

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE LIFE TO LEARN: INFERRING SYMBOLIC WORLD MODELS FOR STOCHASTIC ENVIRONMENTS FROM UNGUIDED EXPLORATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Symbolic world modeling is the task of inferring and representing the transi-
014 tional dynamics of an environment as an executable program. Previous research
015 on symbolic world modeling has focused on simple, deterministic environments
016 with abundant data and human-provided guidance. We address the more real-
017 istic and challenging problem of learning a symbolic world model in a com-
018 plex, stochastic environment with severe constraints: a limited interaction budget
019 where the agent has only “one life” to explore a hostile environment and no ex-
020 ternal guidance in the form of human-provided, environment-specific rewards or
021 goals. We introduce ONE LIFE, a framework that models world dynamics through
022 conditionally-activated programmatic laws within a probabilistic programming
023 framework. Each law operates through a precondition-effect structure, allow-
024 ing it to remain silent on irrelevant aspects of the world state and predict only
025 the attributes it directly governs. This creates a dynamic computation graph that
026 routes both inference and optimization only through relevant laws for each transi-
027 tion, avoiding the scaling challenges that arise when all laws must contribute
028 to predictions about a complex, hierarchical state space, and enabling accurate
029 learning of stochastic dynamics even when most rules are inactive at any given
030 moment. To evaluate our approach under these demanding constraints, we in-
031 troduce a new evaluation protocol that measures (a) state ranking, the ability to
032 distinguish plausible future states from implausible ones, and (b) state fidelity, the
033 ability to generate future states that closely resemble reality. We develop and eval-
034 uate our framework on Crafter-OO, our reimplementation of the popular Crafter
035 environment that exposes a structured, object-oriented symbolic state and and a
036 pure transition function that operates on that state alone. ONE LIFE can suc-
037 cessfully learn key environment dynamics from minimal, unguided interaction, outper-
038 forming a strong baseline on 16 out of 23 scenarios tested. **We also demonstrate**
039 **the world model’s utility for planning, where rollouts simulated within the world**
040 **model successfully identify superior strategies in multi-step goal-oriented tasks.**
041 Our work establishes a foundation for autonomously constructing programmatic
042 world models of unknown, complex environments.¹

1 INTRODUCTION

044 World modeling is a critical task in artificial intelligence, providing an agent with a functional un-
045 derstanding of its environment’s underlying dynamics. By learning a world model, an agent can
046 predict the outcomes of its actions without having to actually interact with the real world. One line
047 of research in world modeling aims to learn symbolic world models via program synthesis (i.e.,
048 representing worlds models with code) with a view towards building representations that are inter-
049 pretable, editable, and verifiable by humans.

050 While such approaches have been successful in environments with a limited number of discoverable
051 mechanics and low stochasticity (Piryakulkij et al., 2025; Tang et al., 2024; Dainese et al., 2024)
052 these assumptions are often violated in more complex environments. Examples of such environ-
053

¹Code: <https://anonymous.4open.science/r/crafter-oo-iclr26-anon-35C2>

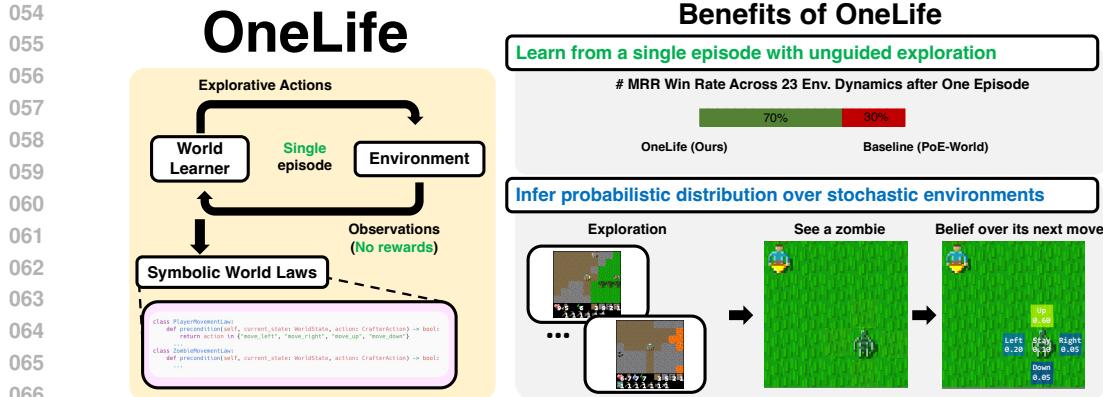


Figure 1: ONE LIFE synthesizes world laws from a single unguided (no environment-specific rewards / goals) episode in a hostile, stochastic environment. ONE LIFE models the world as mixture of laws in code with a precondition-effect structure, each governing an aspect of the world, and infers parameters for the mixture that best explain the observed dynamics of the world. The resulting world model (WM) provides a probability distribution over attributes of an object-oriented world state, such as the position of a particular zombie. ONE LIFE outperforms a strong baseline in modeling 16/23 core game mechanics tested, measured by MRR (Mean Reciprocal Rank) of the true next state (Sec. 4) under the WM’s likelihood. See Box B.3 for a synthesized zombie law.

ments are popular open-world sandbox games (e.g. MineCraft, RuneScape) containing numerous, diverse mechanics spanning crafting, combat, and physics. These more realistic environments have irreducible stochasticity (e.g., outcomes of actions are subject to random chance), a lack of extrinsic rewards (e.g., players set their own goals and there is no well-defined criteria for “winning”), and a high cost of exploration (e.g., entering dangerous areas without preparation can result in death), making it crucial to learn from minimal interaction. This leads to our central research question:

How can an agent reverse engineer the laws of a complex, dangerous stochastic world, given a limited interaction budget and without environment-specific human-specified goals or rewards?

We introduce a framework for symbolic world modeling, ONE LIFE, a name that reflects our focus on learning a symbolic world model from a single episode with unguided exploration. As illustrated in Fig. 1 (top-right), ONE LIFE learns from just a *single, unguided run* in the environment, a contrast to previous work (Piryakulkij et al., 2025; Tang et al., 2024; Dainese et al., 2024) that assumes access to a large number of interactions as well as environment specific guidance provided by humans (e.g., goals / rewards designed for the environment). ONE LIFE recovers a **program** that describes the environment’s underlying transition dynamics $p(s_{t+1}|s_t, a_t)$ which models the probability distribution p over next states s_{t+1} given a current state s_t and action a_t . The agent performs this inference using only observations, **without access to rewards or other domain-specific guidance**. ONE LIFE has two key components: a **law synthesizer** (Sec. 3.3) that proposes new laws and an **inference algorithm** (Sec. 3.4) that re-weights laws based on their predictive ability over observations. Crucially, the inference algorithm is gradient-based and only updates the laws that alter the observed variables between current state s_t and predicted next state s_{t+1} , allowing for efficient and targeted learning. These components work together in a probabilistic programming mixture-of-laws approach (Sec. 3.2) that proposes and re-weights rules based on whether the preconditions for the laws to be applicable are met and the effect of the predictions w.r.t. the observed environment transitions. This approach enables our model to infer distributions over complex, stochastic events, as shown in the Fig. 1 (bottom-right), where a learned world model outputs a distribution over a zombie’s next move. Crucially, ONE LIFE not only produces a distribution over states but *learns from* stochastic observations; the true movement of the zombie in Fig. 1 also follows a distribution, which ONE LIFE seeks to approximate.

To evaluate our approach, we first created a suitable testbed — Crafter-OO — by re-engineering the complex Crafter (Hafner, 2022) environment to be a pure function $T(s, a) \rightarrow s'$ of a structured, text-based hierarchical object-oriented world state. In other words, all the information needed to compute the next state is represented in a single structured, object-oriented representation, and there

is a ground-truth program for the transition function that computes the next environment state purely from the state representation, without any “hidden variables”. This text-based, object-oriented representation is natively readable by LLMs and thus allows them to try reconstructing the transition function by writing code that programmatically modifies the structured state. It allows for a structured, object-oriented representation that is directly comprehensible to language models and enables symbolic reasoning over a world with rich entity interactions. We introduce a new evaluation protocol that uses two axes (Sec. 4): **state ranking**, the ability to distinguish valid outcomes from invalid ones according to the world’s laws, and **state fidelity**, the ability to produce plausible future states for planning. Our experiments show that ONELIFE better captures the environment’s dynamics compared to several baselines, including PoE-World (Piryakulkij et al., 2025), showing improved ability to simulate future states given a state and candidate action, and to distinguish between likely and unlikely outcomes of an action. **We further show that the learned model supports planning in imagination; by simulating rollouts of different policies entirely within the model, we can evaluate and distinguish between effective and ineffective strategies for multi-step goal-oriented tasks.**

In summary, our contributions include:

- ONELIFE, a probabilistic symbolic world model that can learn from stochastic and hostile environments with minimal interactions and without access to human-defined rewards. ONELIFE outperforms prior work, learning a world model that better predicts true environment dynamics.
- Crafter-OO, a reimplementation of Crafter (Hafner, 2022) that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. This enables us to test ONELIFE in a complex, stochastic environment and lays the groundwork for future work in symbolic world modeling and programmatic reinforcement learning.
- An evaluation suite for world modeling within Crafter / Crafter-OO with 30+ executable scenarios that test knowledge of all core mechanics in Crafter and a pool of mutators that can programmatically generate illegal distractor states to probe world model understanding alongside, new state fidelity and state ranking metrics for evaluating world models in complex, stochastic, environments.

2 RELATED WORK

Symbolic World Models. Symbolic world models represent an environment’s transition dynamics as executable code, producing interpretable, editable, and generalizable models from limited data. Prior work has used LLMs to synthesize a single, monolithic program that functions as a world model (Tang et al., 2024; Dainese et al., 2024). Piryakulkij et al. (2025) introduced a compositional approach by representing the world model as a product of programmatic experts, enabling modeling of more complex dynamics. Other methods have synthesized programs for planning (Ahmed et al., 2025) or combined functional and automata synthesis to capture latent state dynamics (Das et al., 2023). LLMs have also been used to construct formal planning representations like PDDL from environment interactions or text for symbolic planners (Guan et al., 2023; Deng et al., 2024). Our work differs from these methods in three aspects. First, we operate in a complex, open-world environment based on Crafter (Hafner, 2022) with stochasticity and many interacting mechanics, whereas prior work has operated in simpler, often deterministic domains (e.g., grid-worlds or Atari games). Second, we do not assume abundant interaction data: our agent learns from a limited budget obtained in a single episode – or life. Third, ONELIFE learns without external rewards or human-specified goals, framing the task as unguided reverse engineering of the environment’s laws.

Programmatic Representations for Decision-Making. Program synthesis has been used to represent other components of intelligent agents. Programmatic policies have been shown to offer greater interpretability and generalization compared to neural networks (Trivedi et al., 2021; Liang et al., 2022). LLMs have been used to generate programmatic reward functions from natural language instructions, enabling agents to pursue complex, user-specified objectives (Ma et al., 2024; Yu et al., 2023; Klissarov et al., 2025). Programs have been used to build libraries of composable, temporally extended skills, allowing agents to solve long-horizon tasks by combining previously learned behaviors (Wang et al., 2025; Stengel-Eskin et al., 2024). These methods focus on representing components of the agent’s internal decision-making process: *how it should act* (policies), *what it should value* (rewards), or *what it is capable of doing* (skills). In contrast, our work learns a model of *how the external world behaves*; this task-agnostic model of environment dynamics is

162 complementary to policies, rewards, and skills, and supports planning and decision-making for any
 163 downstream goals.

164 **World Modeling for Open-Ended Exploration and Discovery.** Agents that explore and learn in
 165 complex, open-world environments without extrinsic rewards typically learn non-symbolic, latent
 166 world models and use them to drive exploration through intrinsic motivation (Hafner et al., 2023;
 167 Micheli et al., 2023; Dedieu et al., 2025; Schwarzer et al., 2021). These agents plan using their
 168 world models to find novelty or surprise in their environments, discovering useful skills without
 169 task-specific supervision (Sekar et al., 2020). This connects to automated scientific discovery, which
 170 requires autonomously forming hypotheses and performing experiments to understand unknown
 171 systems (Jansen et al., 2024; Chen et al., 2025; Geng et al., 2025). New evaluation frameworks
 172 have been proposed to assess an agent’s ability to rapidly induce world models in novel contexts
 173 (Ying et al., 2025; Vafa et al., 2024). Unlike methods that learn implicit, latent world models, our
 174 work learns an explicit, symbolic representation of the world’s laws. We frame learning as reverse
 175 engineering a complex system’s rules from unguided, limited interaction.

176 **Relation to Domain Inference and State Tracking.** ONE LIFE tackles the challenge of *domain*
 177 *inference* (learning transition dynamics) rather than *state tracking* (inferring state from partial obser-
 178 *vations*) (Gordon et al., 1993). Classical domain inference methods (Cresswell et al., 2009; Zhuo &
 179 Kambhampati, 2013) often rely on deterministic PDDL representations. We use a neurosymbolic,
 180 Python-based formalism because (1) standard PDDL cannot easily capture the stochastic dynamics
 181 of Crafter-OO, and (2) LLMs are much better at generating Python than Probabilistic PDDL.

183 3 OVERVIEW OF ONE LIFE

185 Our framework, **ONE LIFE** is designed to learn symbolic world models from a single, unguided
 186 episode of exploration. It is built on two key abstractions, a programmatic representation of world
 187 dynamics as a mixture of modular *laws* with learnable weights and an *observable extractor* that
 188 decouples the environment’s state from the learning process. The framework consists: a **a world**
 189 **model as a program** (Sec. 3.2), a **law synthesizer** that proposes new laws using offline data from
 190 an **unguided exploration policy** (Sec. 3.3), an **inference algorithm** that re-weights laws based on
 191 observations (Sec. 3.4), and a **forward simulation process** that uses the learned model for predicting
 192 future states (Sec. 3.5).

193 We model the environment as having a pure, but potentially stochastic, transition function $T : \mathcal{S} \times$
 194 $\mathcal{A} \rightarrow \Delta(\mathcal{S})$, where $\Delta(\mathcal{S})$ is the space of probability distributions over the state space \mathcal{S} . This
 195 functional view aligns with modern reinforcement learning environment frameworks (Freeman et al.,
 196 2021; Matthews et al., 2024) and physical models, where the future state of a system is a pure
 197 function of an explicit state and any interventions. (See Section H for a discussion on why we model
 198 a pure transition function probabilistically.)

199 3.1 CRAFTER-OO: A TESTBED FOR SYMBOLIC WORLD MODELING

201 A common design assumption in previous work on symbolic world modeling (Tang et al., 2024;
 202 Piriyakulkij et al., 2025; Dainese et al., 2024) is that we have access to an object-oriented world state
 203 to use as input to the symbolic world model under construction. In practice, this state is only easily
 204 accessible for simple environments such as Minigrid (Chevalier-Boisvert et al., 2023) or BabyAI
 205 (Chevalier-Boisvert et al., 2018). Programmatic access to the state of more complex environments
 206 such as Atari games as used by Piriyakulkij et al. (2025) is only possible due to standalone develop-
 207 ment efforts such as OCAtari (Delfosse et al., 2024) which makes the internal object-oriented state of
 208 these environments accessible to researchers. The lack of an environment with an exposed, object-
 209 oriented state that is more complex than gridworlds or with mechanics more diverse than Atari games
 210 has thus far prevented evaluation and development of symbolic world modeling approaches for more
 211 complex environments. To close this gap, we implement Crafter-OO (Sec. C), which emulates the
 212 Crafter (Hafner, 2022) environment and action space (Tab. 3) by operating purely on an explicit,
 213 object-oriented game state ² (Listing 1). Additionally, we contribute utilities for programmatically
 214 modifying the game state to create evaluation scenarios (Sec. E, Sec. 4.1).

215 ²We describe the state in Python/JSON because we found it substantially easier for LLMs to manipulate than
 PDDL. PDDL representations of our complex state became prohibitively large, increasing experimental costs.

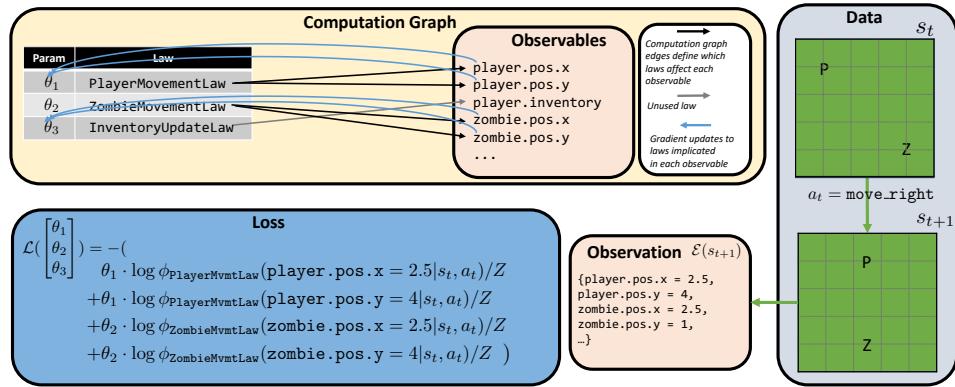


Figure 2: Illustration of the inference process. The active laws for each observable (defined by $\mathcal{L}_k(s_t, a)$) determine the structure of the computation graph, i.e., which laws and their corresponding parameters θ_i are related to which observables. This structure in turn informs the parameter updates. Shown here is a dataset with a single transition instance, in which the player (P) moves right; at the same time, a zombie (Z) independently moves left. This implicates two laws, PlayerMovementLaw and ZombieMovementLaw, while not implicating the InventoryUpdateLaw. As a result, the loss computation is only a function of θ_1 and θ_2 . Note we use Z here to denote the normalizing factor. Examples of synthesized laws can be seen in Sec. B.

Our target environment Crafter-OO features significant stochasticity, diverse forms of mechanics, and active non-player characters. This includes elements such as hostile and friendly agents with diverse, inherently random behaviors. Our framework is designed to infer the rules governing these interactions from observation alone, without access to rewards or human-specified goals. For instance, in Fig. 2, the scenario contains a “zombie” character chasing the player via stochastic movements. While one cannot perfectly predict the future position of a zombie due to inherent randomness built into the environment, our world model is able to capture this “chasing the player” behavior without any explicit supervision by predicting a discrete distribution for the zombie.position attributes.

3.2 ONE LIFE: WORLD MODEL AS A MIXTURE OF LAWS

We consider environments with complex, structured state spaces \mathcal{S} where the full state $s \in \mathcal{S}$ may be hierarchical and contain a mixture of entity types and attributes. An agent interacts with the environment by taking an action $a \in \mathcal{A}$ and observing a transition from state s_t to s_{t+1} , as illustrated in Fig. 2. We model an environment’s transition function as a composition of programmatic laws. A law, L_i , is a program defined by a pair (c_i, e_i) , where $c_i(s, a) \rightarrow \{\text{true, false}\}$ is a *precondition* and $e_i(s, a) \rightarrow \Delta(\mathcal{S})$ is an *effect*. The precondition determines whether the law is applicable to a state-action pair (s, a) . The effect function specifies a *probability distribution over next states by defining distributions over the values of state attributes*. For example, the PlayerMovementLaw in Fig. 2 applies to state-action pairs with a player and a move action, and has an effect on the player position’s (x) observable. This precondition-effect structure is inspired by classical planning and provides a natural way to specify the scope of each law, ensuring modularity (McDermott et al., 1998). During any given transition, multiple or no laws may be applicable.

To create a tractable interface to compare states predicted by a world model and the true state of the environment, we introduce an **observable extractor**, $\mathcal{E} : \mathcal{S} \rightarrow \mathcal{O}$. This function maps a complex state s into a vector of primitive-valued **observables** $o \in \mathcal{O}$. In the scenario sketched in Fig. 2, the next state s_{t+1} can be complex, with additional entities and objects (e.g., trees, inventory items, etc.). Nevertheless, one can tractably compare states via observations, i.e., *changes* between s_t and s_{t+1} such as player.position, player.inventory, zombie.position, etc. Note that any given law L_i only makes predictions about a subset of all possible observables. For instance, in Fig. 2, the PlayerMovementLaw *only* makes predictions about player.position observables and *does not predict* the zombie.position observables.

Furthermore, while Probabilistic PDDL can capture stochastic dynamics, it makes synthesis significantly more difficult, likely because Probabilistic PDDL is much rarer in pre-training data than standard PDDL or Python.

Our world model can be viewed as a probabilistic program (van de Meent et al., 2021) that generates the next state’s observables o' conditioned on the current state s and action a . The set of laws $\{L_i\}$ defines the components of this program. Formally, the effect $e_i(s, a)$ yields a set of conditional probability distributions $\{\phi_{i,o}\}_{o \in \mathcal{O}}$, where $\phi_{i,o}(o = v|s, a)$ is the distribution over possible values v for observable $o \in \mathcal{O}$, with $v \in \text{supp}(o)$ denoting a specific outcome in the discrete support of the observable. Our implementation currently covers categorical and discrete distributions. In principle, the framework extends to continuous distributions, as the inference algorithm only requires the ability to query the likelihood of an observed data point. For a given state-action pair (s, a) , the set of *active laws* is $\mathcal{I}(s, a) = \{i \mid c_i(s, a) \text{ is true}\}$ (e.g., PlayerMovementLaw and ZombieMovementLaw in Fig. 2). The model assumes that all observables are *conditionally independent* given the current state and action. The predictive distribution for a single observable o is formed by combining the predictions from all active laws that have an opinion on it. Let $\mathcal{I}_o(s, a) = \{i \in \mathcal{I}(s, a) \mid o \in \mathcal{O}\}$ be the set of active laws relevant to observable o . The probability of observing an outcome v for this observable is given by a weighted-product of conditional probability distribution from each law, parameterized by θ :

$$p(o = v|s, a; \theta) \propto \prod_{i \in \mathcal{I}_o(s, a)} \phi_i(o = v|s, a)^{\theta_i} \quad (1)$$

The complete predictive distribution over the next state s' is the product of the individual observable distributions:

$$p(s'|s, a; \theta) = \prod_{o \in \mathcal{O}} p(o|s, a; \theta) \quad (2)$$

The learnable weights θ perform model selection over the set of candidate laws. Because the synthesizer generates a large pool of atomic laws, including incorrect hypotheses, the optimization process drives the weights of invalid laws toward zero to remove them from the model. Additionally, the weights enable multiple plausible laws to vote on the final predictive distribution, allowing the model to aggregate conflicting predictions.

Comparison to Prior Product-of-Expert Formalisms. Although we use a product-of-experts structure like PoE-World (Piryakuljik et al., 2025), the underlying representation and optimization differ fundamentally. Conceptually, PoE-World learns a superposition of experts where each program predicts the *entire* next state. This causes the posterior to be noisy in complex environments, as irrelevant experts contribute uniform predictions to attributes they do not model well. In contrast, ONE LIFE factorizes the transition function into *atomic laws* that individually predict a *minimal subset* of the next state (e.g., only the player’s health, or only a specific map tile). This atomicity enables our optimization procedure (Sec. 3.4) to construct a *dynamic computational graph* for every transition. By exploiting the precondition-effect structure, we route gradients only to laws relevant to the specific observed transition. This avoids the “static graph” limitation of prior work and allows ONE LIFE to scale to diverse object-oriented attributes (e.g., inventory items, map tiles, NPC states) beyond the simple physics variables (e.g., position, velocity) targeted by prior work.

3.3 ONE LIFE: UNGUIDED ENVIRONMENT EXPLORATION AND LAW SYNTHESIS

The set of candidate laws L_i is generated from unguided agent-environment interactions through a two-stage process. First, an autonomous exploration policy gathers a corpus of interaction data. Second, a synthesizer proposes candidate laws that explain the state transitions observed in this data.

Exploration Policy. Previous work in symbolic world modeling often assumes access to curated offline datasets or utilizes online interaction guided by human-provided goals or environment rewards. In our unsupervised setting, such guidance is *unavailable*. Furthermore, in a hostile environment such as Crafter-OO, a simple random policy fails to survive long enough to experience the diverse mechanics necessary for comprehensive world modeling. Therefore, we employ an exploration policy driven by a large language model. The policy is not provided with specific knowledge of the environment; instead, it is given the high-level objective to discover as many underlying mechanics as possible, treating exploration as a reverse-engineering task. We distinguish between general genre priors and environment-specific dynamics. General genre priors are high-level concepts common to the class of open-world survival environments, such as the existence of hostile entities, the ability to collect resources, or the ability to craft tools. In contrast, environment-specific dynamics refer to exact rules, such as “Zombies chase players” or “Wood is needed to make a pickaxe.”

324 The exploration policy is provided with the former to prevent aimless behavior typical of random
 325 policies, but it is strictly withheld from the latter. This mimics a realistic scenario where an agent
 326 enters a new environment possessing broad intuition about the genre, but must reverse-engineer the
 327 specific laws and mechanics of that unique world from scratch. We use the agent scaffolding from
 328 Balrog (Paglieri et al., 2025) to implement the agent. The agent’s architecture maintains a rolling
 329 window of its recent state-action history to provide context for decisions. The prompt (see Sec. G)
 330 also instructs the agent to maintain a transient summary of its current understanding of the world’s
 331 rules, refining its hypotheses as it interacts with the environment.

332 **Law Synthesizer.** The synthesizer is an automated routine that queries a Large Language Model
 333 (LLM) to explain observed state transitions. Our system operates by iterating through every transition
 334 in the exploration dataset and performing a systematic comparison of the object-oriented state at
 335 each timestep. This process automatically identifies the specific object attributes that have changed,
 336 such as an entity’s position or an inventory count, without requiring manual specification of what to
 337 track. For each identified change, the routine queries the LLM to output a Python class containing
 338 precondition and effect methods. The effect method is generated to explicitly perform the ob-
 339 served attribute assignment on a state object. This process yields *atomic* laws that govern minimal
 340 subsets of state attributes. For instance, a complex combat event is automatically decomposed into
 341 separate candidate laws where one explains the health decrease and another explains the enemy’s
 342 movement. This modularity allows the subsequent inference stage (Sec. 3.4) to perform precise
 343 credit assignment by isolating correct mechanics from incorrect hypotheses. We provide examples
 344 of synthesized laws in Sec. B.

345 **Synthesis Differences From PoE-World.** While Piriyakulkij et al. (2025) adopt a specialized ap-
 346 proach utilizing a bank of over 30 synthesizers equipped with prompts tailored to pre-identified me-
 347 chanics, ONE LIFE employs a single synthesizer. This setup *requires* our agent to identify mechanics
 348 on the fly and codify them without prior knowledge of the environment’s rules. Consequently, our
 349 synthesizer consumes the entire game state in a general-purpose format (JSON) to write code for di-
 350 verse aspects of the world, including map tiles, entities, and player inventories, whereas PoE-World
 351 limited synthesis to a specific set of physics-based attributes.

352 3.4 ONE LIFE: INFERENCE ON LAW PARAMETERS

354 We learn the weight vector θ by maximizing the log-likelihood of a dataset of observed transitions
 355 $\mathcal{D} = \{(s_t, a_t, s_{t+1})\}_{t=1}^N$. For clarity, we first define the loss for a single transition (s, a, s') ; the total
 356 loss is the sum over all transitions in the dataset.

357 Based on the conditional independence of observables, the negative log-likelihood for a single trans-
 358 sition decomposes into a sum over each observable $o \in \mathcal{O}$:

$$\mathcal{L}(\theta; s, a, s') = - \sum_{o \in \mathcal{O}} \log p(v_o^* | s, a; \theta) \quad (3)$$

362 where $v_o^* = \mathcal{E}(s')_o$ is the ground truth value of observable o extracted from the next state s' . The log-
 363 probability term is derived from the combined predictions of the active laws. Let $\mathcal{I}_o(s, a)$ be the set
 364 of active laws that make a prediction for observable o . We first define the combined, unnormalized
 365 log-score for any potential value v as the weighted sum of log-scores from these laws. The weights
 366 θ_i are the *only learnable parameters*:

$$\ell_o(v | s, a; \theta) = \sum_{i \in \mathcal{I}_o(s, a)} \theta_i \cdot \phi_{i,o}(v | s, a) \quad (4)$$

370 Normalized log-probability of observing the specific outcome v_o^* is then given by the log-softmax
 371 function. Let $\text{supp}(o)$ be the discrete support (set of all possible values) for observable o :

$$\log p(v_o^* | s, a; \theta) = \ell_o(v_o^* | s, a; \theta) - \log \sum_{v \in \text{supp}(o)} \exp(\ell_o(v | s, a; \theta)) \quad (5)$$

375 The optimization process leverages the dynamic computation graph induced by our law structure.
 376 For each transition and each observable, the loss gradient is calculated with respect to the weights
 377 θ_i only for the active laws $i \in \mathcal{I}_o(s_t, a_t)$. This effectively **routes** credit for an outcome exclu-
 378 sively to the laws that made a prediction about it. This sparse, targeted update mechanism provides

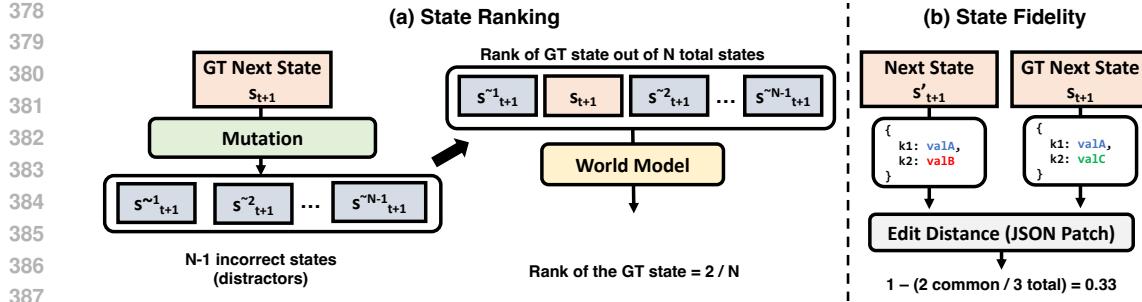


Figure 3: Two evaluation metric categories described in Sec. 4. A world state of an environment usually has more than two keys (*i.e.* *Crafter-OO*’s state (Section C.2) when populated has 100+ key-value pairs,) and often has nested values, but here we show a simplest case to explain the calculation of (normalized) edit distance. We create distractors for state ranking using *mutators* (Sec. D), which programmatically modify the next state s' in a transition (s, a, s') to be illegal under the true transition function. For example, one of our mutators allows a crafting action (*e.g.* making a stone pickaxe) to succeed even when the prerequisites for the crafting are not met.

more precise credit assignment than methods that update a global set of weights based on aggregate outcomes. We use L-BFGS for optimization (Nocedal & Wright, 2006).

3.5 ONE LIFE: FORWARD SIMULATION AND LIKELIHOOD

Forward simulation is the process of using the learned world model generatively to predict a future state \hat{s}_{t+1} given a current state s_t and an action a_t . By generating rollouts of future trajectories, an agent can evaluate action sequences against a specific goal or reward function without costly or irreversible real-world interaction.

The simulation of a single timestep from (s_t, a_t) involves a multi-step sampling and reconstruction process. First, for each observable $o \in \mathcal{O}$, the model forms a predictive probability distribution $p(o|s_t, a_t; \theta)$. This distribution is constructed by identifying the set of active laws $\mathcal{I}_o(s_t, a_t)$ relevant to that observable and combining their predictions according to their learned weights θ_i , as specified in Equation 1. This distribution can be used to evaluate the likelihood of an observable conditioned on (s, a) pair. Second, a concrete outcome \hat{v}_o can be sampled from this distribution for each observable: $\hat{v}_o \sim p(o|s_t, a_t; \theta)$. This collection of sampled outcomes $\{\hat{v}_o\}_{o \in \mathcal{O}}$ is used to construct the full symbolic next state \hat{s}_{t+1} . A reconstruction function, which mirrors the observable extraction process, assembles these values back into the environment’s structured state representation.

4 EVALUATION PROTOCOLS AND METRICS

The evaluation of world models for a stochastic environment is non-trivial. An useful world model fulfills two criteria: (a) **state ranking**, the ability to distinguish plausible future states from implausible ones, and (b) **state fidelity**, the ability to generate future states that closely resemble reality. Both are illustrated in Fig. 3.

State Ranking (Fig. 3 (a)). These metrics assess the model’s ability to rank the true next state higher than the distractors. To create the distractor states, we use **mutators**, which are programmatic functions that apply semantically meaningful, rule-breaking changes to the true next state. For example, a mutator could change a character’s position to a location they cannot physically reach. We include details on mutators in Sec. D.

- **Rank @ 1 (R@1):** A binary metric that measures whether the model correctly assigns the highest probability (rank 1) to the true next state among all candidates.
- **Mean Reciprocal Rank (MRR):** This metric averages the reciprocal rank of the correct answer across all test instances. A higher MRR indicates that the model consistently ranks the correct state higher. The formula is: $MRR = \frac{1}{N} \sum_{i=1}^N \frac{1}{r_i}$, where r_i is the rank of the ground truth state for the i -th transition, with rank 1 being the highest probability. We favor MRR over raw mean

432 Table 1: Performance comparison of world modeling methods on the Crafter-OO environment, av-
 433 eraged over ten trials. We evaluate models on two criteria: **state fidelity** and **state ranking**. All
 434 methods use the ONELIFE exploration policy and law synthesizer but differ in their parameter infer-
 435 ence method. ONELIFE shows significant improvements over the PoE-World inference algorithm
 436 and ONELIFE variant without parameter inference. The random baseline is shaded in gray. The
 437 “No Inference” row ablates learnable law parameters θ from our world model.

439 Law Synthesis (Sec. 3.3)	440 Law Param. Inference (Sec. 3.4)	441 State Ranking		442 State Fidelity	
		443 Rank @ 1 ↑	444 MRR ↑	445 Raw Edit Dist. ↓	446 Norm. Edit Dist. ↓
	447 Random World Model	8.5%	0.322	121.538	0.809
	448 WorldCoder	0.0%	0.264	27.180	0.181
449 ONELIFE	PoE-World	10.8%	0.351	10.634	0.071
450 ONELIFE	451 No Inference	13.0%	0.429	8.540	0.057
452 ONELIFE	ONELIFE	18.7%	0.479	8.764	0.058
453 Δ over PoE-World		(+7.9%)	(+0.128)	(-1.870)	(-0.013)

448 rank because its inverse scaling ($1/r$) heavily penalizes missing the top rank, reflecting the high
 449 cost of sampling invalid states during planning. Furthermore, unlike mean rank, MRR provides a
 450 standardized score invariant to the candidate set size N , which varies in our setup depending on
 451 the number of applicable mutators.

452 **State Fidelity (Fig. 3 (b)).** These measure the error between predicted and ground truth states.

- 453 • **Raw Edit Distance:** The total number of atomic JSON Patch operations required to transform the
 454 predicted state, s'_{t+1} , into the ground truth state, s_{t+1} .
- 455 • **Normalized Edit Distance:** The raw edit distance divided by the total number of elements in the
 456 state representation.

457 4.1 EVALUATION FRAMEWORK IMPLEMENTATION ON CRAFTER-OO

460 Evaluating a world model on random rollouts may not provide sufficient coverage of rare or im-
 461 portant events in an environment. To ensure our evaluation is comprehensive, we create evaluation
 462 trajectories from a suite of **scenarios**. Each scenario runs short, scripted policy from an initial state
 463 designed to reliably exercise a specific game mechanic or achieve a particular goal, ensuring that
 464 our evaluation thoroughly covers the environment’s dynamics. We generate a comprehensive eval-
 465 uation dataset by implementing scenarios that cover every achievement in the game’s achievement
 466 tree, seen in Fig. 4. This ranges from basic actions like collecting wood to complex, multi-step tasks
 467 like crafting an iron sword, ensuring all of the game’s core mechanics are tested. More details on
 468 scenarios are provided in Sec. E. We generate distractors for each transition in the evaluation dataset
 469 using a bank of mutators which each produce a subtle, but illegal transformation of the game state in
 470 response to an action. Some examples are causing an incorrect item to be produced when taking a
 471 crafting action, or allowing an item to be produced without the correct requirements, or illegal entity
 472 behavior such as teleporting. Because mutators have specific preconditions (e.g., combat mutators
 473 only apply during combat), the number of applicable distractors varies per state. In our experi-
 474 ments, the total candidate set size (ground truth plus distractors) ranges from $N = 7$ to $N = 11$ per
 475 transition. Details on mutators and the evaluation are provided in Sec. D and Sec. F.

476 5 EXPERIMENTAL SETUP AND RESULTS

478 We conduct a series of experiments to evaluate ONELIFE. First, we quantitatively assess the model’s
 479 predictive accuracy using our state ranking and fidelity metrics across a comprehensive suite of
 480 scenarios. Second, we test the model’s ability to support planning in imagination. We use the model
 481 to perform simulated rollouts of different policies, evaluating whether it can predict the outcomes of
 482 these plans well enough to distinguish effective strategies from ineffective ones (Sec. A).

483 We compare ONELIFE against three baselines (fully detailed in Section I): a **Random World**
 484 **Model**; **PoE-World** (Piryaykulkij et al., 2025), the prior state-of-the-art symbolic framework that
 485 learns a product of experts; and **WorldCoder** (Tang et al., 2024), which differs from PoE-World by
 synthesizing a monolithic, deterministic program for the transition function.

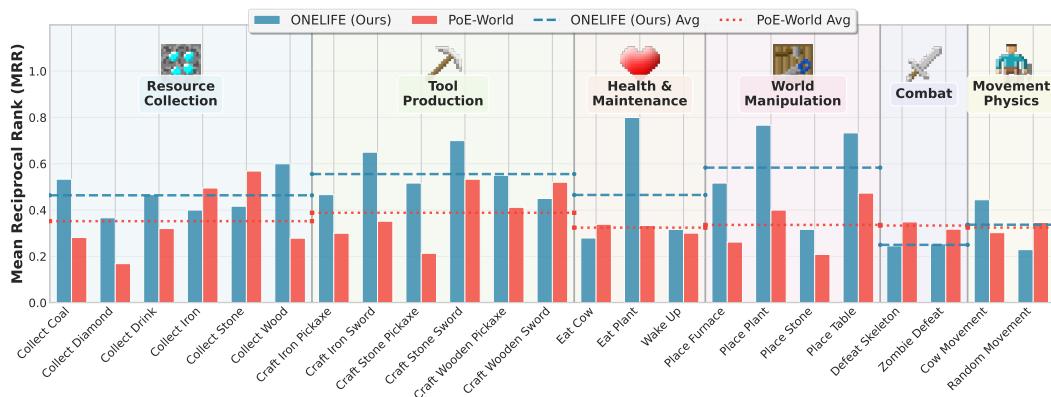


Figure 4: Per-scenario state ranking performance of **ONELIFE (Ours)** versus **PoE-World**, measured by Mean Reciprocal Rank (MRR \uparrow). Scenarios are grouped by the core game mechanic they test. Horizontal lines show the average MRR across all scenarios in a group for **ONELIFE** and **PoE-World**. **ONELIFE** demonstrates a more accurate understanding of the environment’s laws, achieving a higher average MRR and outperforming the baseline on the majority of individual scenarios.

5.1 RESULTS

State Fidelity and Ranking. **ONELIFE** learns a world model with significantly higher predictive judgment than baseline methods while maintaining competitive generative fidelity. Table 1 compares our full method against baselines and key ablations across all evaluation metrics. **ONELIFE**’s primary advantage appears in the predictive judgment metrics. We achieve a discriminative accuracy of 18.7% and an MRR of 0.479, outperforming the PoE-World optimization baseline by 7.9 percentage points and 0.128, respectively. While precisely generating a complex future state remains challenging, our model has learned an accurate understanding of the environment’s underlying laws. This enables it to assign high probability to valid transitions and low probability to invalid ones. The comparison to the “random world model” shows that (i) a high edit distance can quickly be amassed if the world models updates observables that are unchanged in the ground truth state, thus, reinforcing why such simulation is challenging; (ii) optimizing for generative metrics like state fidelity alone *does not* yield a better world model to guide an agent, e.g., while the PoE-world model (row 2 in Tab. 1) dramatically improves the state fidelity by reducing the edit distance *a factor of 10*, it only *marginally* improves the ability to *rank multiple states* by $\approx 2\%$ over random (Rank@1) – reiterating the need for state ranking metrics. **Removing the parameter inference step (“ONELIFE & None”)** results in a performance drop of 5.7% in Rank@1 and 0.05 in MRR, confirming that the weights are essential for distinguishing valid laws from incorrect ones.

Fine-grained Evaluation. Figure 4 breaks down Mean Reciprocal Rank performance across individual scenarios spanning mechanics from resource collection to combat. **ONELIFE** consistently outperforms the PoE-World baseline on the majority (16/23) of scenarios. These improvements stem from a robust understanding of the environment’s diverse rules rather than strong performance on only a few simple mechanics.

6 CONCLUSION

We address the problem of learning a symbolic world model from limited, unguided interaction in a complex, stochastic environment. We introduced **ONELIFE**, a framework that represents world dynamics as a probabilistic mixture of modular, programmatic laws. Its core learning mechanism routes credit for observed state changes exclusively to the laws responsible for predicting them, enabling effective learning even when many rules are inactive during a given transition. Evaluated on Crafter-OO, our variant of the complex Crafter environment with object-centric state, **ONELIFE** learns a world model with superior predictive judgment compared to a strong baseline, more accurately distinguishing plausible future states from implausible ones. This improvement is consistent across a wide range of game mechanics. Our work provides a foundation for building agents that can autonomously reverse engineer the rules of an unknown environment.

540
541 ETHICS STATEMENT542
543 We do not foresee any ethical implications beyond standard ethical and safety considerations that
544 apply to AI research generally.545
546 REPRODUCIBILITY STATEMENT547
548 We plan to open-source Crafter-OO, ONELIFE, and the evaluation framework used in our work to
549 aid reproducibility. All prompts and key details of the exploration policy, synthesis algorithm, and
550 law parameter inference have been described.551
552 REFERENCES553
554 Zergham Ahmed, Joshua B Tenenbaum, Christopher J Bates, and Samuel J Gershman. Synthesizing
555 world models for bilevel planning. *TMLR*, 2025.556
557 John Backus. Can programming be liberated from the von neumann style? a functional style and its
558 algebra of programs. *Communications of the ACM*, 21(8):613–641, 1978. doi: 10.1145/359576.
359579.559
560 P. (Ed.) Bryan and M. (Ed.) Nottingham. JavaScript Object Notation (JSON) Patch. RFC 6902,
561 IETF, April 2013. URL <https://datatracker.ietf.org/doc/html/rfc6902>.562
563 Yimeng Chen, Piotr Piekos, Mateusz Ostaszewski, Firas Laakom, and Juergen Schmidhuber. Phys-
564 gym: Benchmarking llms in interactive physics discovery with controlled priors. *arXiv preprint*,
2025.565
566 Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
567 Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
568 grounded language learning. *arXiv preprint arXiv:1810.08272*, 2018.569
570 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
571 Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Mod-
572 ular & customizable reinforcement learning environments for goal-oriented tasks. In *Advances in
Neural Information Processing Systems 36, New Orleans, LA, USA*, December 2023.573
574 Stephen N Cresswell, Thomas L McCluskey, and Margaret M West. Acquisition of object-centred
575 domain models from planning examples. In *Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS)*, volume 19, pp. 338–341, 2009.576
577 Nicola Dainese, Matteo Merler, Minttu Alakuijala, and Pekka Marttinen. Generating code world
578 models with large language models guided by monte carlo tree search. In *NeurIPS*, 2024.579
580 Ria Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares. Combining functional
581 and automata synthesis to discover causal reactive programs. *Proc. ACM Program. Lang.*, 7
(POPL), January 2023. doi: 10.1145/3571249. URL <https://doi.org/10.1145/3571249>.582
583 Antoine Dedieu, Joseph Ortiz, Xinghua Lou, Carter Wendelken, Wolfgang Lehrach, J Swaroop
584 Guntupalli, Miguel Lazaro-Gredilla, and Kevin Patrick Murphy. Improving transformer world
585 models for data-efficient rl. In *ICML*, 2025.586
587 Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting.
588 OCAtari: Object-centric Atari 2600 reinforcement learning environments. *Reinforcement Learn-
ing Journal*, 1:400–449, 2024.589
590 Boyuan Deng, Qiaochu Xu, Hao Li, Ling Li, Rui Xu, Yunlong Lu, Jie Lin, and Ziqi Zhang. Pddlego:
591 Iterative planning in textual environments. *arXiv preprint*, 2024.592
593 C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL <http://github.com/google/brax>.

594 Jiayi Geng, Howard Chen, Dilip Arumugam, and Thomas L Griffiths. Are large language models
 595 reliable ai scientists? assessing reverse-engineering of black-box systems. *arXiv preprint*, 2025.
 596

597 Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-gaussian
 598 bayesian state estimation. *IEE Proceedings F (Radar and Signal Processing)*, 140(2):107–113,
 599 1993.

600 Lin Guan, Karthik Valmecikam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
 601 trained large language models to construct and utilize world models for model-based task plan-
 602 ning. In *NeurIPS*, 2023.

603

604 Danijar Hafner. Benchmarking the spectrum of agent capabilities. In *The Tenth International Con-
 605 ference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenRe-
 606 view.net, 2022. URL <https://openreview.net/forum?id=1W0z96MFEoH>.

607 Danijar Hafner, Jurgis Pašukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
 608 through world models. *arXiv preprint*, 2023.

609

610 Peter Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi Mishra, Bod-
 611 hisattwa Prasad Majumder, Oyvind Tafjord, and Peter Clark. Discoveryworld: A virtual envi-
 612 ronment for developing and evaluating automated scientific discovery agents. In *NeurIPS*, 2024.

613

614 Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
 615 Pierre-Luc Bacon, Doina Precup, Marlos C Machado, and Pierluca D’Oro. Maestromotif: Skill
 616 design from artificial intelligence feedback. In *ICLR*, 2025.

617 Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
 618 Andy Zeng. Code as policies: Language model programs for embodied control. *arXiv preprint*,
 619 2022.

620

621 Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
 622 man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
 623 coding large language models. In *ICLR*, 2024.

624

625 Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
 626 Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
 627 inforcement learning. In *International Conference on Machine Learning (ICML)*, 2024.

628

629 Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso,
 630 Daniel Weld, and David Wilkins. PDDL – the planning domain definition language. Technical
 report, Yale Center for Computational Vision and Control, 1998.

631

632 Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
 633 els. In *ICLR*, 2023. Oral Presentation.

634

635 Jorge Nocedal and Stephen J. Wright. *Numerical Optimization*. Springer, second edition, 2006.

636

637 Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
 638 Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerré Pinto, Rob Fergus, et al. Balrog: Bench-
 639 marking agentic llm and vlm reasoning on games. In *The Thirteenth International Conference on
 Learning Representations*, 2025.

640

641 Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, and Kevin El-
 642 lis. Poe-world: Compositional world modeling with products of programmatic experts. *arXiv
 preprint*, 2025.

643

644 Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, De-
 645 von Hjelm, Philip Bachman, and Aaron Courville. Pretraining representations for data-efficient
 646 reinforcement learning. In *NeurIPS*, 2021.

647

648 Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
 649 Planning to explore via self-supervised world models. In *ICML*, 2020.

648 Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. Regal: Refactoring programs to discover
 649 generalizable abstractions. In *International Conference on Machine Learning*, pp. 46605–46624.
 650 PMLR, 2024.

651

652 Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based ILM agent: Building world
 653 models by writing code and interacting with the environment. *arXiv preprint*, 2024.

654 Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
 655 interpretable and generalizable policies. In *NeurIPS*, 2021.

656

657 Keyon Vafa, Joshua B Tenenbaum, Jacob D Andreas, Yoshua Bengio, and Brenden M Lake. Evalu-
 658 ating the world model implicit in a generative model. In *NeurIPS*, 2024.

659

660 Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction to
 661 probabilistic programming, 2021. URL <https://arxiv.org/abs/1809.10756>.

662

663 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
 664 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
 665 *TMLR*, 2025.

666

667 Lance Ying, Katherine M Collins, Prafull Sharma, Cedric Colas, Kaiya Ivy Zhao, Adrian Weller,
 668 Zenna Tavares, Phillip Isola, Samuel J Gershman, Jacob D Andreas, Thomas L Griffiths, Francois
 669 Chollet, Kelsey R Allen, and Joshua B Tenenbaum. Assessing adaptive world models in machines
 670 with novel games. In *ICLR*, 2025.

671

672 Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, et al. Language to rewards for robotic skill synthesis. In
 673 *CoRL*, 2023.

674

675 Hankz Hankui Zhuo and Subbarao Kambhampati. Action-model acquisition from noisy plan traces.
 676 In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 2444–
 677 2450, 2013.

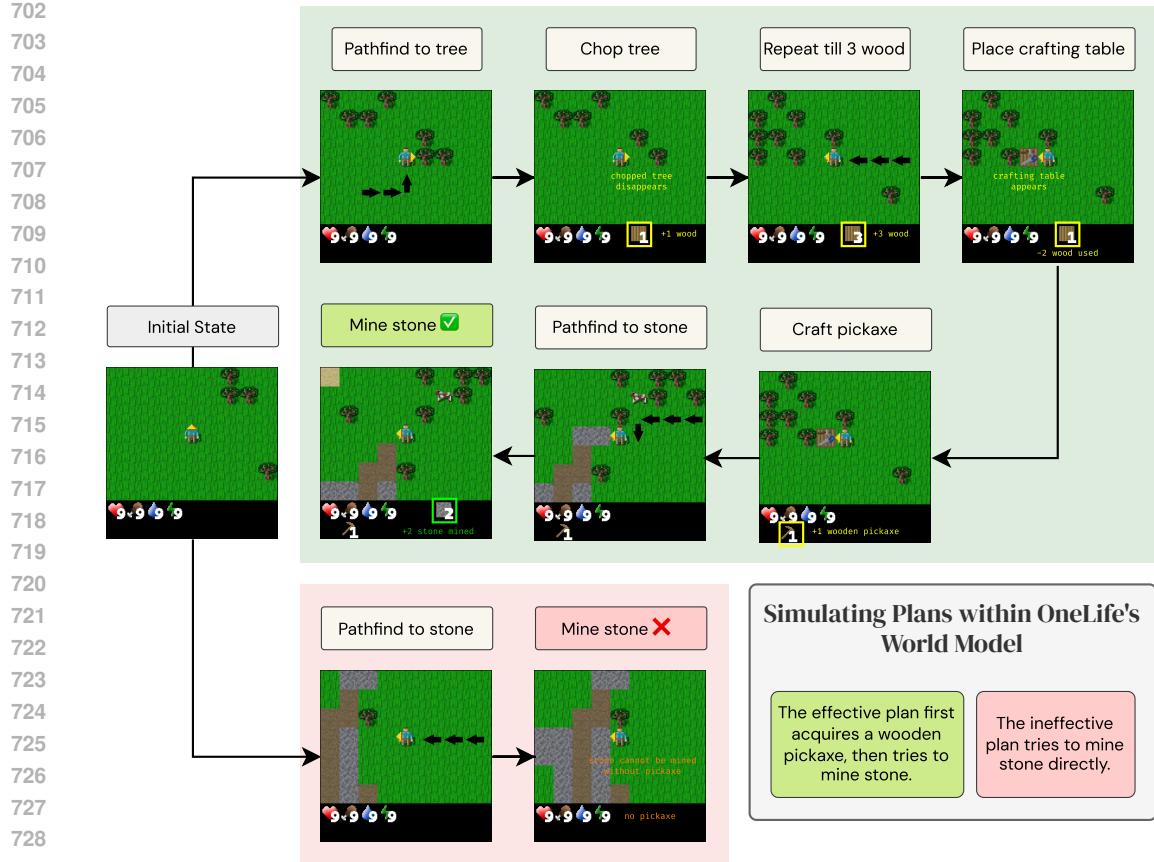
678

A PLANNING AND MULTI-STEP SIMULATION WITH THE LEARNED WORLD MODEL

679 To assess the practical utility of the learned world model, we evaluate its effectiveness in a planning
 680 context. Our protocol tests the model’s ability to distinguish between effective and ineffective plans
 681 through forward simulation. For a set of scenarios, we define a reward function and two distinct,
 682 programmatic policies (plans) to achieve a goal within the scenario. Each plan is represented as a
 683 hierarchical policy (in code) that composes subroutines for navigation, interaction, and crafting.

684 We give an example in box G.3 for the “Zombie Fighter” scenario. Each reward function is likewise
 685 written in code and calculates rewards from the rollout of a plan. We execute rollouts of both plans
 686 within our learned world model and, separately, within the ground-truth environment. The measure
 687 of success is whether the world model’s simulation yields the same preference ranking over the two
 688 plans as the true environment, based on the final reward. This assesses if the model has captured the
 689 causal dynamics necessary for goal-directed reasoning.

690 **Setup.** We design three scenarios that test distinct aspects of the environment’s mechanics: combat,
 691 tool-use and resource consumption, as shown in Table 2. In the **Zombie Fighter** scenario, an agent
 692 with low health must defeat two zombies. The superior plan involves a multi-step process: pathfind-
 693 ing to locate and harvest trees, crafting a table and then a sword, and only then engaging in combat.
 694 The alternative is to fight immediately. The **Stone Miner** scenario tests the model’s understanding
 695 of resource collection. The effective plan is to first harvest wood, craft a pickaxe, pathfind to a stone,
 696 and then mine. Attempting to mine stone directly is ineffective. Finally, the **Sword Maker** scenario
 697 evaluates knowledge of resource consumption. The goal is to craft multiple swords. The efficient
 698 plan places a single crafting table and reuses it, whereas the inefficient plan wastes wood by placing
 699 a new table for each sword. On average, a plan requires ≈ 18 steps to execute, with the longest plans
 700 taking > 30 steps. Thus, simulating the results of these plans tests the ability of the world model
 701 to accurately model the consequences of long sequences of actions upon the world. We show an
 example of plan execution in imagination for the “Stone Miner” scenario in Fig. 5.



730 Figure 5: We show an example of plan execution *within* ONE LIFE’s world model for the “Stone
 731 Miner” scenario. The task is to mine stone, and can only be successfully completed if a wooden
 732 pickaxe is obtained before attempting to mine stone. We simulate two plans within the world model.
 733 The effective plan carries out a multi-step sequence of gathering wood, crafting a wooden pickaxe,
 734 and then attempting to mine. The ineffective plan attempts to mine the stone directly. The world
 735 learned by ONE LIFE correctly simulates causal game mechanics that cause the effective plan to
 736 succeed and the ineffective plan to fail. The frames are generated by rendering the structured states
 737 constructed by ONE LIFE’s learned transition function.

738
 739 **Results.** Table 2 shows that across all three scenarios, our learned world model correctly predicts
 740 the more effective plan. The ranking of plans generated by simulating rollouts in ONE LIFE matches
 741 the ranking from the ground-truth environment. For instance, in the Zombie Fighter scenario, the
 742 model correctly simulates that the multi-step plan of crafting a sword leads to higher Damage Per
 743 Second, identifying it as the superior strategy. This demonstrates that ONE LIFE captures a suffi-
 744 ciently accurate causal model of the world to support basic, goal-oriented planning.

B LAW EXAMPLES

745
 746 Below, we give examples of various laws synthesized by ONE LIFE. In box B.1 and box B.2, we
 747 show examples of how ONE LIFE has learned the hierarchical structure of Crafter-OO/Crafter’s tech-
 748 tree. In this case, one must mine stone before a stone pickaxe can be produced. **These laws are**
 749 **deterministic in the sense that they define probability distributions that place mass 1.0 on a single**
 750 **outcome, consistent with the probabilistic framework defined in Sec. 3.2.** In box B.3, we give
 751 an example of a law synthesized by ONE LIFE for a stochastic mechanic, in this case, the chase
 752 behavior of zombies when they are within a certain range of a player. The idle skeleton law in
 753 box B.6 and moving skeleton law in box B.4 make conflicting predictions; these are aggregated by
 754 box B.5.

756
 757 Table 2: Planning via forward simulation. Our learned world model is used to compare alternative
 758 plans in three scenarios. This is done by executing the plans in the world model, and measuring
 759 the reward obtained by each plan. In each case, ONELIFE produces the same ranking over plans
 760 as the ground-truth environment, demonstrating its ability to capture causally relevant dynamics for
 761 goal-directed decision-making and accurately simulate long action sequences of > 30 steps. Each
 762 plan was executed 10 times.

762 Scenario	763 Plan Description	764 Reward Function	765 Avg. Steps	766 True Env.		767 ONELIFE's WM	
				768 Reward	769 Preferred	770 Reward	771 Preferred
Zombie Fighter	Harvest Wood → Craft Table → Craft Sword → Fight Fight Immediately	Damage Per Second	33 17	2.0 1.0	✓	2.03 1.67	✓
Stone Miner	Harvest Wood → Craft Table → Craft Pickaxe → Mine Mine Immediately	Stone Collected	31 13	3.0 0.0	✓	3.0 0.0	✓
Sword Maker	Reuse Crafting Table for all Swords Place New Table per Sword	Swords Crafted	5 10	4.0 2.0	✓	4.0 2.0	✓

768
 769 the weight inference process in Sec. 3.4 to produce a distributional prediction that takes into account
 770 the predictive accuracy of both laws.
 771

772 Box B.1| Mine Stone Law

```

773
774
775 1 class MineStoneLaw:
776 2     def __init__(self):
777 3         """Initialize with configurable parameters."""
778 4         pass
779 5
780 6     def precondition(self, current_state: WorldState, action: str) -> bool:
781 7         """Return True if this law should apply to the given state and action."""
782 8         if action != "Do":
783 9             return False
784 10
785 11         target_material, _ = current_state.get_target_tile()
786 12
787 13         if target_material == "stone":
788 14             # Check if the player has any pickaxe
789 15             has_pickaxe = (
790 16                 current_state.player.inventory.wood_pickaxe > 0 or
791 17                 current_state.player.inventory.stone_pickaxe > 0 or
792 18                 current_state.player.inventory.iron_pickaxe > 0
793 19             )
794 20             return has_pickaxe
795 21
796 22         return False
797 23
798 24     def effect(self, current_state: WorldState, action: str) -> None:
799 25         """Apply the law by modifying the world state."""
800 26         # Increment stone in inventory
801 27         current_state.player.inventory.stone = DiscreteDistribution(
802 28             support=[current_state.player.inventory.stone + 1]
803 29         )
804 30
805 31         # Replace the mined stone material with grass
806 32         current_state.set_facing_material("grass")

```

807 Box B.2| Craft Stone Pickaxe

```

808
809
810 1 class CraftStonePickaxe:
811 2     def __init__(self):
812 3         """Initialize with configurable parameters."""
813 4         # No specific parameters needed for this crafting recipe.

```

```

810
811     pass
812
813     def precondition(self, current_state: WorldState, action: str) -> bool:
814         """Return True if this law should apply to the given state and action."""
815         # Check if the action is "Make Stone Pickaxe"
816         if action == "Make Stone Pickaxe":
817             # Check if player has required materials
818             has_wood = current_state.player.inventory.wood >= 1
819             has_stone = current_state.player.inventory.stone >= 1
820             return has_wood and has_stone
821         return False
822
823     def effect(self, current_state: WorldState, action: str) -> None:
824         """Apply the law by modifying the world state."""
825         # Decrease wood by 1
826         current_state.player.inventory.wood = DiscreteDistribution(support=[
827             current_state.player.inventory.wood - 1])
828         # Decrease stone by 1
829         current_state.player.inventory.stone = DiscreteDistribution(support=[
830             current_state.player.inventory.stone - 1])
831         # Increase stone_pickaxe by 1
832         current_state.player.inventory.stone_pickaxe = DiscreteDistribution(
833             support=[current_state.player.inventory.stone_pickaxe + 1])
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

```

Box B.3| Zombie Chase

```

832
833
834
835     class ZombieAggroMovement:
836         def __init__(self):
837             """Initialize with configurable parameters."""
838             pass # No specific parameters are needed for this observed law.
839
840         def precondition(self, current_state: WorldState, action: str) -> bool:
841             """Return True if this law should apply to the given state and action."""
842             # This law applies if there are any ZombieState entities within the
843             # player's
844             # update range, as their movement is an autonomous process.
845             zombies_in_range = current_state.get_object_of_type_in_update_range(
846                 ZombieState)
847             return len(zombies_in_range) > 0
848
849         def effect(self, current_state: WorldState, action: str) -> None:
850             """Apply the law by modifying the world state."""
851             player_pos = current_state.player.position
852
853             # Retrieve all ZombieState objects that are within the update range.
854             # This implicitly filters for zombies close enough to be active/
855             # observable.
856             zombies_to_update = current_state.get_object_of_type_in_update_range(
857                 ZombieState)
858
859             for zombie in zombies_to_update:
860                 # Calculate the differences in coordinates between the player and the
861                 # zombie.
862                 dx = player_pos.x - zombie.position.x
863                 dy = player_pos.y - zombie.position.y
864
865                 # Initialize new positions to current positions (no movement by
866                 # default)
867                 new_x = zombie.position.x
868                 new_y = zombie.position.y
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

```

```

864
865
866     # Prioritize movement along the X-axis
867     if dx != 0:
868         # Move one step towards the player along the X-axis.
869         new_x = zombie.position.x + (1 if dx > 0 else -1)
870     elif dy != 0:
871         # If X-axis is already aligned, move one step towards the player
872         # along the Y-axis.
873         new_y = zombie.position.y + (1 if dy > 0 else -1)
874
875     # Update the zombie's position in the state using
876     # DiscreteDistribution.
877     zombie.position.x = DiscreteDistribution(support=[new_x])
878     zombie.position.y = DiscreteDistribution(support=[new_y])
879
880
881

```

Box B.4| Skeleton Movement

```

881 class SkeletonRandomMovementLaw:
882     def __init__(self):
883         """Initialize with configurable parameters."""
884         pass
885
886     def precondition(self, current_state: WorldState, action: str) -> bool:
887         """Return True if this law should apply to the given state and action."""
888         # This law applies generally to all skeletons, independent of player
889         # action for movement
890         return True
891
892     def effect(self, current_state: WorldState, action: str) -> None:
893         """Apply the law by modifying the world state."""
894         skeletons = [obj for obj in current_state.objects if isinstance(obj,
895             SkeletonState)]
896
897         for skeleton in skeletons:
898             current_x = skeleton.position.x
899             current_y = skeleton.position.y
900
901             # Possible next X positions: current_x, current_x + 1, current_x - 1
902             skeleton.position.x = DiscreteDistribution(support=[
903                 current_x,
904                 current_x + 1,
905                 current_x - 1
906             ])
907             # Possible next Y positions: current_y, current_y + 1, current_y - 1
908             skeleton.position.y = DiscreteDistribution(support=[
909                 current_y,
910                 current_y + 1,
911                 current_y - 1
912             ])
913
914
915

```

Box B.5| Health Regeneration Law

```

912 class PlayerInventoryHealthRegeneration:
913     def __init__(self, max_health: int = 20, recover_threshold: float = 1.0):
914         """Initialize with configurable parameters for health regeneration."""
915         self.max_health = max_health
916         self.recover_threshold = recover_threshold
917
918
919

```

```

918
919     7     def precondition(self, current_state: WorldState, action: str) -> bool:
920     8         """
921     9             Return True if the player's inventory health should regenerate.
922    10             This law applies if the player is not at max health, has sufficient
923    11             recover points, and is not sleeping.
924    12             """
925    13         player = current_state.player
926    14
927    15             # Check if player's current inventory health is less than the defined
928    16             # maximum
929    17             has_space_for_health = player.inventory.health < self.max_health
930    18
931    19             # Check if player has sufficient recover points to enable regeneration
932    20             has_recover_points = player.recover >= self.recover_threshold
933    21
934    22             # Check if the player is not currently sleeping
935    23             not_sleeping = not player.sleeping
936    24
937    25             # This is a passive regeneration effect, so the specific action taken (e.
938    26             # g., "Move North")
939    27             # is not a direct precondition, but the effect occurs during the state
940    28             # transition.
941    29             return has_space_for_health and has_recover_points and not_sleeping
942    30
943    31
944    32     def effect(self, current_state: WorldState, action: str) -> None:
945    33         """
946
947
948     Box B.6| Skeleton Idle
949
950
951     1     class SkeletonIdleLaw:
952     2         def __init__(self):
953     3             """Initialize with configurable parameters."""
954     4             pass
955     5
956     6         def precondition(self, current_state: WorldState, action: str) -> bool:
957     7             """Return True if this law should apply to the given state and action."""
958     8             # This law applies if there are any skeletons in the world that aren't
959     9             # otherwise engaged.
960    10             # Since no changes were observed, we assume this is their default passive
961    11             # behavior.
962    12             return True # Applies universally as a default behavior for skeletons
963
964
965     1     def effect(self, current_state: WorldState, action: str) -> None:
966     2             """Apply the law by modifying the world state."""
967     3             for skeleton in current_state.get_object_of_type_in_update_range(
968     4                 SkeletonState):
969     5                 # Based on observation, skeletons remain unchanged.
970     6                 # We predict their attributes will stay the same.
971     7                 skeleton.health = DiscreteDistribution(support=[skeleton.health])
972     8                 skeleton.position.x = DiscreteDistribution(support=[skeleton.position
973     9                     .x])
974    10                 skeleton.position.y = DiscreteDistribution(support=[skeleton.position
975    11                     .y])
976    12                 skeleton.reload = DiscreteDistribution(support=[skeleton.reload])

```

Box B.6| Skeleton Idle

```

948
949
950
951     1     class SkeletonIdleLaw:
952     2         def __init__(self):
953     3             """Initialize with configurable parameters."""
954     4             pass
955     5
956     6         def precondition(self, current_state: WorldState, action: str) -> bool:
957     7             """Return True if this law should apply to the given state and action."""
958     8             # This law applies if there are any skeletons in the world that aren't
959     9             # otherwise engaged.
960    10             # Since no changes were observed, we assume this is their default passive
961    11             # behavior.
962    12             return True # Applies universally as a default behavior for skeletons
963
964
965     1     def effect(self, current_state: WorldState, action: str) -> None:
966     2             """Apply the law by modifying the world state."""
967     3             for skeleton in current_state.get_object_of_type_in_update_range(
968     4                 SkeletonState):
969     5                 # Based on observation, skeletons remain unchanged.
970     6                 # We predict their attributes will stay the same.
971     7                 skeleton.health = DiscreteDistribution(support=[skeleton.health])
972     8                 skeleton.position.x = DiscreteDistribution(support=[skeleton.position
973     9                     .x])
974    10                 skeleton.position.y = DiscreteDistribution(support=[skeleton.position
975    11                     .y])
976    12                 skeleton.reload = DiscreteDistribution(support=[skeleton.reload])

```

972 C THE CRAFTER-OO ENVIRONMENT
973974 This appendix details Crafter-OO, our reimplementations of the Crafter environment that exposes
975 a structured, object-oriented symbolic state and operates through a pure transition function. We
976 developed Crafter-OO as a testbed for symbolic world modeling approaches in a complex, stochastic
977 domain.978
979 Table 3: The discrete action space of Crafter-OO. The action space is identical to the original Crafter
980 benchmark (Hafner, 2022).

981 Category	982 Actions
983 Movement	984 move_left, move_right, move_up, move_down
985 Interaction	986 do, sleep, noop
987 Placement	988 place_stone, place_table, place_furnace, place_plant
Crafting	make_wood_pickaxe, make_stone_pickaxe, make_iron_pickaxe make_wood_sword, make_stone_sword, make_iron_sword

991 C.1 MOTIVATION AND DESIGN PRINCIPLES
992993 Symbolic world modeling benefits from environments where the complete state is accessible as a
994 structured representation. Simple grid worlds provide this but lack complexity, while more complex
995 environments typically require additional engineering to expose their internal state. More funda-
996 mentally, existing testbeds for symbolic world modeling have focused on environments that are
997 either deterministic or have limited stochasticity and a narrow range of mechanics. Atari games, for
998 instance, while complex in visual processing demands, have relatively predictable dynamics and a
999 constrained set of interactions compared to open-world environments.1000 We developed Crafter-OO to address this gap. The environment features significant stochasticity in
1001 entity behaviors, diverse mechanics spanning resource collection to combat, and multi-step causal
1002 chains. Our design follows three principles:1003 1. **Explicit Object-Oriented State:** The entire game state is captured in a single, hierarchical data
1004 model that serves as input and output for world models.
1005 2. **Functional Purity:** The environment’s dynamics are exposed as a pure transition function,
1006 $T(state, action) \rightarrow next_state$, with no hidden variables.
1007 3. **Programmatic Modification:** The state representation can be precisely manipulated with code,
1008 enabling controlled experimental setups.1009
1010 C.2 THE WorldState DATA MODEL1011 The core of Crafter-OO is the WorldState data model, which captures the environment at a single
1012 timestep. This model is defined using Pydantic for structure and validation. Its components include:1013
1014 • player: A PlayerState object containing position, inventory, health, and current action.
1015 • objects: A list of non-player entities (CowState, ZombieState, PlantState, etc.) with type
1016 discrimination via a name field.
1017 • materials: A 2D array representing the terrain map.
1018 • **Global Properties:** World-level attributes including daylight, size, and serialized random state.1019 Listing 1 shows the structure of this model. This representation provides the interface between the
1020 environment and symbolic world models.1021
1022 1 from typing import TypeAlias, Literal
1023 2
1024 3 # --- Basic Data Structures ---
1025 4
1026 5 class Position:
1027 6 """Represents a 2D position (x, y) in the game world."""

```

1026    7     x: int
1027    8     y: int
1028    9
1029  10 class Inventory:
1030  11     """Represents the player's inventory counts for each item type."""
1031  12     health: int
1032  13     food: int
1033  14     drink: int
1034  15     energy: int
1035  16     sapling: int
1036  17     wood: int
1037  18     stone: int
1038  19     coal: int
1039  20     iron: int
1040  21     diamond: int
1041  22     wood_pickaxe: int
1042  23     stone_pickaxe: int
1043  24     iron_pickaxe: int
1044  25     wood_sword: int
1045  26     stone_sword: int
1046  27     iron_sword: int
1047  28
1048  29 class Achievements:
1049  30     """Represents the player's unlocked achievements."""
1050  31     collect_coal: int
1051  32     collect_diamond: int
1052  33     collect_drink: int
1053  34     collect_iron: int
1054  35     collect_sapling: int
1055  36     collect_stone: int
1056  37     collect_wood: int
1057  38     defeat_skeleton: int
1058  39     defeat_zombie: int
1059  40     eat_cow: int
1060  41     eat_plant: int
1061  42     make_iron_pickaxe: int
1062  43     make_iron_sword: int
1063  44     make_stone_pickaxe: int
1064  45     make_stone_sword: int
1065  46     make_wood_pickaxe: int
1066  47     make_wood_sword: int
1067  48     place_furnace: int
1068  49     place_plant: int
1069  50     place_stone: int
1070  51     place_table: int
1071  52     wake_up: int
1072  53
1073  54
1074  55 # --- Game World Entities ---
1075  56
1076  57 class BaseObject:
1077  58     """The base class for all dynamic objects in the game world."""
1078  59     entity_id: int
1079  60     position: Position
1080  61     health: int
1081  62     removed: bool
1082  63
1083  64 class Player(BaseObject):
1084  65     """The state of the player character."""
1085  66     name: Literal["player"] = "player"
1086  67     facing: Position
1087  68     action: str
1088  69     sleeping: bool
1089  70     inventory: Inventory
1090  71     achievements: Achievements

```

```

1080    72     thirst: float
1081    73     hunger: float
1082    74     fatigue: float
1083    75     recover: float
1084    76     last_health: int
1085    77
1086    78 class Cow(BaseObject):
1087    79     """The state of a cow."""
1088    80     name: Literal["cow"] = "cow"
1089    81
1090    82 class Zombie(BaseObject):
1091    83     """The state of a zombie."""
1092    84     name: Literal["zombie"] = "zombie"
1093    85     cooldown: int
1094    86
1095    87 class Skeleton(BaseObject):
1096    88     """The state of a skeleton."""
1097    89     name: Literal["skeleton"] = "skeleton"
1098    90     reload: int
1099    91
1100    92 class Arrow(BaseObject):
1101    93     """The state of an arrow projectile."""
1102    94     name: Literal["arrow"] = "arrow"
1103    95     facing: Position
1104    96
1105    97 class Plant(BaseObject):
1106    98     """The state of a plant, which can be eaten."""
1107    99     name: Literal["plant"] = "plant"
1108   100     grown: int
1109   101     ripe: bool
1110   102
1111   103 class Fence(BaseObject):
1112   104     """The state of a fence object."""
1113   105     name: Literal["fence"] = "fence"
1114   106
1115   107 # A union of all possible entity types in the world.
1116   108 Entity: TypeAlias = Player | Cow | Zombie | Skeleton | Arrow | Plant | Fence
1117   109
1118   110
1119   111 # --- World and Spatial Structures ---
1120   112
1121   113 MaterialT: TypeAlias = str
1122   114
1123   115 class Chunk:
1124   116     """Represents a spatial region of the world for efficient updates."""
1125   117     chunk_key: tuple[int, int, int, int]
1126   118     object_ids: list[int]
1127   119
1128   120 class WorldState:
1129   121     """Represents the complete, hierarchical state of the game world at a single
1130   122     timestep."""
1131   123     # World dimensions and configuration
1132   124     size: tuple[int, int]
1133   125     chunk_size: tuple[int, int]
1134   126     view: tuple[int, int]
1135   127
1136   128     # World status
1137   129     daylight: float
1138   130     step_count: int
1139   131
1140   132     # The grid of static materials (e.g., grass, stone, water)
1141   133     materials: list[list[MaterialT | None]]
1142   134
1143   135     # A list of all dynamic entities currently in the world.
1144   136     objects: list[Entity]

```

```
1134 136
1135 137
1136 138
1137 139
1138 140
1139 141
1140 142
1141 143
1142 144
1143 145
1144 146
# A direct reference to the player object for easy access.
player: Player
# Spatial partitioning data.
chunks: list[Chunk]
# Internal simulation state
entity_id_counter_state: int
serialized_random_state: str
event_bus: list[str]
```

Listing 1: Simplified structure of the `WorldState` data structure.

C.3 EXTRACTING STATE FROM CRAFTER'S GAME ENGINE

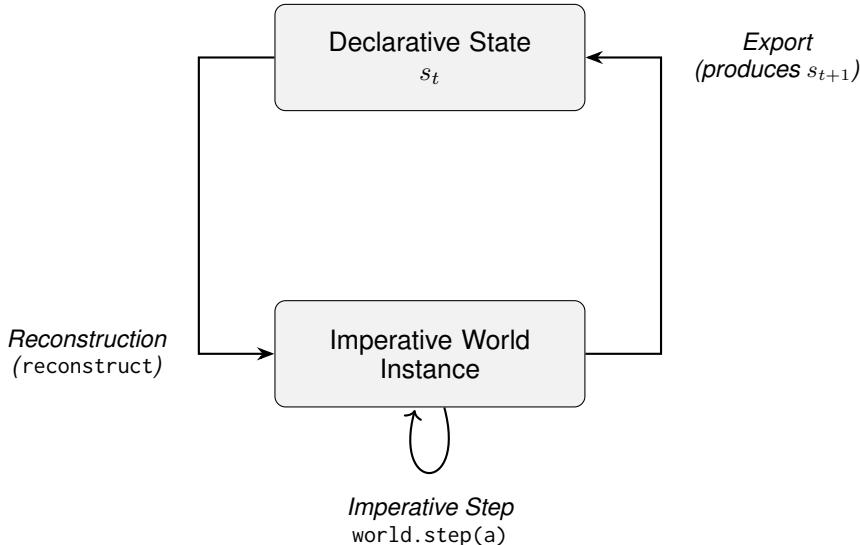


Figure 6: The functional cycle for state transition. A declarative state snapshot is reconstructed into a live, imperative world instance. The engine simulates a single step, and the resulting world is exported back into a new declarative state snapshot for the next timestep. This ensures we match Crafter’s mechanics exactly.

The simulation state in the original engine is not a single data structure but is distributed across a graph of live Python objects, each with its own internal state and complex inter-dependencies, such as non-player characters holding direct references to the player object. Furthermore, the engine's behavior relies on implicit state, including the internal state of its pseudo-random number generator, which governs all stochastic events. Achieving a pure functional interface required developing a robust mechanism to first serialize this entire, complex state into a self-contained, declarative representation and then perfectly reconstruct the live object graph from that representation for each step of the simulation.

The state export process transforms the live simulation into a serializable snapshot. This procedure performs a deep traversal of the game engine's internal state, capturing all information required to reproduce the exact game moment. This includes the grid of world materials, the positions of all entities, and the type-specific attributes of each entity, such as a zombie's attack cooldown or a plant's growth progress. Crucially, the process also serializes the state of the engine's pseudo-random number generator, ensuring that the sequence of random numbers for subsequent stochastic events is preserved. To maintain the spatial partitioning data used for efficient queries, the set of entities within each world chunk is recorded by storing their unique identifiers. The final output is a complete, declarative data structure that represents the world at a single point in time, free from any live object references or other runtime-specific information.

1188 State reconstruction reverses this process, rebuilding the live simulation from the declarative snapshot.
 1189 This is more complex than simply loading data. It involves re-instantiating the entire graph
 1190 of game objects and correctly re-establishing their inter-dependencies. A key complexity arises
 1191 from object relationships; for instance, hostile entities require a direct reference to the live player
 1192 object to guide their behavior. To resolve this, we employ a multi-pass reconstruction algorithm.
 1193 First, entities with no external dependencies, such as the player, are instantiated. Then, dependent
 1194 entities are instantiated in a second pass, receiving references to the already-created objects they
 1195 require. Once all objects are created, the spatial partitioning system is rebuilt by mapping the stored
 1196 entity identifiers back to the newly created live object instances. Finally, the serialized state of
 1197 the pseudo-random number generator is loaded, ensuring that the reconstructed world will produce
 1198 the exact same stochastic outcomes as the original. The overall process is described in Box 1 and
 1199 illustrated in Figure 1.

1200 **Box C.1| Pseudocode for the Functional Transition Cycle**

```

1201
1202 function FunctionalTransition(declarative_state_t, action_t):
1203     // 1. Reconstruct the imperative world from the declarative state snapshot.
1204     world_instance <- ReconstructWorldFromState(declarative_state_t)
1205
1206     // 2. Emulate a single step in the imperative engine.
1207     player <- FindPlayerObject(world_instance)
1208     ApplyActionToPlayer(player, action_t)
1209     for object in world_instance.get_all_objects():
1210         object.update()
1211
1212     // 3. Export the new world state into a declarative representation.
1213     declarative_state_t+1 <- ExportStateFromWorld(world_instance)
1214
1215     return declarative_state_t+1
1216
1217 function ExportStateFromWorld(world_instance):
1218     snapshot <- new DeclarativeState
1219     snapshot.materials <- CopyGrid(world_instance.material_grid)
1220     snapshot.rng_state <- Serialize(world_instance.random_generator)
1221     for object in world_instance.get_all_objects():
1222         AddObjectState(snapshot, object.type, object.attributes, object.id)
1223     return snapshot
1224
1225 function ReconstructWorldFromState(snapshot):
1226     world_instance <- new ImperativeWorld
1227     world_instance.material_grid <- CopyGrid(snapshot.materials)
1228     world_instance.random_generator <- Deserialize(snapshot.rng_state)
1229
1230     // Multi-pass object instantiation to handle dependencies.
1231     player_state <- FindPlayerStateInSnapshot(snapshot)
1232     player_object <- InstantiateObject(
1233         player_state.type, player_state.attributes
1234     )
1235     AddObjectToWorld(world_instance, player_object)
1236
1237     for object_state in snapshot.get_all_object_states():
1238         if not is_player(object_state):
1239             // Pass player reference to dependent objects (e.g., Zombie).
1240             dependencies <- {player: player_object}
1241             new_object <- InstantiateObject(
1242                 object_state.type, object_state.attributes, dependencies
1243             )
1244             AddObjectToWorld(world_instance, new_object)
  
```

```

1242
1243     RebuildSpatialIndex(world_instance)
1244     return world_instance
1245
1246

```

C.4 THE FUNCTIONAL ENVIRONMENT INTERFACE

We provide a transition function that implements a stateless API for environment steps:

1. Input: `WorldState` object s_t
2. Reconstruct live game engine instance
3. Execute single update tick with given action
4. Export resulting state as s_{t+1}
5. Return new `WorldState` object

This ensures every transition is a pure function of the explicit state, making the environment suitable for symbolic reasoning and program synthesis.

C.5 UTILITIES FOR PROGRAMMATIC STATE INTERACTION

A key contribution of Crafter-OO is a rich set of utilities that enable programmatic interaction with the world state. These functions are essential for two purposes: first, they allow for the precise, reproducible setup of the evaluation scenarios discussed in Section E; second, they provide a high-level API that simplifies the authoring of programmatic world model laws. To provide a clear overview of this toolkit, Table 4 catalogues the key functions, which are grouped into three main categories: World Setup, Player State, and High-Level State Queries & Modifications.

Table 4: A catalogue of key utilities for programmatic state manipulation in Crafter-OO. These functions provide the building blocks for creating controlled experimental scenarios and for writing concise, high-level world model laws.

Category	Function Signature (Simplified)	Description
World Setup Utilities	<code>set_tile_material(pos, material)</code> <code>add_object_to_world(cls, pos, ...)</code> <code>remove_object_from_world(obj)</code> <code>set_daylight(level)</code>	Modifies the terrain at a specific coordinate (e.g., changes grass to stone). Adds an entity instance (e.g., a Cow or Zombie) to the world. Removes a specific entity instance from the world. Sets the global daylight level, affecting visibility and mob spawning.
Player State Utilities	<code>set_player_position(pos)</code> <code>set_player_facing(direction)</code> <code>set_player_inventory.item(item, qty)</code> <code>set_player_internal_stat(stat, val)</code>	Sets the player's exact (x, y) coordinates. Sets the player's facing direction (e.g., up, down, left, right). Sets the quantity of a specific item in the player's inventory. Adjusts internal player stats like health, hunger, or energy.
High-Level State Queries & Modifications	<code>get_target_tile()</code> <code>get_object_of.type.in.update_range(cls)</code> <code>move_object(obj, dir, walkable)</code> <code>set_facing_material(material)</code>	Returns the material and any object at the tile the player is facing. Returns all entities of a specific type near the player. Moves an entity one step if the target tile is valid and unoccupied. Changes the material of the tile the player is facing.

These utilities are composed to construct the specific initial conditions for our evaluation scenarios. Listing 2 demonstrates how they work in concert to create a test case for a resource collection mechanic. World setup utilities are first used to clear an area and place a specific resource (coal). Then, player state utilities are used to position the player correctly and provide the necessary tool (wood_pickaxe) in their inventory. This level of programmatic control, enabled by the functions detailed in Table 4, is what makes our targeted evaluation methodology possible.

```

1 def get_initial_state_for_coal_collection():
2     # Create a base world and get references to the world and player objects
3     world = reconstruct_world_from_state(initial_state())
4     player = find_player(world)
5
6     # --- World Setup Utilities ---
7     # Clear a 3x3 area around the player to be grass
8     for x in range(4, 7):
9         for y in range(4, 7):
10             world_utils.set_tile_material(world, (x, y), "grass")
11
12     # Place the target resource in a specific location
13     world_utils.set_tile_material(world, (6, 5), "coal")

```

```

1296 14
1297 15     # --- Player State Utilities ---
1298 16     # Set the player's starting position
1299 17     player_utils.set_player_position(player, (5, 5))
1300 18
1301 19     # Make the player face the target resource
1302 20     player_utils.set_player_facing(player, (1, 0))
1303 21
1304 22     # Add the required tool to the player's inventory
1305 23     player_utils.set_player_inventory_item(player, "wood_pickaxe", 1)
1306 24
1307 25     # Convert the configured world back to a serializable WorldState
1308 26     return export_world_state(world, view=(9, 9))
1309
1310
1311 D  MUTATORS
1312
1313 Mutators are a core component of our evaluation framework, designed to test a world model's ability
1314 to distinguish between plausible and implausible future states, as described in Sec. 4. A mutator is
1315 a deterministic function that takes a state-action pair  $(s_t, a_t)$  and produces an alternative, incorrect
1316 next state  $\tilde{s}_{t+1}$ . These generated states, called distractors, represent violations of the environment's
1317 true dynamics. For example, a distractor might show the agent crafting an item without the necessary
1318 resources or moving through a solid obstacle.
1319
1320 By creating a candidate set containing the true next state  $s_{t+1}$  and several such distractors  $\{\tilde{s}_{t+1}\}$ ,
1321 we construct a discriminative task for the world model. A model with a robust understanding of the
1322 environment's laws should assign a significantly higher probability to the true outcome than to any
1323 of the distractors. This allows us to quantitatively measure the model's predictive judgment using
1324 the state ranking metrics from Sec. 4.
1325
1326 All mutators adhere to a common interface, shown in Listing 3. Each mutator implements a 'precon-
1327 dition' method that checks if the mutation is applicable to a given state and action. If the precondition
1328 is met, the 'effect' method is called to generate the mutated state. This design allows for the cre-
1329 ation of targeted mutators that only apply under specific circumstances, leading to more subtle and
1330 challenging distractors.
1331
1332 class Mutator:
1333     """A protocol for functions that generate distractor states."""
1334
1335     def precondition(self, state: WorldState, action: Action) -> bool:
1336         """
1337             Returns True if the mutator can be applied to the given
1338             state-action pair, False otherwise.
1339         """
1340
1341     ...
1342
1343     def __call__(self, state: WorldState, action: Action) -> WorldState:
1344         """
1345             Applies a mutation to a copy of the state and returns the
1346             modified state, representing an illegal transition outcome.
1347         """
1348
1349 ...

```

Listing 2: Example of programmatic state manipulation to create an initial state for a scenario. World setup utilities create the environment, while player state utilities configure the agent.

D MUTATORS

Mutators are a core component of our evaluation framework, designed to test a world model's ability to distinguish between plausible and implausible future states, as described in Sec. 4. A mutator is a deterministic function that takes a state-action pair (s_t, a_t) and produces an alternative, incorrect next state \tilde{s}_{t+1} . These generated states, called distractors, represent violations of the environment's true dynamics. For example, a distractor might show the agent crafting an item without the necessary resources or moving through a solid obstacle.

By creating a candidate set containing the true next state s_{t+1} and several such distractors $\{\tilde{s}_{t+1}\}$, we construct a discriminative task for the world model. A model with a robust understanding of the environment's laws should assign a significantly higher probability to the true outcome than to any of the distractors. This allows us to quantitatively measure the model's predictive judgment using the state ranking metrics from Sec. 4.

All mutators adhere to a common interface, shown in Listing 3. Each mutator implements a 'precondition' method that checks if the mutation is applicable to a given state and action. If the precondition is met, the 'effect' method is called to generate the mutated state. This design allows for the creation of targeted mutators that only apply under specific circumstances, leading to more subtle and challenging distractors.

```

1 class Mutator:
2     """A protocol for functions that generate distractor states."""
3
4     def precondition(self, state: WorldState, action: Action) -> bool:
5         """
6             Returns True if the mutator can be applied to the given
7             state-action pair, False otherwise.
8         """
9
10
11     def __call__(self, state: WorldState, action: Action) -> WorldState:
12         """
13             Applies a mutation to a copy of the state and returns the
14             modified state, representing an illegal transition outcome.
15         """
16
17 ...

```

Listing 3: The general interface for a mutator. Each mutator is a callable object with a method to check for applicability.

We have implemented a suite of mutators for the Crafter-OO environment, categorized by the type of game mechanic they target. Tab. 5 provides a comprehensive list of these mutators and the specific rule violations they introduce.

Below we provide detailed descriptions and simplified implementations for three representative mutators from different categories.

1350
1351

Table 5: Catalogue of mutators implemented for the Crafter-OO environment.

Category	Mutator Name	Description of Rule Violation
Physics	IllegalMovementMutator	Causes the player to move when a non-movement action is taken.
	EntityPositionMutator	Teleports non-player entities to random distant locations.
Combat	PlayerHealthMutator	Arbitrarily adds or subtracts a small amount of health from the player.
	EntityHealthMutator	Sets the health of non-player entities to a random, incorrect value.
Crafting	CraftIllegalItemMutator	Produces a different item than the one specified by the crafting action.
Collection	CollectIllegalMaterialMutator	Adds an incorrect resource to the player's inventory when collecting.
Placement	PlaceIllegalItemMutator	Places a different object or tile than the one specified by the action.
Player State	InventoryMutator	Randomizes all quantities in the player's inventory.

1361

1362

1363 **ILLEGAL MOVEMENT MUTATOR**

1364

This mutator tests the model's understanding of which actions cause player movement. It activates when the agent takes an action that should not result in a change of position, such as noop or do. The effect is to move the player one step in a random direction, creating a state that would be valid for a movement action but is invalid for the action actually taken. Listing 4 shows its logic.

```

1 NON_MOVEMENT_ACTIONS = {"noop", "do", "sleep", "make_wood_pickaxe", ...}
2 DIRECTIONS = [(0, 1), (1, 0), (0, -1), (-1, 0)]
3
4 class IllegalMovementMutator:
5     def precondition(self, state: WorldState, action: Action) -> bool:
6         # This mutator applies only to actions that should not cause movement.
7         return action in NON_MOVEMENT_ACTIONS
8
9     def __call__(self, state: WorldState, action: Action) -> WorldState:
10        mutated_state = state.model_copy(deep=True)
11
12        # Choose a random direction and update the player's position.
13        random_direction = random.choice(DIRECTIONS)
14        mutated_state.player.position.x += random_direction[0]
15        mutated_state.player.position.y += random_direction[1]
16
17        return mutated_state

```

1383

Listing 4: Simplified logic for the IllegalMovementMutator.

1384

1385

1386 **CRAFT ILLEGAL ITEM MUTATOR**

1387

This mutator targets the logic of crafting recipes. It checks if the agent is attempting to craft an item. If so, it alters the outcome by giving the player a different, randomly selected craftable item. This tests whether the world model has correctly associated specific crafting actions with their unique outcomes. For example, if the action is make_wood_pickaxe, this mutator might instead add a stone_sword to the player's inventory. Listing 5 illustrates this process.

```

1 CRAFTING_ACTIONS = {"make_wood_pickaxe", "make_stone_sword", ...}
2
3 class CraftIllegalItemMutator:
4     def precondition(self, state: WorldState, action: Action) -> bool:
5         # This mutator applies only to crafting actions.
6         return action in CRAFTING_ACTIONS
7
8     def __call__(self, state: WorldState, action: Action) -> WorldState:
9        mutated_state = state.model_copy(deep=True)
10
11        # Select a different crafting action to determine the illegal outcome.
12        other_crafting_actions = CRAFTING_ACTIONS - {action}
13        illegal_action = random.choice(list(other_crafting_actions))
14

```

```

1404      # Add the item corresponding to the illegal action to the inventory.
1405      if illegal_action == "make_stone_sword":
1406          mutated_state.player.inventory.stone_sword += 1
1407          # ... logic for other craftable items
1408
1409      return mutated_state

```

Listing 5: Simplified logic for the CraftIllegalItemMutator.

ENTITY HEALTH MUTATOR

This mutator introduces arbitrary changes to the health of non-player characters (NPCs), violating the rules of combat, regeneration, and damage. It is an “always on” mutator, meaning its precondition is always true, as health can be a dynamic property in any state. Its effect is to iterate through all non-player entities and set their health to a random value that is not close to their current health. This prevents generating trivial changes that might occur naturally (e.g., from regeneration) and creates a more distinctively incorrect state. Listing 6 shows the implementation.

```

1 class EntityHealthMutator:
2     def precondition(self, state: WorldState, action: Action) -> bool:
3         # This mutator is always applicable.
4         return True
5
6     def __call__(self, state: WorldState, action: Action) -> WorldState:
7         mutated_state = state.model_copy(deep=True)
8
9         for entity in mutated_state.objects:
10             # Skip the player entity.
11             if entity.entity_id == mutated_state.player.entity_id:
12                 continue
13
14             # Generate a new health value that is not the same as the current
15             # health, nor immediately adjacent to it.
16             possible_health_values = set(range(11)) # Health is 0-10
17             excluded_values = {entity.health, entity.health - 1, entity.health + 1}
18             valid_new_values = list(possible_health_values - excluded_values)
19
20             if valid_new_values:
21                 entity.health = random.choice(valid_new_values)
22
23         return mutated_state

```

Listing 6: Simplified logic for the EntityHealthMutator.

E SCENARIOS

An evaluation framework that relies on data from unguided exploration may not sufficiently cover all of an environment’s mechanics, especially those that are rare or require specific preconditions. To ensure a comprehensive and targeted assessment of a world model’s understanding, we generate evaluation data from a suite of **scenarios**. Each scenario is a short, programmatic interaction sequence designed to isolate and test a single game mechanic under controlled conditions. This approach produces a dataset of transitions that robustly covers the environment’s dynamics, from basic resource collection to complex combat encounters. The transitions generated by these scenarios form the basis for the evaluation metrics described in Sec. 4.

E.1 SCENARIO STRUCTURE AND EXECUTION

A scenario is defined by a common programmatic interface, as outlined in listing 7. It specifies an initial state, a scripted policy to guide the agent’s actions, and a termination condition based on either achieving a specific goal or reaching a maximum number of steps. The execution of a

1458 scenario, shown in listing 8, produces a sequence of (state, action, next_state) transitions
 1459 that serve as ground truth test cases for the world model.
 1460

```

1461 1 class Scenario:
1462 2     @property
1463 3         def name(self) -> str: ...
1464 4
1465 5     def get_initial_state(self) ->
1466 6         WorldState: ...
1467 7
1468 8     def policy(self, state: WorldState) ->
1469 9         Action: ...
1470 10
1471 11     def goal_test(self, transitions: list)
1472 12         -> bool: ...
1473 13
1474 14     @property
1475 15         def max_steps(self) -> int: ...
1476 16
  1 def run_scenario(scenario):
  2     transitions = []
  3     state = scenario.get_initial_state()
  4     for _ in range(scenario.max_steps):
  5         action = scenario.policy(state)
  6         next_state = env.transition(state, action)
  7         transitions.append((state, action, next_state))
  8         state = next_state
  9         if scenario.goal_test(transitions):
 10             :
 11             break
 12     return transitions

```

Listing 7: Structure of an evaluation scenario.

Listing 8: Execution loop for generating transitions.

E.2 IMPLEMENTED SCENARIOS

We developed over 40 scenarios for Crafter-OO, covering every core game mechanic present in the original Crafter environment. These scenarios are categorized by the type of mechanic they test, as detailed in Tab. 6. For many mechanics, we include both a "successful" and an "unsuccessful" variant. The successful version sets up the preconditions for an action to succeed (e.g., having enough resources to craft an item), while the unsuccessful version deliberately violates a precondition. This allows us to test whether a world model understands not only what should happen, but also what should *not* happen.

F EVALUATION IMPLEMENTATION DETAILS

This section provides a procedural specification of our evaluation framework. We begin by defining a general-purpose interface that any world model must satisfy to be evaluated. We then detail the computational steps that transform the raw outputs of a model satisfying this interface into the final State Fidelity and State Ranking metrics presented in Sec. 4. The process relies on the evaluation trajectories generated from Scenarios (Sec. E) and the distractor states generated by Mutators (Sec. D).

Our evaluation framework is designed to be model-agnostic. Any world model can be benchmarked, provided it adheres to the simple, two-method interface shown in listing 9. This interface cleanly separates the two core capabilities required for our metrics: the ability to generate a likely future state (for fidelity) and the ability to score a given future state (for ranking).

```

1498 1 class EvaluatableWorldModel(Protocol):
1499 2     """A protocol for world models that can be evaluated by our framework."""
1500 3
1501 4     def sample_next_state(self, current_state: WorldState, action: Action) -> WorldState
1502 5         :
1503 6             """
1504 7                 Generative function: Samples a single predicted next state  $s_{\hat{t}+1}$ 
1505 8                 from the model's posterior distribution  $P(s_{\hat{t}+1} | s_t, a_t)$ .
1506 9             """
1507 10
1508 11     def evaluate_log_probability(
1509 12         self, state: WorldState, action: Action, next_state: WorldState
1510 13     ) -> float:
1511 14         """
1512 15                 Discriminative function: Computes the log-probability of a specific
1513 16                 next_state given the current state and action.

```

1512 Table 6: Complete list of evaluation scenarios used to test world models in Crafter-OO.
1513

1514 Category	1515 Scenario Name	1516 Description
1517 Movement	1518 <code>random_movement</code>	1519 Tests basic player movement in the cardinal directions.
1520	1521 <code>collect_wood</code>	1522 Player faces a tree and collects wood.
1523	1524 <code>collect_drink</code>	1525 Player faces water and collects it.
1526	1527 <code>collect_stone</code>	1528 Player collects stone with the required pickaxe.
1529	1530 <code>unsuccessful_collect_stone</code>	1531 Player attempts to collect stone without the required pickaxe.
1532	1533 <code>collect_coal</code>	1534 Player collects coal with the required pickaxe.
1535	1536 <code>unsuccessful_collect_coal</code>	1537 Player collects coal with the required pickaxe.
1538	1539 <code>collect_iron</code>	1540 Player collects iron with the required pickaxe.
1540	1541 <code>unsuccessful_collect_iron</code>	1542 Player attempts to collect iron without the required pickaxe.
1542	1543 <code>collect_diamond</code>	1544 Player collects diamond with the required pickaxe.
1543	1545 <code>unsuccessful_collect_diamond</code>	1546 Player attempts to collect diamond without the required pickaxe.
1545	1547 <code>eat_plant</code>	1548 Player eats a ripe plant to gain food.
1547	1549 <code>unsuccessful_eat_plant</code>	1550 Player attempts to eat an unripe plant.
1549	1551 Crafting	1552
1552	1553 <code>craft_wooden_pickaxe</code>	1554 Player crafts a wooden pickaxe with sufficient wood.
1554	1555 <code>unsuccessful_craft_wooden_pickaxe</code>	1556 Player attempts to craft without sufficient wood.
1556	1557 <code>craft_wooden_sword</code>	1558 Player crafts a wooden sword with sufficient wood.
1558	1559 <code>unsuccessful_craft_wooden_sword</code>	1560 Player attempts to craft without sufficient wood.
1560	1561 <code>craft_stone_pickaxe</code>	1562 Player crafts a stone pickaxe with required resources.
1561	1563 <code>unsuccessful_craft_stone_pickaxe</code>	1564 Player attempts to craft without required resources.
1563	1565 <code>craft_stone_sword</code>	1566 Player crafts a stone sword with required resources.
1565	1567 <code>unsuccessful_craft_stone_sword</code>	1568 Player attempts to craft without required resources.
1567	1569 <code>craft_iron_pickaxe</code>	1570 Player crafts an iron pickaxe with required resources.
1569	1571 <code>unsuccessful_craft_iron_pickaxe</code>	1572 Player attempts to craft without required resources.
1571	1573 <code>craft_iron_sword</code>	1574 Player crafts an iron sword with required resources.
1573	1575 <code>unsuccessful_craft_iron_sword</code>	1576 Player attempts to craft without required resources.
1575	1577 Placement	1578
1577	1579 <code>place_table</code>	1580 Player places a crafting table with sufficient wood.
1579	1581 <code>unsuccessful_place_table</code>	1582 Player attempts to place a table without sufficient wood.
1581	1583 <code>place_stone</code>	1584 Player places stone with sufficient inventory.
1583	1585 <code>unsuccessful_place_stone</code>	1586 Player attempts to place stone without sufficient inventory.
1585	1587 <code>place_furnace</code>	1588 Player places a furnace with sufficient stone.
1587	1589 <code>unsuccessful_place_furnace</code>	1590 Player attempts to place a furnace without sufficient stone.
1589	1591 <code>place_plant</code>	1592 Player places a sapling on a grass tile.
1591	1593 <code>unsuccessful_place_plant</code>	1594 Player attempts to place a sapling without one in inventory.
1593	1595 Combat	1596
1595	1597 <code>zombie_defeat</code>	1598 Player, equipped with a sword, defeats a zombie.
1597	1599 <code>defeat_skeleton</code>	1600 Player defeats a skeleton.
1600	1602 <code>eat_cow</code>	1603 Player defeats a cow to obtain food.
1602	1604 <code>player_death</code>	1605 Player with low health is defeated by a zombie.
1604	1606 NPC Behavior	1607
1606	1608 <code>cow_movement</code>	1609 Tests the stochastic movement of a cow over several steps.
1608	1610 <code>wake_up</code>	1611 Player goes to sleep and wakes up after their energy is restored.

1547 17 Listing 9: The interface any world model must implement to be compatible with our evaluation
1548 18 framework.
1549
15501552

F.1 STATE COMPARISON VIA CANONICAL REPRESENTATION

1555 All metrics that involve comparing two world states, such as edit distance or checking for equality,
1556 require a deterministic and canonical representation of the state. A direct object-to-object comparison
1557 can be unreliable due to factors like in-memory object identifiers or the ordering of elements in
1558 lists. To address this, we serialize each `WorldState` object to a canonical JSON format before any
1559 comparison is performed. This process, outlined in listing 10, ensures that two states are considered
1560 identical if and only if they represent the same game-world configuration.

```
1  def to_canonical_json(state: WorldState) -> dict:
2      """
3          Serializes a WorldState object to a deterministic JSON representation.
4      """
5
6      # 1. Exclude non-semantic or non-deterministic fields from serialization.
7      excluded_fields = {"event_bus", "serialized_random_state"}
8      serialized_state = state.model_dump(exclude=excluded_fields, mode="json")
```

```

1566 8
1567 9
1568 10
1569 11
1570 12
1571 13
1572 14
1573 15
1574 16
1575 17
1576 18
1577 19
1578 20
1579
1580
1581
1582
1583
1584 20
1585
1586
1587
1588
1589
1590
1591
1592 1 def calculate_state_fidelity(world_model, s_t, a_t, s_t_plus_1):
1593 2     """
1594 3     Computes Raw and Normalized Edit Distance for a world model's prediction.
1595 4     """
1596 5     # 1. Generate a predicted next state from the world model.
1597 6     s_hat_t_plus_1 = world_model.sample_next_state(s_t, a_t)
1598 7
1599 8     # 2. Convert both true and predicted next states to canonical JSON.
1600 9     json_true = to_canonical_json(s_t_plus_1)
1601 10    json_predicted = to_canonical_json(s_hat_t_plus_1)
1602 11
1603 12    # 3. Compute the JSON Patch from the predicted state to the true state.
1604 13    patch = jsonpatch.make_patch(json_predicted, json_true)
1605 14
1606 15    # 4. Raw Edit Distance is the number of operations in the patch.
1607 16    raw_edit_distance = len(list(patch))
1608 17
1609 18    # 5. Normalized Edit Distance is the raw distance divided by the total number
1610 19    # of elements in the true state, providing a scale-invariant measure.
1611 20    total_elements = count_elements(json_true)
1612 21    normalized_edit_distance = raw_edit_distance / total_elements if total_elements > 0
1613 22    else 0
1614 23
1615
1616
1617
1618
1619

```

Listing 10: Canonical serialization of a WorldState object.

F.2 STATE FIDELITY METRIC CALCULATION

The state fidelity metrics measure the difference between a world model’s predicted next state and the ground truth. We use JSON Patch (Bryan & Nottingham, 2013), a standard for describing changes in a JSON document, to provide a precise, interpretable measure of this difference. The calculation for a single transition (s_t, a_t, s_{t+1}) proceeds as described in listing 11.

```

1592 1 def calculate_state_fidelity(world_model, s_t, a_t, s_t_plus_1):
1593 2     """
1594 3     Computes Raw and Normalized Edit Distance for a world model's prediction.
1595 4     """
1596 5     # 1. Generate a predicted next state from the world model.
1597 6     s_hat_t_plus_1 = world_model.sample_next_state(s_t, a_t)
1598 7
1599 8     # 2. Convert both true and predicted next states to canonical JSON.
1600 9     json_true = to_canonical_json(s_t_plus_1)
1601 10    json_predicted = to_canonical_json(s_hat_t_plus_1)
1602 11
1603 12    # 3. Compute the JSON Patch from the predicted state to the true state.
1604 13    patch = jsonpatch.make_patch(json_predicted, json_true)
1605 14
1606 15    # 4. Raw Edit Distance is the number of operations in the patch.
1607 16    raw_edit_distance = len(list(patch))
1608 17
1609 18    # 5. Normalized Edit Distance is the raw distance divided by the total number
1610 19    # of elements in the true state, providing a scale-invariant measure.
1611 20    total_elements = count_elements(json_true)
1612 21    normalized_edit_distance = raw_edit_distance / total_elements if total_elements > 0
1613 22    else 0
1614 23
1615
1616
1617
1618
1619

```

Listing 11: Calculation of State Fidelity metrics for a single transition.

Example. Consider a transition where the player, at position $(x = 5, y = 5)$ with $health = 9$, takes the action `move_right`. The true next state, s_{t+1} , has the player at $(x = 6, y = 5)$ with $health = 9$. Suppose a world model predicts a state, \hat{s}_{t+1} , where the player correctly moves to $(x = 6, y = 5)$ but their health incorrectly drops to 8.

1620 The simplified canonical JSON representations for the player object in each state would be:
 1621

```

1 {  

2   "player": {  

3     "position": {"x": 6, "y": 5},  

4     "health": 9  

5   }  

6 }
```

1627 Listing 12: Canonical JSON for the true next
 1628 state.
 1629

1630 The JSON Patch required to transform the predicted JSON into the true JSON is a single replace
 1631 operation: `[{"op": "replace", "path": "/player/health", "value": 9}]`.
 1632 The Raw Edit Distance is the number of operations in this patch, which is 1. The Normalized Edit
 1633 Distance would be this value divided by the total number of elements in the true state's full JSON
 1634 representation.

1635 F.3 STATE RANKING METRIC CALCULATION

1638 State ranking metrics evaluate a model's ability to distinguish the true outcome of an action from a
 1639 set of plausible but incorrect alternatives. This process involves generating a set of candidate states
 1640 and using the world model to score them, as detailed in listing 14.

```

1 def calculate_state_ranking(world_model, s_t, a_t, s_t_plus_1, mutators, num_distractors  

2   ):  

3   """  

4     Computes Rank@1 and Mean Reciprocal Rank for a world model.  

5   """  

6   # 1. Generate a set of distractor states using the mutator bank.  

7   distractors = []  

8   applicable_mutators = [m for m in mutators if m.precondition(s_t, a_t)]  

9   random.shuffle(applicable_mutators) # Ensure variety in distractors  

10  for mutator in applicable_mutators:  

11    if len(distractors) >= num_distractors:  

12      break  

13    distractors.append(mutator(s_t, a_t))  

14  

15  # 2. Form the candidate set, including the ground truth and distractors.  

16  candidate_set = [s_t_plus_1] + distractors  

17  random.shuffle(candidate_set) # Avoid biasing models that may be sensitive to order  

18  

19  # 3. Score each candidate state using the world model's log-probability function.  

20  scores = []  

21  for s_candidate in candidate_set:  

22    log_prob = world_model.evaluate_log_probability(s_t, a_t, s_candidate)  

23    scores.append(log_prob)  

24  

25  # 4. Determine the rank of the true next state.  

26  # Ranks are 1-indexed, with rank 1 being the highest score.  

27  ranked_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)  

28  true_state_index = candidate_set.index(s_t_plus_1)  

29  rank_of_true_state = ranked_indices.index(true_state_index) + 1  

30  

31  # 5. Calculate metrics from the rank.  

32  rank_at_1 = 1.0 if rank_of_true_state == 1 else 0.0  

33  reciprocal_rank = 1.0 / rank_of_true_state  

34  

35  return rank_at_1, reciprocal_rank
```

1671 Listing 14: Calculation of State Ranking metrics for a single transition.
 1672

1673 **Example.** Continuing the previous example, the true state s_{t+1} is the player moving right. A
 1674 mutator might generate a distractor state $s_{\text{distractor}}$ where the player illegally teleports to $(x = 20, y =$

1674 20). The candidate set becomes $\{s_{t+1}, s_{\text{distractor}}\}$. A good world model should assign a much higher
 1675 probability to the true outcome. For instance, it might yield log-probabilities of $\log p(s_{t+1} | \dots) =$
 1676 -0.7 and $\log p(s_{\text{distractor}} | \dots) = -15.4$. Since $-0.7 > -15.4$, the true state is ranked first. This
 1677 yields a Rank@1 of 1.0 and a Mean Reciprocal Rank of $1/1 = 1.0$ for this transition.

F.4 AGGREGATION ACROSS SCENARIOS

The final metrics reported in Tab. 1 are aggregated from the per-transition results. To ensure that each distinct game mechanic contributes equally to the final score, we employ a two-level aggregation strategy. First, we compute the mean metric values across all transitions within a single scenario. Second, we compute the final reported metric by taking the mean of these per-scenario means. This prevents scenarios with more transitions (e.g., a long movement sequence) from dominating the overall results compared to scenarios with fewer, more critical transitions (e.g., a single crafting action). listing 15 formalizes this entire pipeline.

```
1688 1 def evaluate_world_model(world_model, scenarios, mutators, config):
1689 2     """
1690 3     Runs the full evaluation pipeline and returns aggregated metrics.
1691 4     """
1692 5     per_scenario_metrics = {}
1693 6
1694 7     # 1. Evaluate each scenario independently.
1695 8     for scenario in scenarios:
1696 9         transitions = run_scenario(scenario) # See Sec. C.1 for run_scenario
1697 10
1698 11         scenario_results = []
1699 12         for (s_t, a_t, s_t_plus_1) in transitions:
1700 13             # Calculate metrics for each transition in the scenario.
1701 14             r_at_1, mrr = calculate_state_ranking(
1702 15                 world_model, s_t, a_t, s_t_plus_1, mutators, config.num_distractors
1703 16             )
1704 17             raw_ed, norm_ed = calculate_state_fidelity(
1705 18                 world_model, s_t, a_t, s_t_plus_1
1706 19             )
1707 20             scenario_results.append({
1708 21                 "R@1": r_at_1, "MRR": mrr,
1709 22                 "RawEditDist": raw_ed, "NormEditDist": norm_ed
1710 23             })
1711 24
1712 25         # 2. First level of aggregation: average metrics within the scenario.
1713 26         if not scenario_results: continue
1714 27         per_scenario_metrics[scenario.name] = {
1715 28             key: sum(res[key] for res in scenario_results) / len(scenario_results)
1716 29             for key in scenario_results[0]
1717 30         }
1718 31
1719 32         # 3. Second level of aggregation: average the per-scenario means.
1720 33         final_metrics = {
1721 34             key: sum(metrics[key] for metrics in per_scenario_metrics.values()) / len(
1722 35             per_scenario_metrics)
1723 36             for key in list(per_scenario_metrics.values())[0]
1724 37         }
1725 38
1726 39         return final_metrics
```

Listing 15: Overall evaluation pipeline and metric aggregation.

G SYNTHESIS AND EXPLORATION IMPLEMENTATION DETAILS

1726 The process of generating candidate world laws is divided into two main stages: unguided exploration to collect a dataset of interactions, and law synthesis to propose programmatic laws from that dataset.
1727

1728
1729

G.1 EXPLORATION POLICY

1730 To gather the interaction dataset $\mathcal{D} = \{(s_t, a_t, s_{t+1})\}_{t=1}^N$, we employ an autonomous exploration
 1731 policy driven by a large language model. This policy operates without access to environment-
 1732 specific rewards or human-provided goals. Instead, it is given a high-level instruction to explore
 1733 the environment and discover as many of its underlying mechanics as possible, treating the task as
 1734 a reverse-engineering problem. The full prompt provided to the exploration policy is detailed in
 1735 box G.1.

1736
1737

Box G.1| Exploration Policy Prompt

1738

1 You are an explorer in an unknown digital world. Your mission is to experience as
 2 many of the world's hidden mechanics as possible. Your recorded experiences
 3 will be analyzed later to create a complete map of the world's physical
 4 laws.

5 The laws of any world can be thought of as IF-THEN hypotheses: `IF (a specific
 6 situation occurs) AND (you take an ACTION), THEN (a certain outcome happens)
 7 .`

8 To succeed, you must trigger as many different `IF-THEN` scenarios as you can.

9 **What to Expect in the World:**

10 This world is complex and may be dangerous.

11 - **Hostile Entities:** You may encounter creatures that are hostile and will
 12 attack you.

13 - **Resource Collection:** The world contains raw materials that can be gathered,
 14 though there may be preconditions for collection.

15 - **Item Production:** You have the ability to craft useful items from raw
 16 materials, though there may be preconditions for production.

17 - **Combat:** You can engage in combat with the entities you encounter.

18 Your primary goal is to discover the rules governing these activities.

19 You will need to explore the game world by moving around and interacting with the
 20 entities and materials in the world.

21 If an action has no effect, you may not have fulfilled the preconditions for the
 22 action to have an effect.

23 Try out a variety of actions from each category: movement, interaction, placement
 24 , production.

25 If an action seems to have no effect, you may not have fulfilled the
 26 preconditions for the action to have an effect.

27 Try to acquire additional resources or change something about the world and try
 28 again.

29 Before taking actions, set goals for yourself in an IF-THEN format, and let the
 30 results invalidate those actions.

31 If an entity is hostile, you can attempt to defend yourself from it.

32 If an entity seems passive or beneficial, you can attempt to interact with it.

33 You will likely need to progress through the "tech tree" of the game in a
 34 specific order.

35 This will require interleaving resource collection with placement of crafting
 36 stations and production of better tools.

37 In the meantime, you will need to survive hostile enemies and find ways to heal
 38 from damage you've taken.

39 Some resources likely cannot be acquired without first producing a tool to
 40 acquire them.

41 Tools may require a mix of materials and crafting stations to produce.

42 The following are the only valid actions you can take:

43 {action_strings}.

44 You will now receive observations from the world. Begin your exploration.

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782 This LLM-based policy is crucial for gathering sufficiently diverse data in a hostile environment
 1783 like Crafter-OO. A purely random policy survives for an average of 100 steps before the agent per-
 1784 ishes. In contrast, our LLM-based policy navigates the environment for an average of 400 steps.
 1785 Despite this improvement, exploration remains a significant bottleneck. The policy often struggles
 1786 to progress through the environment’s technology tree, frequently failing to discover the necessary
 1787 preconditions for crafting advanced items. It also exhibits a tendency to forget previously learned
 1788 information, which prevents it from effectively building upon past successes within a single trajec-
 1789 tory.

1790

1791 G.2 LAW SYNTHESIS FROM TRAJECTORIES

1792

1793 The law synthesis pipeline processes the trajectory data from the exploration phase to generate a
 1794 set of candidate laws $\{L_i\}$. The core idea is to identify state transitions where meaningful changes
 1795 occur, and then prompt a large language model to propose atomic, programmatic laws that explain
 1796 those specific changes. This process is outlined in Algorithm 17.

1797

1798 **Change Detection for Tractable Synthesis.** In an environment with a complex, structured
 1799 state like Crafter-OO, changes between timesteps are often sparse and localized to specific sub-
 1800 components. To make law synthesis tractable, we first isolate these localized changes to provide a
 1801 focused context for the synthesizer. This is achieved through a set of detectors that monitor different
 1802 **aspects** of the world state. An aspect is a semantically-cohesive subset of the state, typically corre-
 1803 sponding to a top-level attribute (e.g., ‘player.inventory’) or a collection of entities of the same type
 1804 (e.g., all ‘ZombieState’ objects). For each transition (s_t, a_t, s_{t+1}) , we check for changes across all
 1805 aspects. If a detector identifies a change, a synthesis task is created for that specific transition and
 1806 aspect.

```

1  class ChangeDetector:
2      def aspect_name(self) -> str: ...
3      def has_changes(self, s_t: WorldState, s_t_plus_1: WorldState) -> bool: ...
4
5  class PlayerInventoryChangeDetector(ChangeDetector):
6      def aspect_name(self): return "player_inventory"
7      def has_changes(self, s_t, s_t_plus_1):
8          return s_t.player.inventory != s_t_plus_1.player.inventory
9
10 class ZombieStateChangeDetector(ChangeDetector):
11     def aspect_name(self): return "zombies"
12     def has_changes(self, s_t, s_t_plus_1):
13         # Logic to compare zombie states between s_t and s_t_plus_1
14         ...
15
16 # A list of all detectors is used to check each transition
17 ALL_DETECTORS = [
18     PlayerInventoryChangeDetector(),
19     ZombieStateChangeDetector(),
20     ... # Other detectors for map tiles, cows, etc.
21 ]
```

1823

1824 Listing 16: Simplified change detection logic. Each detector checks for changes in a specific part of
 1825 the world state between s_t and s_{t+1} .

1826

1827 This decomposition is not a form of environment-specific guidance but rather a generic mechanism
 1828 derived directly from the structure of the state representation itself. The Crafter-OO environment
 1829 exposes an object-oriented state, defined by a schema of classes and attributes. Our change
 1830 detectors mirror this schema, creating one detector for each top-level attribute and for each object
 1831 type. This approach provides a structural inductive bias—that the environment’s causal mechanisms
 1832 are likely aligned with its object-oriented structure—without embedding knowledge of the environ-
 1833 ment’s actual dynamics. The process could be fully automated for any environment that exposes a
 1834 typed, structured state; the detectors can be generated programmatically by reflecting on the state
 1835 schema. This is analogous to how a computer vision model might process distinct objects in a scene
 1836 separately; we partition the state space based on its given structure, but the rules governing the
 1837 interactions between these partitions must still be learned from scratch.

1836 **Prompt Generation.** For each transition-aspect pair that triggers a synthesis task, we generate a
 1837 detailed prompt for the LLM. The goal is to provide all necessary context for the model to infer the
 1838 underlying game mechanic. The prompt contains several key components:
 1839

1. The initial state s_t and resulting state s_{t+1} , serialized to a structured format (JSON).
2. The action a_t that caused the transition.
3. A textual ‘diff’ that highlights the exact changes between s_t and s_{t+1} .
4. A human-readable 2D ASCII rendering of the local environment around the player for both states, providing spatial context.
5. The name of the aspect (e.g., “player.inventory”) that changed, which instructs the LLM to focus its analysis.

1840 This structured presentation of the transition allows the LLM to ground its reasoning in the specific,
 1841 observed changes. The full prompt template is provided in box G.2.
 1842

1843
 1844 **Box G.2| Synthesis Prompt**
 1845

```
1846
1847
1848
1849
1850
1851
1852 1 ## Role
1853 2 You are a **World Law Synthesizer** - an expert at analyzing game state
1854 3 transitions and extracting the underlying rules that govern virtual worlds.
1855 4 Your job is to observe how actions transform game states and codify these
1856 5 transformations into precise, executable laws that can model game mechanics,
1857 6 as well as try to model aspects of the underlying transition dynamics as
1858 7 functions.
1859
1860 8 ## Task Description
1861 9 Given a world state, an action taken, an aspect of the state we are interested in
1862 10 modeling, and the resulting next world state (plus a diff highlighting the
1863 11 changes), you must:
1864 12 - Identify how the aspect of the state we are interested in modeling changed
1865 13 between the observations
1866 14 - Determine the underlying rules or laws that caused these changes
1867 15 - Implement these laws as executable Python code using the provided WorldState
1868 16 interface and DiscreteDistribution for predictions
1869
1870 17 **IMPORTANT: You should write MULTIPLE laws when you observe multiple distinct
1871 18 changes.** Each law you write should be modular, minimalistic, focused on a
1872 19 single game mechanic, and capable of being combined with other laws to model
1873 20 complex game behavior.
1874
1875 21 In particular, you should strive to write laws that are responsible for as little
1876 22 of the state as possible. In any given transition, you may see many changes
1877 23 . Each of these changes could be caused by a different law. Think about what
1878 24 changes could be grouped together into a single law, and write separate
1879 25 laws for different types of changes.
1880
1881 26 - Break up the laws to each account for a single precondition and effect. For
1882 27 example, if an entity moves, write a law for the movement of entities of
1883 28 that type. If a player takes a particular action, write a law for that
1884 29 action specifically.
1885 30 - Certain attributes cannot have a `DiscreteDistribution` applied to them. For
1886 31 example, the `materials` field should just be modified directly, not wrapped
1887 32 in a `DiscreteDistribution`. Alternatively, use `set_material` or ``
1888 33 set_facing_material` to modify the materials field. Either way, they cannot
1889 34 be wrapped in a `DiscreteDistribution`.
```

```

1890
1891 19 ## Aspect of the State
1892 20 You will be given an aspect of the state we are interested in modeling. The laws
1893 21 you write should be focused on modeling changes to this aspect of the state.
1894 22 However, you can use _all_ of the state to help you write the laws, as the aspect
1895 23 of the state may be influenced by other aspects of the state.
1896 24 For example, if told to focus on Zombies, you should write laws that govern the
1897 25 behavior of Zombies. This behavior may be influenced by other parts of the
1898 26 state such as the player's actions or position.
1899 27 If told to focus on the player, you should write laws that model how the player's
1900 28 state changes. Again, these effects may be influenced by the entities that
1901 29 the player is interacting with.
1902 30
1903 31 ## Guidelines for Writing Laws
1904 32 - Some laws may be dependent on an action being taken, or a particular state of
1905 33 the world, while others may always apply. For these, the precondition can
1906 34 always be 'True'.
1907 35 - Make use of 'adjacent_to_player' and 'get_target_tile' to help you write laws
1908 36 about interactions between the player and other entities.
1909 37 - Do NOT use 'entity_id' when writing laws. You should instead write laws that
1910 38 apply to a type of entity, e.g. 'ZombieState' or 'CowState'.
1911 39 - When modifying attributes, use RELATIVE assignments rather than absolute
1912 40 assignments. For example, instead of changing a entity's position via
1913 41 'entity.position.x = DiscreteDistribution(support=[7])', use 'entity.position
1914 42 .x = DiscreteDistribution(support=[entity.position.x + delta])'. The only
1915 43 exception to this is when modifying the materials field.
1916 44 - Use the helper functions 'get_object_of_type_in_update_range', and 'get_objects_in_update_range' rather than writing your own iteration logic.
1917 45 - You DO NOT need to use the 'entity_id' attribute. Use 'get_target_tile' to get
1918 46 the tile or entity targeted by the player. Use 'adjacent_to_player' to check
1919 47 if an entity is adjacent to the player for interactions between the player
1920 48 and other entities.
1921 49 - Consider writing laws that make "soft" predictions. For example, if you see an
1922 50 entity moving but are unsure if it is a general principle, you can assign a
1923 51 discrete distribution to the entity's position to represent your uncertainty
1924 52 . Example: 'entity.position.x = DiscreteDistribution(support=[entity.
1925 53 position.x + delta_a, entity.position.x - delta_b, ...])'.
1926 54 - You can speculatively pose laws, but these should go last. Speculative laws are
1927 55 those that were not directly observed in the transition, but those that you
1928 56 believe might exist. For example, given that you have identified a law
1929 57 about a certain crafting recipe, you can speculatively pose a law about
1930 58 _other_ crafting recipes that you believe might exist.
1931 59
1932 60
1933 61
1934 62 ## Formatting Instructions
1935 63 Structure your response exactly as follows. **You can write multiple laws by
1936 64 repeating the pattern below for each law:**
```

```

1937
1938 40 ````xml
1939 41 <keyChanges>
1940 42 List the specific, concrete changes that occurred between the observations:
1941 43 - What entities appeared, disappeared, or moved
1942 44 - What stats/values changed and by how much
1943 45 - What items were added/removed from inventory
1944 46 - Any other measurable state differences
1945 </keyChanges>
1946 <naturalLanguageLaw>
1947 49 Write a clear, concise description of the game rule that explains these changes:
1948 50 - What triggers this law (the preconditions)
1949 51 - What the law does (the effects/transformations)
1950 52 - Any important parameters or variations
1951 53 - Give the law a descriptive name
1952 </naturalLanguageLaw>
```

```

1944
1945 <lawCode>
1946 ````python
1947 class YourLawNameHere:
1948     def __init__(self, param1: type = default_value, param2: type = default_value
1949     ):
1950         """Initialize with configurable parameters."""
1951         self.param1 = param1
1952         self.param2 = param2
1953         # Add any lookup tables or constants here
1954
1955     def precondition(self, current_state: WorldState, action: str) -> bool:
1956         """Return True if this law should apply to the given state and action."""
1957         # Implement your precondition logic here
1958         # Check action type, entity presence, player state, etc.
1959         return False # Replace with actual logic
1960
1961     def effect(self, current_state: WorldState, action: str) -> None:
1962         """Apply the law by modifying the world state."""
1963         # Implement the state transformation here
1964         # Modify entities, player stats, inventory, etc.
1965         # Use DiscreteDistribution(support=[value]) to set deterministic
1966         # predictions
1967         # Example: current_state.player.health = DiscreteDistribution(support=[new_health])
1968         pass # Replace with actual implementation
1969     ````
```

1970 </lawCode>

1971 <keyChanges>

1972 [Changes for second law...]

1973 </keyChanges>

1974 <naturalLanguageLaw>

1975 [Description of second law...]

1976 </naturalLanguageLaw>

1977 <lawCode>

1978 ````python

1979 class YourSecondLawNameHere:

1980 # [Implementation of second law...]

1981 ````

1982 </lawCode>

1983 </lawCode>

1984 <!-- Critical Formatting Notes -->

1985 - **Write multiple laws when you observe multiple distinct changes** - each law should focus on a single type of change

1986 - Use exactly these XML-style tags: `<keyChanges>`, `<naturalLanguageLaw>`, `<lawCode>`

1987 - Close each tag properly: `</keyChanges>`, `</naturalLanguageLaw>`, `</lawCode>`

1988 - Put all Python code inside triple backticks within the `<lawCode>` section

1989 - Be precise and specific in the key changes - use exact numbers and entity names from the observations

1990 - Make the natural language law description clear enough that another programmer could implement it independently

1991 - Only output the code for the law, not the entire file. Assume the `WorldState` class as well as its components are already defined.

1992 - Format your response well, with newlines between the tags and code blocks.

1993 - **Each law should be completely self-contained** - repeat the full XML structure for each law you write.

1994 ## WorldState

1995 The world state is a Pydantic model that represents the complete game world state

1996 . The world laws you write will operate on this state.

1997

```

1998
1999 108  ```python
2000 109  {{ world_state_schema }}
2001 110  ``-
2002 111
2003 112 # World Laws
2004 113 Each world law must conform to the following interface:
2005 114
2006 115  ```python
2007 116  class WorldLaw:
2008 117      def precondition(self, current_state: WorldState, action: str) -> bool:
2009 118          """Return True if this law should apply to the given state and action."""
2010 119          ...
2011 120
2012 121      def effect(self, current_state: WorldState, action: str) -> None:
2013 122          """Apply the law by modifying the world state."""
2014 123          # Use DiscreteDistribution(support=[value]) to set deterministic
2015 124          # predictions
2016 125          # Example: current_state.player.health = DiscreteDistribution(support=[new_health])
2017 126          ...
2018 127 You may add any additional fields or methods to the class as needed.
2019 128
2020 129 ## DiscreteDistribution Usage
2021 130 When modifying state values in your law's `effect` method, you must wrap the new
2022 131 values with `DiscreteDistribution`:
2023 132  ```python
2024 133 # For deterministic predictions:
2025 134 current_state.some.value = DiscreteDistribution(support=[new_health])
2026 135
2027 136 # For stochastic predictions (if needed):
2028 137 current_state.some_value = DiscreteDistribution(support=[value1, value2, value3])
2029 138 ``-
2030 139
2031 140 The `DiscreteDistribution` class represents probabilistic predictions over
2032 141 discrete values. For deterministic laws, you typically provide a single
2033 142 value in the support list. For stochastic laws, you provide multiple values
2034 143 in the support list to represent the possible outcomes.
2035 144
2036 145 # Your Turn
2037 146 ## Aspect of the State
2038 147 Focus on modeling changes to the following aspect of the state:
2039 148 {{ aspect_of_state }}
2040 149 ## Focused Changes for {{ aspect_of_state }}
2041 150 {{ aspect_changes }}
2042 151
2043 152 ## View Legend
2044 153 {{ view_legend }}
2045 154
2046 155 ## State
2047 156  ```json
2048 157 {{ state }}
2049 158 ``-
2050 159 ### Local View
2051 160  ``-
2052 161 {{ local_view }}
2053 162 ``-

```

```

2052
2053
2054 163
2055 164 ## Action
2056 165 The action taken was: "{{ action }}"
2057

```

2058 **Law Generation and Parsing.** The generated prompt is sent to an LLM, which is instructed to
 2059 return one or more atomic laws that explain the observed changes for the specified aspect. An atomic
 2060 law is a simple, modular rule focused on a single game mechanic. The LLM’s response is formatted
 2061 using XML-style tags to clearly delineate the key components of each proposed law.

2062 The expected format for a single law is:

```

2063
2064 <keyChanges>...</keyChanges>
2065 <naturalLanguageLaw>...</naturalLanguageLaw>
2066 <lawCode>
2067   ```python
2068   class LawName:
2069       def precondition(self, state, action): ...
2070       def effect(self, state, action): ...
2071   </lawCode>
2072

```

2073 We parse this semi-structured text to extract the natural language description and the executable
 2074 Python code for each proposed law. This is done by searching for the corresponding tags and
 2075 extracting their content. The Python code is then loaded as a candidate law for the subsequent
 2076 parameter inference stage.

```

2077
2078 1 def synthesize_laws_from_trajectory(trajectory: list[Transition]) -> list[Law]:
2079 2     candidate_laws = []
2080
2081 4     # Iterate over all transitions from the exploration data
2082 5     for transition in trajectory:
2083 6         s_t, action, s_t_plus_1 = transition
2084
2085 8         # 1. Detect which aspects of the state have changed
2086 9         changed_aspects = []
2087 10        for detector in ALL_DETECTORS:
2088 11            if detector.has_changes(s_t, s_t_plus_1):
2089 12                changed_aspects.append(detector.aspect_name())
2090
2091 14        # 2. For each detected change, generate laws
2092 15        for aspect in changed_aspects:
2093 16            # 2a. Render a detailed prompt for the LLM
2094 17            prompt = render_synthesis_prompt(
2095 18                state=s_t,
2096 19                action=action,
2097 20                next_state=s_t_plus_1,
2098 21                aspect_of_state=aspect
2099 22            )
2100
2101 24            # 2b. Query the LLM to synthesize laws
2102 25            llm_response_text = call_llm(prompt)
2103
2104 27            # 2c. Parse the response to extract structured laws
2105 28            parsed_laws = parse_laws_from_response(llm_response_text)
2106 29            candidate_laws.extend(parsed_laws)
2107
2108 31        return candidate_laws

```

Listing 17: High-level overview of the law synthesis pipeline.


```

2160
2161
2162     # Sub-plan 2: Defeat enemies
2163     state = defeat_zombies_plan(state, transition_fn, zombie_ids)
2164
2165     return state
2166
2167

```

H PROBABILISTIC MODELING OF PURE FUNCTIONS

In this section, we clarify the distinction between the environment’s pure functional interface and the choice to learn a probabilistic world model.

We use the term “pure function” in the formal computer science sense (referential transparency and absence of side effects) (Backus, 1978), following the design patterns of modern JAX-based environments like Brax (Freeman et al., 2021) and Craftax (Matthews et al., 2024). In Crafter-OO, the transition function explicitly takes the entire state (including the PRNG state and all entity attributes) as input. This ensures referential transparency, since calling the function with the same inputs guarantees the exact same output, whereas a standard environment would diverge due to hidden state mutations.

```

1 # Standard "Impure" Environment
2 # Hidden state (e.g., rng, cooldowns) mutates inside env
3 obs1 = env.step(action)
4 obs2 = env.step(action)
5 # Result: obs1 != obs2 (The hidden state changed between calls)
6
7 # Crafter-OO "Pure" Function
8 # All state is explicit; no side effects
9 s1, rng1 = transition(state, action, rng)
10 s2, rng2 = transition(state, action, rng)
11 # Result: s1 == s2 (Identical inputs guarantee identical outputs)

```

Listing 18: Comparison of impure vs. pure environment interfaces.

Although the transition function is pure, meaning a deterministic world model is *theoretically* possible if the agent could perfectly model the evolution of the global PRNG state, such a model is difficult to learn in practice. It requires overfitting to the simulator’s serial execution order, which is undesirable for several reasons.

PRNG Scheduling. In a simulation with a shared global PRNG, the exact next state depends on the order in which the RNG is consumed. For example, if the simulator updates `zombie_a` then `zombie_b`, the RNG stream advances differently than if the update order were swapped. To learn a deterministic model, the agent would have to perfectly replicate the simulator’s internal scheduling logic rather than what is commonly understood as a “law of the environment.”

Micro vs. Macroscopic Physics. We motivate this using the distinction in statistical mechanics between micro-state trajectories and macroscopic laws. While the motion of every gas molecule in classical physics is theoretically deterministic given precise initial conditions (the “micro-state”), attempting to model these trajectories is intractable and brittle, analogous to overfitting the simulator’s execution trace. Instead, we aim to discover robust “macroscopic” physical laws (e.g., “zombies move randomly but chase the player when closer than 5 units”), which requires modeling the distribution of outcomes to capture the valid aleatoric uncertainty.

Effect on Hypothesis Verification. This distinction determines how we validate our understanding of the world. Validating a deterministic model requires verifying the microscopic trajectory, since the predicted attribute value must exactly match the observed value. This is brittle; a law that is correct (carries out the same computations as the true transition function) may be rejected simply because the specific observed path of the RNG led to a different outcome than predicted. In contrast, a probabilistic formulation allows us to validate macroscopic laws. By evaluating the likelihood of

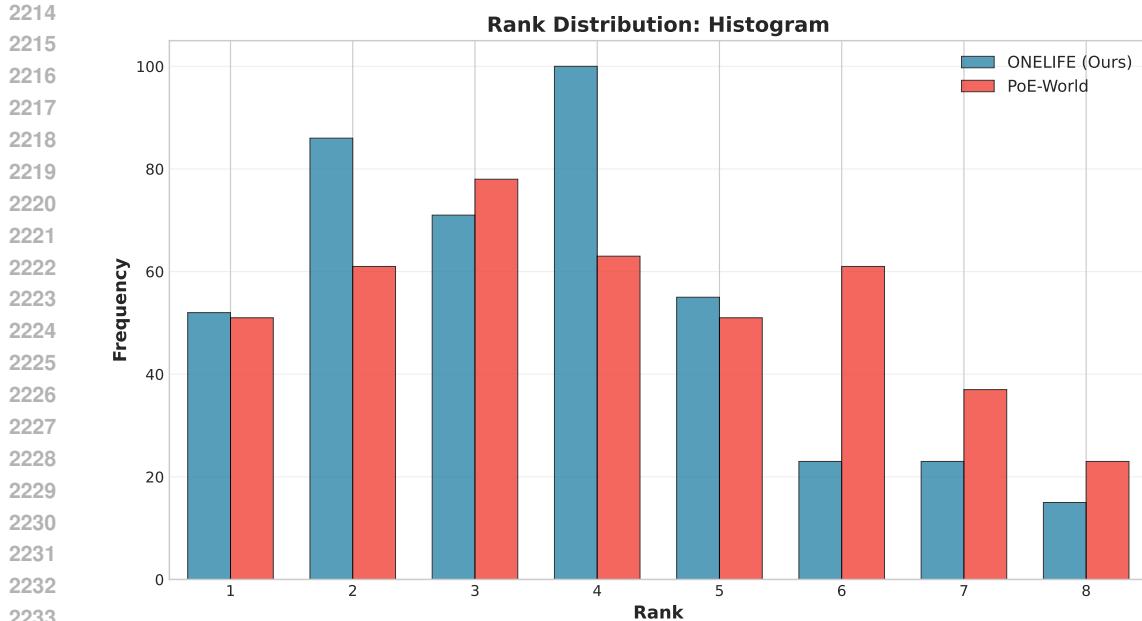


Figure 7: Distribution of raw ranks assigned by PoE-World vs ONELIFE’s world models in our evaluation. Generally, ONELIFE’s world model is better at assigning a high rank to the ground truth state.

the observation under the predicted distribution, we can confirm that a law is distributionally correct without requiring the prediction to match the specific, arbitrary path of the simulator’s RNG.

I BASELINES

- **Random World Model:** A model that assigns a uniform probability to all candidate states in the discriminative task. Its performance is equivalent to random guessing and serves as a sanity check for discriminative accuracy.
- **WorldCoder (Tang et al., 2024):** A model-based agent that synthesizes a Python program for the transition function using an LLM. It employs an iterative refinement strategy, prompting the LLM to debug the code when it contradicts observed data. Crucially, WorldCoder assumes the environment is deterministic; we include it to evaluate how well a monolithic, deterministic program synthesis approach copes with the stochastic dynamics of Crafter-OO.
- **PoE-World (Piryakulkij et al., 2025):** A state-of-the-art symbolic world model that scaled symbolic world modeling to domains like Atari. Both PoE-World and ONELIFE represent the transition function as a weighted product of programs, though the structure of the programs and inference algorithms differ. Because PoE-World’s law synthesis component is Atari-specific and relies on online interaction using human-provided goals, we reimplement this baseline with our exploration policy and law synthesizer, noting that this makes it a stronger baseline (without these changes, PoE-World’s Atari-specific implementation would be fundamentally incompatible with Crafter’s state).

J VISUALIZING RANK DISTRIBUTIONS

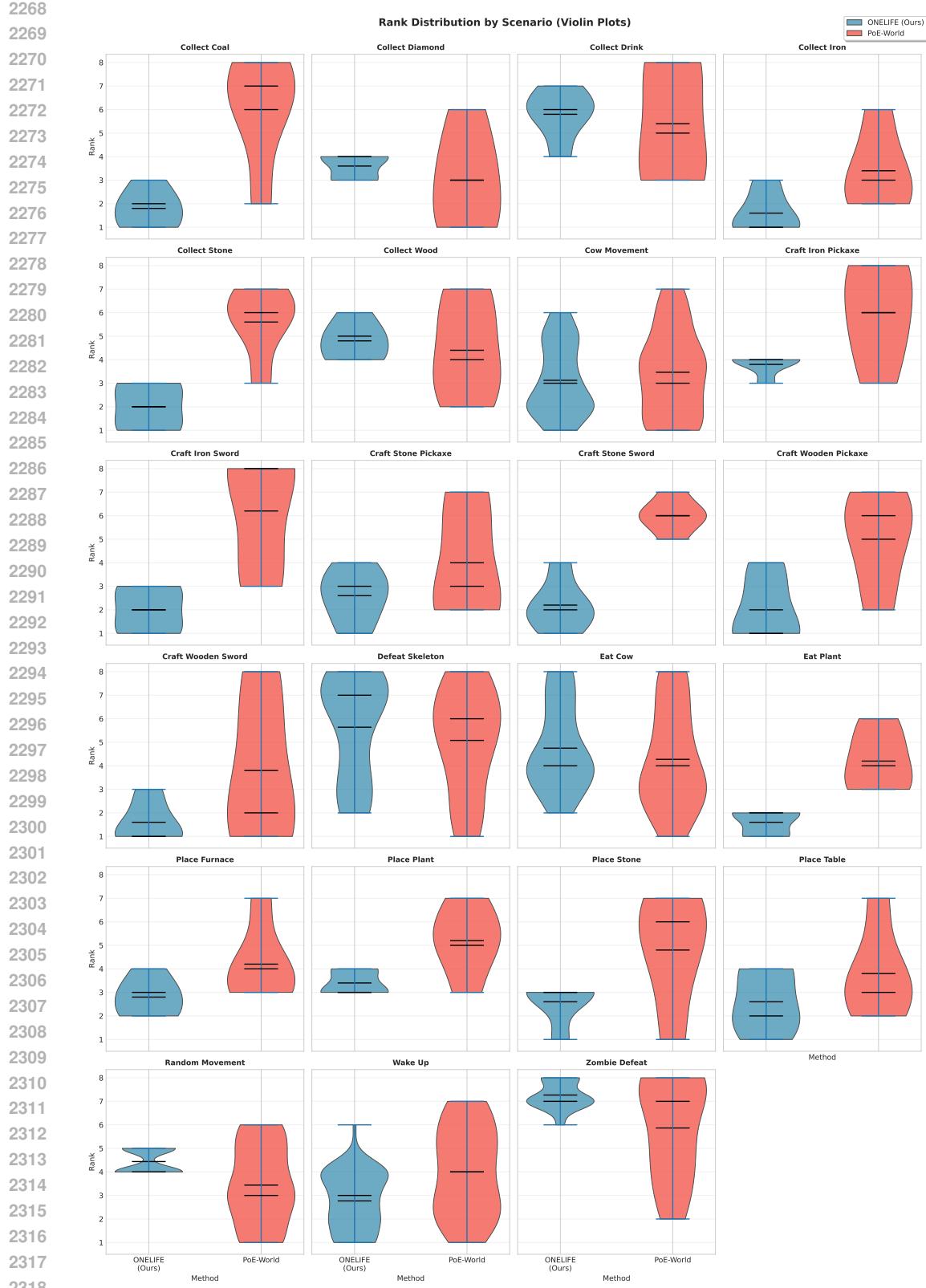


Figure 8: Distribution of raw ranks assigned by PoE-World vs ONELIFE’s world models in our evaluation, broken down by scenario. Across most scenarios, ONELIFE’s world model is better at choosing the ground-truth next state.