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ABSTRACT

We introduce Softmax Gradient Tampering, a technique for modifying the gra-
dients in the backward pass of neural networks in order to enhance their accu-
racy. Our approach transforms the predicted probability values using a power-
based probability transformation and then recomputes the gradients in the back-
ward pass. This modification results in a smoother gradient profile, which we
demonstrate empirically and theoretically. We do a grid search for the transform
parameters on residual networks. We demonstrate that modifying the softmax gra-
dients in ConvNets may result in increased training accuracy, thus increasing the
fit across the training data and maximally utilizing the learning capacity of neural
networks. We get better test metrics and lower generalization gaps when com-
bined with regularization techniques such as label smoothing. Softmax gradient
tampering improves ResNet-50’s test accuracy by 0.52% over the baseline on the
ImageNet dataset. Our approach is very generic and may be used across a wide
range of different network architectures and datasets.

1 INTRODUCTION

Smooth gradient flow is the key to successful convergence of deep neural networks. Batch Normal-
izing Ioffe & Szegedy (2015), Weight Standardization Qiao et al. (2019), and Group Normalization
Wu & He (2018) are all types of normalization techniques that smooth the gradient landscape in
the backward pass. Batch normalization smoothes the loss and gradient surfaces by limiting their
lipschitzness Santurkar et al. (2018). Methods of smoothing gradients by manipulating the labels
distribution include label smoothing Szegedy et al. (2016), mixup Zhang et al. (2017).

In this paper, we manipulate the gradients in an unconventional way to impose smooth gradients in
the backward pass. This technique is one of a family of Gradient Tampering methods, called Soft-
max Gradient Tampering since it is conducted at the softmax stage. We demonstrate that Softmax
Gradient Tampering improves convergence fit and therefore improves training and testing accuracy.

Our main contributions in this paper are the following:

1. We propose Softmax Gradient Tampering that improves the learning capacity of neural
networks and allows for a much better fit on the training dataset. This reflects both in
training and validation accuracy metrics.

2. We theoretically analyze how softmax gradient tampering works from the perspective of
gradient smoothness.

3. We provide comprehensive findings from different models, and datasets.

2 METHOD: SOFTMAX GRADIENT TAMPERING

The softmax gradient tampering technique is described in this section. Softmax gradient tampering
modifies the gradient in the backward pass. It does not alter the behaviour in the forward pass.
Before we describe our method, we briefly explain the forward pass itself. A neural network with
parameters W generates C logits denoted by z for every input vector x. z is given as z = Wx.
Then a set of probability values pi are generated from the logits using a softmax function which

1



Under review as a conference paper at ICLR 2022

(a) Unordered distribution (b) Rank ordered distribution

Figure 1: Illustration of the impact of softmax gradient tampering on probability values of an ar-
bitrary distribution (number of classes, C = 10). As α reduces from 1 to 0, the probability dis-
tributions (left: unordered or right: ordered) becomes flatter and flatter, approaching the uniform
distribution of 1/C for every index.

is defined as pi = ezi∑C
j=1 zj

. pi and zi represent the predicted probability values and the logits for

the ith class respectively. Following this step, the loss function is invoked and the loss between
the predicted probability values the ground truth labels (which is also a probability distribution)
is calculated. If the loss function is cross-entropy loss, then the value of the loss is given as L =

−
∑C

i=1 qi log (pi) where qi is the ground truth label of the ith class for a particular training example.
By backpropagation rule, we can calculate the gradient of the loss with respect to the logits which
takes the form ∂L

∂zi
= pi − qi.

The softmax gradient tampering technique is now described. We introduce a hyperparameter α,
which takes a value between [0, 1] and regulates the degree of tampering. The softmax gradient
tampering method modifies the predicted probability values in the backward pass as follows:

p′i =
pαi∑C
j=1 p

α
j

i = 1, . . . , C 0 ≤ α ≤ 1 (1)

The above transformation changes the gradient of the loss with respect to the logits as follows:

∂L
∂zi

= p′i − qi (2)

The rest of the backward pass proceeds as usual. We denote the original probability distribution as
P (with values pi at the ith index) and the transformed distribution as P ′ (with values p′i at the ith

index).

A code snippet of the algorithm implemented using PyTorch Paszke et al. (2019) is given in the
appendix. In PyTorch, the available method to modify gradients in the backward pass is using the
register_hook function which is called in the forward function.

The backward pass gradient profile is smoothed by the transformation of the probability distribution
using equation 1. Because the gradient at the softmax layer’s input (∂L/∂zi) is directly proportional
to the predicted probabilities pi, smoothing out the probability distribution also smooths out the
gradient profile. We explore the effect of this change from a theoretical standpoint in section 5. In
section 3, we offer empirical data and experiments to support the proposed method.

3 EXPERIMENTS

3.1 GRID SEARCH EXPERIMENTS

We do a thorough hyperparameter search on the ResNet-18 He et al. (2016) architecture and the
ImageNet-1K dataset, changing the value of α from 0.1 to 0.9. We begin with a coarse grid search
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(c)
ResNet-20
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Figure 2: Results of grid search on different architectures and datasets. Areas with red shading are
more likely to have erratic performance.

in 0.1 increments. The optimum values of α are found to be between 0.2 and 0.4. Then we do a
fine grid search in 0.05 increments between 0.2 and 0.4. We find that the optimum performance for
ResNet-18 is achieved at a α = 0.25. We discover that the optimum value of α is 0.3 by repeating
the grid search for ResNet-50 He et al. (2016) in the range of 0.2 to 0.4 with increments of 0.05. We
utilise a batch size of 1024 over four V100 GPUs for each grid search experiment. Each experiment
is carried out with a 50 epoch budget. In the first 2 epochs, we raise the learning rate linearly from
4× 10−4 to 0.4. The learning rate is then decayed using a cosine scheduler (single schedule with no
restarts) Loshchilov & Hutter (2016) from 0.4 at the start of the 2nd epoch to 4× 10−4 at the end of
the 46th epoch. We continue training for the next 4 epochs at a constant learning rate of 4 × 10−4

(cooldown phase). The plots are shown in Figure (2). We do a grid search on the ResNet-20 He
et al. (2016) architecture and the CIFAR-10 dataset, with a epoch budget of 360. However, we get
no advantage for any value of α. This is covered in more detail in section 3.3.

Figure (2a,b) shows a pattern in which training accuracy rises when α is lowered from 1 to 0,
indicating the method’s potential as an algorithm to drive the network towards better learnt feature
representations and therefore a better fit on the training dataset. This is due to the transform’s nature,
which smoothes the gradients. This line of reasoning is expanded upon in section 5.

The generalization gap is lowest when α = 0.2 but it comes at the expense of test accuracy, so we
disregard it. Values of α < 0.2 cause issues with half precision training, therefore we choose α =
0.25. In our trails with ResNet-18, we find optimal values of α = 0.25, while in our experiments
with ResNet-50, we get optimal values of α = 0.3. We port these values for all 100 epoch schedules,
as well as the Squeeze-and-Excitation versions of the ResNets. We indeed find a peak at α = 0.1,
but we found that such low α values are typically unstable in most subsequent tests, especially
with mixed precision or half precision arithmetic. According to our observations in section 3.5,
low values of α frequently result in high logit norms, which directly cause floating point problems
Micikevicius et al. (2017).

3.2 EXPERIMENT ON THE IMAGENET DATASET

We perform experiments on the ImageNet-1K dataset Deng et al. (2009), which has 1.28 million
images divided into 1000 classes. ImageNet-1K’s test set consists of 5000 images per class. We
train models based on several ResNets, including the Squeeze-and-Excitation versions. We observe
a constant 0.1% to 0.15% rise in ResNet-18’s test accuracy. What’s more interesting is that we’re
seeing comparable improvements in training accuracy. Softmax gradient tampering is not a regular-
ization technique, as shown by this. It just allows the network to better fit the dataset. In section 4,
we show how combining softmax gradient tampering with regularization techniques such as label
smoothing may improve network performance and reduce the generalization gap.

We find significantly larger improvements in experiments using ResNet-50, a 0.5% increase over
the step scheduling baseline and a 0.3% increase over the cosine scheduling baseline. In studies
with Squeeze-and-Excitation networks, we use the cosine scheduler. In these experiments, we find
consistent improvements across the board, with SEResNet-18 Hu et al. (2018) gaining 0.4% and
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Table 1: Results and comparisons for networks trained on ImageNet-1K. α denotes the hyperpa-
rameter that controls the amount of gradient tampering at softmax, eq. (1). Rows with α ̸= 1 are
experiments conducted using the proposed method. α = 1.0 denotes no tampering.

Model Scheduler Hyperparameters Train Acc Test Acc Gap
ResNet-18 Step α=1.0 69.95 69.704 0.246

Step α=0.25 70.3 69.844 0.456
Cosine α=1.0 70.38 70.208 0.172
Cosine α=0.25 70.53 70.298 0.232

ResNet-50 Step α=1.0 78.99 75.97 3.02
Step α=0.3 79.56 76.494 3.066

Cosine α=1.0 79.18 76.56 2.62
Cosine α=0.3 79.43 76.886 2.544

ResNet-101 Cosine α=1.0 82.29 77.896 4.394
Cosine α=0.3 83.10 78.258 4.842

SEResNet-18 Cosine α=1.0 71.42 71.09 0.33
Cosine α=0.25 71.6 71.436 0.164

SEResNet-50 Cosine α=1.0 81.5 77.218 4.282
Cosine α=0.3 82.47 77.952 4.518

SEResNet-50 Hu et al. (2018) gaining 0.7%. As we saw with ResNet-18, we find continuous im-
provements in training performance because the networks are just training better and arriving to
better optimas at convergence. ResNet-101 training provides a modest advantage of 0.35%.

All models are trained on four V100 GPUs with a batch size of 1024. We utilise the same set
of hyperparameters in each experiment, which are as follows: 100 epoch budget, 5 epochs linear
warmup phase beginning with a learning rate of 4 × 10−4 and ending with a peak learning rate
of 0.4. In our studies, we employ either a step scheduler (dividing the learning rate by 10 at the
30th, 60th, and 90th epochs) or a cosine decay scheduler. We observe a consistent improvement
in test metrics when utilising cosine scheduling across all of our experiments. Finally, towards the
conclusion of training, we impose a 10 epoch cooling phase in which the network is trained with a
constant learning rate schedule set at 4×10−4. Other hyperparameters include a weight decay value
of 5× 10−4 and a momentum of 0.9 for the SGD Nesterov optimizer. All of our models are trained
using mixed floating point precision. The findings are shown in Table 1.

3.3 EXPERIMENT ON CIFAR DATASETS

The CIFAR-10 dataset Krizhevsky et al. (2014) is divided into 10 classes, each with 5000 datapoints
for training and 1000 datapoints for testing. In comparison to ImageNet-1K, it is a much smaller
dataset. The most frequent situation seen when training models on CIFAR-10 is that the models
fully overfit the training dataset, achieving almost 100% accuracy. Given that the proposed method
(section 2) is not intended as a regularization technique, no improvements in the training of such
datasets are anticipated. We see the same thing in Figure 2c, where we show the results of a hyper-
parameter grid search. Different values of α do not impair ResNet-20’s performance on CIFAR-10,
but neither do they improve on the baseline.

3.4 TOWARDS REMOVING NORMALIZATION

Experiments are carried out on non-Batch Normalized networks. We specifically utilize the ResNet-
18 model and train it on ImageNet-1K without any of the BatchNorm layers. We see a substantial
increase in test accuracy of about 1%. Similarly to prior findings, we get a 1.1% increase in training
accuracy, leading us to infer that when softmax gradient tampering is used, the network’s conver-
gence optima is significantly superior. Table 2 shows the findings.

3.5 EFFECT ON LOSS, LOGITS AND OTHER METRICS

As seen in Figure (3a), the logit norm increases as α falls from 1 to 0. In the initial training phase,
softmax gradient tampering causes the gradient in both the valid and wrong classes to rise as the
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(a)
Logit vs. α

(b)
Cross-entropy loss vs. α

(c)
Logit-Loss correlation

Figure 3: Plots of various statistical measures: (a) Variations in the logit norm vs. α. The logit
norm is calculated per image over the test set of ImageNet-1K (at the linear layer of the ResNet-
18 architecture) and then averaged. (b) Variations in the final loss values obtained for different α
settings. (c) Correlation between loss and logits. Regression line equation :(0.01074x+ 0.25816).

Table 2: Results for non-Batch Normalized ResNets on ImageNet-1K. α denotes the hyperparameter
that controls the amount of gradient tampering at softmax, eq. (1). Rows with α ̸= 1 are experiments
conducted using the proposed method. α = 1.0 denotes no tampering.

Model Scheduler Hyperparameters Train Acc Test Acc Gap
ResNet-18 (W/O BN) Cosine α=1.0 68.86 66.796 2.064

Cosine α=0.25 69.97 67.796 2.174

network misclassifies majority of the examples. Due to the non-linear nature of the softmax func-
tion, the predicted probability distribution may frequently be close to a delta distribution, even in
instances of misclassifications. But softmax gradient tampering reshapes the predicted probability
distribution. It redistributes probability from the confident classes to the less confident ones. Gradi-
ent rises in all classes. We also see that the final value of the loss rises as α drops, and that the logit
norm and the final value of the loss are linearly correlated Figure (3c).

ResNet-18 and ResNet-50 per epoch training and test accuracies with and without softmax gradient
manipulation are shown in Figure (4a,b). In all instances, we observe a gain. This means that
softmax gradient tampering forces the network to learn better representations.

4 ABLATION STUDY

We conduct an ablation study to investigate the consequences of softmax gradient tampering. We
have previously demonstrated from the experiments depicted in section 3 that softmax gradient
tampering causes the network to arrive at a better optima and fit a particular training dataset better
than the baseline. Furthermore, based on our CIFAR-10 tests, we have experimentally shown that
the technique performs best on varied datasets. Because most networks on the CIFAR-10 dataset
begin overfitting extremely early, and therefore a non-regularizing technique like softmax gradient
tampering has little effect on the network’s performance. As a result, we combine our approach with
other regularization techniques to see whether this is really the case. If softmax gradient tampering is
not a regularizer, the generalization gap will widen. The generalization gap would be reduced if we
added a regularizer on top of it. The findings are shown in the Table 3. We see that adding softmax
gradient tampering increases the gap between the training and test accuracies, while introducing a
label smoothing regularizer decreases the gap. When both softmax gradient tampering and label
smoothing are applied concurrently, the best accuracies are achieved.

5 WHY DOES SOFTMAX GRADIENT TAMPERING WORKS?

In this section, we describe why softmax gradient tampering work. We use the same setup as de-
scribed in section 2. We start by investigating the effect of the transform on the softmax probabilities,
and then we prove that the transform smoothens the gradient profile.
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(a) Plot of training and test accuriacies
(ResNet-18)

(b) Plot of training and test accuriacies
(ResNet-50)

Figure 4: Log-linear plots of training and test accuracies and comparison with baseline: (a) ResNet-
18 (α = 0.25), (b) ResNet-50 (α = 0.3). SGT (Softmax Gradient Tampering) improves upon
baseline in all cases.

Lemma 1. For any arbitrary probability distribution P with probability values given by pi for
i = 1, . . . , C, the corresponding transformed probability values p′i given by [1] has a threshold(∑C

j=1 p
α
j

) 1
α−1

and

p′i ≥ pi, if pi ≤
( C∑

j=1

pαj

) 1
α−1

p′i < pi, if pi >
( C∑

j=1

pαj

) 1
α−1

(3)

Proof. The proof follows directly from the definition of p′i. We notice that if p′i < pi, we get:

pαi∑C
j=1 p

α
j

< pi (4)

⇒ pα−1
i <

C∑
j=1

pαj (5)

⇒ pi >
( C∑

j=1

pαj

) 1
α−1

(6)

We call this threshold, the stationary threshold. The stationary threshold is that value of pi that does
not change after the transformation.

Proposition 1. At α = 0, the stationary threshold equals 1/C and all values of the transformed
distribution p′i reduces reduces to the uniform distribution for i = 1, . . . , C,.

Proof. From equation (3), we see that the stationary threshold at α = 0 is 1/C. Also, following
from the definition of the transformed probabilities (1) we conclude that if α = 0, then all values of
p′i are 1/C. Therefore the transformed distribution at α = 0 is a uniform distribution.
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Since we have established that values of pi which are greater than the stationary threshold decreases
and move down towards the stationary threshold, and values in pi lower than the stationary threshold
moves up towards the stationary threshold, this transformation makes the distribution more uniform
(i.e. it smooths out the actual distribution) as α is decreased from 1 and down towards 0. This final
observation we prove in the following theorem.

Theorem 1. For any arbitrary probability distribution P with probability values pi for i = 1, . . . , C,
the stationary threshold of the transformed distribution P ′ with probability values p′i =

pα
i∑C

j=1 pα
j

, 0 ≤
α ≤ 1 is a monotonically non-decreasing function with respect to α.

Proof. To prove monotonicity, we first compute the gradient of the stationary threshold with respect
to the variable in concern, α.

∂

∂α

 c∑
j=1

pαj

 1
α−1 =

 c∑
j=1

pαj

 1
α−1

∑c
j=1 p

α
j log (pj)

(α− 1)
∑c

j=1 p
α
j

−
log

(∑c
j=1 p

α
j

)
(α− 1)2

 (7)

=
1

α(α− 1)2

 c∑
j=1

pαj

 1
α−1

 (α− 1)
∑C

j=1 p
α
j log

(
pαj

)∑c
j=1 p

α
j

− α log

 c∑
j=1

pαj

 (8)

If a1, . . . , an and b1, . . . , bn are non-negative numbers, then using the log sum inequality, we get∑n
j=1 aj log

(
aj

bj

)
≥

(∑n
j=1 aj

)
log

(∑n
j=1 aj∑n
j=1 bj

)
. Setting aj = pαj and bj = 1, we get the following

lower bound
C∑

j=1

pαj log
(
pαj

)
≥

 C∑
j=1

pαj

 log

 1

C

C∑
j=1

pαj

 (9)

Substituting (9) in (8), we get:

∂

∂α

 c∑
j=1

pαj

 1
α−1 ≥ 1

α(α− 1)2

 c∑
j=1

pαj

 1
α−1

(1− α) log(C)− log

 C∑
j=1

pαj

 (10)

pα is concave, and so by Jensen’s inequality we get the following upper bound for the second term: 1

C

C∑
j=1

pj

 α ≥ 1

C

C∑
j=1

pαj (11)

⇒ log

 C∑
j=1

pαj

 ≤ (1− α) log(C) (12)

Substituting (12) in (10),

∂

∂α

 c∑
j=1

pαj

 1
α−1 ≥ 0 (13)

We conclude from the analysis that the stationary threshold is a monotonic non-decreasing function
with respect to α, which in turn means that the transformation is an order-preserving map. All values
greater than the threshold move towards the threshold after transformation and all values below the
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Table 3: Ablation study for ResNet-50 on ImageNet-1K. LS column denotes whether label smooth-
ing has been applied. A smoothing hyperparameter value of 0.1 has been used. α denotes the
hyperparameter that controls the amount of gradient tampering at softmax, eq. (1). Rows with
α ̸= 1 are experiments conducted using the proposed method. α = 1.0 denotes no tampering.

Model Scheduler LS Hyperparameters Train Acc Test Acc Gap
ResNet-50 Cosine α=1.0 79.18 76.56 2.62

Cosine ✓ α=1.0 78.81 76.698 2.112
Cosine α=0.3 79.43 76.886 2.544
Cosine ✓ α=0.3 78.47 76.968 1.502

threshold also move towards the threshold, and the threshold itself moves monotonically towards
1/C as α is decreased from 1 to 0. This concludes that the transformation smooths the original
distribution. Since the gradient with respect to logits (∂L/∂zi) is a direct function of the smoothed
out distribution, this smoothes out the gradients as well.

6 RELATED WORK

In this section, we examine techniques that are related to gradient tampering and emphasize the
distinctions between the methods.

Relationship to Label Smoothing: Label smoothing, introduced by Szegedy et al. Szegedy et al.
(2016), utilizes smoothing of the ground truth labels as a method to impose regularization on the
logits and the weights of the neural network.

The formulation is as follows. If qi is the value at the ith index of the one hot encoded vector of the
ground truth label, then the transformed distribution of the labels q′i is:

q′i =

{
1− ϵ if i = y,

ϵ
K−1 otherwise

(14)

where ϵ is a hyperparameter with a value in [0, 1].

Müller et al. investigates how label smoothing work in Müller et al. (2019). Using visualizations
of penultimate layer activations, they demonstrate that label smoothing calibrates the networks pre-
dictions and aligns them with the accuracies of the predictions. Parallel works in label smoothing
include Reed et al. (2015); Zhang et al. (2021); Reed et al. (2014); Xie et al. (2016); Dubey et al.
(2018); Li et al. (2019).

Softmax gradient tampering works in a much different way. As we proved in section 5 that our
proposed transformation of probabilities smooths the prediction vector which in turn has the effect
of smoothing the gradient landscape, since the gradient vector arising from softmax is p′i − qi. This
has the opposite effect of label smoothing, because the gradient vector arising from softmax in a
scenario with label smoothing is pi − q′i. Hence, softmax gradient tampering is not a regularization
method. From our studies, we show that it in fact leads to larger generalization gap (Table 1, 3).
Coupled with softmax gradient tampering, label smoothing closes the generalization gap.

Relationship to Knowledge Distillation: The formulation of softmax gradient tampering is sim-
ilar to the temperature based logit suppression formulation of Hinton et al. Hinton et al. (2015).
Knowledge distillation Ba & Caruana (2014) is a process in which two networks are trained. First a
teacher network is trained on a given dataset and then the soft-labels (the predicted probabilities) of
the teacher network are used to train another network, called the student network. In similar style of
label smoothing, knowledge distillation aims to generate smooth gradient behaviour by forcing the
network not to overpredict on any single image. As in case of label smoothing, the student network’s
weights are automatically penalized if the network assigns a probability value higher than the soft
labels generated by the teacher network.

The formulation of temperature based logit suppression introduced as a special case of logit match-
ing, so far has only been used in the context of distillation. Even though the formulation of temper-
ature based logit formulation leads to the same formulation of softmax gradient tampering, there is
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one key difference, and that is the aforementioned logit suppression is applied in the forward pass.
This means that the temperature variable becomes a part of the computation graph. In the case of
softmax gradient tampering, where we directly tamper the gradients without introducing any change
in the forward pass is a more generalized way of arriving at the smoothness effects of the gradients
in the backward pass. The introduction of temperature based logit suppression in the forward pass
also leads to making inverse changes in the learning rate or in the formulation of the loss function.
However, in case of softmax gradient tampering, no such changes are required. In section 3, we
demonstrate that networks using softmax gradient tampering method can be trained using the same
hyperparameters as the ones used in the baseline models.

Variants of knowledge distillation include Zhang et al. (2019); Furlanello et al. (2018); Passalis &
Tefas (2018); Ge et al. (2019); Yun et al. (2020); Wang et al. (2021); Aguilar et al. (2020); Yao et al.
(2018); Wang et al. (2020); Peng et al. (2019); Ge et al. (2018); Zhang et al. (2018b); Liu et al.
(2018); Cho & Hariharan (2019); Yuan et al. (2020). Aside from that, the smoothing effects on
gradients have never been studied before, and this is the first time, to the best of our knowledge, that
this has been done in this study.

Relationship to Gradient Clipping (and variants thereof): Gradient clipping is often used as
means of limiting exploding gradients in the backward pass. It normalizes and scales the gradient,
if the norm of the gradient exceeds a predetermined threshold.

The formulation is as follows: If G is a gradient vector which is ∂L/∂θ (the gradient of the loss L
with respect to the parameters θ)

G →

{
λ G

∥G∥ if ∥G∥ > λ,

G otherwise
(15)

It works in practice as it helps the network to avoid gradient explosion during training, but it doesn’t
really make the loss landscape smoother than it already is. It simply alters the scale of the gradients
with respect to the norm. Brock et al. Brock et al. (2021) finds that the clipping threshold λ is an
extremely sensitive hyperparameter.

Adaptive gradient clipping is a variant of gradient clipping. The adaptiveness of adaptive gradient
clipping comes from the use of the Frobenius norm of the weight matrix. NF-Nets Brock et al.
(2021) uses Adaptive Gradient Clipping (AGC) and achieves close to state-of-the-art accuracies in
ImageNet benchmark without the use of traditional normalization methods.

Gradient clipping methods and the variants thereof are also gradient tampering methods, i.e. they
alter the behaviour of the backward pass independently from the forward pass. Our proposed method
softmax gradient tampering works directly at the softmax level, whereas gradient clipping methods
work at the parameter level, requiring much more compute. Softmax gradient tampering on the other
hand requires only a small modification and significantly lower computation overhead.

Similar lines of theoretical analysis as in section 5 on logits and temperatures include Zhang et al.
(2018a); Pereyra et al. (2017).

7 DISCUSSION

We showed the application of softmax gradient tampering, a technique for providing a smooth gra-
dient during neural network training. With the use of different network topologies and datasets, we
were able to show its potential and explore its impacts from a theoretical standpoint.

8 REPRODUCIBILITY

Reproducible code, training recipes for experiments in section 3, pretrained check-
points and training logs are provided at: https://github.com/bishshoy/
softmax-gradient-tampering. Code adapted from Wightman (2019).

Instability caused by half precision floating point operations is frequent in neural network training
procedures, and it is significant when the logits reach high values Micikevicius et al. (2017). When
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training ResNet-50 with high batch sizes (1024), we experienced sporadic problems. We were able
to easily stabilize the training by training the first epoch without softmax gradient tampering and
then training the other epochs with softmax gradient tampering enabled. However, when we trained
ResNet-50 with smaller batch sizes (512), we had no problems with reproducibility.
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A APPENDIX

In PyTorch, the available method to modify gradients in the backward pass is using the
register_hook function which is called in the forward function.

# Modification of gradients take place
# inside the forward function
def forward(self, x, labels):

# x: Input tensor with shape [N, C, H, W]
# labels: One hot ground truth with shape [N, C]
logits = self.layers(x)

def softmaxGradientTampering(grad):
alpha = 0.3
# Recover the predicted probabilites
# generated in the forward pass
grad_temp = grad / grad.shape[0]
pred = grad_temp + labels
# Transform the predicted probabilities
pred = pred ** alpha
pred /= pred.sum(-1, keepdim=True)
# Modify the gradient
modified_grad = pred - labels
modified_grad = modified_grad * grad.shape[0]
return modified_grad

if self.training:
logits.register_hook(softmaxGradientTampering)

return logits

Figure 5: Python code of Softmax Gradient Tampering based on PyTorch.
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