Under review as a conference paper at ICLR 2026

ONE LIFE TO LEARN: INFERRING SYMBOLIC WORLD
MODELS FOR STOCHASTIC ENVIRONMENTS FROM
UNGUIDED EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic world modeling is the task of inferring and representing the transi-
tional dynamics of an environment as an executable program. Previous research
on symbolic world modeling has focused on simple, deterministic environments
with abundant data and human-provided guidance. We address the more real-
istic and challenging problem of learning a symbolic world model in a com-
plex, stochastic environment with severe constraints: a limited interaction budget
where the agent has only “one life” to explore a hostile environment and no ex-
ternal guidance in the form of human-provided, environment-specific rewards or
goals. We introduce ONELIFE, a framework that models world dynamics through
conditionally-activated programmatic laws within a probabilistic programming
framework. Each law operates through a precondition-effect structure, allow-
ing it to remain silent on irrelevant aspects of the world state and predict only
the attributes it directly governs. This creates a dynamic computation graph that
routes both inference and optimization only through relevant laws for each tran-
sition, avoiding the scaling challenges that arise when all laws must contribute
to predictions about a complex, hierarchical state space, and enabling accurate
learning of stochastic dynamics even when most rules are inactive at any given
moment. To evaluate our approach under these demanding constraints, we in-
troduce a new evaluation protocol that measures (a) state ranking, the ability to
distinguish plausible future states from implausible ones, and (b) state fidelity, the
ability to generate future states that closely resemble reality. We develop and eval-
uate our framework on Crafter-OO, our reimplementation of the popular Crafter
environment that exposes a structured, object-oriented symbolic state and and a
pure transition function that operates on that state alone. ONELIFE can success-
fully learn key environment dynamics from minimal, unguided interaction, outper-
forming a strong baseline on 16 out of 23 scenarios tested. We also demonstrate
the world model’s utility for planning, where rollouts simulated within the world
model successfully identify superior strategies in multi-step goal-oriented tasks.
Our work establishes a foundation for autonomously constructing programmatic
world models of unknown, complex environments.'

1 INTRODUCTION

World modeling is a critical task in artificial intelligence, providing an agent with a functional un-
derstanding of its environment’s underlying dynamics. By learning a world model, an agent can
predict the outcomes of its actions without having to actually interact with the real world. One line
of research in world modeling aims to learn symbolic world models via program synthesis (i.e.,
representing worlds models with code) with a view towards building representations that are inter-
pretable, editable, and verifiable by humans.

While such approaches have been successful in environments with a limited number of discoverable
mechanics and low stochasticity (Piriyakulkij et al., 2025; Tang et al., 2024; Dainese et al., 2024)
these assumptions are often violated in more complex environments. Examples of such environ-
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Figure 1: ONELIFE synthesizes world laws from a single unguided (no environment-specific re-
wards / goals) episode in a hostile, stochastic environment. ONELIFE models the world as mixture
of laws in code with a precondition-effect structure, each governing an aspect of the world, and in-
fers parameters for the mixture that best explain the observed dynamics of the world. The resulting
world model (WM) provides a probability distribution over attributes of an object-oriented world
state, such as the position of a particular zombie. ONELIFE outperforms a strong baseline in mod-
eling 16/23 core game mechanics tested, measured by MRR (Mean Reciprocal Rank) of the true
next state (Sec. 4) under the WM'’s likelihood. See Box B.3 for a synthesized zombie law.

ments are popular open-world sandbox games (e.g. MineCraft, RuneScape) containing numerous,
diverse mechanics spanning crafting, combat, and physics. These more realistic environments have
irreducible stochasticity (e.g., outcomes of actions are subject to random chance), a lack of extrinsic
rewards (e.g., players set their own goals and there is no well-defined criteria for “winning”), and
a high cost of exploration (e.g., entering dangerous areas without preparation can result in death),
making it crucial to learn from minimal interaction. This leads to our central research question:

How can an agent reverse engineer the laws of a complex, dangerous stochastic world, given a
limited interaction budget and without environment-specific human-specified goals or rewards?

We introduce a framework for symbolic world modeling, ONELIFE, a name that reflects our focus
on learning a symbolic world model from a single episode with unguided exploration. As illustrated
in Fig. 1 (top-right), ONELIFE learns from just a single, unguided run in the environment, a contrast
to previous work (Piriyakulkij et al., 2025; Tang et al., 2024; Dainese et al., 2024) that assumes ac-
cess to a large number of interactions as well as environment specific guidance provided by humans
(e.g., goals / rewards designed for the environment). ONELIFE recovers a program that describes
the environment’s underlying transition dynamics p(s¢41]s:, a:) which models the probability dis-
tribution p over next states s;+1 given a current state s; and action a;. The agent performs this
inference using only observations, without access to rewards or other domain-specific guidance.
ONELIFE has two key components: a law synthesizer (Sec. 3.3) that proposes new laws and an
inference algorithm (Sec. 3.4) that re-weights laws based on their predictive ability over observa-
tions. Crucially, the inference algorithm is gradient-based and only updates the laws that alter the
observed variables between current state s; and predicted next state s 1, allowing for efficient and
targeted learning. These components work together in a probabilistic programming mixture-of-laws
approach (Sec. 3.2) that proposes and re-weights rules based on whether the preconditions for the
laws to be applicable are met and the effect of the predictions w.r.t. the observed environment tran-
sitions. This approach enables our model to infer distributions over complex, stochastic events, as
shown in the Fig. 1 (bottom-right), where a learned world model outputs a distribution over a zom-
bie’s next move. Crucially, ONELIFE not only produces a distribution over states but learns from
stochastic observations; the true movement of the zombie in Fig. 1 also follows a distribution, which
ONELIFE seeks to approximate.

To evaluate our approach, we first created a suitable testbed — Crafter-OO — by re-engineering the
complex Crafter (Hafner, 2022) environment to be a pure function 7'(s,a) — s’ of a structured,
text-based hierarchical object-oriented world state. In other words, all the information needed to
compute the next state is represented in a single structured, object-oriented representation, and there
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is a ground-truth program for the transition function that computes the next environment state purely
from the state representation, without any “hidden variables”. This text-based, object-oriented rep-
resentation is natively readable by LLMs and thus allows them to try reconstructing the transition
function by writing code that programatically modifies the structured state. It allows for a structured,
object-oriented representation that is directly comprehensible to language models and enables sym-
bolic reasoning over a world with rich entity interactions. We introduce a new evaluation protocol
that uses two axes (Sec. 4): state ranking, the ability to distinguish valid outcomes from invalid
ones according to the world’s laws, and state fidelity, the ability to produce plausible future states
for planning. Our experiments show that ONELIFE better captures the environment’s dynamics
compared to several baselines, including PoE-World (Piriyakulkij et al., 2025), showing improved
ability to simulate future states given a state and candidate action, and to distinguish between likely
and unlikely outcomes of an action. We further show that the learned model supports planning in
imagination; by simulating rollouts of different policies entirely within the model, we can evaluate
and distinguish between effective and ineffective strategies for multi-step goal-oriented tasks.

In summary, our contributions include:

* ONELIFE, a probabilistic symbolic world model that can learn from stochastic and hostile en-
vironments with minimal interactions and without access to human-defined rewards. ONELIFE
outperforms prior work, learning a world model that better predicts true environment dynamics.

* Crafter-OO, a reimplementation of Crafter (Hafner, 2022) that exposes a structured, object-
oriented symbolic state and and a pure transition function that operates on that state alone. This
enables us to test ONELIFE in a complex, stochastic environment and lays the groundwork for
future work in symbolic world modeling and programmatic reinforcement learning.

* An evaluation suite for world modeling within Crafter / Crafter-OO with 30+ executable scenarios
that test knowledge of all core mechanics in Crafter and a pool of mutators that can programatically
generate illegal distractor states to probe world model understanding alongside, new state fidelity
and state ranking metrics for evaluating world models in complex, stochastic, environments.

2 RELATED WORK

Symbolic World Models. Symbolic world models represent an environment’s transition dynamics
as executable code, producing interpretable, editable, and generalizable models from limited data.
Prior work has used LLMs to synthesize a single, monolithic program that functions as a world
model (Tang et al., 2024; Dainese et al., 2024). Piriyakulkij et al. (2025) introduced a compositional
approach by representing the world model as a product of programmatic experts, enabling modeling
of more complex dynamics. Other methods have synthesized programs for planning (Ahmed et al.,
2025) or combined functional and automata synthesis to capture latent state dynamics (Das et al.,
2023). LLMs have also been used to construct formal planning representations like PDDL from en-
vironment interactions or text for symbolic planners (Guan et al., 2023; Deng et al., 2024). Our work
differs from these methods in three aspects. First, we operate in a complex, open-world environment
based on Crafter (Hafner, 2022) with stochasticity and many interacting mechanics, whereas prior
work has operated in simpler, often deterministic domains (e.g., grid-worlds or Atari games). Sec-
ond, we do not assume abundant interaction data: our agent learns from a limited budget obtained
in a single episode — or life. Third, ONELIFE learns without external rewards or human-specified
goals, framing the task as unguided reverse engineering of the environment’s laws.

Programmatic Representations for Decision-Making. Program synthesis has been used to rep-
resent other components of intelligent agents. Programmatic policies have been shown to offer
greater interpretability and generalization compared to neural networks (Trivedi et al., 2021; Liang
et al., 2022). LLMs have been used to generate programmatic reward functions from natural lan-
guage instructions, enabling agents to pursue complex, user-specified objectives (Ma et al., 2024;
Yu et al., 2023; Klissarov et al., 2025). Programs have been used to build libraries of composable,
temporally extended skills, allowing agents to solve long-horizon tasks by combining previously
learned behaviors (Wang et al., 2025; Stengel-Eskin et al., 2024). These methods focus on repre-
senting components of the agent’s internal decision-making process: how it should act (policies),
what it should value (rewards), or what it is capable of doing (skills). In contrast, our work learns
a model of how the external world behaves; this task-agnostic model of environment dynamics is
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complementary to policies, rewards, and skills, and supports planning and decision-making for any
downstream goals.

World Modeling for Open-Ended Exploration and Discovery. Agents that explore and learn in
complex, open-world environments without extrinsic rewards typically learn non-symbolic, latent
world models and use them to drive exploration through intrinsic motivation (Hafner et al., 2023;
Micheli et al., 2023; Dedieu et al., 2025; Schwarzer et al., 2021). These agents plan using their
world models to find novelty or surprise in their environments, discovering useful skills without
task-specific supervision (Sekar et al., 2020). This connects to automated scientific discovery, which
requires autonomously forming hypotheses and performing experiments to understand unknown
systems (Jansen et al., 2024; Chen et al., 2025; Geng et al., 2025). New evaluation frameworks
have been proposed to assess an agent’s ability to rapidly induce world models in novel contexts
(Ying et al., 2025; Vafa et al., 2024). Unlike methods that learn implicit, latent world models, our
work learns an explicit, symbolic representation of the world’s laws. We frame learning as reverse
engineering a complex system’s rules from unguided, limited interaction.

Relation to Domain Inference and State Tracking. ONELIFE tackles the challenge of domain
inference (learning transition dynamics) rather than state tracking (inferring state from partial obser-
vations) (Gordon et al., 1993). Classical domain inference methods (Cresswell et al., 2009; Zhuo &
Kambhampati, 2013) often rely on deterministic PDDL representations. We use a neurosymbolic,
Python-based formalism because (1) standard PDDL cannot easily capture the stochastic dynamics
of Crafter-OO, and (2) LLMs are much better at generating Python than Probabilistic PDDL.

3 OVERVIEW OF ONELIFE

Our framework, ONELIFE is designed to learn symbolic world models from a single, unguided
episode of exploration. It is built on two key abstractions, a programmatic representation of world
dynamics as a mixture of modular laws with learnable weights and an observable extractor that
decouples the environment’s state from the learning process. The framework consists: a a world
model as a program (Sec. 3.2), a law synthesizer that proposes new laws using offline data from
an unguided exploration policy (Sec. 3.3), an inference algorithm that re-weights laws based on
observations (Sec. 3.4), and a forward simulation process that uses the learned model for predicting
future states (Sec. 3.5).

We model the environment as having a pure, but potentially stochastic, transition function 7" : S X
A — A(S), where A(S) is the space of probability distributions over the state space S. This
functional view aligns with modern reinforcement learning environment frameworks (Freeman et al.,
2021; Matthews et al., 2024) and physical models, where the future state of a system is a pure
function of an explicit state and any interventions. (See Section H for a discussion on why we model
a pure transition function probabilistically.)

3.1 CRAFTER-OO: A TESTBED FOR SYMBOLIC WORLD MODELING

A common design assumption in previous work on symbolic world modeling (Tang et al., 2024;
Piriyakulkij et al., 2025; Dainese et al., 2024) is that we have access to an object-oriented world state
to use as input to the symbolic world model under construction. In practice, this state is only easily
accessible for simple environments such as Minigrid (Chevalier-Boisvert et al., 2023) or BabyAl
(Chevalier-Boisvert et al., 2018). Programmatic access to the state of more complex environments
such as Atari games as used by Piriyakulkij et al. (2025) is only possible due to standalone develop-
ment efforts such as OCAtari (Delfosse et al., 2024) which makes the internal object-oriented state of
these environments accessible to researchers. The lack of an environment with an exposed, object-
oriented state that is more complex than gridworlds or with mechanics more diverse than Atari games
has thus far prevented evaluation and development of symbolic world modeling approaches for more
complex environments. To close this gap, we implement Crafter-OO (Sec. C), which emulates the
Crafter (Hafner, 2022) environment and action space (Tab. 3) by operating purely on an explicit,
object-oriented game state > (Listing 1). Additionally, we contribute utilities for programmatically
modifying the game state to create evaluation scenarios (Sec. E, Sec. 4.1).

2We describe the state in Python/TSON because we found it substantially easier for LLMs to manipulate than
PDDL. PDDL representations of our complex state became prohibitively large, increasing experimental costs.
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Figure 2: Illustration of the inference process. The active laws for each observable (defined by
Zk(s¢, a)) determine the structure of the computation graph, i.e., which laws and their corresponding
parameters ; are related to which observables. This structure in turn informs the parameter updates.
Shown here is a dataset with a single transition instance, in which the player (P) moves right; at the
same time, a zombie (Z) independently moves left. this implicates two laws, PlayerMovementLaw
and ZombieMovementLaw, while not implicating the InventoryUpdateLaw. As a result, the loss
computation is only a function of #; and 5. Note we use Z here to denote the normalizing factor.
Examples of synthesized laws can be seen in Sec. B.

Our target environment Crafter-OO features significant stochasticity, diverse forms of mechanics,
and active non-player characters. This includes elements such as hostile and friendly agents with di-
verse, inherently random behaviors. Our framework is designed to infer the rules governing these in-
teractions from observation alone, without access to rewards or human-specified goals. For instance,
in Fig. 2, the scenario contains a “zombie” character chasing the player via stochastic movements.
While one cannot perfectly predict the future position of a zombie due to inherent randomness built
into the environment, our world model is able to capture this “chasing the player” behavior without
any explicit supervision by predicting a discrete distribution for the zombie.position attributes.

3.2 ONELIFE: WORLD MODEL AS A MIXTURE OF LAWS

We consider environments with complex, structured state spaces S where the full state s € S may
be hierarchical and contain a mixture of entity types and attributes. An agent interacts with the
environment by taking an action a € A and observing a transition from state s; to s;1, as illustrated
in Fig. 2. We model an environment’s transition function as a composition of programmatic laws.
A law, L;, is a program defined by a pair (¢;, e;), where ¢;(s,a) — {true, false} is a precondition
and e;(s,a) — A(S) is an effect. The precondition determines whether the law is applicable to a
state-action pair (s,a). The effect function specifies a probability distribution over next states by
defining distributions over the values of state attributes. For example, the PlayerMovementLaw in
Fig. 2 applies to state-action pairs with a player and a move action, and has an effect on the player
position’s (x) observable. This precondition-effect structure is inspired by classical planning and
provides a natural way to specify the scope of each law, ensuring modularity (McDermott et al.,
1998). During any given transition, multiple or no laws may be applicable.

To create a tractable interface to compare states predicted by a world model and the true state of the
environment, we introduce an observable extractor, £ : S — O. This function maps a complex
state s into a vector of primitive-valued observables o € O. In the scenario sketched in Fig. 2,
the next state s, can be complex, with additional entities and objects (e.g., trees, inventory items,
etc.). Nevertheless, one can tractably compare states via observations, i.e., changes between s; and
s¢+1 such as player.position, player.inventory, zombie.position, etc. Note that any given
law L; only makes predictions about a subset of all possible observables. For instance, in Fig. 2,
the PlayerMovementLaw only makes predictions about player.position observables and does not
predict the zombie.position observables.

Furthermore, while Probabilistic PDDL can capture stochastic dynamics, it makes synthesis significantly more
difficult, likely because Probabilistic PDDL is much rarer in pre-training data than standard PDDL or Python.
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Our world model can be viewed as a probabilistic program (van de Meent et al., 2021) that generates
the next state’s observables o conditioned on the current state s and action a. The set of laws {L;}
defines the components of this program. Formally, the effect e;(s, a) yields a set of conditional
probability distributions {¢; , }oco, Where ¢; ,(0 = v|s, a) is the distribution over possible values
v for observable o € O, with v € supp(o) denoting a specific outcome in the discrete support of the
observable. Our implementation currently covers categorical and discrete distributions. In principle,
the framework extends to continuous distributions, as the inference algorithm only requires the abil-
ity to query the likelihood of an observed data point. For a given state-action pair (s, a), the set of
active laws is Z(s,a) = {i | ¢;(s,a) is true} (e.g., PlayerMovementLaw and ZombieMovementLaw
in Fig. 2). The model assumes that all observables are conditionally independent given the current
state and action. The predictive distribution for a single observable o is formed by combining the
predictions from all active laws that have an opinion on it. Let Z,(s,a) = {i € Z(s,a) | 0 € O}
be the set of active laws relevant to observable o. The probability of observing an outcome v for
this observable is given by a weighted-product of conditional probability distribution from each law,
parameterized by 0:

p(o =vls,a;0) x H bi(0=v|s,a)? (1)
i€ZL,(s,a)
The complete predictive distribution over the next state s is the product of the individual observable
distributions:
p(s'|s,a;0) = H p(ols, a; 0) ()
ocO

The learnable weights 8 perform model selection over the set of candidate laws. Because the synthe-
sizer generates a large pool of atomic laws, including incorrect hypotheses, the optimization process
drives the weights of invalid laws toward zero to remove them from the model. Additionally, the
weights enable multiple plausible laws to vote on the final predictive distribution, allowing the model
to aggregate conflicting predictions.

Comparison to Prior Product-of-Expert Formalisms. Although we use a product-of-experts
structure like PoE-World (Piriyakulkij et al., 2025), the underlying representation and optimization
differ fundamentally. Conceptually, POE-World learns a superposition of experts where each pro-
gram predicts the entire next state. This causes the posterior to be noisy in complex environments,
as irrelevant experts contribute uniform predictions to attributes they do not model well. In contrast,
ONELIFE factorizes the transition function into atomic laws that individually predict a minimal sub-
set of the next state (e.g., only the player’s health, or only a specific map tile). This atomicity enables
our optimization procedure (Sec. 3.4) to construct a dynamic computational graph for every tran-
sition. By exploiting the precondition-effect structure, we route gradients only to laws relevant to
the specific observed transition. This avoids the “static graph” limitation of prior work and allows
ONELIFE to scale to diverse object-oriented attributes (e.g., inventory items, map tiles, NPC states)
beyond the simple physics variables (e.g., position, velocity) targeted by prior work.

3.3 ONELIFE: UNGUIDED ENVIRONMENT EXPLORATION AND LAW SYNTHESIS

The set of candidate laws L; is generated from unguided agent-environment interactions through
a two-stage process. First, an autonomous exploration policy gathers a corpus of interaction data.
Second, a synthesizer proposes candidate laws that explain the state transitions observed in this data.

Exploration Policy. Previous work in symbolic world modeling often assumes access to curated
offline datasets or utilizes online interaction guided by human-provided goals or environment re-
wards. In our unsupervised setting, such guidance is unavailable. Furthermore, in a hostile envi-
ronment such as Crafter-OO, a simple random policy fails to survive long enough to experience the
diverse mechanics necessary for comprehensive world modeling. Therefore, we employ an explo-
ration policy driven by a large language model. The policy is not provided with specific knowledge
of the environment; instead, it is given the high-level objective to discover as many underlying me-
chanics as possible, treating exploration as a reverse-engineering task. We distinguish between gen-
eral genre priors and environment-specific dynamics. General genre priors are high-level concepts
common to the class of open-world survival environments, such as the existence of hostile entities,
the ability to collect resources, or the ability to craft tools. In contrast, environment-specific dynam-
ics refer to exact rules, such as “Zombies chase players” or “Wood is needed to make a pickaxe.”
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The exploration policy is provided with the former to prevent aimless behavior typical of random
policies, but it is strictly withheld from the latter. This mimics a realistic scenario where an agent
enters a new environment possessing broad intuition about the genre, but must reverse-engineer the
specific laws and mechanics of that unique world from scratch. We use the agent scaffolding from
Balrog (Paglieri et al., 2025) to implement the agent. The agent’s architecture maintains a rolling
window of its recent state-action history to provide context for decisions. The prompt (see Sec. G)
also instructs the agent to maintain a transient summary of its current understanding of the world’s
rules, refining its hypotheses as it interacts with the environment.

Law Synthesizer. The synthesizer is an automated routine that queries a Large Language Model
(LLM) to explain observed state transitions. Our system operates by iterating through every transi-
tion in the exploration dataset and performing a systematic comparison of the object-oriented state at
each timestep. This process automatically identifies the specific object attributes that have changed,
such as an entity’s position or an inventory count, without requiring manual specification of what to
track. For each identified change, the routine queries the LLM to output a Python class containing
precondition and effect methods. The effect method is generated to explicitly perform the ob-
served attribute assignment on a state object. This process yields afomic laws that govern minimal
subsets of state attributes. For instance, a complex combat event is automatically decomposed into
separate candidate laws where one explains the health decrease and another explains the enemy’s
movement. This modularity allows the subsequent inference stage (Sec. 3.4) to perform precise
credit assignment by isolating correct mechanics from incorrect hypotheses. We provide examples
of synthesized laws in Sec. B.

Synthesis Differences From PoE-World. While Piriyakulkij et al. (2025) adopt a specialized ap-
proach utilizing a bank of over 30 synthesizers equipped with prompts tailored to pre-identified me-
chanics, ONELIFE employs a single synthesizer. This setup requires our agent to identify mechanics
on the fly and codify them without prior knowledge of the environment’s rules. Consequently, our
synthesizer consumes the entire game state in a general-purpose format (JSON) to write code for di-
verse aspects of the world, including map tiles, entities, and player inventories, whereas PoE-World
limited synthesis to a specific set of physics-based attributes.

3.4 ONELIFE: INFERENCE ON LAW PARAMETERS

We learn the weight vector 8 by maximizing the log-likelihood of a dataset of observed transitions
D = {(s¢,as,5¢+1)}2,. For clarity, we first define the loss for a single transition (s, a, s); the total
loss is the sum over all transitions in the dataset.

Based on the conditional independence of observables, the negative log-likelihood for a single tran-
sition decomposes into a sum over each observable o € O:

L£(6;s,a,s)=— Z log p(vi]s, a;0) 3)

0cO

where v} = £(s’), is the ground truth value of observable o extracted from the next state s’. The log-
probability term is derived from the combined predictions of the active laws. Let Z, (s, a) be the set
of active laws that make a prediction for observable o. We first define the combined, unnormalized
log-score for any potential value v as the weighted sum of log-scores from these laws. The weights
0; are the only learnable parameters:

lo(v]s,a;0) = Z 0; - ¢i0(v]s,a) 4)
1€Z,(s,a)

Normalized log-probability of observing the specific outcome v} is then given by the log-softmax
function. Let supp(o) be the discrete support (set of all possible values) for observable o:

logp(vils,a; 0) = £,(vi|s,a;0) — log Z exp (6 (vls, a; 0)) (5)

vesupp(o)
The optimization process leverages the dynamic computation graph induced by our law structure.
For each transition and each observable, the loss gradient is calculated with respect to the weights
6; only for the active laws i € Z,(st,a;). This effectively routes credit for an outcome exclu-
sively to the laws that made a prediction about it. This sparse, targeted update mechanism provides
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Figure 3: Two evaluation metric categories described in Sec. 4. A world state of an environment
usually has more than two keys (i.e. Crafter-OO’s state (Section C.2) when populated has 100+ key-
value pairs,) and often has nested values, but here we show a simplest case to explain the calculation
of (normalized) edit distance. We create distractors for state ranking using mutators (Sec. D), which
programatically modify the next state s’ in a transition (s, a, s") to be illegal under the true transition
function. For example, one of our mutators allows a crafting action (e.g. making a stone pickaxe) to
succeed even when the prequisites for the crafting are not met.

more precise credit assignment than methods that update a global set of weights based on aggregate
outcomes. We use L-BFGS for optimization (Nocedal & Wright, 2006).

3.5 ONELIFE: FORWARD SIMULATION AND LIKELIHOOD

Forward simulation is the process of using the learned world model generatively to predict a future
state S;,1 given a current state s; and an action a;. By generating rollouts of future trajectories,
an agent can evaluate action sequences against a specific goal or reward function without costly or
irreversible real-world interaction.

The simulation of a single timestep from (s, a;) involves a multi-step sampling and reconstruc-
tion process. First, for each observable o € O, the model forms a predictive probability distribution
p(0lst, a; @). This distribution is constructed by identifying the set of active laws Z,(s;, a;) relevant
to that observable and combining their predictions according to their learned weights 6, as specified
in Equation 1. This distribution can be used to evaluate the likelihood of an observable conditioned
on (s, a) pair. Second, a concrete outcome ¥, can be sampled from this distribution for each observ-
able: 9, ~ p(o|s¢, ar; 0). This the collection of sampled outcomes {¥, }oco is used to construct the
full symbolic next state 5;4;. A reconstruction function, which mirrors the observable extraction
process, assembles these values back into the environment’s structured state representation.

4 EVALUATION PROTOCOLS AND METRICS

The evaluation of world models for a stochastic environment is non-trivial. An useful world model
fulfills two criteria: (a) state ranking, the ability to distinguish plausible future states from implau-
sible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality.
Both are illustrated in Fig. 3.

State Ranking (Fig. 3 (a)). These metrics assess the model’s ability to rank the true next state
higher than the distractors. To create the distractor states, we use mutators, which are programmatic
functions that apply semantically meaningful, rule-breaking changes to the true next state. For
example, a mutator could change a character’s position to a location they cannot physically reach.
We include details on mutators in Sec. D.

* Rank @ 1 (R@1): A binary metric that measures whether the model correctly assigns the highest
probability (rank 1) to the true next state among all candidates.

* Mean Reciprocal Rank (MRR): This metric averages the reciprocal rank of the correct answer
across all test instances. A higher MRR indicates that the model consistently ranks the correct

state higher. The formula is: MRR = %; ZN L, where 7; is the rank of the ground truth state

i=1r;’

for the ¢-th transition, with rank 1 being the highest probability. We favor MRR over raw mean



Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of world modeling methods on the Crafter-OO environment, av-
eraged over ten trials. We evaluate models on two criteria: state fidelity and state ranking All
methods use the ONELIFE exploration policy and law synthesizer but differ in their parameter infer-
ence method. ONELIFE shows significant improvements over the PoE-World inference algorithm
and ONELIFE variant without parameter inference. The random baseline is shaded in gray . The

“No Inference” row ablates learnable law parameters 6 from our world model.

Law Synthesis Law Param. Inference State Ranking State Fidelity
(Sec. 3.3) (Sec. 3.4) Rank @ 1T MRR 1 Raw Edit Dist. | Norm. Edit Dist. |
Random World Model 8.5% 0.322 121.538 0.809
WorldCoder 0.0% 0.264 27.180 0.181
ONELIFE PoE-World 10.8% 0.351 10.634 0.071
ONELIFE No Inference 13.0% 0.429 8.540 0.057
ONELIFE ONELIFE 18.7% 0.479 8.764 0.058
A over PoE-World (+7.9%) (+0.128) (-1.870) (-0.013)

rank because its inverse scaling (1/r) heavily penalizes missing the top rank, reflecting the high
cost of sampling invalid states during planning. Furthermore, unlike mean rank, MRR provides a
standardized score invariant to the candidate set size N, which varies in our setup depending on
the number of applicable mutators.

State Fidelity (Fig. 3 (b)). These measure the error between predicted and ground truth states.

* Raw Edit Distance: The total number of atomic JSON Patch operations required to transform the
predicted state, s} 11, into the ground truth state, 54 1.

* Normalized Edit Distance: The raw edit distance divided by the total number of elements in the
state representation.

4.1 EVALUATION FRAMEWORK IMPLEMENTATION ON CRAFTER-OO

Evaluating a world model on random rollouts may not provide sufficient coverage of rare or im-
portant events in an environment. To ensure our evaluation is comprehensive, we create evaluation
trajectories from a suite of scenarios. Each scenario runs short, scripted policy from an initial state
designed to reliably exercise a specific game mechanic or achieve a particular goal, ensuring that
our evaluation thoroughly covers the environment’s dynamics. We generate a comprehensive eval-
uation dataset by implementing scenarios that cover every achievement in the game’s achievement
tree, seen in Fig. 4. This ranges from basic actions like collecting wood to complex, multi-step tasks
like crafting an iron sword, ensuring all of the game’s core mechanics are tested. More details on
scenarios are provided in Sec. E. We generate distractors for each transition in the evaluation dataset
using a bank of mutators which each produce a subtle, but illegal transformation of the game state in
response to an action. Some examples are causing an incorrect item to be produced when taking a
crafting action, or allowing an item to be produced without the correct requirements, or illegal entity
behavior such as teleporting. Because mutators have specific preconditions (e.g., combat mutators
only apply during combat), the number of applicable distractors varies per state. In our experi-
ments, the total candidate set size (ground truth plus distractors) ranges from N = 7to N = 11 per
transition. Details on mutators and the evaluation are provided in Sec. D and Sec. F.

5 EXPERIMENTAL SETUP AND RESULTS

We conduct a series of experiments to evaluate ONELIFE. First, we quantitatively assess the model’s
predictive accuracy using our state ranking and fidelity metrics across a comprehensive suite of
scenarios. Second, we test the model’s ability to support planning in imagination. We use the model
to perform simulated rollouts of different policies, evaluating whether it can predict the outcomes of
these plans well enough to distinguish effective strategies from ineffective ones (Sec. A).

We compare ONELIFE against three baselines (fully detailed in Section I): a Random World
Model; PoE-World (Piriyakulkij et al., 2025), the prior state-of-the-art symbolic framework that
learns a product of experts; and WorldCoder (Tang et al., 2024), which differs from PoE-World by
synthesizing a monolithic, deterministic program for the transition function.
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Figure 4: Per-scenario state ranking performance of ONELIFE (Ours) versus PoOE-World, measured
by Mean Reciprocal Rank (MRR ). Scenarios are grouped by the core game mechanic they test.
Horizontal lines show the average MRR across all scenarios in a group for ONELIFE and PoE-
World. ONELIFE demonstrates a more accurate understanding of the environment’s laws, achieving
a higher average MRR and outperforming the baseline on the majority of individual scenarios.

5.1 RESULTS

State Fidelity and Ranking. ONELIFE learns a world model with significantly higher predictive
judgment than baseline methods while maintaining competitive generative fidelity. Table 1 compares
our full method against baselines and key ablations across all evaluation metrics. ONELIFE’s pri-
mary advantage appears in the predictive judgment metrics. We achieve a discriminative accuracy
of 18.7% and an MRR of 0.479, outperforming the PoE-World optimization baseline by 7.9 per-
centage points and 0.128, respectively. While precisely generating a complex future state remains
challenging, our model has learned an accurate understanding of the environment’s underlying laws.
This enables it to assign high probability to valid transitions and low probability to invalid ones.
The comparison to the “random world model” shows that (i) a high edit distance can quickly be
amassed if the world models updates observables that are unchanged in the ground truth state, thus,
reinforcing why such simulation is challenging; (ii) optimizing for generative metrics like state fi-
delity alone does not yield a better world model to guide an agent, e.g., while the PoE-world model
(row 2 in Tab. 1) dramatically improves the state fidelity by reducing the edit distance a factor of
10, it only marginally improves the ability to rank multiple states by ~2% over random (Rank@1)
— reiterating the need for state ranking metrics. Removing the parameter inference step (“ONELIFE
& None”) results in a performance drop of 5.7% in Rank@1 and 0.05 in MRR, confirming that the
weights are essential for distinguishing valid laws from incorrect ones.

Fine-grained Evaluation. Figure 4 breaks down Mean Reciprocal Rank performance across in-
dividual scenarios spanning mechanics from resource collection to combat. ONELIFE consistently
outperforms the PoE-World baseline on the majority (16/23) of scenarios. These improvements
stem from a robust understanding of the environment’s diverse rules rather than strong performance
on only a few simple mechanics.

6 CONCLUSION

We address the problem of learning a symbolic world model from limited, unguided interaction in
a complex, stochastic environment. We introduced ONELIFE, a framework that represents world
dynamics as a probabilistic mixture of modular, programmatic laws. Its core learning mechanism
routes credit for observed state changes exclusively to the laws responsible for predicting them, en-
abling effective learning even when many rules are inactive during a given transition. Evaluated
on Crafter-OO, our variant of the complex Crafter environment with object-centric state, ONELIFE
learns a world model with superior predictive judgment compared to a strong baseline, more accu-
rately distinguishing plausible future states from implausible ones. This improvement is consistent
across a wide range of game mechanics. Our work provides a foundation for building agents that
can autonomously reverse engineer the rules of an unknown environment.

10



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We do not foresee any ethical implications beyond standard ethical and safety considerations that
apply to Al research generally.

REPRODUCIBILITY STATEMENT

We plan to open-source Crafter-OO, ONELIFE, and the evaluation framework used in our work to
aid reproducibility. All prompts and key details of the exploration policy, synthesis algorithm, and
law parameter inference have been described.
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A PLANNING AND MULTI-STEP SIMULATION WITH THE LEARNED WORLD
MODEL

To assess the practical utility of the learned world model, we evaluate its effectiveness in a planning
context. Our protocol tests the model’s ability to distinguish between effective and ineffective plans
through forward simulation. For a set of scenarios, we define a reward function and two distinct,
programmatic policies (plans) to achieve a goal within the scenario. Each plan is represented as a
hierarchical policy (in code) that composes subroutines for navigation, interaction, and crafting.

We give an example in box G.3 for the “Zombie Fighter” scenario. Each reward function is likewise
written in code and calculates rewards from the rollout of a plan. We execute rollouts of both plans
within our learned world model and, separately, within the ground-truth environment. The measure
of success is whether the world model’s simulation yields the same preference ranking over the two
plans as the true environment, based on the final reward. This assesses if the model has captured the
causal dynamics necessary for goal-directed reasoning.

Setup. We design three scenarios that test distinct aspects of the environment’s mechanics: combat,
tool-use and resource consumption, as shown in Table 2. In the Zombie Fighter scenario, an agent
with low health must defeat two zombies. The superior plan involves a multi-step process: pathfind-
ing to locate and harvest trees, crafting a table and then a sword, and only then engaging in combat.
The alternative is to fight immediately. The Stone Miner scenario tests the model’s understanding
of resource collection. The effective plan is to first harvest wood, craft a pickaxe, pathfind to a stone,
and then mine. Attempting to mine stone directly is ineffective. Finally, the Sword Maker scenario
evaluates knowledge of resource consumption. The goal is to craft multiple swords. The efficient
plan places a single crafting table and reuses it, whereas the inefficient plan wastes wood by placing
a new table for each sword. On average, a plan requires ~ 18 steps to execute, with the longest plans
taking > 30 steps. Thus, simulating the results of these plans tests the ability of the world model
to accurately model the consequences of long sequences of actions upon the world. We show an
example of plan execution in imagination for the “Stone Miner” scenario in Fig. 5.
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Figure 5: We show an example of plan execution within ONELIFE’s world model for the “Stone
Miner” scenario. The task is to mine stone, and can only be successfully completed if a wooden
pickaxe is obtained before attempting to mine stone. We simulate two plans within the world model.
The effective plan carries out a multi-step sequence of gathering wood, crafting a wooden pickaxe,
and then attempting to mine. The ineffective plan attempts to mine the stone directly. The world
learned by ONELIFE correctly simulates causal game mechanics that cause the effective plan to
succeed and the ineffective plan to fail. The frames are generated by rendering the structured states
constructed by ONELIFE’s learned transition function.

Results. Table 2 shows that across all three scenarios, our learned world model correctly predicts
the more effective plan. The ranking of plans generated by simulating rollouts in ONELIFE matches
the ranking from the ground-truth environment. For instance, in the Zombie Fighter scenario, the
model correctly simulates that the multi-step plan of crafting a sword leads to higher Damage Per
Second, identifying it as the superior strategy. This demonstrates that ONELIFE captures a suffi-
ciently accurate causal model of the world to support basic, goal-oriented planning.

B LAw EXAMPLES

Below, we give examples of various laws synthesized by ONELIFE. In box B.1 and box B.2, we
show examples of how ONELIFE has learned the hierarchical structure of Crafter-OO/Crafter’s tech-
tree. In this case, one must mine stone before a stone pickaxe can be produced. These laws are
deterministic in the sense that they define probability distributions that place mass 1.0 on a single
outcome, consistent with the probabilistic framework defined in Sec. 3.2. In box B.3, we give
an example of a law synthesized by ONELIFE for a stochastic mechanic, in this case, the chase
behavior of zombies when they are within a certain range of a player. The idle skeleton law in
box B.6 and moving skeleton law in box B.4 make conflicting predictions; these are aggregated by
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Table 2: Planning via forward simulation. Our learned world model is used to compare alternative
plans in three scenarios. This is done by executing the plans in the world model, and measuring
the reward obtained by each plan. In each case, ONELIFE produces the same ranking over plans
as the ground-truth environment, demonstrating its ability to capture causally relevant dynamics for
goal-directed decision-making and accurately simulate long action sequences of > 30 steps. Each
plan was executed 10 times.

Scenario Plan Description Reward Function Avg. Steps True Env. ONELIFE’s WM
Reward Preferred Reward Preferred
Zombie Fighter ll;liaglmeisrl]] ngi I;;yCrafl Table — Craft Sword — Fight Damage Per Second ?g ?8 v ?2; v
Stone Miner &z;;\éels:n ngi ;;yCraﬂ Table — Craft Pickaxe — Mine Stone Collected ? ; 38 v 88 v
SwordMaker Bt Tl o df Svris swscated 5 38 (48

the weight inference process in Sec. 3.4 to produce a distributional prediction that takes into account
the predictive accuracy of both laws.

Box B.1| Mine Stone Law

I class MineStonelLaw:

2 def __init__(self):

3 """Initialize with configurable parameters.
4 pass

nnn

6 def precondition(self, current_state: WorldState, action: str) -> bool:

7 """Return True if this law should apply to the given state and action.
8 if action != "Do":

9 return False

nnn

11 target_material, _ = current_state.get_target_tile()

12

13 if target_material == "stone”:

14 # Check if the player has any pickaxe

15 has_pickaxe = (

16 current_state.player.inventory.wood_pickaxe > @ or
17 current_state.player.inventory.stone_pickaxe > @ or
18 current_state.player.inventory.iron_pickaxe > 0

19 )

20 return has_pickaxe

21

22 return False

2 def effect(self, current_state: WorldState, action: str) -> None:
25 """Apply the law by modifying the world state.”""

26 # Increment stone in inventory

27 current_state.player.inventory.stone = DiscreteDistribution(
28 support=[current_state.player.inventory.stone + 1]

29 )

31 # Replace the mined stone material with grass
32 current_state.set_facing_material(”grass")

Box B.2| Craft Stone Pickaxe

1 class CraftStonePickaxe:

2 def __init__(self):
3 """Initialize with configurable parameters."""
4 # No specific parameters needed for this crafting recipe.
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5 pass

7 def precondition(self, current_state: WorldState, action: str) -> bool:

8 """Return True if this law should apply to the given state and action.”""
9 # Check if the action is "Make Stone Pickaxe”

10 if action == "Make Stone Pickaxe":

11 # Check if player has required materials

12 has_wood = current_state.player.inventory.wood >= 1

13 has_stone = current_state.player.inventory.stone >= 1
14 return has_wood and has_stone
15 return False

17 def effect(self, current_state: WorldState, action: str) -> None:

18 """Apply the law by modifying the world state.”""

19 # Decrease wood by 1

20 current_state.player.inventory.wood = DiscreteDistribution(support=[
current_state.player.inventory.wood - 1])

2 # Decrease stone by 1

22 current_state.player.inventory.stone = DiscreteDistribution(support=[

current_state.player.inventory.stone - 1])

23 # Increase stone_pickaxe by 1

24 current_state.player.inventory.stone_pickaxe = DiscreteDistribution(
support=[current_state.player.inventory.stone_pickaxe + 1])

Box B.3| Zombie Chase

1 class ZombieAggroMovement:

2 def __init__(self):

3 """Initialize with configurable parameters.
pass # No specific parameters are needed for this observed law.

nnn

6 def precondition(self, current_state: WorldState, action: str) -> bool:

7 """Return True if this law should apply to the given state and action.”""

8 # This law applies if there are any ZombieState entities within the
player's

9 # update range, as their movement is an autonomous process.

10 zombies_in_range = current_state.get_object_of_type_in_update_range(
ZombieState)

11 return len(zombies_in_range) > 0

13 def effect(self, current_state: WorldState, action: str) -> None:
14 """Apply the law by modifying the world state.”"”
15 player_pos = current_state.player.position

17 # Retrieve all ZombieState objects that are within the update range.

18 # This implicitly filters for zombies close enough to be active/
observable.

19 zombies_to_update = current_state.get_object_of_type_in_update_range(
ZombieState)

20

21 for zombie in zombies_to_update:

22 # Calculate the differences in coordinates between the player and the
zombie.

23 dx = player_pos.x - zombie.position.x

24 dy = player_pos.y - zombie.position.y

26 # Initialize new positions to current positions (no movement by
default)

27 new_x = zombie.position.x

28 new_y = zombie.position.y
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30 # Prioritize movement along the X-axis

31 if dx !'= 0:
32 # Move one step towards the player along the X-axis.
new_x = zombie.position.x + (1 if dx > @ else -1)
3 elif dy != o:
35 # If X-axis is already aligned, move one step towards the player

along the Y-axis.
36 new_y = zombie.position.y + (1 if dy > @ else -1)

38 # Update the zombie's position in the state using
DiscreteDistribution.

39 zombie.position.x = DiscreteDistribution(support=[new_x])

40 zombie.position.y = DiscreteDistribution(support=[new_y])

Box B.4| Skeleton Movement

| class SkeletonRandomMovementLaw:

2 def __init__(self):
3 """Tnitialize with configurable parameters.”"""
4 pass

6 def precondition(self, current_state: WorldState, action: str) -> bool:
7 """Return True if this law should apply to the given state and action.

nnn

8 # This law applies generally to all skeletons, independent of player
action for movement
9 return True

11 def effect(self, current_state: WorldState, action: str) -> None:

12 """Apply the law by modifying the world state.”"”

13 skeletons = [obj for obj in current_state.objects if isinstance(obj,
SkeletonState)]

15 for skeleton in skeletons:
16 current_x = skeleton.position.x
17 current_y = skeleton.position.y

19 # Possible next X positions: current_x, current_x + 1, current_x - 1
20 skeleton.position.x = DiscreteDistribution(support=[

21 current_x,

22 current_x + 1,

23 current_x - 1

24 1))

25 # Possible next Y positions: current_y, current_y + 1, current_y - 1
26 skeleton.position.y = DiscreteDistribution(support=[

27 current_y,

28 current_y + 1,

29 current_y - 1

30 ])

Box B.5| Health Regeneration Law

1 class PlayerInventoryHealthRegeneration:

2 def __init__(self, max_health: int = 20, recover_threshold: float = 1.0):
3 """Initialize with configurable parameters for health regeneration.”""
4 self.max_health = max_health

5 self.recover_threshold = recover_threshold
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7 def precondition(self, current_state: WorldState, action: str) -> bool:

nnn

9 Return True if the player's inventory health should regenerate.
0 This law applies if the player is not at max health, has sufficient
recover points, and is not sleeping.

nnn

player = current_state.player

5 # Check if player's current inventory health is less than the defined
maximum
16 has_space_for_health = player.inventory.health < self.max_health

18 # Check if player has sufficient recover points to enable regeneration

19 has_recover_points = player.recover >= self.recover_threshold

20

21 # Check if the player is not currently sleeping

22 not_sleeping = not player.sleeping

24 # This is a passive regeneration effect, so the specific action taken (e.
g., "Move North")

25 # is not a direct precondition, but the effect occurs during the state
transition.

26 return has_space_for_health and has_recover_points and not_sleeping

28 def effect(self, current_state: WorldState, action: str) -> None:

nnn

30 Apply the law by increasing the player's inventory health by 1.

32 # Increment the player's inventory health by 1.

33 current_state.player.inventory.health = DiscreteDistribution(support=[
current_state.player.inventory.health + 1])

Box B.6| Skeleton Idle

I class SkeletonIdlelaw:
2 def __init__(self):
3 """Tnitialize with configurable parameters.

nnn

4 pass
6 def precondition(self, current_state: WorldState, action: str) -> bool:

7 """Return True if this law should apply to the given state and action.”""
8 # This law applies if there are any skeletons in the world that aren't

otherwise engaged.
9 # Since no changes were observed, we assume this is their default passive
behavior.
0 return True # Applies universally as a default behavior for skeletons

1
11
12 def effect(self, current_state: WorldState, action: str) -> None:
13 """Apply the law by modifying the world state.”"”
14 for skeleton in current_state.get_object_of_type_in_update_range(
SkeletonState):
5 # Based on observation, skeletons remain unchanged.

# We predict their attributes will stay the same.
7 skeleton.health = DiscreteDistribution(support=[skeleton.health])

8 skeleton.position.x = DiscreteDistribution(support=[skeleton.position
.x1)

19 skeleton.position.y = DiscreteDistribution(support=[skeleton.position
yD

20 skeleton.reload = DiscreteDistribution(support=[skeleton.reload])

18
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C THE CRAFTER-OO ENVIRONMENT

This appendix details Crafter-OO, our reimplementation of the Crafter environment that exposes
a structured, object-oriented symbolic state and operates through a pure transition function. We
developed Crafter-OO as a testbed for symbolic world modeling approaches in a complex, stochastic
domain.

Table 3: The discrete action space of Crafter-OO. The action space is identical to the original Crafter
benchmark (Hafner, 2022).

Category  Actions

Movement move_left, move_right, move_up, move_down
Interaction do, sleep, noop
Placement place_stone, place_table, place_furnace, place_plant

Crafting make_wood_pickaxe, make_stone_pickaxe, make_iron_pickaxe
make_wood_sword, make_stone_sword, make_iron_sword

C.1 MOTIVATION AND DESIGN PRINCIPLES

Symbolic world modeling benefits from environments where the complete state is accessible as a
structured representation. Simple grid worlds provide this but lack complexity, while more complex
environments typically require additional engineering to expose their internal state. More funda-
mentally, existing testbeds for symbolic world modeling have focused on environments that are
either deterministic or have limited stochasticity and a narrow range of mechanics. Atari games, for
instance, while complex in visual processing demands, have relatively predictable dynamics and a
constrained set of interactions compared to open-world environments.

We developed Crafter-OO to address this gap. The environment features significant stochasticity in
entity behaviors, diverse mechanics spanning resource collection to combat, and multi-step causal
chains. Our design follows three principles:

1. Explicit Object-Oriented State: The entire game state is captured in a single, hierarchical data
model that serves as input and output for world models.

2. Functional Purity: The environment’s dynamics are exposed as a pure transition function,
T'(state, action) — next_state, with no hidden variables.

3. Programmatic Modification: The state representation can be precisely manipulated with code,
enabling controlled experimental setups.

C.2 THE WorldState DATA MODEL

The core of Crafter-OO is the WorldState data model, which captures the environment at a single
timestep. This model is defined using Pydantic for structure and validation. Its components include:

* player: A PlayerState object containing position, inventory, health, and current action.

* objects: A list of non-player entities (CowState, ZombieState, PlantState, etc.) with type
discrimination via a name field.

* materials: A 2D array representing the terrain map.

* Global Properties: World-level attributes including daylight, size, and serialized random state.

Listing | shows the structure of this model. This representation provides the interface between the
environment and symbolic world models.

from typing import TypeAlias, Literal
# --- Basic Data Structures ---

class Position:
"""Represents a 2D position (x, y) in the game world."""

19



59
60
61
62
63
64
65
66
67
68
69
70

71

Under review as a conference paper at ICLR 2026

X: int
y: int

class Inventory:

"""Represents the player's inventory counts for each item type.

health: int
food: int
drink: int
energy: int
sapling: int

wood: int
stone: int
coal: int
iron: int

diamond: int
wood_pickaxe: int
stone_pickaxe: int
iron_pickaxe: int
wood_sword: int
stone_sword: int
iron_sword: int

class Achievements:

"""Represents the player's unlocked achievements.

collect_coal: int
collect_diamond: int
collect_drink: int
collect_iron: int
collect_sapling: int
collect_stone: int
collect_wood: int
defeat_skeleton: int
defeat_zombie: int
eat_cow: int
eat_plant: int
make_iron_pickaxe: int
make_iron_sword: int
make_stone_pickaxe: int
make_stone_sword: int
make_wood_pickaxe: int
make_wood_sword: int
place_furnace: int
place_plant: int
place_stone: int
place_table: int
wake_up: int

# --- Game World Entities ---

class BaseObject:

"""The base class for all dynamic objects in the game world."""

entity_id: int
position: Position
health: int
removed: bool

class Player(BaseObject):
"""The state of the player character.
name: Literal["player"”] = "player”
facing: Position
action: str
sleeping: bool
inventory: Inventory
achievements: Achievements

nnn

20

nnn

nnn



Under review as a conference paper at ICLR 2026

72 thirst: float
73 hunger: float
74 fatigue: float
75 recover: float
76 last_health: int

77

78 class Cow(BaseObject):

79 """The state of a cow.
80 name: Literal[”cow”] = "cow”
81

82 class Zombie(BaseObject):

nnn

83 """The state of a zombie."""
84 name: Literal["zombie"] = "zombie"
85 cooldown: int

86
37 class Skeleton(BaseObject):

88 """The state of a skeleton.”""
89 name: Literal["skeleton"] = "skeleton”
90 reload: int

91
92 class Arrow(BaseObject):

93 """The state of an arrow projectile."””"”
94 name: Literal["arrow"] = "arrow”
95 facing: Position

96
97 class Plant(BaseObject):

98 """The state of a plant, which can be eaten."""”
99 name: Literal["plant”] = "plant”

100 grown: int

101 ripe: bool

102

103 class Fence(BaseObject):

104 """The state of a fence object.
105 name: Literal["fence"] = "fence”

106

107 # A union of all possible entity types in the world.

108 Entity: TypeAlias = Player | Cow | Zombie | Skeleton | Arrow | Plant | Fence
109

110

111 # --- World and Spatial Structures ---

112

113 MaterialT: TypeAlias = str

114

115 class Chunk:

nnn

116 """Represents a spatial region of the world for efficient updates.”""

117 chunk_key: tuple[int, int, int, int]

18 object_ids: list[int]

119

120 class WorldState:

121 """Represents the complete, hierarchical state of the game world at a single
timestep."""

122 # World dimensions and configuration

123 size: tuplel[int, int]

124 chunk_size: tuplel[int, int]

125 view: tuplel[int, int]

126

127 # World status

128 daylight: float

129 step_count: int

130

131 # The grid of static materials (e.g., grass, stone, water)

132 materials: list[list[MaterialT | Nonel]

133

134 # A list of all dynamic entities currently in the world.

135 objects: list[Entity]
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# A direct reference to the player object for easy access.
player: Player

# Spatial partitioning data.
chunks: list[Chunk]

# Internal simulation state
entity_id_counter_state: int
serialized_random_state: str
event_bus: list[str]

Listing 1: Simplified structure of the WorldState data structure.

C.3 EXTRACTING STATE FROM CRAFTER’S GAME ENGINE

Declarative State Export
St (produces s¢+1)
Reconstruction Imperative World
(reconstruct) Instance

U

Imperative Step
world.step(a)

Figure 6: The functional cycle for state transition. A declarative state snapshot is reconstructed into
a live, imperative world instance. The engine simulates a single step, and the resulting world is
exported back into a new declarative state snapshot for the next timestep. This ensures we match
Crafter’s mechanics exactly.

The simulation state in the original engine is not a single data structure but is distributed across a
graph of live Python objects, each with its own internal state and complex inter-dependencies, such
as non-player characters holding direct references to the player object. Furthermore, the engine’s
behavior relies on implicit state, including the internal state of its pseudo-random number generator,
which governs all stochastic events. Achieving a pure functional interface required developing a
robust mechanism to first serialize this entire, complex state into a self-contained, declarative repre-
sentation and then perfectly reconstruct the live object graph from that representation for each step
of the simulation.

The state export process transforms the live simulation into a serializable snapshot. This procedure
performs a deep traversal of the game engine’s internal state, capturing all information required
to reproduce the exact game moment. This includes the grid of world materials, the positions of
all entities, and the type-specific attributes of each entity, such as a zombie’s attack cooldown or
a plant’s growth progress. Crucially, the process also serializes the state of the engine’s pseudo-
random number generator, ensuring that the sequence of random numbers for subsequent stochastic
events is preserved. To maintain the spatial partitioning data used for efficient queries, the set of
entities within each world chunk is recorded by storing their unique identifiers. The final output is a
complete, declarative data structure that represents the world at a single point in time, free from any
live object references or other runtime-specific information.
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State reconstruction reverses this process, rebuilding the live simulation from the declarative snap-
shot. This is more complex than simply loading data. It involves re-instantiating the entire graph
of game objects and correctly re-establishing their inter-dependencies. A key complexity arises
from object relationships; for instance, hostile entities require a direct reference to the live player
object to guide their behavior. To resolve this, we employ a multi-pass reconstruction algorithm.
First, entities with no external dependencies, such as the player, are instantiated. Then, dependent
entities are instantiated in a second pass, receiving references to the already-created objects they
require. Once all objects are created, the spatial partitioning system is rebuilt by mapping the stored
entity identifiers back to the newly created live object instances. Finally, the deserialized state of
the pseudo-random number generator is loaded, ensuring that the reconstructed world will produce
the exact same stochastic outcomes as the original. The overall process is described in Box 1 and
illustrated in Figure 1.

Box C.1| Pseudocode for the Functional Transition Cycle

function FunctionalTransition(declarative_state_t, action_t):
// 1. Reconstruct the imperative world from the declarative state snapshot.
world_instance <- ReconstructWorldFromState(declarative_state_t)

// 2. Emulate a single step in the imperative engine.

player <- FindPlayerObject(world_instance)

ApplyActionToPlayer(player, action_t)

for object in world_instance.get_all_objects():
object.update()

// 3. Export the new world state into a declarative representation.
declarative_state_t+1 <- ExportStateFromWorld(world_instance)

return declarative_state_t+1

function ExportStateFromWorld(world_instance):
snapshot <- new DeclarativeState
snapshot.materials <- CopyGrid(world_instance.material_grid)
snapshot.rng_state <- Serialize(world_instance.random_generator)
for object in world_instance.get_all_objects():
AddObjectState(snapshot, object.type, object.attributes, object.id)
return snapshot

function ReconstructWorldFromState(snapshot):
world_instance <- new ImperativeWorld
world_instance.material_grid <- CopyGrid(snapshot.materials)
world_instance.random_generator <- Deserialize(snapshot.rng_state)

// Multi-pass object instantiation to handle dependencies.
player_state <- FindPlayerStateInSnapshot(snapshot)
player_object <- InstantiateObject(

player_state.type, player_state.attributes

)
AddObjectToWorld(world_instance, player_object)

for object_state in snapshot.get_all_object_states():
if not is_player(object_state):
// Pass player reference to dependent objects (e.g., Zombie).
dependencies <- {player: player_object}
new_object <- InstantiateObject(
object_state.type, object_state.attributes, dependencies

)
AddObjectToWorld(world_instance, new_object)
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RebuildSpatialIndex(world_instance)
return world_instance

C.4 THE FUNCTIONAL ENVIRONMENT INTERFACE

We provide a transition function that implements a stateless API for environment steps:

Input: WorldState object s;

Reconstruct live game engine instance
Execute single update tick with given action
Export resulting state as ;41

Return new WorldState object

kW=

This ensures every transition is a pure function of the explicit state, making the environment suitable
for symbolic reasoning and program synthesis.

C.5 UTILITIES FOR PROGRAMMATIC STATE INTERACTION

A key contribution of Crafter-OQ is a rich set of utilities that enable programmatic interaction with
the world state. These functions are essential for two purposes: first, they allow for the precise, re-
producible setup of the evaluation scenarios discussed in Section E; second, they provide a high-level
API that simplifies the authoring of programmatic world model laws. To provide a clear overview
of this toolkit, Table 4 catalogues the key functions, which are grouped into three main categories:
World Setup, Player State, and High-Level State Queries & Modifications.

Table 4: A catalogue of key utilities for programmatic state manipulation in Crafter-OO. These
functions provide the building blocks for creating controlled experimental scenarios and for writing
concise, high-level world model laws.

Category Function Signature (Simplified) Description

set_tile_material(pos, material) Modifies the terrain at a specific coordinate (e.g., changes grass to stone).
PN add_object_toworld(cls, pos, ...) Adds an entity instance (e.g., a Cow or Zombie) to the world.

World Setup Utilities remove_object_from_world(obj) Removes a specific entity instance from the world.
set_daylight(level) Sets the global daylight level, affecting visibility and mob spawning.
set_player_position(pos) Sets the player’s exact (x, y) coordinates.

. regs set_player_facing(direction) Sets the player’s facing direction (e.g., up, down, left, right).

Player State Utilities set_player_inventory_item(item, qty) Sets the quantity of a specific item in the player’s inventory.
set_player_internal_stat(stat, val) Adjusts internal player stats like health, hunger, or energy.

Hieh-Level S get_target_tile() Returns the material and any object at the tile the player is facing.

1gh- eve& M d,fzate get_object_of_type_in_update_range(cls) Returns all entities of a specific type near the player.

Quenes odifica- move_object(obj, dir, walkable) Moves an entity one step if the target tile is valid and unoccupied.

tions set_facing material(material) Changes the material of the tile the player is facing.

These utilities are composed to construct the specific initial conditions for our evaluation scenarios.
Listing 2 demonstrates how they work in concert to create a test case for a resource collection
mechanic. World setup utilities are first used to clear an area and place a specific resource (coal).
Then, player state utilities are used to position the player correctly and provide the necessary tool
(wood_pickaxe) in their inventory. This level of programmatic control, enabled by the functions
detailed in Table 4, is what makes our targeted evaluation methodology possible.

1 def get_initial_state_for_coal_collection():

2 # Create a base world and get references to the world and player objects
3 world = reconstruct_world_from_state(initial_state())

4 player = find_player(world)

6 # --- World Setup Utilities ---

7 # Clear a 3x3 area around the player to be grass

8 for x in range(4, 7):

9 for y in range(4, 7):

0 world_utils.set_tile_material(world, (x, y), "grass")

1
2 # Place the target resource in a specific location
3 world_utils.set_tile_material(world, (6, 5), "coal")

24



[N

Under review as a conference paper at ICLR 2026

# --- Player State Utilities ---
# Set the player's starting position
player_utils.set_player_position(player, (5, 5))

# Make the player face the target resource
player_utils.set_player_facing(player, (1, @))

# Add the required tool to the player's inventory
player_utils.set_player_inventory_item(player, "wood_pickaxe”, 1)

# Convert the configured world back to a serializable WorldState

return export_world_state(world, view=(9, 9))
Listing 2: Example of programmatic state manipulation to create an initial state for a scenario.
World setup utilities create the environment, while player state utilities configure the agent.

D MUTATORS

Mutators are a core component of our evaluation framework, designed to test a world model’s ability
to distinguish between plausible and implausible future states, as described in Sec. 4. A mutator is
a deterministic function that takes a state-action pair (s, a;) and produces an alternative, incorrect
next state S;11. These generated states, called distractors, represent violations of the environment’s
true dynamics. For example, a distractor might show the agent crafting an item without the necessary
resources or moving through a solid obstacle.

By creating a candidate set containing the true next state s;; and several such distractors {311},
we construct a discriminative task for the world model. A model with a robust understanding of the
environment’s laws should assign a significantly higher probability to the true outcome than to any
of the distractors. This allows us to quantitatively measure the model’s predictive judgment using
the state ranking metrics from Sec. 4.

All mutators adhere to a common interface, shown in Listing 3. Each mutator implements a ‘precon-
dition‘ method that checks if the mutation is applicable to a given state and action. If the precondition
is met, the ‘effect’ method is called to generate the mutated state. This design allows for the cre-
ation of targeted mutators that only apply under specific circumstances, leading to more subtle and
challenging distractors.

class Mutator:
"""A protocol for functions that generate distractor states.

nnn

def precondition(self, state: WorldState, action: Action) -> bool:

nnn

Returns True if the mutator can be applied to the given
state-action pair, False otherwise.

nnn

def __call__(self, state: WorldState, action: Action) -> WorldState:

nnn

Applies a mutation to a copy of the state and returns the
modified state, representing an illegal transition outcome.

nnn

Listing 3: The general interface for a mutator. Each mutator is a callable object with a method to
check for applicability.

We have implemented a suite of mutators for the Crafter-OO environment, categorized by the type of
game mechanic they target. Tab. 5 provides a comprehensive list of these mutators and the specific
rule violations they introduce.

Below we provide detailed descriptions and simplified implementations for three representative mu-
tators from different categories.
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Table 5: Catalogue of mutators implemented for the Crafter-OO environment.

Category Mutator Name Description of Rule Violation

Physics IllggalMoyementMutator Causes the player to move when a non-movement agtion is taken.
EntityPositionMutator Teleports non-player entities to random distant locations.

Combat PlayerHealthMutator Arbitrarily adds or subtracts a sn}gll amount of hea}th from the player.
EntityHealthMutator Sets the health of non-player entities to a random, incorrect value.

Crafting CraftIllegalltemMutator Produces a different item than the one specified by the crafting action.

Collection CollectIllegalMaterialMutator Adds an incorrect resource to the player’s inventory when collecting.

Placement PlaceIllegalItemMutator Places a different object or tile than the one specified by the action.

Player State  InventoryMutator Randomizes all quantities in the player’s inventory.

ILLEGAL MOVEMENT MUTATOR

This mutator tests the model’s understanding of which actions cause player movement. It activates
when the agent takes an action that should not result in a change of position, such as noop or do.
The effect is to move the player one step in a random direction, creating a state that would be valid

for a movement action but is invalid for the action actually taken. Listing 4 shows its logic.

NON_MOVEMENT_ACTIONS = {"noop”, "do", "sleep"”, "make_wood_pickaxe”, ...}
DIRECTIONS = [(o, 1), (1, @), (0, -1), (-1, @]

class IllegalMovementMutator:
def precondition(self, state: WorldState, action: Action) -> bool:
# This mutator applies only to actions that should not cause movement.
return action in NON_MOVEMENT_ACTIONS

def __call__(self, state: WorldState, action: Action) -> WorldState:
mutated_state = state.model_copy(deep=True)

# Choose a random direction and update the player's position.
random_direction = random.choice(DIRECTIONS)
mutated_state.player.position.x += random_direction[@]
mutated_state.player.position.y += random_direction[1]

return mutated_state
Listing 4: Simplified logic for the I11egalMovementMutator.

CRAFT ILLEGAL ITEM MUTATOR

This mutator targets the logic of crafting recipes. It checks if the agent is attempting to craft an
item. If so, it alters the outcome by giving the player a different, randomly selected craftable
item. This tests whether the world model has correctly associated specific crafting actions with
their unique outcomes. For example, if the action is make_wood_pickaxe, this mutator might instead

add a stone_sword to the player’s inventory. Listing 5 illustrates this process.

CRAFTING_ACTIONS = {"make_wood_pickaxe", "make_stone_sword”, ...}

class CraftlllegalltemMutator:
def precondition(self, state: WorldState, action: Action) -> bool:
# This mutator applies only to crafting actions.
return action in CRAFTING_ACTIONS

def __call__(self, state: WorldState, action: Action) -> WorldState:
mutated_state = state.model_copy(deep=True)

# Select a different crafting action to determine the illegal outcome.

other_crafting_actions = CRAFTING_ACTIONS - {action}
illegal_action = random.choice(list(other_crafting_actions))
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5 # Add the item corresponding to the illegal action to the inventory.
if illegal_action == "make_stone_sword":

7 mutated_state.player.inventory.stone_sword += 1
# ... logic for other craftable items

© o

return mutated_state
Listing 5: Simplified logic for the CraftIllegalItemMutator.

ENTITY HEALTH MUTATOR

This mutator introduces arbitrary changes to the health of non-player characters (NPCs), violating
the rules of combat, regeneration, and damage. It is an “always on” mutator, meaning its precondi-
tion is always true, as health can be a dynamic property in any state. Its effect is to iterate through all
non-player entities and set their health to a random value that is not close to their current health. This
prevents generating trivial changes that might occur naturally (e.g., from regeneration) and creates a
more distinctively incorrect state. Listing 6 shows the implementation.

1 class EntityHealthMutator:

2 def precondition(self, state: WorldState, action: Action) -> bool:
k # This mutator is always applicable.
4 return True

6 def __call__(self, state: WorldState, action: Action) -> WorldState:
7 mutated_state = state.model_copy(deep=True)

9 for entity in mutated_state.objects:
10 # Skip the player entity.
11 if entity.entity_id == mutated_state.player.entity_id:

12 continue
14 # Generate a new health value that is not the same as the current
15 # health, nor immediately adjacent to it.

16 possible_health_values = set(range(11)) # Health is 0-10
17 excluded_values = {entity.health, entity.health - 1, entity.health + 1}
18 valid_new_values = list(possible_health_values - excluded_values)

20 if valid_new_values:
21 entity.health = random.choice(valid_new_values)

23 return mutated_state
Listing 6: Simplified logic for the EntityHealthMutator.

E SCENARIOS

An evaluation framework that relies on data from unguided exploration may not sufficiently cover
all of an environment’s mechanics, especially those that are rare or require specific preconditions.
To ensure a comprehensive and targeted assessment of a world model’s understanding, we gener-
ate evaluation data from a suite of scenarios. Each scenario is a short, programmatic interaction
sequence designed to isolate and test a single game mechanic under controlled conditions. This ap-
proach produces a dataset of transitions that robustly covers the environment’s dynamics, from basic
resource collection to complex combat encounters. The transitions generated by these scenarios
form the basis for the evaluation metrics described in Sec. 4.

E.1 SCENARIO STRUCTURE AND EXECUTION
A scenario is defined by a common programmatic interface, as outlined in listing 7. It specifies

an initial state, a scripted policy to guide the agent’s actions, and a termination condition based
on either achieving a specific goal or reaching a maximum number of steps. The execution of a
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scenario, shown in listing 8, produces a sequence of (state, action, next_state) transitions
that serve as ground truth test cases for the world model.

| class Scenario: I def run_scenario(scenario):

2 @property 2 transitions = []

3 def name(self) -> str: ... 3 state = scenario.get_initial_state()

4 4 for _ in range(scenario.max_steps):

5 def get_initial_state(self) -> 5 action = scenario.policy(state)
WorldState: ... 6 next_state = env.transition(state,

6 action)

7 def policy(self, state: WorldState) -> 7 transitions.append((state, action,
Action: ... next_state))

8 8 state = next_state

9 def goal_test(self, transitions: list) © if scenario.goal_test(transitions)
-> bool: :

10 10 break

11 @property 1 return transitions

12 def max_steps(self) -> int: ... Listing 8: Execution loop for generating

Listing 7: Structure of an evaluation scenario. transitions.

E.2 IMPLEMENTED SCENARIOS

We developed over 40 scenarios for Crafter-OO, covering every core game mechanic present in the
original Crafter environment. These scenarios are categorized by the type of mechanic they test, as
detailed in Tab. 6. For many mechanics, we include both a "’successful” and an “unsuccessful” vari-
ant. The successful version sets up the preconditions for an action to succeed (e.g., having enough
resources to craft an item), while the unsuccessful version deliberately violates a precondition. This
allows us to test whether a world model understands not only what should happen, but also what
should not happen.

F EVALUATION IMPLEMENTATION DETAILS

This section provides a procedural specification of our evaluation framework. We begin by defin-
ing a general-purpose interface that any world model must satisfy to be evaluated. We then detail
the computational steps that transform the raw outputs of a model satisfying this interface into the
final State Fidelity and State Ranking metrics presented in Sec. 4. The process relies on the evalu-
ation trajectories generated from Scenarios (Sec. E) and the distractor states generated by Mutators
(Sec. D).

Our evaluation framework is designed to be model-agnostic. Any world model can be benchmarked,
provided it adheres to the simple, two-method interface shown in listing 9. This interface cleanly
separates the two core capabilities required for our metrics: the ability to generate a likely future
state (for fidelity) and the ability to score a given future state (for ranking).

1 class EvaluatableWorldModel (Protocol):
2 """A protocol for world models that can be evaluated by our framework."""

4 def sample_next_state(self, current_state: WorldState, action: Action) -> WorldState

nnn

6 Generative function: Samples a single predicted next state s_hat_{t+1}
7 from the model's posterior distribution P(s_{t+1} | s_t, a_t).

nnn

def evaluate_log_probability(
self, state: WorldState, action: Action, next_state: WorldState
) —> float:

nnn

[

Discriminative function: Computes the log-probability of a specific
next_state given the current state and action.

n B
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Table 6: Complete list of evaluation scenarios used to test world models in Crafter-OO.

Category Scenario Name Description
Movement random_movement Tests basic player movement in the cardinal directions.
collect_wood Player faces a tree and collects wood.
collect_drink Player faces water and collects it.
collect_stone Player collects stone with the required pickaxe.
unsuccessful_collect_stone Player attempts to collect stone without the required pickaxe.
collect _coal Player collects coal with the required pickaxe.
C . unsuccessful_collect_coal Player attempts to collect coal without the required pickaxe.
ollection : . . . .
collect_iron Player collects iron with the required pickaxe.
unsuccessful_collect_iron Player attempts to collect iron without the required pickaxe.
collect_diamond Player collects diamond with the required pickaxe.
unsuccessful_collect_diamond Player attempts to collect diamond without the required pickaxe.
eat_plant Player eats a ripe plant to gain food.
unsuccessful_eat_plant Player attempts to eat an unripe plant.
craft_wooden_pickaxe Player crafts a wooden pickaxe with sufficient wood.
unsuccessful_craft_wooden_pickaxe Player attempts to craft without sufficient wood.
craft_wooden_sword Player crafts a wooden sword with sufficient wood.
unsuccessful_craft_wooden_sword Player attempts to craft without sufficient wood.
craft_stone_pickaxe Player crafts a stone pickaxe with required resources.
Crafti unsuccessful_craft_stone_pickaxe  Player attempts to craft without required resources.
rafting . X
craft_stone_sword Player crafts a stone sword with required resources.
unsuccessful_craft_stone_sword Player attempts to craft without required resources.
craft_iron_pickaxe Player crafts an iron pickaxe with required resources.
unsuccessful_craft_iron_pickaxe Player attempts to craft without required resources.
craft_iron_sword Player crafts an iron sword with required resources.
unsuccessful_craft_iron_sword Player attempts to craft without required resources.
place_table Player places a crafting table with sufficient wood.
unsuccessful_place_table Player attempts to place a table without sufficient wood.
place_stone Player places stone with sufficient inventory.
Pl unsuccessful_place_stone Player attempts to place stone without sufficient inventory.
acement . .
place_furnace Player places a furnace with sufficient stone.
unsuccessful_place_furnace Player attempts to place a furnace without sufficient stone.
place_plant Player places a sapling on a grass tile.
unsuccessful_place_plant Player attempts to place a sapling without one in inventory.
zombie_defeat Player, equipped with a sword, defeats a zombie.
Combat defeat_skeleton Player defeats a skeleton. _
eat_cow Player defeats a cow to obtain food.
player_death Player with low health is defeated by a zombie.
NPC Behavior cow_movement Tests the stochastic movement of a cow over several steps.

wake_up

Player goes to sleep and wakes up after their energy is restored.

nnn

Listing 9: The interface any world model must implement to be compatible with our evaluation

framework.

F.1

STATE COMPARISON VIA CANONICAL REPRESENTATION

All metrics that involve comparing two world states, such as edit distance or checking for equality,
require a deterministic and canonical representation of the state. A direct object-to-object compari-
son can be unreliable due to factors like in-memory object identifiers or the ordering of elements in
lists. To address this, we serialize each WorldState object to a canonical JSON format before any
comparison is performed. This process, outlined in listing 10, ensures that two states are considered
identical if and only if they represent the same game-world configuration.

I def to_canonical_json(state: WorldState) -> dict:

nnn

3 Serializes a WorldState object to a deterministic JSON representation.

nnn

5 # 1. Exclude non-semantic or non-deterministic fields from serialization.
6 excluded_fields = {"event_bus"”, "serialized_random_state”}
7 serialized_state = state.model_dump(exclude=excluded_fields, mode="json")
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# 2. Sort lists of objects by a stable, unique key to ensure order invariance.
# The player object is handled separately and removed from the main list.
serialized_state["objects"] = [

obj for obj in serialized_state["objects”] if obj["name”"] != "player”

]
serialized_state["objects"”].sort(key=lambda obj: obj["entity_id"])

# Chunks are also sorted to ensure map representation is stable.
if "chunks" in serialized_state:
serialized_state["chunks"].sort(key=1lambda chunk: chunk["”chunk_key"])

return serialized_state

Listing 10: Canonical serialization of a WorldState object.

F.2 STATE FIDELITY METRIC CALCULATION

The state fidelity metrics measure the difference between a world model’s predicted next state and
the ground truth. We use JSON Patch (Bryan & Nottingham, 2013), a standard for describing
changes in a JSON document, to provide a precise, interpretable measure of this difference. The
calculation for a single transition (s¢, at, S¢+1) proceeds as described in listing 11.

def calculate_state_fidelity(world_model, s_t, a_t, s_t_plus_1):

nnn

Computes Raw and Normalized Edit Distance for a world model's prediction.

nnn

# 1. Generate a predicted next state from the world model.
s_hat_t_plus_1 = world_model.sample_next_state(s_t, a_t)

# 2. Convert both true and predicted next states to canonical JSON.
json_true = to_canonical_json(s_t_plus_1)
json_predicted = to_canonical_json(s_hat_t_plus_1)

# 3. Compute the JSON Patch from the predicted state to the true state.
patch = jsonpatch.make_patch(json_predicted, json_true)

# 4. Raw Edit Distance is the number of operations in the patch.
raw_edit_distance = len(list(patch))

# 5. Normalized Edit Distance is the raw distance divided by the total number

# of elements in the true state, providing a scale-invariant measure.
total_elements = count_elements(json_true)

normalized_edit_distance = raw_edit_distance / total_elements if total_elements > @

else 0

return raw_edit_distance, normalized_edit_distance

Listing 11: Calculation of State Fidelity metrics for a single transition.

Example. Consider a transition where the player, at position (z = 5,y = 5) with health = 9,
takes the action move_right. The true next state, s;y1, has the player at (x = 6,y = 5) with
health = 9. Suppose a world model predicts a state, 5,11, where the player correctly moves to
(z = 6,y = 5) but their health incorrectly drops to 8.
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The simplified canonical JSON representations for the player object in each state would be:

1 o{
"player”: { 2 "player”: {
"position”: {"x": 6, "y": 53}, 3 "position”: {"x": 6, "y": 53},
"health”: 9 4 "health”: 8
} 5%
3 63}
Listing 12: Canonical JSON for the true next  Listing 13: Canonical JSON for the predicted
state. next state.

The JSON Patch required to transform the predicted JSON into the true JSON is a single replace
operation: [{‘‘op’’: ‘‘replace’’, ‘‘path’’: ‘‘/player/health’’, “‘value’’: 9}].
The Raw Edit Distance is the number of operations in this patch, which is 1. The Normalized Edit
Distance would be this value divided by the total number of elements in the true state’s full JSON
representation.

F.3 STATE RANKING METRIC CALCULATION

State ranking metrics evaluate a model’s ability to distinguish the true outcome of an action from a
set of plausible but incorrect alternatives. This process involves generating a set of candidate states
and using the world model to score them, as detailed in listing 14.

def calculate_state_ranking(world_model, s_t, a_t, s_t_plus_1, mutators, num_distractors

nnn

Computes Rank@l and Mean Reciprocal Rank for a world model.
# 1. Generate a set of distractor states using the mutator bank.
distractors = []
applicable_mutators = [m for m in mutators if m.precondition(s_t, a_t)]
random.shuffle(applicable_mutators) # Ensure variety in distractors
for mutator in applicable_mutators:

if len(distractors) >= num_distractors:

break
distractors.append(mutator(s_t, a_t))

# 2. Form the candidate set, including the ground truth and distractors.
candidate_set = [s_t_plus_1] + distractors
random. shuffle(candidate_set) # Avoid biasing models that may be sensitive to order

# 3. Score each candidate state using the world model's log-probability function.
scores = []
for s_candidate in candidate_set:
log_prob = world_model.evaluate_log_probability(s_t, a_t, s_candidate)
scores.append(log_prob)

# 4. Determine the rank of the true next state.

# Ranks are 1-indexed, with rank 1 being the highest score.

ranked_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)
true_state_index = candidate_set.index(s_t_plus_1)

rank_of_true_state = ranked_indices.index(true_state_index) + 1

# 5. Calculate metrics from the rank.

rank_at_1 = 1.0 if rank_of_true_state == 1 else 0.0
reciprocal_rank = 1.0 / rank_of_true_state

return rank_at_1, reciprocal_rank

Listing 14: Calculation of State Ranking metrics for a single transition.

Example. Continuing the previous example, the true state s;,; is the player moving right. A
mutator might generate a distractor state Sgisactor Where the player illegally teleports to (x = 20,y =
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20). The candidate set becomes {S¢41, Sdistractor - A good world model should assign a much higher
probability to the true outcome. For instance, it might yield log-probabilities of log p(s;41]...) =
—0.7 and log p(Sagistractor| - - - ) = —15.4. Since —0.7 > —15.4, the true state is ranked first. This
yields a Rank@1 of 1.0 and a Mean Reciprocal Rank of 1/1 = 1.0 for this transition.

F.4 AGGREGATION ACROSS SCENARIOS

The final metrics reported in Tab. | are aggregated from the per-transition results. To ensure that each
distinct game mechanic contributes equally to the final score, we employ a two-level aggregation
strategy. First, we compute the mean metric values across all transitions within a single scenario.
Second, we compute the final reported metric by taking the mean of these per-scenario means. This
prevents scenarios with more transitions (e.g., a long movement sequence) from dominating the
overall results compared to scenarios with fewer, more critical transitions (e.g., a single crafting
action). listing 15 formalizes this entire pipeline.

def evaluate_world_model(world_model, scenarios, mutators, config):

nnn

Runs the full evaluation pipeline and returns aggregated metrics.

nnn

per_scenario_metrics = {}

# 1. Evaluate each scenario independently.
for scenario in scenarios:
transitions = run_scenario(scenario) # See Sec. C.1 for run_scenario

scenario_results = []
for (s_t, a_t, s_t_plus_1) in transitions:
# Calculate metrics for each transition in the scenario.
r_at_1, mrr = calculate_state_ranking(
world_model, s_t, a_t, s_t_plus_1, mutators, config.num_distractors
)
raw_ed, norm_ed = calculate_state_fidelity(
world_model, s_t, a_t, s_t_plus_1
)
scenario_results.append({
"R@1": r_at_1, "MRR": mrr,
"RawEditDist": raw_ed, "NormEditDist": norm_ed

D

# 2. First level of aggregation: average metrics within the scenario.

if not scenario_results: continue

per_scenario_metrics[scenario.name] = {
key: sum(res[key] for res in scenario_results) / len(scenario_results)
for key in scenario_results[0]

3

# 3. Second level of aggregation: average the per-scenario means.
final_metrics = {

key: sum(metrics[key] for metrics in per_scenario_metrics.values()) / len(
per_scenario_metrics)

for key in list(per_scenario_metrics.values())[0]

}

return final_metrics
Listing 15: Overall evaluation pipeline and metric aggregation.

G SYNTHESIS AND EXPLORATION IMPLEMENTATION DETAILS
The process of generating candidate world laws is divided into two main stages: unguided explo-

ration to collect a dataset of interactions, and law synthesis to propose programmatic laws from that
dataset.
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G.1 EXPLORATION POLICY

To gather the interaction dataset D = {(sy, as,s¢+1)}_;, we employ an autonomous exploration
policy driven by a large language model. This policy operates without access to environment-
specific rewards or human-provided goals. Instead, it is given a high-level instruction to explore
the environment and discover as many of its underlying mechanics as possible, treating the task as
a reverse-engineering problem. The full prompt provided to the exploration policy is detailed in
box G.1.

Box G.1| Exploration Policy Prompt

You are an explorer in an unknown digital world. Your mission is to experience as
many of the world's hidden mechanics as possible. Your recorded experiences
will be analyzed later to create a complete map of the world's physical

laws.

)

3 The laws of any world can be thought of as IF-THEN hypotheses: “IF (a specific
situation occurs) AND (you take an ACTION), THEN (a certain outcome happens)

5 To succeed, you must trigger as many different “IF-THEN™ scenarios as you can.

7 **What to Expect in the World:xx*

8 This world is complex and may be dangerous.

9 - *xHostile Entities:** You may encounter creatures that are hostile and will
attack you.

10 = **xResource Collection:** The world contains raw materials that can be gathered,

though there may be preconditions for collection.

11— *xItem Production:** You have the ability to craft useful items from raw
materials, though there may be preconditions for production.

12 - *x*Combat:** You can engage in combat with the entities you encounter.

14 Your primary goal is to discover the rules governing these activities.

15 You will need to explore the game world by moving around and interacting with the
entities and materials in the world.

16 If an action has no effect, you may not have fulfilled the preconditions for the
action to have an effect.

17 Try out a variety of actions from each category: movement, interaction, placement
, production.

i If an action seems to have no effect, you may not have fulfilled the
preconditions for the action to have an effect.

19 Try to acquire additional resources or change something about the world and try
again.

20 Before taking actions, set goals for yourself in an IF-THEN format, and let the
results invalidate those actions.

21 If an entity is hostile, you can attempt to defend yourself from it.

22 If an entity seems passive or beneficial, you can attempt to interact with it.

23 You will likely need to progress through the "tech tree” of the game in a
specific order.

24 This will require interleaving resource collection with placement of crafting
stations and production of better tools.

»5 In the meantime, you will need to survive hostile enemies and find ways to heal
from damage you've taken.

26 Some resources likely cannot be acquired without first producing a tool to
acquire them.

27 Tools may require a mix of materials and crafting stations to produce.

20 The following are the only valid actions you can take:
31 {action_strings}.

33 You will now receive observations from the world. Begin your exploration.
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This LLM-based policy is crucial for gathering sufficiently diverse data in a hostile environment
like Crafter-OO. A purely random policy survives for an average of 100 steps before the agent per-
ishes. In contrast, our LLM-based policy navigates the environment for an average of 400 steps.
Despite this improvement, exploration remains a significant bottleneck. The policy often struggles
to progress through the environment’s technology tree, frequently failing to discover the necessary
preconditions for crafting advanced items. It also exhibits a tendency to forget previously learned
information, which prevents it from effectively building upon past successes within a single trajec-
tory.

G.2 LAW SYNTHESIS FROM TRAJECTORIES

The law synthesis pipeline processes the trajectory data from the exploration phase to generate a
set of candidate laws {L;}. The core idea is to identify state transitions where meaningful changes
occur, and then prompt a large language model to propose atomic, programmatic laws that explain
those specific changes. This process is outlined in Algorithm 17.

Change Detection for Tractable Synthesis. In an environment with a complex, structured
state like Crafter-OO, changes between timesteps are often sparse and localized to specific sub-
components. To make law synthesis tractable, we first isolate these localized changes to provide a
focused context for the synthesizer. This is achieved through a set of detectors that monitor different
aspects of the world state. An aspect is a semantically-cohesive subset of the state, typically corre-
sponding to a top-level attribute (e.g., ‘player.inventory ‘) or a collection of entities of the same type
(e.g., all ‘ZombieState‘ objects). For each transition (s, a, $¢+1), we check for changes across all
aspects. If a detector identifies a change, a synthesis task is created for that specific transition and
aspect.

class ChangeDetector:
def aspect_name(self) -> str:
def has_changes(self, s_t: WorldState, s_t_plus_1: WorldState) -> bool:

class PlayerInventoryChangeDetector (ChangeDetector):
def aspect_name(self): return "player_inventory”
def has_changes(self, s_t, s_t_plus_1):
return s_t.player.inventory != s_t_plus_1.player.inventory

class ZombieStateChangeDetector(ChangeDetector):
def aspect_name(self): return "zombies"
def has_changes(self, s_t, s_t_plus_1):
# Logic to compare zombie states between s_t and s_t_plus_1

# A list of all detectors is used to check each transition
ALL_DETECTORS = [
PlayerInventoryChangeDetector(),
ZombieStateChangeDetector(),
. # Other detectors for map tiles, cows, etc.

]

Listing 16: Simplified change detection logic. Each detector checks for changes in a specific part of
the world state between s; and s; 1.

This decomposition is not a form of environment-specific guidance but rather a generic mechanism
derived directly from the structure of the state representation itself. The Crafter-OO environment
exposes an object-oriented state, defined by a schema of classes and attributes. Our change de-
tectors mirror this schema, creating one detector for each top-level attribute and for each object
type. This approach provides a structural inductive bias—that the environment’s causal mechanisms
are likely aligned with its object-oriented structure—without embedding knowledge of the environ-
ment’s actual dynamics. The process could be fully automated for any environment that exposes a
typed, structured state; the detectors can be generated programmatically by reflecting on the state
schema. This is analogous to how a computer vision model might process distinct objects in a scene
separately; we partition the state space based on its given structure, but the rules governing the
interactions between these partitions must still be learned from scratch.
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Prompt Generation. For each transition-aspect pair that triggers a synthesis task, we generate a
detailed prompt for the LLM. The goal is to provide all necessary context for the model to infer the
underlying game mechanic. The prompt contains several key components:

1. The initial state s; and resulting state s;1, serialized to a structured format (JSON).

2. The action a; that caused the transition.

3. A textual ‘diff* that highlights the exact changes between s; and sy 1.

4. A human-readable 2D ASCII rendering of the local environment around the player for both states,
providing spatial context.

5. The name of the aspect (e.g., “player_inventory”) that changed, which instructs the LLM to focus
its analysis.

This structured presentation of the transition allows the LLM to ground its reasoning in the specific,
observed changes. The full prompt template is provided in box G.2.

Box G.2| Synthesis Prompt

## Role

> You are a **World Law Synthesizer*x - an expert at analyzing game state
transitions and extracting the underlying rules that govern virtual worlds.
Your job is to observe how actions transform game states and codify these
transformations into precise, executable laws that can model game mechanics,
as well as try to model aspects of the underlying transition dynamics as
functions.

## Task Description

Given a world state, an action taken, an aspect of the state we are interested in
modeling, and the resulting next world state (plus a diff highlighting the
changes), you must:

- Identify how the aspect of the state we are interested in modeling changed
between the observations

7 - Determine the underlying rules or laws that caused these changes

8 — Implement these laws as executable Python code using the provided WorldState

interface and DiscreteDistribution for predictions

o

10 **IMPORTANT: You should write MULTIPLE laws when you observe multiple distinct
changes.*x Each law you write should be modular, minimalistic, focused on a
single game mechanic, and capable of being combined with other laws to model

complex game behavior.

12 In particular, you should strive to write laws that are responsible for as little
of the state as possible. In any given transition, you may see many changes
. Each of these changes could be caused by a different law. Think about what
changes could be grouped together into a single law, and write separate
laws for different types of changes.

14 - Break up the laws to each account for a single precondition and effect. For
example, if an entity moves, write a law for the movement of entities of
that type. If a player takes a particular action, write a law for that
action specifically.

15 — Certain attributes cannot have a “DiscreteDistribution” applied to them. For

example, the “materials™ field should just be modified directly, not wrapped

in a “DiscreteDistribution™. Alternatively, use “set_material® or °
set_facing_material” to modify the materials field. Either way, they cannot
be wrapped in a “DiscreteDistribution™.

- Use the "DiscreteDistribution”™ class to indicate probabilistic predictions, for

example when trying to write a general law governing all entities of a type
when you cannot reconcile all changes visible to that entity type into a
deterministic law.

7 = You DO NOT need to use imports. Everything you need can be coded without the
use of imports, and all classes defined below are already imported.

16
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24

26

29

## Aspect of the State

You will be given an aspect of the state we are interested in modeling. The laws
you write should be focused on modeling changes to this aspect of the state.

However, you can use _all_ of the state to help you write the laws, as the aspect

of the state may be influenced by other aspects of the state.

For example, if told to focus on Zombies, you should write laws that govern the
behavior of Zombies. This behavior may be influenced by other parts of the
state such as the player's actions or position.

If told to focus on the player, you should write laws that model how the player's

state changes. Again, these effects may be influenced by the entities that
the player is interacting with.

## Guidelines for Writing Laws

- Some laws may be dependent on an action being taken, or a particular state of
the world, while others may always apply. For these, the precondition can
always be “True~.

- Make use of “adjacent_to_player™ and “get_target_tile™ to help you write laws
about interactions between the player and other entities.

- Do NOT use “entity_id™~ when writing laws. You should instead write laws that
apply to a type of entity, e.g. ~ZombieState™ or ~“CowState™.

- When modifying attributes, use RELATIVE assignments rather than absolute
assignments. For example, instead of changing a entity's position via °
entity.position.x = DiscreteDistribution(support=[7])", use “entity.position
.x = DiscreteDistribution(support=[entity.position.x + deltal) . The only
exception to this is when modifying the materials field.

- Use the helper functions “get_object_of_type_in_update_range™, and °
get_objects_in_update_range” rather than writing your own iteration logic.

- You DO NOT need to use the “entity_id"™ attribute. Use ~get_target_tile” to get
the tile or entity targeted by the player. Use “adjacent_to_player™ to check

if an entity is adjacent to the player for interactions between the player
and other entities.

- Consider writing laws that make "soft” predictions. For example, if you see an
entity moving but are unsure if it is a general principle, you can assign a
discrete distribution to the entity's position to represent your uncertainty
. Example: “entity.position.x = DiscreteDistribution(support=[entity.
position.x + delta_a, entity.position.x - delta_b, ...]1)".

- You can speculatively pose laws, but these should go last. Speculative laws are
those that were not directly observed in the transition, but those that you
believe might exist. For example, given that you have identified a law

about a certain crafting recipe, you can speculatively pose a law about
_other_ crafting recipes that you believe might exist.

## Formatting Instructions

Structure your response exactly as follows. **You can write multiple laws by
repeating the pattern below for each law:*x

T xml

<keyChanges>

List the specific, concrete changes that occurred between the observations:

3 — What entities appeared, disappeared, or moved

- What stats/values changed and by how much

5 - What items were added/removed from inventory

- Any other measurable state differences
</keyChanges>

8 <naturallanguagelaw>

Write a clear, concise description of the game rule that explains these changes:
- What triggers this law (the preconditions)

- What the law does (the effects/transformations)

- Any important parameters or variations

- Give the law a descriptive name

</naturallLanguagelLaw>
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66

69

96

98

99

100

101

102

104

105

106

<lawCode>
T python
class YourLawNameHere:
def __init__(self, paraml: type = default_value, param2: type = default_value

):

"""Initialize with configurable parameters.”""
self.paraml = paraml
self.param2 = param2

# Add any lookup tables or constants here

def precondition(self, current_state: WorldState, action: str) -> bool:
"""Return True if this law should apply to the given state and action.
# Implement your precondition logic here
# Check action type, entity presence, player state, etc.
return False # Replace with actual logic

nnn

def effect(self, current_state: WorldState, action: str) -> None:

"""Apply the law by modifying the world state.”""

# Implement the state transformation here

# Modify entities, player stats, inventory, etc.

# Use DiscreteDistribution(support=[value]) to set deterministic
predictions

# Example: current_state.player.health = DiscreteDistribution(support=[
new_health])

pass # Replace with actual implementation

</lawCode>

<keyChanges>
[Changes for second law...]
</keyChanges>

3 <naturallanguagelaw>

[Description of second law...]

5 </naturallLanguagelaw>

<lawCode>
T Tpython

8 class YourSecondLawNameHere:

# [Implementation of second law...]

</lawCode>

**Critical Formatting Notes**:

5 - **Write multiple laws when you observe multiple distinct changes*x - each law

should focus on a single type of change

- Use exactly these XML-style tags: ~<keyChanges>", ~<naturallLanguagelLaw>~, °<
lawCode>"

- Close each tag properly: “</keyChanges>", “</naturallLanguagelLaw>", ~</lawCode>"

- Put all Python code inside triple backticks within the ~<lawCode>" section

- Be precise and specific in the key changes - use exact numbers and entity names

from the observations

- Make the natural language law description clear enough that another programmer
could implement it independently

- Only output the code for the law, not the entire file. Assume the “WorldState~
class as well as its components are already defined.

- Format your response well, with newlines between the tags and code blocks.

3 — *xEach law should be completely self-contained** - repeat the full XML

structure for each law you write.

## WorldState
The world state is a Pydantic model that represents the complete game world state
. The world laws you write will operate on this state.
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124

“python
{{ world_state_schema }}

# World Laws

; Each world law must conform to the following interface:

“python

class WorldLaw:

def precondition(self, current_state: WorldState, action: str) -> bool:
"""Return True if this law should apply to the given state and action.

nnn

def effect(self, current_state: WorldState, action: str) -> None:

"""Apply the law by modifying the world state.”"”

# Use DiscreteDistribution(support=[value]) to set deterministic
predictions

# Example: current_state.player.health = DiscreteDistribution(support=[
new_health])

You may add any additional fields or methods to the class as needed.

## DiscreteDistribution Usage

When modifying state values in your law's “effect™ method, you must wrap the new
values with “DiscreteDistribution™:

T Tpython

# For deterministic predictions:

current_state.some.value = DiscreteDistribution(support=[new_health])

# For stochastic predictions (if needed):
current_state.some_value = DiscreteDistribution(support=[valuel, value2, value3])

The “DiscreteDistribution™ class represents probabilistic predictions over
discrete values. For deterministic laws, you typically provide a single
value in the support list. For stochastic laws, you provide multiple values
in the support list to represent the possible outcomes.

> When accessing the materials field, pay attention to the “MaterialT” type.

Everything in the “materials™ field is a “MaterialT". Do not use the emojis
in the world map, they are only there for your convenience.

# Your Turn

5 ## Aspect of the State

Focus on modeling changes to the following aspect of the state:
{{ aspect_of_state }}

## Focused Changes for {{ aspect_of_state }}
{{ aspect_changes }}

## View Legend

3 {{ view_legend }}

## State
T json

{{ state }}

### Local View

{{ local_view }}
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163
164 ## Action
165 The action taken was: "{{ action }}"

Law Generation and Parsing. The generated prompt is sent to an LLM, which is instructed to
return one or more atomic laws that explain the observed changes for the specified aspect. An atomic
law is a simple, modular rule focused on a single game mechanic. The LLM’s response is formatted
using XML-style tags to clearly delineate the key components of each proposed law.

The expected format for a single law is:

<keyChanges>. . .</keyChanges>
<naturallanguagelaw>...</naturallLanguagel aw>
<lawCode>
* T “python
class LawName:
def precondition(self, state, action):
def effect(self, state, action):

</lawCode>

We parse this semi-structured text to extract the natural language description and the executable
Python code for each proposed law. This is done by searching for the corresponding tags and
extracting their content. The Python code is then loaded as a candidate law for the subsequent
parameter inference stage.

I def synthesize_laws_from_trajectory(trajectory: list[Transition]) -> list[Law]:
2 candidate_laws = []

4 # Iterate over all transitions from the exploration data
5 for transition in trajectory:
6 s_t, action, s_t_plus_1 = transition

8 # 1. Detect which aspects of the state have changed

9 changed_aspects = []

10 for detector in ALL_DETECTORS:

1 if detector.has_changes(s_t, s_t_plus_1):

2 changed_aspects.append(detector.aspect_name())

4 # 2. For each detected change, generate laws

5 for aspect in changed_aspects:

6 # 2a. Render a detailed prompt for the LLM
7 prompt = render_synthesis_prompt(

8 state=s_t,

9 action=action,

20 next_state=s_t_plus_1,

21 aspect_of_state=aspect

22 )

24 # 2b. Query the LLM to synthesize laws
25 11m_response_text = call_llm(prompt)

27 # 2c. Parse the response to extract structured laws
28 parsed_laws = parse_laws_from_response(llm_response_text)
29 candidate_laws.extend(parsed_laws)

31 return candidate_laws

Listing 17: High-level overview of the law synthesis pipeline.
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Box G.3| Zombie Fighter Plan

| def craft_wooden_sword_plan(

2 state: WorldState,

3 transition_fn: Callable[[WorldState, CrafterAction], WorldStatel],
4 num_trees: int = 3
5 ) —> WorldState:

6 trees_chopped = 0
7 pathfind_option = PlayerPathfindOption(

8 lambda s: find_closest_material_of_type(s, "tree")[1]
9 )
10 interact_option = PlayerInteractAdjacentOption(
11 lambda s: find_closest_material_of_type(s, "tree”)[1]

12 )

13

14 # Gather wood by iterating between pathfinding and interaction
15 while trees_chopped < num_trees:

16 try:

17 action = pathfind_option.action(state)
18 except TerminationCondition:

19 action = interact_option.action(state)
20 if action == "do":

21 trees_chopped += 1

22 state = transition_fn(state, action)

24 # Place crafting table and craft sword

25 state = transition_fn(state, "place_table")

26 state = transition_fn(state, "make_wood_sword")
28 return state

31 def defeat_zombies_plan(

32 state: WorldState,

33 transition_fn: Callable[[WorldState, CrafterAction], WorldStatel],
34 zombie_ids: list[int],

35 max_steps_per_zombie: int = 10

36 ) —> WorldState:

37 for zombie_id in zombie_ids:

38 combat_option = CombatFixedEntityOption(entity_id=zombie_id)
39

40 for _ in range(max_steps_per_zombie):

1 try:

42 action = combat_option.action(state)

13 state = transition_fn(state, action)

44 except TerminationCondition:

45 break # Zombie defeated

47 return state

50 def sword_then_zombies_plan(

51 state: WorldState,
52 transition_fn: Callable[[WorldState, CrafterAction], WorldStatel],
53 zombie_ids: list[int]

54 ) —-> WorldState:

nnn

56 High-level plan: Craft weapon before engaging in combat.
57 Composes two sub-plans into a complete strategy.

« wn

59 # Sub-plan 1: Obtain weapon

60 state = craft_wooden_sword_plan(state, transition_fn, num_trees=3)
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61

62 # Sub-plan 2: Defeat enemies

63 state = defeat_zombies_plan(state, transition_fn, zombie_ids)
64

65 return state

H PROBABILISTIC MODELING OF PURE FUNCTIONS

In this section, we clarify the distinction between the environment’s pure functional interface and
the choice to learn a probabilistic world model.

We use the term “pure function” in the formal computer science sense (referential transparency
and absence of side effects) (Backus, 1978), following the design patterns of modern JAX-based
environments like Brax (Freeman et al., 2021) and Craftax (Matthews et al., 2024). In Crafter-
0O, the transition function explicitly takes the entire state (including the PRNG state and all entity
attributes) as input. This ensures referential transparency, since calling the function with the same
inputs guarantees the exact same output, whereas a standard environment would diverge due to
hidden state mutations.

# Standard "Impure” Environment

# Hidden state (e.g., rng, cooldowns) mutates inside env

obs1 = env.step(action)

obs2 = env.step(action)

# Result: obs1 != obs2 (The hidden state changed between calls)

# Crafter-00 "Pure"” Function

# All state is explicit; no side effects

s1, rngl = transition(state, action, rng)

s2, rng2 = transition(state, action, rng)

# Result: s1 == s2 (Identical inputs guarantee identical outputs)

Listing 18: Comparison of impure vs. pure environment interfaces.

Although the transition function is pure, meaning a deterministic world model is theoretically pos-
sible if the agent could perfectly model the evolution of the global PRNG state, such a model is
difficult to learn in practice. It requires overfitting to the simulator’s serial execution order, which is
undesirable for several reasons.

PRNG Scheduling. In a simulation with a shared global PRNG, the exact next state depends on
the order in which the RNG is consumed. For example, if the simulator updates zombie_a then
zombie_b, the RNG stream advances differently than if the update order were swapped. To learn a
deterministic model, the agent would have to perfectly replicate the simulator’s internal scheduling
logic rather than what is commonly understood as a “law of the environment.”

Micro vs. Macroscopic Physics. We motivate this using the distinction in statistical mechanics
between micro-state trajectories and macroscopic laws. While the motion of every gas molecule in
classical physics is theoretically deterministic given precise initial conditions (the “micro-state”),
attempting to model these trajectories is intractable and brittle, analogous to overfitting the simula-
tor’s execution trace. Instead, we aim to discover robust “macroscopic” physical laws (e.g., “zom-
bies move randomly but chase the player when closer than 5 units”), which requires modeling the
distribution of outcomes to capture the valid aleatoric uncertainty.

Effect on Hypothesis Verification. This distinction determines how we validate our understand-
ing of the world. Validating a deterministic model requires verifying the microscopic trajectory,
since the predicted attribute value must exactly match the observed value. This is brittle; a law that
is correct (carries out the same computations as the true transition function) may be rejected simply
because the specific observed path of the RNG led to a different outcome than predicted. In contrast,
a probabilistic formulation allows us to validate macroscopic laws. By evaluating the likelihood of
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Rank Distribution: Histogram
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Figure 7: Distribution of raw ranks assigned by PoE-World vs ONELIFE’s world models in our
evaluation. Generally, ONELIFE’s world model is better at assigning a high rank to the ground truth
state.
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the observation under the predicted distribution, we can confirm that a law is distributionally correct
without requiring the prediction to match the specific, arbitrary path of the simulator’s RNG.

I BASELINES

* Random World Model: A model that assigns a uniform probability to all candidate states in the
discriminative task. Its performance is equivalent to random guessing and serves as a sanity check
for discriminative accuracy.

* WorldCoder (Tang et al., 2024): A model-based agent that synthesizes a Python program for the
transition function using an LLM. It employs an iterative refinement strategy, prompting the LLM
to debug the code when it contradicts observed data. Crucially, WorldCoder assumes the envi-
ronment is deterministic; we include it to evaluate how well a monolithic, deterministic program
synthesis approach copes with the stochastic dynamics of Crafter-OO.

* PoE-World (Piriyakulkij et al., 2025): A state-of-the-art symbolic world model that scaled sym-
bolic world modeling to domains like Atari. Both PoOE-World and ONELIFE represent the tran-
sition function as a weighted product of programs, though the structure of the programs and in-
ference algorithms differ. Because PoE-World’s law synthesis component is Atari-specific and
relies on online interaction using human-provided goals, we reimplement this baseline with our
exploration policy and law synthesizer, noting that this makes it a stronger baseline (without these
changes, PoE-World’s Atari-specific implementation would be fundamentally incompatible with
Crafter’s state).

J  VISUALIZING RANK DISTRIBUTIONS
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Figure 8: Distribution of raw ranks assigned by PoE-World vs ONELIFE’s world models in our
2320 evaluation, broken down by scenario. Across most scenarios, ONELIFE’s world model is better at
231 choosing the ground-truth next state.
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