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Abstract

In this paper, we investigate a synthetic data sampling approach towards unsu-
pervised domain adaptation (UDA) for pose estimation. UDA is characterized
by a labeled source domain and an unlabeled target domain. We observe that
recent work in UDA for pose estimation fails to generalize across poses in target
data, despite having support for such poses in the source data. We hypothesize
that this failure to generalize is due to a lack of uniform support across poses of
varying complexity in the source domain. Motivated by this challenge, we aim to
sample and train with the source domain data to improve the domain adaptation
performance on a target domain. The proposed sampling strategy sorts the source
domain samples based on a difficulty score, which reflects the lack of uniform
support across varying pose complexity in the source domain. The difficulty score
is a reconstruction error obtained from training an auto-encoder on the source
domain poses. We categorize the dataset into closely related groups using this
score. Selectively training from all or some of these groups help us to better utilize
the source pose distribution. Finally, current pose estimation evaluation metrics do
not effectively measure the ability of the model to learn the geometry of pose. We
evaluate our approach qualitatively and quantitatively on benchmark datasets. Our
sampling strategy outperforms existing state-of-the-art for domain adaptation.

1 Introduction
Pose estimation is an important problem in computer vision with applications ranging from au-
tonomous driving [12, 11], motion capture [2], and robotics [13]. To this end, the synthesis of labeled
training data using modern computer graphics[9, 10] is becoming increasingly relevant, allowing the
creation of vast datasets under controlled conditions. These synthetic datasets reduce the need for
laborious manual keypoint annotations. However, pose estimation models trained on rendered syn-
thetic data suffer from a domain gap problem, arising from the differences in appearance, viewpoint,
lighting, and environmental factors. This can significantly affect the performance of model to new,
unseen domains. A specific gap more relevant to pose estimation is the ‘pose distribution gap’, a gap
between available poses in the source and target domains. Pose distribution gap under unsupervised
domain adaptation (UDA) has been scarcely studied in the literature, which is being addressed in this
paper. With careful analysis of the state-of-the-art UDA models namely RegDA[5] and UDAPE [7],
we noticed a significant limitation that they struggle to generalize across poses in the target domain
despite similar poses being present in the source domain. As shown in Figure 1, for the ground truths,
there are similar poses present in source domain SURREAL [10], though with difference in 3D
orientation. However, the RegDA model fails to predict these poses accurately. A similar behaviour
was observed with the UDAPE model. We hypothesize, that this failure to generalize originates
from the inherent bias of model towards poses with low complexity, redundancy and lack of uniform
support across poses of varying complexity in the source domain. These observations motivated us to
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Figure 1: LSP [6] ground truth, prediction by SOTA: RegDA [5] and similar poses in SURREAL [10]. Even
with a diverse range of scenarios in SURREAL, we observe that the RegDA model encounter difficulties in
achieving effective generalization. This challenge appears to exhibit from an uneven representation of poses in
the source domain.

investigate methods to categorize the source domain poses across varying levels of complexity and
subsequently sample from this categorization to improve the generalization of pose estimation.

Existing efforts to categorize the pose distribution, use heuristics based on joint distance and k-means
clustering [3], incorporate model confidence on a pose into the loss computation [1]. However, these
methods fail to accurately represent the skeletal geometry as they account for each joint independently
but do not model the plausibility of the overall pose. Moreover, in domains like object detection
[16] clusters of objects are determined using a difficulty heuristic and then sampled for increasingly
difficult objects during training. In contrast to the above methods, we introduce a novel method, to
score the source domain poses using an auxiliary deep learning model, categorize based on this score
and sample from these categories for domain adaptation. We train the auxiliary scoring model as a
variational auto-encoder whose input and output supervision is the same 2D skeleton. The inability of
the model to faithfully reconstruct an input pose during testing reflects a lack of support, variability
and complexity of the pose in the source distribution. Specifically the reconstruction error enables us
to score and categorize the source pose distribution into closely related groups. We rank these groups
using this score and sample a subset from them to systematically train the model. This enables the
model to improve its utilization of the source pose distribution and makes it more sample efficient.

We showcase through detailed experiments, on UDA benchmarks (Surreal [10] to LSP [6], Surreal
to Human3.6M [4], RHD [17] to H3D [15]) and comparisons with the state-of-the-art, that our
proposed approach provides consistent improvement for domain adaptation in pose. Furthermore, we
demonstrate qualitatively and quantitatively that the proposed evaluation heuristic captures the skeletal
geometry preserving capabilities of the pose estimation model. To summarize, the contributions of
our work are as follows:

• We examine how the complexity, support and variability of poses in the source domain
during domain adaptation impacts the performance of pose estimation in the target domain.
To the best of our knowledge this has not been analyzed previously in literature.

• We propose, (a) a variational auto-encoder based scoring and categorization mechanism to
analyze the complexity, support and variability of poses in a dataset, (b) this mechanism
enables us to group and sample data used from the source domain for domain adaptation.

2 Proposed Approach
For our experiment a labeled source dataset S = {(xi

s, y
i
s)}Ni=1, where xs is the source image, ys

is the corresponding keypoint annotation and N is the number of source images and an unlabeled
target dataset T = {(xi

t)}
M

i=1, where xt is the target image and M is the number of target images,
we train a keypoint regression model for the pose estimation using the source dataset and transfer
the learned knowledge to the target domain in an UDA setting. We categorize poses into distinct
complexity levels and selectively sample from these categories to train a domain adaptation model.
In this section, we first provide an overview of the proposed approach in Figure 2. Subsequently, we
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Figure 2: Pose Variational Autoencoders (VAE) is utilized to categorize the source data into k bins in the order
of increasing complexity. These categories are then strategically sampled to create a representative set. Together
with the target dataset, we train a domain adaptation model for pose estimation.

explain the scoring of poses using a variational auto-encoder in Section 2.1. Next, we propose score
based categorization in Section 2.2. We then discuss domain adaptation methods that we use in this
work in Section 2.3. Finally we propose a heuristic EvalPose to geometrically compare poses.

2.1 Pose VAE
We train a variational auto-encoder to estimate the complexity of a pose in the source dataset similar
to [8]. The input and output supervision for the VAE is the same set of 2D keypoints. These keypoints
are flattened out and passed as input to the VAE. The loss function used to train the VAE is mentioned
below in equation 1.

LV AE =

K∑
i=0

∥yis − ŷis∥2 + λKL[N (µs, σs),N (0, I)] (1)

Here, yis denotes a keypoint location for a pose sampled from the source domain, K is the number
of keypoints in a pose, ŷis is the prediction of VAE decoder for the ith keypoint, KL denotes the
Kulback-Leibler divergence loss, N is a normal distribution with µs and σs as mean and standard
deviation of the VAE’s latent space. The trained VAE enables us to compute the reconstruction error
for a given pose. If the reconstruction error is high, the model is unable to faithfully reconstruct
a pose. This implies lack of support, complexity and variability of the skeleton in the source pose
distribution. This provides a useful mechanism to score poses in the source domain.

2.2 Score based Categorization
Given an input 2D pose, we compute the score reflecting the complexity of such a pose as the
reconstruction error of the VAE as given by the equation 2.

score =

K∑
i=0

∥yis − ŷis∥2 (2)

Using this score, we categorize the source poses into fixed number of bins. To achieve this, we sort all
poses from the least to the largest reconstruction error. Intuitively, we observe that the score defined
in equation 2 reflects the complexity or the difficulty of the pose. Figure 3(a) visualizes qualitatively
how the complexity of the pose increases across the bins for LSP [6].

2.3 Category Sampling and Domain Adaptation
Using the pose VAE 2.1 and the score based categorization 2.2, we sample a subset of categories
which gives us more information about the source domain poses. Specifically, about complexity and
rarity of a pose. After selecting a subset we train a domain adaptation model to study the impact of the
selected categories. Since our approach is general and applies across any domain adaptation method,
we incorporate the process of category selection into two state-of-the-art UDA methods namely,
UDAPE [7] and RegDA [5]. UDAPE follows a student-teacher learning paradigm with additional
consistency losses applied on pseudo-labels for UDA. Additionally, it bridges the appearance level
gap using a bi-directional style transfer method. RegDA is an adverserial domain adaptation method
that builds on the concept of margin disparity discrepancy (MDD) [14] to human pose estimation.
It follows a three step training strategy, starting from source domain training on the whole model,
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Figure 3: (a) Sample images from categorized bins of LSP [6], arranged in order of increasing bin complexity.
(b) Heatmap plot illustrates the correlation among different bins in SURREAL dataset. Darker values signify
less similarity and high pose variation. We observe that the last few bins cover high variation in poses and have
more information for training a pose estimation model. (c) Kinematic tree and angles derived from selected set
of keypoint triplets within the kinematic graph.

an adverserial maximization step and a minimization step on the model head and the backbone. We
observe that our proposed category sampling improves both these methods. For instance, for UDA
benchmark SURREAL to LSP, we sample the categories corresponding to high reconstruction error.
Intuitively, this part of the dataset has high variation in poses and is more informative for training a
pose estimation model. We support this intuition with a visualization in Figure 3(b) which showcases
the similarity across poses in each of the categories. The computation of this similarity is given in
2.4. The intuition of sampling high reconstruction error categories may seem simple but is effective
in improving the domain adaptation performance as supported by the results in Table 2.

2.4 Pose Geometry Comparison
To compute the similarity of a pair of poses, we first define a custom kinematic graph defining the
skeleton structure. We then compute the angles within a chosen set of keypoint triplets in the graph
as shown in Figure 3(c). Next, the similarity between the pair of poses is computed as a dot product
of the resulting set of angles. The equation below summarizes the computation, we refer to this as
EvalPose.

EvalPose =
Θ1Θ2

|Θ1||Θ2|
(3)

Here, Θ = [θ1 . . . θj ] is a set of angles computed across all triplets defined in the kinematic graph.
Each θj is computed as θj = cos−1 v1.v2

|v1||v2| . v1 and v2 are keypoint connection vectors between pairs
in the triplets defined in the kinematic graph. This heuristic is scale, translation and rotation invariant.
We utilize this to compute the skeletal similarity between the ground truth and prediction.

3 Experiments and Results
In this section, we present results of our synthetic data sampling approach.
Datasets. We experiment our proposed methods on two diverse tasks: (1) human body pose
estimation and (2) hand pose estimation. For human pose estimation, we used SURREAL[10] as
source domain and Leeds Sports Pose [6] (LSP) as well as Human3.6M [4] (H3.6M) as target domain.
On the other hand, for hand pose estimation we used Rendered Hand Pose Dataset [17] (RHD) as
source domain whereas Hand-3D-Studio dataset [15] (H3D) as target domain. We now explain
the training and testing test used for experimentation. Training Set: The datasets are stratified
into easy-to-hard categories based on pose complexity scores (Section 2.2). These categories are
employed in two UDA experimental setups: (1) VAE-HM (Hard Mining) utilizes only the challenging
subset in source domain adaptation. (2) VAE-CL (Curriculum Learning) progressively integrates
easy, medium, and hard datasets, following a curriculum approach. Validation Set: Each dataset
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Table 1: PCK@0.05 score on task SURREAL → LSP. Sld: shoulder, Elb: Elbow. We observe that our method
VAE-HM outperforms the UDAPE model across all the evaluation metrics.

Method PCK

Sld Elb Wrist Hip Knee Ankle All

Source only 51.5 65.0 62.9 68.0 68.7 67.4 63.9
Oracle 95.3 91.8 86.9 95.6 94.1 93.6 92.9

RegDA 62.7 76.7 71.1 81 80.3 75.3 74.6
RegDA VAE-CL (Ours) 65.1 77.2 72.6 78.5 78.7 77.8 75.0
RegDA VAE-HM (Ours) 60.1 79.9 75.1 81.1 80.8 79.5 76.1
UDAPE 69.2 84.9 83.3 85.5 84.7 84.3 82.0
UDAPE* 68.1 83.1 82.3 83.8 83.1 83.0 80.6
UDAPE VAE-CL (Ours) 69.0 85.2 84.0 85.8 84.9 84.3 82.2
UDAPE VAE-HM (Ours) 68.5 86.2 84.7 84.8 85.8 85.6 82.6

Table 2: Avg PCK@0.05 and EvalSket score on benchmark tasks , SURREAL → Human3.6M (H3.6M) and
Rendered Hand Pose (RHD) → Hand-3D-Studio (H3D).

SURREAL→ LSP SURREAL→ H3.6M RHD→ H3D

Method Avg PCK EvalPose Avg PCK EvalPose Avg PCK EvalPose
RegDA* 74.6 54.5 75.6 66.5 68.6 69.7
RegDA VAE-HM (Ours) 76.1 58.2 77.8 64.8 67.8 68.4
UDAPE* 80.6 61.5 78.3 77.9 79.6 78.5
UDAPE VAE-CL (Ours) 82.2 62.6 77.2 77.9 77.6 77.6
UDAPE VAE-HM (Ours) 82.6 63.5 78.3 77.8 79.8 78.8

is categorized into 25 bins of equal sizes using the category based sampling approach mentioned in
section 2.3. This categorization helps establish our key insights on the domain adaptation model’s
generalization capabilities, across increasing pose complexities, on our VAE-HM and VAE-CL
experimental settings.
Evaluation Metrics. In this paper, we utilize the PCK Metric and the EvalPose heuristic to evaluate
our results. PCK Score: Percentage of Correct Keypoints Score is a metric used to measure the
precision of body joint localization. The predicted joint is correct when the distance between the
predicted and the true location is within a certain threshold. In our experiments, we present results
using PCK@0.05, which quantifies the proportion of correct predictions within 5% of the image
size. A higher PCK value signifies higher prediction accuracy. EvalPose: Section 2.4 describes the
computation process for pose geometry comparison. We note that PCK alone is not sufficient to
analyze subtle variations in joint-wise distances as visualized in Figure 5. Our proposed heuristic
offers advantages over PCK as it is both scale and label gap agnostic. It does not need a threshold
parameter and helps interpret model’s pose geometry understanding in an intuitive way.
Quantitative Results. We present results from several benchmark Unsupervised Domain Adapta-
tion (UDA) experiments, namely (1) SURREAL → LSP, (2) SURREAL → H3.6M, and (3) RHD →
H3D. Table 1 showcases the outcomes of the experiments using various methods: (a) Source-only
training, (b) Oracle (target-only training), (c) RegDA* [5], (d) UDAPE [7], (e) UDAPE*. ‘*’ indicates
our reproduced results of UDAPE from the provided codebase, and our approaches, (f) VAE-HM
and (g) VAE-CL trained with RegDA and UDAPE. We observe that our experiments employing hard
mining and curriculum learning outperform state-of-the-art UDA approaches, RegDA and UDAPE,
on average across all joints. It is also important to note that we only use a fraction (33%) of the
source dataset making it sample efficient. Additionally, our proposed category sampling mechanism
proves to be invaluable in guiding the generation of synthetic data, offering a promising strategy for
future datasets.

Furthermore, Table 2 outlines the results for all the considered benchmark UDA experiments. We
highlight that our proposed category sampling approach outperforms the the baseline RegDA and
UDAPE experiments for RHD → H3D experiment. We also note that the results for SURREAL →
to H3.6M shows is on-par with RegDA and UDAPE baseline experiments despite using only 33%
of the source dataset in the case of VAE-HM. We further highlight that VAE-CL is part of on-going
work to strategically use and train with source domain data. The mentioned results are part of early
work in this direction. Finally, Figure 4 showcases the bins from the category sampling of the LSP
dataset. Each bar plot in a bin corresponds to a different method. The first bar plot corresponds
to the RegDA UDA method. The second bar plot corresponds to our proposed VAE-HM method
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Figure 4: SURREAL → LSP task, we conducted a comparative analysis involving RegDA, RegDA + VAE-HM,
UDAPE, and UDAPE + VAE-HM methods. We organized the bins in ascending order of pose complexity. We
observe that RegDA + VAE-HM and UDAPE + VAE-HM demonstrate enhancements in the later bins compared
to RegDA and UDAPE, respectively.
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Figure 5: Qualitative Results showing our approach (VAE-HM) against UDAPE model predictions on LSP,
Human3.6M and Hand 3D Studio Datasets. Notably, UDAPE VAE-HM demonstrates better performance on
highly complex samples supported by the PCK score and EvalSket score.

using RegDA for domain adaptation. Third bar plot is the UDAPE UDA method. The fourth bar
plot corresponds to our proposed VAE-HM method using UDAPE for domain adaptaion. The y-axis
reflects the average keypoint score, which is computed as the average accuracy per pose, averaged
across all the poses in the bin. We note that our proposed VAE-HM method outperforms the baseline
in most of the bins. Moreover, we observe that as the bins increase in complexity, the advantage with
the VAE-HM is more evident. Because, VAE-HM trains on poses which have high variation and, as
evidenced empirically by the results, these poses are representative of the complete source domain
pose distribution.

Qualitative Results. Figure 5 visualizes the qualitative improvements in our proposed VAE-HM
method with UDAPE used for domain adaptation. Additionally, the corresponding PCK score and
EvalPose score are also mentioned approximated to the nearest whole number. We observe that
visually, the predicted skeleton from our proposed approach looks more plausible and closer to the
groudtruth in each of the examples. Moreover, we note in some cases, Figure 5(b),(c), the PCK
score does not show a clear improvement quantitatively, however we highlight that the proposed
EvalPose heuristic provides a clear distinction in measurement of the predicted pose quality. Thereby,
emphasizing the need for EvalPose as an explainable measure. We provide more such examples in
the supplementary for the Leeds Sports Pose[6] (LSP) dataset.

4 Conclusion
Through this work we present a method to use the best subset of synthetic data for domain adaptation
to improve performance of any existing domain adaptation model. Our strategy works as a plug
and play approach which provides relevant and varied source domain distribution to the domain
adaptation model. This leads to an increase in performance on the complex poses while retaining
performance simpler poses. Further, we have provided a framework to categorize any pose estimation
data set into highly related groups based on the skeleton structure.
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