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In ICCV, pp. 19–27. IEEE Computer Society, 2015.

12

Under review as a conference paper at ICLR 2024

A IDINIT DETAILS

A.1 FULL IDINIT SCHEME

Here, we show the full IDInit scheme in Figure 10.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Identity Preserving Initialization

0

0

0

0

0

0

0

0

0

Zero Preserving Initialization

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

Figure 10: Illustration of IDInit with all conditions.

A.2 TRAINABILITY ANALYSIS OF NON-SQUARED MATRICES.

The magnitude of signals transiting in layers is usually related to stability, and the variance of sig-
nals can be a good indicator of the magnitude according to the variance-control mechanism. Obvi-
ously, IDIτ can maintain forward signal variance. Therefore, we explore the trainability from the
angle of the gradient backward procedure. Prior to that, consider a network x(L) = f(x|Θ) =
θ(L−1)θ(L−2) . . . θ(0)x(0), the gradient relationship can be formulated as

∂L
∂x(i)

= θ(i)
T ∂L
∂x(i+1)

= θ(i)
T
θ(i+1)T

. . . θ(L−1)T ∂L
∂x(L)

,
∂L
∂θ(i)

=
∂L

∂x(i+1)
x(i)T

, (9)

where x(i) ∈ RDi , θ(i) ∈ RDi+1×Di and L denotes a loss of training. Since ∀i,Di+1 = Di,
the training process will be stable as that gradients transit identically. Here, we pay attention to
non-square conditions. τ = 1 for there is no activation function.

If ∀i,Di+1 < Di, then ∂L
∂x(i) (i ∈ {1, 2, . . . , L − 1}) contains elements of 0, which indicates that

∂L
∂θ(i) must contain 0 values, causing failed updating. However, this is a fake dead phenomenon,
since all weights will be trained after several updating steps. At the first training step, ∂L

∂θ(L−1) =
∂L

∂x(L)x
(L−1)T

. For both ∂L
∂x(L) and x(L−1) not definitely containing 0 values, θ(L−1) can be updated

normally and deviates from identity-like form. Therefore, ∂L
∂x(L−1) can get normal updating in the

next step. As a result, all weights can be updated normally.

If ∀i,Di+1 > Di, then the variance of gradients will increase from layer to layer. However, this will
not make trouble for training. For ∂L

∂x(i) , its variance σ2(∂L
∂x(i)) ≈ Di+1

Di
σ2(∂L

∂x(i+1)). Therefore, the
variance of ∂L

∂x(0) can be calculated as

σ2(
∂L
∂x(0)

) =
D1

D0

D2

D1
. . .

DL

DL−1
σ2(

∂L
∂x(L)

) =
DL

D0
σ2(

∂L
∂x(L)

). (10)

According to Eq. (10), the gradient will not explode in the backward procedure.

13

Under review as a conference paper at ICLR 2024

A.3 PROOF FOR THEOREM 3.1.

Proof. Assume weights are updated with the stochastic gradient descent (SGD). Without loss of
generality, we set Dh = 2D0 = 2DL. Given two batches of inputs as {x(0,1)

1 , x
(0,2)
1 , . . . , x

(0,N)
1 } ∈

RD0 and {x(0,1)
2 , x

(0,2)
2 , . . . , x

(0,N)
2 } ∈ RD0 , where N ≥ D0 is the batch size. Therefore, the initial

gradients of weights are

∂L
∂θ(0)

=

(
Π
0

)
,

∂L
∂θ(1)

=

(
Π Π
0 0

)
,

∂L
∂θ(2)

= (Π Π) ,

where ∂L
∂θ(0) ∈ RDh×D0 , ∂L

∂θ(1) ∈ RDh×Dh , ∂L
∂θ(2) ∈ RDL×Dh , Π = 1

N

∑N
i=1

∂L
∂x(L) ◦ x

(0,i)
1 ∈

RDL×D0 , and 0 is a zero values. ◦ denotes outer production.

After training with the second data batch, the gradient is calculated as follows:

∂L
∂θ(1)

=

(
(I − µΠ)M(I − µΠ)K (I − µΠ)MK
−µΠM(I − µΠ)K −µΠMK

)
, (11)

where M = ∂L
∂x

(3)
2

and K = 1
N

∑N
i=1 x

(0,i)
2 . This leads to the following residual component:

θ̂(1) = θ(1) − I =

(
−µΠ− µ(I − µΠ)M(I − µΠ)K −µΠ− µ(I − µΠ)MK

µ2ΠM(I − µΠ)K µ2ΠMK

)
, (12)

Without loss of generality, assuming rank(Π) = D0, we can conclude

rank(θ̂(1)) ≥ D0. (13)

Therefore, IDInit can break the rank constraint by achieving the rank of θ̂(1) larger than D0.

A.4 IMPLEMENTING IDINIT ON ATTENTION LAYER IN TRANSFORMER

In this part, we show the way to initialize the attention layer with IDInit. Prior to that, formulating
an attention layer as

Att(Q,K, V) = softmax(
QWQWKK√

d
)VWV WO, (14)

where Q is the query matrix, K means the key matrix, V denotes the value matrix, WQ, WK and
WV represents the weights for Q, K, and V respectively, and WO is the output transformation.
Following the instruction of IDInit in Sec. 3, we firstly use IDIτ to initialize WQ, WK , WV and
WO. And then, we use IDIZε to initialize the last fully-connected layer WO. The τ and ε are
consistently set with the paper content to 1 and 1e-6, respectively.

A.5 DETAILS OF PATCH-MAINTAIN CONVOLUTION

We illustrate the figure to show the comparison between channel-maintain convolution and patch-
maintain convolution in Figure 11.

B DETAILED SETTINGS OF EXPERIMENTS

In this paper, for ReLU activated networks, τ is set to
√
2 for the first layer in a network and 1 for

other IDIτ / IDICτ initializing layers, while for tanh-activated networks, all IDIτ is set to 1, and ε
is 1e− 6 for all IDIZε / IDIZCε initializing layers.

B.1 DETAILS OF VALIDATION ON NON-RESIDUAL CONVOLUTION EXPERIMENT

In this experiment, we use AllConv (Springenberg et al., 2015) which consists of nine convolutional
layers as the backbone network. We show the structure of AllConv in Table 6. The dataset is Cifar10.

14

Under review as a conference paper at ICLR 2024

Identity Transition
Unchanged

Features
Lacking
Diversity

Shifted
Features

Increasing
Diversity

Input number "7"

Figure 11: A case of number “7” on Identical Convolution Layer. The upper sub-figure maintains
the identity transition. The under sub-figure is IDICτ initialization that shifts features for increasing
diversity. More feature diversity from IDICτ is beneficial for improving model performance.

The optimizer is Stochastic Gradient Descent (SGD) with momentum 0.9, weight decay 5e-4, and
learning rate 1e-1. The learning rate scheduler adopts a warm-up cosine reduction strategy. We
run the model in 300 epochs on one Nvidia A100. We adopt Kaiming initialization and IDInit w/o
IDICτ initialization for comparison. Since there is no residual connection, we do not consider the
IDIZCε function in this experiment. For each initialization, we have run them with 0, 10, 20, 30,
40, 50, and 60 warm-up epochs. The experiment is conducted on one Nvidia A100.

Table 6: Architectures of the tensorial All-Conv networks. Window means the convolutional kernel
window size. Channels indicate cin and cout of a standard convolutional kernel C ∈ Rcin×cout×k×k.
The avg pool denotes the average pooling operation.

Layer Window Channels
conv1 3×3 3× 96
conv2 3×3 96× 96
conv3 3×3 96× 96
conv4 3×3 96× 192
conv5 3×3 192× 192
conv6 3×3 192× 192
conv7 3×3 192× 192
conv8 1×1 192× 192

conv9 1×1 192× 10
avg pool

B.2 DETAILS OF VALIDATION ON RESIDUAL CONVOLUTION EXPERIMENT

In this experiment, we validate the proposed initialization with the comparison with existing initial-
ization, including (1) Fixup; (2) SkipInit; (3) ReZero; (4) Kaiming; (5) Zero γ (Setting the scale in
Batch Normalization (BN) to 0). We use ResNet-56/110 as backbones on Cifar10. To verify the
universality, we use two settings, namely w/ and w/o BN. For analyzing convergence, we adopt both
SGD and Adam optimizer for updating models. We set SGD, with the momentum 0.9, the weight
decay 5e-4, and the learning rate 0.2. For Adam, the learning rate is 0.001, β1 is 0.9 and β2 is
0.999. We train models for 200 epochs. The learning rate is reduced with a cosine function. The
experiment is conducted on one Nvidia A100.

B.3 DETAILS OF ABLATION EXPERIMENT

The dataset is Cifar10 and the backbone is ResNet-20. We choose SGD with momentum 0.9, weight
decay 5e-4, and learning rate 0.1 to train the models for 200 epochs. The learning rate is reduced

15

Under review as a conference paper at ICLR 2024

with a cosine function. And data-augment mixup is applied. The experiment is conducted on one
Nvidia A100.

B.4 DETAILS OF TEXT CLASSIFICATION EXPERIMENT

We also explore performance networks on text classification datasets including SST2, SST5 (Socher
et al., 2013) and TREC-6, and we select TextCNN (Kim, 2014), TextRNN (Lai et al., 2015)
and Transformer (Vaswani et al., 2017) for comparison. For TextCNN and TextRNN, we use
AdaDelta (Zeiler, 2012) optimizer with a learning rate 1.0 and adopt Adam (Kingma & Ba, 2015)
for Transformer with a learning rate 1e-4. For the embedding layer, we utilize Glove (Pennington
et al., 2014) and Word2Vec (Mikolov et al., 2013) to initialize the embedding weights. All models
are trained up to 10 epochs, and we run all the random initialization 5 times. The experiment is
conducted on one Nvidia A100.

Table 7: Results of TextCNN and TextRNN on SST2, SST5 and TREC-6. The subscript G denotes
the embedding layer is initialized by Glove while W indicates Word2Vec. “Default” means the
default initialization of models, specifically, Kaiming for TextCNN, and Xavier for both TextRNN
and Transformer. Std values larger than 1.0 are marked in red.

Datasets Init. TextCNNG/W TextRNNG/W TransformerG/W

SST2

Default 81.40±0.66/84.56±0.43 81.69±0.30/84.29±0.70 80.97±1.20/83.36±0.76

Orthogonal 82.24±0.44/84.37±0.38 81.86±0.55/84.61±0.78 82.22±0.87/83.99±0.23

IDInit 82.60±0.24/85.67±0.41 82.66±0.16/85.49±0.33 82.48±0.55/84.51±0.24

SST5

Default 44.68±0.88/46.15±0.62 44.27±0.88/47.04±0.48 41.81±1.17/44.02±1.27

Orthogonal 44.91±0.81/46.76±0.68 44.61±1.18/46.13±0.79 43.01±1.61/44.92±1.52

IDInit 45.41±0.40/47.72±0.51 46.65±0.25/48.01±0.36 44.23±0.59/45.76±0.42

TREC-6

Default 90.80±0.94/92.06±1.00 86.34±1.04/90.52±1.54 86.68±2.68/89.20±1.20

Orthogonal 90.34±0.72/92.72±0.84 85.86±0.90/89.88±1.54 86.90±1.51/89.26±0.86

IDInit 91.22±0.54/92.94±0.48 87.04±0.26/90.60±0.58 87.32±0.78/90.06±0.60

50 100 150 200 250 300
Epoch

0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72

Te
st

 A
cc

ur
ac

y

Default
IDInit

(a) ViT-B/32

0 20 40 60 80
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(b) RN-50
(Adamw)

0 20 40 60 80
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(c) RN-50

0 20 40 60 80
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(d) SRN-50

0 20 40 60 80
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(e) RN-152

Figure 12: Results on ImageNet. “Default” means the default initialization of models. RN-50
(Adamw) means that ResNet-50 is trained with the same optimizer Adamw as the ViT-B/32.

B.5 DETAILS OF IMAGE CLASSIFICATION ON IMAGENET EXPERIMENT

In this experiment, we use ImageNet for validation. We use ViT-B/32 (Dosovitskiy et al., 2021),
ResNet-50/152 (RN-50/152) and Se-ResNet-50 (SRN-50) as backbones. For ViT-B/32 that inputs
32×32 patch window, the optimizer is AdamW with a learning rate 1e-3 and a weight decay of 5e-2.
And the batch size is 1024. The epoch for training is 300. We use 30 epochs for warm-up. The input
image size is 224× 224. The dropout rates of the embedding layer and the network layer are all 0.1.
For RN-50/152 and SRN-50, the optimizer is SGD with a learning rate 1e-1 and a weight decay of
1e-4. And the batch size is 1024. The epoch for training is 90. We use 9 epochs for warm-up. The

16

Under review as a conference paper at ICLR 2024

input image size is 160× 160 for the front 35 epochs and 224× 224 for the remaining epochs. For
all models, we apply data-augment including cutmix (Yun et al., 2019) with α = 1.0, mixup (Zhang
et al., 2018) with α = 0.8, the switching probability is 0.5 and a label smoothing with 0.1. The
experiment is conducted on 4 Nvidia A100.

B.6 DETAILS OF PRE-TRAINING ON LANGUAGE MODEL

Pre-training plays an important role in various applications. We conduct the experiment to show
the fast convergence on BERT (Devlin et al., 2019). The dataset is the concatenation of English
Wikipedia and Toronto Book Corpus Zhu et al. (2015). We train the BERT-Base for 40 epochs with
768 batch size. The optimizer is set to AdamW with learning rate 1e-4 and weight decay 1e-2. 32
NVIDIA V100s are used.

Table 8: Results of Linear-5 on MNIST. “Default” means the default initialization of models where
Xavier is for Linear-5-tanh and Kaiming is adopted for Linear-5-ReLU.

Init. Linear-5-tanh Linear-5-ReLU

Default 98.26 98.21

IDInit 98.32 98.4

C ADDITIONAL EXPERIMENTS

We provide additional experiments to further validate IDInit. τ and ε are set the same as Sec. B.

C.1 VALIDATION ON THE LINEAR STRUCTURE

This experiment is conducted on MNIST. We use five linear layers named Liner-5 whose hidden
layers are all of dimension 512. The optimizer is SGD with momentum 0.9, weight decay 5e-4,
and a learning rate 1e-1. The learning rate scheduler adopts a cosine reduction strategy. We run
the model in 30 epochs on one Nvidia A100. We both consider Linear-5-tanh and Linear-5-ReLU
which consist of Linear-5, and tanh and ReLU activation functions, respectively. The experiment is
conducted on one Nvidia A100.

As shown in Table 8, IDInit can achieve the highest accuracy in both different tanh and ReLU
conditions. The results show the ability of our proposed method to train a model with only fully-
connected layers.

C.2 ANALYSIS ON VARIANCE PROPAGATION

Here we conduct an experiment on Cifar10 to demonstrate data-flow will keep stable. We use 4
types of networks: (1) FC: 10-layer fully-connected layers; (2) ResFC: 10 residual blocks (two fully-
connected layers in a block); (3) Conv: 9-layer AllConv in Sec. B.1; (4) ResConv: 10 residual blocks
(two convolutional layers in a block). For (1) and (2) two fully-connected networks, we reshape
Cifar10 data as X ∈ R32×96 as input and does not use any activation function. For (1), hidden
lengths are {200, 400, 600, 800, 1000, 1000, 800, 600, 400, 200}. For (2), hidden lengths are all set
to 96. For (3) and (4) two convolution networks, we directly input images to them, and use ReLU as
the activation function. For (3), we directly use AllConv as shown in Table 6. For (4), we first use
convolution to transfer an image to 16 channels, and then set the channels of all convolution within
residual blocks to 16. For comparison, we use Xavier for (1) and (2), and Kaiming for (3) and (4) in
terms of the activation function. We also employ noises with 0 mean, and {0.00, 0.01, 0.10, 1.00}
for comparing robustness. In the experiment, we run 500 rounds for each model. The experiment is
conducted on one Nvidia A100.

Results are shown in Figure 13. The regular methods Xavier and Kaiming can only work on non-
residual networks. On residual networks, they both cause giant standard derivation, leading to in-

17

Under review as a conference paper at ICLR 2024

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(a) FC-0.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(b) ResFC-0.00

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(c) Conv-0.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(d) ResConv-0.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(e) FC-0.01

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(f) ResFC-0.01

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(g) Conv-0.01

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(h) ResConv-0.01

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(i) FC-0.10

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(j) ResFC-0.10

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(k) Conv-0.10

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(l) ResConv-0.10

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(m) FC-1.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(n) ResFC-1.00

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(o) Conv-1.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(p) ResConv-1.00

Figure 13: Results of the analysis on variance propagation. The numerical value after the model
name means the standard derivation of the noise. “Default” means the default initialization of
models, specifically, Xavier for FC and ResFC, and Kaiming for Conv and ResConv. The default
methods can only work on non-residual networks FC and Conv, however, fail on residual networks
ResFc and ResConv, for cause instability with giant standard derivation. By contrast, IDInit can
consistently transit data-flow in an appropriate scale on all models and various noises, which shows
sufficient robustness, and can provide models with stable and efficient training.

stability. By contrast, the proposed IDInit can consistently transit data-flow in an appropriate scale
on all models and various noises, which shows sufficient robustness, and can provide models with
stable and efficient training.

C.3 ANALYSIS ON WEIGHT DISTRIBUTION

In this experiment, we conduct an experiment on Cifar10 with ResNet-20 to show the weight dis-
tribution of IDInit. We use an SGD optimizer with a learning rate 0.2, and weight decay 5e-4. The
batch size is 1024. Training epochs are 200. The learning rate is reduced with a cosine function.
The experiment is conducted on one Nvidia A100.

The results are shown in Figure 14, weights initialized with IDInit are almost full of zero at the be-
ginning, while Kaiming uses a Gaussian distribution. At the end of the training, IDInit still contains
more zero values than Kaiming, which is beneficial for memory occupation since a 0 value will not
cost memory space.

18

Under review as a conference paper at ICLR 2024

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(a) Kaiming-E4

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(b) Kaiming-E24

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(c) Kaiming-E104

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(d) Kaiming-E194

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(e) IDInit-E4

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(f) IDInit-E24

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(g) IDInit-E104

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(h) IDInit-E194

Figure 14: Histograms of the first convolution weights in ResNet-20. “E” means the epoch index.
IDInit contains more zero values in each epoch compared with Kaiming initialization.

C.4 ANALYSIS ON INPUT-OUTPUT JACOBIAN

Here we conduct an experiment on Cifar10 with 64 blocks in Figure 1 to demonstrate IDInit follows
the dynamical isometry. We remove batch normalization for the more clear difference between
IDInit and Kaiming. We use an Adagrad optimizer with a learning rate 0.01. The batch size is 100.
The activation is ReLU. The experiment is conducted on one Nvidia A100.

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2239.07; Loss: 2.95

(a) Default-E1

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2262.02; Loss: 2.53

(b) Default-E2

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2244.95; Loss: 2.35

(c) Default-E3

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2179.46; Loss: 2.24

(d) Default-E4

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 0.76; Loss: 1.40

(e) IDInit-E1

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 1.11; Loss: 1.28

(f) IDInit-E2

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 1.65; Loss: 1.17

(g) IDInit-E3

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2.54; Loss: 1.07

(h) IDInit-E4

Figure 15: Histograms of log singular values (log(λio)) for the input-output Jacobian. “E” means
the epoch index. Compared with Default initialization, IDInit has a significantly smaller squared
singular value χ, which can achieve a faster reduction of the loss.

As shown in Figure 15, Default initialization cause a high squared singular value χ, reaching more
than 2000. Compared to Default, IDInit only derives χ around 1, indicating correspondence to the
dynamical isometry. In addition, the loss of IDInit decreases faster than Default, which shows a
good convergent ability.

C.5 FAILURE OF LONG RESIDUAL STEM

We conduct this experiment to show the failure case when the residual stem is long to show the
importance of the stability of the residual stem. In this experiment, we conduct an experiment on

19

Under review as a conference paper at ICLR 2024

Cifar10. We use a residual network named Res-112 as in Table 9. We set 109 layers in the residual
stem. Batch normalization is not applied for fairly validating the stability of initialization methods.
We use an SGD optimizer with a learning rate 0.2, and weight decay 1e-8. The batch size is 768.
Training epochs are 35. The learning rate is reduced with a cosine function. One Nvidia A100 is
used.

0 5 10 15 20 25 30
Epoch

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y

IDInit
Kaiming
Fixup

(a) Test Accuracy

0 5 10 15 20 25 30
Epoch

0
1
2
3
4
5

nan

St
an

da
rd

 D
er

iv
at

io
n IDInit

Kaiming
Fixup

(b) Standard Derivation

Figure 16: Result of the experiment on the residual network with the long residual stem. Fig-
ure 16(a) shows the accuracy of different initialization. Figure 18(c) shows the standard derivations
of the outputs of networks with different initialization methods. The black dash line is the standard
derivation of the network input.

Results are shown in Figure 16. When the network is trained for 4 epochs, both Kaiming and Fixup
fail to train the network, since the standard derivations of their outputs explode. By contrast, IDInit
successfully trains this network and the standard derivation of the output converges to a stable value.
This experiment demonstrates the ability of IDInit to stabilize the residual stem, which can benefit
the training of the whole network.

Table 9: Architectures of Res-112. Window means the convolutional kernel window size. Channels
indicate cin and cout of a standard convolutional kernel C ∈ Rcin×cout×k×k. The avg pool denotes
the average pooling operation. Linear means a linear layer.

Layer Window Channels
conv1 3×3 3×16

Residual Block

3×3 [16×16]×18

3×3 16× 32
[32×32]×17

3×3 32× 64
[64×64]×17

3×3 64×64

conv2 3×3
64×64

avg pool
Linear 64×10

D LIMITATION

While IDInit demonstrates notable advancements in convergence speed and performance enhance-
ment, it still possesses certain limitations.

(1) Networks initialized with identity matrices face challenges in converging to ground truths that
include negative eigenvalues. However, this drawback can be easily mitigated by incorporating

20

Under review as a conference paper at ICLR 2024

momentum into the optimizer. Given that momentum is a commonly used setting, this limitation
can be implicitly resolved as we show in the main context.

(2) The deterministic nature of IDInit may pose difficulties in addressing concerns regarding model
properties solely through model selection. Nevertheless, even with limited variation caused by de-
terminacy when the seed changes, IDInit consistently exhibits excellent performance across differ-
ent settings, including various seed selections. This suggests that random initialization might not
surpass IDInit, even with carefully chosen seeds. Additionally, the randomness introduced by the
sequence order of data batches during training also contributes to the overall randomness and ulti-
mately influences the model’s final performance. Hence, it seems unlikely that IDInit’s determinacy
significantly impacts model selection. Moreover, determinacy can reduce training variation, result-
ing in improved training reproducibility, which cannot be achieved by random initialization.

Hence, these two limitations are not expected to cause severe harm to IDInit.

E DYNAMICAL ISOMETRY IN IDINIT

−1 0 1 2 3 4 5

w1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

w
2

−11.25

−9.00

−6.75

−4.50

−2.25

0.00

2.25

4.50

6.75

9.00

(a) Non-Residual Plot.

−1 0 1 2 3 4 5

w1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

w
2

−9.00

−6.75

−4.50

−2.25

0.00

2.25

4.50

6.75

9.00

(b) Residual Plot.

Figure 17: Contour plots of the log gradient norm
log ||∂R||2 on non-residual and residual networks.
w(1) and w(2) are both weights. The training
process set as Bachlechner et al. (2021), which
is conducted on ground-truth x(L) = 50 × x0

via gradient descent using a training set of x0 =
{1., 1.1, ..., 1.8}. (a) shows {w(2) = w(1) = 1}
can avoid poorly conditioned regions around 0,
and converge to w(1)w(2) = 2.19. (b) cares about
two initial position {w(1) = 0, w(2) = 1} and
{w(2) = 1, w(1) = 0}. The two points’ trajec-
tories do not also pass the poor regions around
w(1) = −1, w(2) = 1 and converge to the solu-
tion w(1)w(2) = 1.19.

Following Bachlechner et al. (2021), we utilize
a simple example of the mechanism that dy-
namical isometry helps IDInit to obtain a fast
convergence. Considering a L-layer network
with a simple special case of Eq. (1):

x(L) = (r + w(2)w(1))Lx(0), (15)

where w(1) and w(2) denote the first weight and
last weight in a residual stem respectively, and
x(∗) is the feature in layers. r ∈ {0, 1} deter-
mines residual connection. Specifically, r = 0
and r = 1 represent non-residual and resid-
ual conditions respectively. The Jacobian of
Eq. (15) is J0L = (r + w(2)w(1))L. Obvi-
ously, identity transition on both non-residual
and residual settings, namely {r = 0, w(2) =
w(1) = 1} and {r = 1, w(1) = 1, w(2) = 0}
respectively, will achieve J0L = 1, which con-
forms to the dynamical isometry mechanism
that helps improving training ability (Penning-
ton et al., 2017). Further, we delve into a gradient update analysis. Following gradient descent, w1

can be updated with

∆w(1) = −λLw(2)x(0)(r + w(2)w(1))L−1∂xR(x)|x=x(L) , (16)

where R means the loss function, and λ is a learning rate. As w(1) and w(2) are equivalent in
Eq. (15), w(2) can be updated similar to Eq. (16). When w(1) = 1, updates are required less than 1.
Therefore, the learning rate is constrained to{

λ ∝ L−1, if non-residual,
λ ∝ L−1(1 + w(2))L−1, if residual.

(17)

For the non-residual condition, the learning rate is polynomial to L, thereby insensitive to the depth.
By contrast, in the residual block, w(2) >> 0 will cause learning rate exponentially small and
w(2) = −1 also cause gradient diffusion. On this condition, setting w(2) = 0 can be a good solution
for avoiding large output and restricting gradients in a suitable norm. Besides, it is feasible to update
w(2) with the first non-trial step

w(2) = −λLw(1)x(0)∂xR(x)|x=x(L) , (18)

and will converge with a learning rate that is polynomial in the depth L of the network. We plot the
training dynamics in Figure 17, and use this simple example to illustrate the mechanism of IDInit,
which is always a well-conditioned position for training.

21

Under review as a conference paper at ICLR 2024

F TEMPORARY SECTION FOR REBUTTAL

F.1 EXPERIMENT FOR HYPERPARAMETERS

In this experiment, we compare IDInit with other initialization methods, including (1) Fixup; (2)
ReZero; (3) Kaiming; and (4) Zero, by analyzing the training hyperparameters, i.e., the weight
decay and the learning rate. We use Cifar10. The backbone is ResNet-32, we use SGD with a
momentum of 0.9. The batch size is 1024. We train models for 200 epochs. The learning rate is
reduced with a cosine function. Each setting is trained 3 times to calculate the standard deviation.

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

16.38 ± 1.28 21.68 ± 2.61 68.2 ± 5.79 82.17 ± 0.14

22.57 ± 2.69 90.36 ± 0.06 93.28 ± 0.04 83.18 ± 0.14

89.76 ± 0.18 94.08 ± 0.13 90.09 ± 0.22 81.42 ± 0.13

94.08 ± 0.08 92.54 ± 0.11 88.33 ± 0.03 81.15 ± 0.26

93.27 ± 0.21 91.92 ± 0.29 88.56 ± 0.13 81.65 ± 0.34

92.94 ± 0.18 91.91 ± 0.12 88.47 ± 0.1 80.76 ± 0.61

93.02 ± 0.2 91.8 ± 0.18 88.74 ± 0.24 81.0 ± 0.44

92.99 ± 0.19 91.96 ± 0.11 88.82 ± 0.34 81.42 ± 0.78

IDInit

60

65

70

75

80

85

90

95

(a) IDInit

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

16.63 ± 2.74 24.27 ± 0.34 58.97 ± 6.76 79.13 ± 0.26

26.13 ± 3.78 84.0 ± 0.38 88.25 ± 0.24 81.61 ± 0.31

84.39 ± 0.32 88.99 ± 0.25 85.43 ± 0.25 81.07 ± 0.41

89.32 ± 0.25 87.66 ± 0.25 84.41 ± 0.1 81.0 ± 0.42

88.1 ± 0.01 86.89 ± 0.06 84.3 ± 0.39 80.93 ± 0.55

87.89 ± 0.24 86.88 ± 0.46 84.11 ± 0.31 81.44 ± 0.38

88.24 ± 0.4 86.81 ± 0.48 84.36 ± 0.17 81.23 ± 0.22

88.23 ± 0.29 86.84 ± 0.23 84.09 ± 0.05 81.09 ± 0.19

ZerO

60

65

70

75

80

85

90

95

(b) ZerO

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

10.38 ± 0.35 21.12 ± 2.73 51.88 ± 5.98 69.52 ± 7.6

21.77 ± 3.1 90.23 ± 0.18 92.78 ± 0.14 55.26 ± 1.14

89.96 ± 0.49 93.69 ± 0.12 82.02 ± 0.01 51.25 ± 1.17

94.06 ± 0.11 91.24 ± 0.1 78.37 ± 0.41 50.75 ± 1.26

93.06 ± 0.07 90.14 ± 0.12 77.83 ± 0.43 50.81 ± 1.48

92.6 ± 0.14 90.01 ± 0.17 78.05 ± 0.33 50.91 ± 1.38

92.64 ± 0.11 90.0 ± 0.14 78.32 ± 0.58 51.0 ± 1.22

92.48 ± 0.25 89.93 ± 0.09 77.96 ± 0.21 50.79 ± 1.49

Kaiming

60

65

70

75

80

85

90

95

(c) Kaiming

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

18.32 ± 0.94 19.22 ± 0.32 18.62 ± 0.7 18.73 ± 0.37

23.86 ± 0.92 49.78 ± 2.35 41.36 ± 0.19 25.23 ± 0.28

33.33 ± 0.88 92.19 ± 0.06 68.28 ± 0.91 28.14 ± 0.34

30.53 ± 5.35 92.37 ± 0.02 72.95 ± 1.11 28.47 ± 0.42

28.17 ± 3.48 92.27 ± 0.19 73.52 ± 1.12 28.5 ± 0.45

32.87 ± 6.89 91.98 ± 0.07 73.57 ± 1.19 28.51 ± 0.44

26.35 ± 0.69 91.98 ± 0.17 73.62 ± 1.19 28.52 ± 0.44

34.3 ± 7.7 92.1 ± 0.16 73.63 ± 1.21 28.5 ± 0.44

Fixup

60

65

70

75

80

85

90

95

(d) Fixup

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

10.12 ± 0.2 19.49 ± 0.87 21.03 ± 0.22 20.77 ± 0.78

25.99 ± 5.12 88.75 ± 1.67 92.61 ± 1.53 32.7 ± 2.56

88.92 ± 0.74 93.64 ± 0.64 79.98 ± 2.33 34.02 ± 2.03

93.86 ± 0.26 90.95 ± 0.68 74.91 ± 2.31 33.98 ± 1.92

92.32 ± 0.67 89.68 ± 1.04 74.4 ± 2.31 33.98 ± 1.94

92.02 ± 0.89 89.64 ± 0.98 74.34 ± 2.26 34.0 ± 1.9

91.86 ± 0.71 89.49 ± 0.88 74.29 ± 2.26 33.98 ± 1.91

92.15 ± 0.97 89.55 ± 0.82 74.35 ± 2.24 33.98 ± 1.9

Rezero

60

65

70

75

80

85

90

95

(e) Rezero

Figure 18: The hyperparameter experiment on Cifar10.

As shown in Figure 18, IDInit achieves a peak accuracy of 94.08% with a weight decay of 1e-3 and
a learning rate of 1e-1. In comparison to other initialization methods including Kaiming, Fixup, and
Rezero, IDInit demonstrates superior stability, maintaining high accuracy even when the learning
rate is reduced below 1e-1. Although ZerO exhibits comparable stability at lower learning rates
owing to its Hadamard matrix’s ability to sustain dynamics, it underperforms at higher learning
rates due to the dead neurons caused by the zero weights in its residual stems. Fixup, on the other

22

Under review as a conference paper at ICLR 2024

hand, lacks stability by eliminating batch normalization, rendering it unsuitable for high learning
rates. Overall, IDInit consistently delivers robust performance while maintaining stability, making
it a promising candidate for practical applications.

F.2 ANALYSIS ON CONVERGENCE

The issue of convergence was proposed by Bartlett et al. (2019). According to their study, when
layers in a neural network are initialized using the identity matrix, all the weight matrix of layers
will be symmetric at each step of the training process. This persistent symmetry leads to the weights
of layers being the same as each other at any step, posing a significant challenge in converging to
the ground truth of which eigenvalues with negative values. Our findings indicate that employing
a stochastic gradient descent (SGD) approach can effectively break the symmetry which facilitates
convergence, and incorporating momentum can further accelerate the convergence process. In this
context, we provide a formal proof demonstrating that SGD with momentum contributes to alleviat-
ing the convergence issue.

Proof. First of all, we present a training case for a single-layer network expressed as Y = XW ,
where X ∈ Rd represents the input, Y ∈ Rd denotes the output, and W ∈ Rd×d is the weight
matrix. The weight matrix W is initialized to the identity matrix I , denoted as W (0) = I . For our
loss function, we employ the Mean Squared Error (MSE) and a learning rate denoted by η. Consider
two training pairs {X1, Y1} and {X2, Y2} sampled from the same dataset D. The network is initially
trained with {X1, Y1}, and trained with {X2, Y2} in the next step.

In the first step, we can get the prediction as

Ŷ1 = X1W
(0). (19)

The updated W (1) can be derived by

∆W (0) = XT
1 (Ŷ1 − Y1) = XT

1 (X1W
(0) − Y1) = XT

1 (X1 − Y1),

W (1) = W (0) − η∆W (0) = W (0) − ηXT
1 (X1 − Y1) = I − ηXT

1 (X1 − Y1). (20)

Therefore, in the second step, the gradient ∆W (1) can be calculated as

∆W (1) = XT
2 (Ŷ2 − Y2),

= XT
2 (X2W

(1) − Y2),

= XT
2 (X2(I − ηXT

1 (X1 − Y1)))− Y2),

= XT
2 X2 − ηXT

2 X2X
T
1 X1 + ηXT

2 X2X
T
1 Y1 −XT

2 Y2. (21)

While XT
2 X2 is symmetric, the component −ηXT

2 X2X
T
1 X1 + ηXT

2 X2X
T
1 Y1 − XT

2 Y2 will be
asymmetric. As η is usually 1e− 1, and both training pairs {X1, Y1} and {X2, Y2} can be generally
normalized to N ∼ (0, 1), thereby, such magnitude of the asymmetric component can sufficiently
influence the symmetry of the weight as

W (2) = W (1) − η∆W (1). (22)

When introducing a momentum M (0) initialized to ∆W (0), assuming the coefficient of M is γ,
W (2) will be updated as

M (1) = γM (0) + η∆W (1),

W (2) = W (1) −M (1) = W (1) − γM (0) − η∆W (1). (23)

Therefore, momentum can promote the weight to become asymmetric by accumulating the asym-
metry of gradients in steps and impact more when samples are increased.

As for networks of multiple layers, when their layers are asymmetric, each layer can be updated
differently which breaks the convergence problem caused by the same gradients in each step (which
is stated in Lemma 5 of Bartlett et al. (2019)).

23

Under review as a conference paper at ICLR 2024

This proof primarily demonstrates that SGD with momentum can effectively resolve the issue of lay-
ers being the same in networks initialized with the identity matrix during training, which facilitates
the convergence process. As illustrated in Figure 19, it is evident that layers trained using SGD are
different from each other, with the momentum component amplifying the degree of this difference.
By theoretically and empirically demonstrating that SGD with momentum can efficiently address
this convergence problem, we hope this finding can offer valuable insights for the research com-
munity, encouraging further investigation into identity initialization and its significant role in model
training.

Layer 0 Layer 1 Layer 2

La
ye

r 0
La

ye
r 1

La
ye

r 2

0.000 0.037 0.052

0.037 0.000 0.042

0.052 0.042 0.000

SGD w/o momentum

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(a) SGD w/o momentum

Layer 0 Layer 1 Layer 2

La
ye

r 0
La

ye
r 1

La
ye

r 2

0.000 0.154 0.183

0.154 0.000 0.140

0.183 0.140 0.000

SGD w/ momentum

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(b) SGD w/ momentum

Figure 19: The distance between two layers in the network of Table 1 after training. We calculate
the distance by averaging the absolute value from the difference value of two layers. Layers trained
using SGD display distinct differences from one another, and the incorporation of momentum sig-
nificantly increases these differences, thereby accelerating the convergence speed of the model.

24

	Introduction
	Related Work
	Identical Initialization
	Convergence Ability of IDInit
	Maintaining Identity by Padding Identity
	On Rank Constraint Problem

	Additional Techniques for IDInit
	Patch-Maintain Convolution
	Tackling Dead Neurons

	Experiments
	Validation on Non-Residual Convolution
	Validation on Residual Convolution
	Image Classification on ImageNet
	Ablation Experiment
	Text Classification
	Pre-Training on Language Model

	Conclusion
	IDInit Details
	Full IDInit Scheme
	Trainability Analysis of Non-Squared Matrices.
	Proof for Theorem 3.1.
	Implementing IDInit on Attention Layer in Transformer
	Details of Patch-Maintain Convolution

	Detailed Settings of Experiments
	Details of Validation on Non-Residual Convolution Experiment
	Details of Validation on Residual Convolution Experiment
	Details of Ablation Experiment
	Details of Text Classification Experiment
	Details of Image Classification on ImageNet Experiment
	Details of Pre-Training on Language Model

	Additional Experiments
	Validation on the Linear Structure
	Analysis on Variance Propagation
	Analysis on Weight Distribution
	Analysis on input-output Jacobian
	Failure of Long Residual Stem

	Limitation
	Dynamical Isometry in IDInit
	Temporary Section for Rebuttal
	Experiment for Hyperparameters
	Analysis on Convergence

