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Abstract

We introduce the Seismic Language Model (SeisLM), a foundational model de-1

signed to analyze seismic waveforms—signals generated by Earth’s vibrations2

such as the ones originating from earthquakes. SeisLM is pretrained on a large3

collection of open-source seismic datasets using a self-supervised contrastive loss,4

akin to BERT in language modeling. This approach allows the model to learn gen-5

eral seismic waveform patterns from unlabeled data without being tied to specific6

downstream tasks. When fine-tuned, SeisLM excels in seismological tasks like7

event detection, phase-picking, onset time regression, and foreshock–aftershock8

classification.9

1 Introduction10

Seismology is a data-centric field that often sees significant progress through improvements in data11

quality and quantity (Havskov & Ottemoller, 2010; Zhou, 2014). Today, the field benefits from an12

extensive collection of seismic recordings gathered over years by networks of thousands of stations13

worldwide (Hafner & Clayton, 2001; Mousavi et al., 2019a; Quinteros et al., 2021; Michelini et al.,14

2021; Cole et al., 2023; Niksejel & Zhang, 2024; Chen et al., 2024; Zhong & Tan, 2024). Over the last15

decades, millions of these recordings have been manually inspected and labeled by domain experts.16

This wealth of data and labels has fueled the rise of machine-learning models, which automate the17

analysis of these expanding seismic records. A growing body of models, including convolutional18

networks (Ross et al., 2018; Zhu & Beroza, 2018; Woollam et al., 2019; Mousavi et al., 2019c),19

recurrent networks (Soto & Schurr, 2021; Yoma et al., 2022), and transformers (Mousavi et al., 2020;20

Li et al., 2024; Münchmeyer et al., 2021) have been applied to seismic data analysis, particularly in21

tasks like earthquake detection and characterization.22

Despite these advances, most current machine-learning models in seismology still depend on la-23

beled, task-specific datasets, not making use of more than a petabyte of openly available unlabeled24

waveforms. This mirrors the early stages of machine learning in fields like computer vision and25

natural language processing, where models were initially trained on similarly specialized datasets26

such as MNIST (Lecun et al., 1998), CIFAR (Krizhevsky & Hinton, 2009), Sentiment140 (Go et al.,27

2009), and IMDB dataset (Maas et al., 2011). Yet, these task-specific models eventually gave way28

to general-purpose foundation models, trained on a wealth of unlabled data, which are capable of29

handling a broader range of tasks with minimal fine-tuning. Exemplars of open-weight foundation30

models include BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019), and Llama (Touvron et al.,31

2023a,b; Dubey et al., 2024) for text processing, Wav2Vec2 (Baevski et al., 2020) and Hubert (Hsu32

et al., 2021) for speech understanding, and CLIP (Radford et al., 2021) and MAE (He et al., 2022)33

for vision modeling. These foundation models rely on self-supervised learning from unlabeled data,34

allowing them to scale up training samples and learn features without being tied to specific tasks.35

In this work, we introduce the Seismic Language Model (SeisLM), a self-supervised model for36

analyzing single-station seismic waveforms. SeisLM uses a standard encoder-only transformer37
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architecture, similar to Wav2Vec2 and BERT. Our results demonstrate that this model, when pretrained38

on worldwide earthquake activity records, extracts generalizable features that effectively address39

various downstream tasks, nearly always surpassing models tailored for specific tasks. The main40

contributions of the paper are summarized below:41

• We introduce a self-supervised foundation model for seismic waveforms. To our knowledge,42

it represents the first application of self-supervised learning on unlabeled seismic waveforms.43

• We demonstrate that the model’s self-supervised features, although not trained on any44

labeled samples, display clear and interpretable characteristics. Specifically, the model45

groups waveform features into noise and earthquake clusters.46

• We show that the self-supervised model generalizes well to a wide array of downstream47

tasks. When compared with supervised baselines, the advantage of pretraining–finetuning is48

particularly noticeable when the downstream tasks have limited labeled data.49

2 Background and related work50

Supervised-learning models for seismic tasks. The efforts of using supervised machine learning to51

automate seismic waveform analysis stretch back several decades. We briefly review a non-exhaustive52

selection of neural network approaches. Early methods used shallow multilayer perceptrons (MLPs)53

to classify seismic waveforms (Enescu et al., 1996; Baevski et al., 2020; Dai & MacBeth, 1997;54

Zhao & Takano, 1999; Gentili & Michelini, 2006). Starting from 2010s, 1D convolutional neural55

networks (ConvNets) have been prevalent in seismic applications due to their efficiency and flexibility56

in handling variable-length input. For instance, the Generalized Phase Detection model (Ross57

et al., 2018) uses a 1D convolutional network for phase classification tasks. Inspired by the U-Net58

(Ronneberger et al., 2015), a convolutional network originally designed for 2D image segmentation,59

Zhu & Beroza (2018); Woollam et al. (2019) used similar architectures in 1D for onset and phase60

picking tasks. Mousavi et al. (2019c) proposed a residual convolutional network for earthquake61

detection, drawing on ideas from residual networks used in image classification (He et al., 2016). In62

addition to ConvNets, recurrent networks (RNNs) have also been applied to seismic tasks. These63

networks include DeepPhasePick (Soto & Schurr, 2021), which handles event detection and phase64

picking. Finally, the recent success of transformers and their self-attention mechanisms (Vaswani65

et al., 2017) has inspired their use in seismic analysis. The Earthquake Transformer (Mousavi et al.,66

2020) combines recurrent networks and self-attention mechanisms for joint event detection, phase67

detection, and onset picking. While Earthquake Transformer is a Transformer–CNN–RNN hybrid68

approach, Seismogram transformer (Li et al., 2024) shows that a plain transformer can be used to69

solve different earthquake-monitoring tasks when coupled with different head modules.70

Unsupervised learning models for seismic tasks. Unsupervised machine learning has been used71

to uncover patterns in unlabeled seismic data, primarily through clustering and visualization. Esposito72

et al. (2008) cluster volcanic event waveforms to explore the link between active volcanic vents and73

their explosive waveforms. Yoon et al. (2015) group waveforms with similar features in a database,74

then use a search method to identify those resembling earthquake signals. Mousavi et al. (2019b)75

use convolutional autoencoders to cluster and differentiate hypocentral distances and first-motion76

polarities. Seydoux et al. (2020) combine scattering networks with a Gaussian mixture model77

to cluster seismic signal segments, demonstrating applications in blind detection and recovery of78

repeating precursory seismicity.79

Foundation models for seismic tasks and their relationships to our work. There exist a few80

foundation models for seismic applications, although they differ from our approach in several81

aspects. Sheng et al. (2023) proposed a foundation model for seismic imagery data, which are82

visual representations of the Earth’s subsurface structures. These images are generated by seismic83

waves reflecting off rock boundaries, capturing the differences in physical properties between various84

geological layers. In contrast, our work focuses on seismic waveforms, which are time-series data.85

In this regard, the closest related models are Si et al. (2024) and Li et al. (2024), which also handle86

seismic waveforms. Both, however, rely on labeled datasets for pretraining. Specifically, Si et al.87

(2024) uses event annotations, such as phase and source information, for a contrastive approach. Li88

et al. (2024) uses a supervised pretraining method, training a single model for various classification89

and regression tasks, including earthquake detection and phase picking, using labeled data. Our90
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approach is distinct in that we use only unlabeled waveforms for pretraining. This is motivated by91

the consideration that unlabeled waveforms are much more accessible and abundant than labeled92

ones. To our knowledge, SeisLM is the first foundation model self-supervisedly trained on unlabeled93

seismic waveforms.94
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Figure 1: Illustration of the self-supervised learning of Seismic Language Model (SeisLM). A
ConvNet encodes raw 3-channel seismic waveforms from a single station into a feature sequence.
The model then follows two paths. In the lower path, we apply random masking to these waveform
features before passing them to a transformer. The transformer aims to reconstruct aspects of the
masked convolutional features. In the upper path, we prepare the reconstruction targets: continuous-
valued convolutional features are discretized into a sequence of vectors with a finite vocabulary size
through vector quantization (VQ; Van Den Oord et al., 2017; Razavi et al., 2019). This overall model
closely resembles Wav2vec2 (Baevski et al., 2020) for audio self-supervised learning.

Our language model is an encoder-only transformer that focuses on the task of predicting features of96

masked timesteps. This model architecture is standard, closely following Wav2Vec2 (Baevski et al.,97

2020) for speech signal modeling and BERT (Devlin et al., 2019) for text modeling. In Fig. 1, we98

show a general overview of the model, which consists of a ConvNet, a quantizer, and a transformer.99

We now explain the role of each module and defer their detailed hyperparameters to Section 5.100

3.1 SeisLM architecture101

Model input. The input to the model are raw seismic waveforms, which are a sequence of vectors102

(x1, . . . ,xT ); each sample xt ∈ R3 has three channels that correspond to ground motion recorded103

by a single seismometer for three orthogonal axes: East–West, North–South, and Up–Down; this104

format is standard in seismic data. Most seismic datasets use a sampling rate of 100 Hz or of the same105

order of magnitude (see Table 1); we thus use waveforms at 100 Hz for consistency and resample106

the waveform to 100Hz in case the original sampling rate differs. We standardize each channel of a107

waveform by subtracting the channel mean and dividing by the channel standard deviation.108

ConvNet encoder. The raw waveforms (x1, . . . ,xT ) first undergo a 1D ConvNet, yielding convo-109

lutional features (v1, . . . ,vL) with vt ∈ Rdv . The purpose of the 1D ConvNet is twofold: (i) filter110

the raw waveform and lift the 3-dimensional waveform signals to a higher dimension (dv > 3), and111

(ii) downsample the sequence of the raw waveform in length (L < T ), so that self-attention layers112

can be applied to this shorter sequence with lower computational complexity.113

Transformer encoder. The convolutional features are then fed into a sequence of transformer114

blocks (Vaswani et al., 2017) after masking and position embedding. The masking part replaces115

convolutional features at random timesteps by a fixed embedding vector (details in Section 4.1). For116

position embedding, as in Baevski et al. (2020), we apply a 1D group convolutional layer (Krizhevsky117

et al., 2012) with a large kernel to obtain relative positional embedding, and then sum the output with118
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the masked features. The position-embedded masked features are then fed to the transformer. The119

transformer is the heart of the model, as its self-attention mechanism (Vaswani et al., 2017) captures120

contextual information. We write the transformer output as (a1, . . . ,aL) with at ∈ Rdq .121

Quantization. During pretraining, the transformer encoder aims to reconstruct the unmasked122

convolutional seismic features from their masked corruptions. We use quantized convolutional123

features as the reconstruction targets: Given an input vt ∈ Rdv of the raw waveform, the quantization124

module (Jegou et al., 2010) intuitively retrieves the nearest neighbor of vt over a finite codebook125

Q := {q(1), . . . , q(nq)} ⊂ Rdq and use the resulting vector as the target; the parenthesized indices126

here refer to the enumeration of the code vectors, which differs from the unparenthesized ones used to127

denote timesteps. Using quantized waveforms as the target proved more effective than non-quantized128

waveforms in previous speech self-supervised learning research (Baevski et al., 2020, 2019). Baevski129

et al. (2020) suggested that quantization reduces specific artifacts, such as speaker and background130

noise, which simplifies the reconstruction task and prevents the model from fitting on irrelevant131

details. To obtain the quantized vectors, a quantization module Q : Rdv → Q is applied to the feature132

vector at each timestep independently with qt := Q(vt). To parameterize the quantization function133

Q, we follow Jegou et al. (2010) and use learnable matrices W ∈ Rnq×dv to compute134

[z1, . . . ,zL] = LayerNorm
(
[v1, . . . ,vL]

)
(1)

it := argmax
(
Wzt

)
∈ {1, . . . , nq}, for all t ∈ [L] (2)

qt := q(it) ∈ Q ⊂ Rdq . (3)

Here, argmax
(
Wzt

)
indicates the entry to the largest value of the vector Wzt. Since argmax is135

not differentiable, in practice, we use the Gumbel-Softmax trick (Jang et al., 2017) as a differentiable136

relaxation of the argmax in the forward pass of the model. Furthermore, following Baevski et al.137

(2020), we introduce multiple codebooks, identify one codeword from each of the codebook, and138

then concatenate them. This concatenation approach increases the number of possible quantization139

vectors at the expense of more parameters; for example, if we use two codebooks, each with nq140

codewords, then the total possible quantization vectors is n2
q .141

4 Training142

To pretrain the SeisLM, we use a masked reconstruction objective similar to masked language143

modeling in BERT (Devlin et al., 2019) and masked audio modeling in Wav2vec2 (Baevski et al.,144

2020). For each masked time step, the pretraining goal is to identify the correct quantized latent145

representation from a candidate set. After the pretraining, the model is finetuned on labeled samples.146

4.1 Pretraining setup147

Masking. A portion of the convolutional features (v1, . . . ,vL) is randomly replaced by a shared148

trainable feature vector during each forward pass of pertaining. To select the masking indices, similar149

to Baevski et al. (2020), we uniformly sample 6.5% of all time-steps to be starting indices and mask150

the subsequent 10 time-steps.151

Contrastive loss. We pretrain SeisLM with a standard contrastive objective: At each timestep t, we152

encourage the transformer output at to positively correlate with the quantized feature vector qt of153

the same timesteps, and negatively correlate with K quantized feature vectors sampled from other154

timesteps of the same input sequence. Denoting these K negative examples at each timestep t by155

Nt := {n1
t , . . . ,n

K
t } ⊂ {q1, . . . , qL}, we let the contrastive loss of each time t be156

L(at, qt,Nt) := − log
exp

[
sim(at, qt)/κ

]
exp

[
sim(at, qt)/κ

]
+
∑

n∈Nt
exp

[
sim(at,n)/κ

] . (4)

where κ > 0 is a fixed temperature.157

While L(qt,Qt) in (4) is the main loss used for masked pretraining, we add auxiliary losses to encour-158

age the codebook vectors in Q to be less redundant; this is achieved with an entropy regularization as159

in Baevski et al. (2020).160
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Codevector diversity loss. Optimizing the quantization module faces the common issue of un-161

derutilized codebooks (Dieleman et al., 2018; Łańcucki et al., 2020; Dhariwal et al., 2020; Mentzer162

et al., 2024): codewords may remain unused. To address this, following prior works (Baevski163

et al., 2020; Dieleman et al., 2018), we use a diversity loss to encourage the uniform use of code-164

book vector. Concretely, let {v1, . . . ,vBL} be a batch of B covolutional waveveform sequences,165

each with length L; we let {p1, . . . ,pBL} be the softmax probabilities of codevector assignment:166

pj := softmax(Wzj) ∈ Rnq , which is a differentiable relaxation of the hard assignment in (2). The167

average of these codevector assignment probabilities, p := 1
BL

∑BL
j=1 pj ∈ Rnq is another probability168

vector that describes the average usage of all codevector. The diversity loss is defined as 1
nq

⟨p, log p⟩.169

However, this diversity loss can itself lead to numerical instability if its strength is not carefully tuned.170

Our experience shows that this instability is in part due to the highly unbalanced codebook usage at171

initialization. This imbalance triggers a large diversity loss at the outset, leading to substantial initial172

optimization updates as the model tries to correct it. In Appendix A, we propose a simple way to173

initialize the model such that the diversity loss remains small. During pretraining, we combine the174

diversity loss with the contrastive loss. The balance between them is controlled by a hyperparameter.175

4.2 Finetuning setup176

To finetune pretrained models to a downstream, labeled dataset task, we add a randomly initialized177

shallow network to process the output of SeisLM. Since SeisLM down-samples waveforms through178

its convolutional layers, the transformer output has a shorter length than the raw input. Thus, for179

sequence-labeling tasks that predict each timestep at the original frequency, we use linear interpolation180

followed by convolutional layers to upsample the latent representation; more details are in Appendix B.181

During the finetuning, we simply train the parameters of both the SeisLM and the task head. We are182

aware of prior work that freezes some parts of the pretrained model or uses a scheduler to gradually183

unfreeze the pretrained model (Baevski et al., 2020) during finetuning; however, these more involved184

approaches did not bring consistent improvement in our finetuning experiments.185

5 Experiment186

5.1 Pretraining experiments187

Traces Region Tr. length Sampling rate [Hz] Type

ETHZ 36,743 Switzerland variable 100 - 500 Regional
INSTANCE 1,291,537 Italy 120 s 100 Regional
Iquique 13,400 Northern Chile variable 100 Regional
STEAD 1,265,657 global 60 s 100 Regional
GEOFON 275,274 global variable 20 - 200 Teleseismic
MLAAPDE 1,905,887 global 120 40 Teleseismic
PNW 183,909 Pacific Northwest 150 s 100 Regional
OBST2024 60,394 global 60 s 100 Regional, submarine

Table 1: Overview of the pretraining datasets from SeisBench (Woollam et al., 2022). While
waveforms from these datasets come with various labels such as phase labels (e.g., P-phase vs
S-phase), we only use the raw, unannotated data in the training fold for pretraining.

Pretraining data. For the pretraining dataset, we combine waveforms from eight seismic datasets,188

accessed through the SeisBench (Woollam et al., 2022) framework, into a unifying dataset. The eight189

datasets are ETHZ (Swiss Seismological Service at ETH Zurich, 1983, 2005, 2008; AlpArray Seismic190

Network, 2014; European Organization for Nuclear Research (CERN), 2016), INSTANCE (Michelini191

et al., 2021), Iquique (Woollam et al., 2019), STEAD (Mousavi et al., 2019a), GEOFON (Quinteros192

et al., 2021), MLAAPDE (Cole et al., 2023), PNW (Ni et al., 2023), and OBST2024 (Niksejel &193

Zhang, 2024). These datasets consist of preselected waveform snippets, encompassing examples of194

earthquakes, noise, and exotic signals such as explosions and landslides. Due to this preselection,195

the prevalence of earthquake signals in this data is substantially higher than on a randomly recorded196

seismic trace. An overview of these datasets is provided in Table 1. These datasets cover examples197
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Figure 2: Pretraining loss of SeisLM.

from different world regions, different event-to-station distances, and a wide magnitude range. We198

randomly sample 30s windows from the traces.199

Model and training hyperparameters. We briefly outline the hyperparameters used in pretraining200

and provide full details in Appendix B. We pretrained two variants of models: SeisLM-base and201

SeisLM-large. They share the same ConvNet and quantization configurations but SeisLM-large202

uses a larger transformer module than SeisLM-base: SeisLM-base includes 6 transformer blocks,203

while SeisLM-large has 12. The SeisLM-base contains 11.4 million parameters, while SeisLM-large204

contains 90.7 million parameters. We trained our model with the Adam optimizer (Kingma & Ba,205

2015) for 40 epochs. We trained SeisLM-base on four A100-40G GPUs and trained SeisLM-large on206

four A100-80G GPUs. the pretraining of SeisLM-base and SeisLM-large takes approximately 5 and207

8 days, respectively. Figure 2 plots the validation losses of two SeisLM models during pretraining.208

Visualizing learned features through dimensionality reduction. Does the reduction of pretraining209

loss, shown in Figure 2, mean that the model learns useful features from the data? As a sanity210

check, we run a simple dimensionality reduction experiment. This experiment visualizes whether211

the pretrained SeisLM, without fitting on any labeled data, could reasonably separate noise and212

earthquake traces. We collect 1000 noise traces and 1000 earthquake traces from the INSTANCE213

dataset and input them into SeisLM. For each trace, we average the features from the last layer214

of SeisLM along the time axis, producing one embedding vector per trace. This process is akin215

to the bag-of-words model in natural language processing. We apply t-SNE (van der Maaten &216

Hinton, 2008) to non-linearly reduce the dimensionality of the trace embeddings to 2, to facilitate217

visualization (Figure 3). The results indicate that, with randomly initialized weights, the SeisLM218

embeddings of noise ( ) and earthquake ( ) traces heavily overlap (left panel of Figure 3); however,219

after self-supervised pretraining, the separation between the embeddings of noise and earthquake220

traces gets greatly improved (right panel of Figure 3). We emphasize again the embeddings are221

learned without using any label; they are colored using labels in Figure 3 for probing purposes.222

5.2 Finetuning on phase-picking tasks223

We now test whether self-supervised SeisLMs transfer effectively to downstream seismic tasks.224

Among the many potential downstream tasks, detecting and determining seismic phase types and225

their onset time are arguably the most fundamental ones; these tasks are typically jointly referred226

to as phase-picking tasks. More specifically, seismic phase onset time is the moment of seismic227

waves emitted by a source, such as an earthquake, reach a seismic instrument; we usually observe228

two main phase types of seismic waves, the faster longitudinal P waves and the slower S waves. The229

results of seismic phase picking form the basis of many subsequent seismological workflows, in230

particular, earthquake detection through phase association (Zhu et al., 2022; Münchmeyer, 2024),231

source characterization (Bormann, 2012) or seismic travel-time tomography (Nolet, 1987). All of232

these steps are integral for accurate and precise seismic hazard assessment.233

For a quantitative analysis, we consider the three evaluation tasks defined in the large-scale benchmark234

by Münchmeyer et al. (2022):235
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Figure 3: t-SNE embeddings of SeisLM features. Compared to a randomly initialized SeisLM-base
(left panel), a self-supervised SeisLM-base (right panel) separate the embeddings of earthquake and
noise waveforms more effectively.

1. Event detection: Given a window of a seismic waveform, determine if it contains an event.236

2. Phase identification: Given a window containing exactly one phase arrival, determine if it237

is a P or an S phase.238

3. Onset regression: Given a window containing exactly one phase arrival of the known type239

(P or S), determine the onset time.240

We show event detection and phase identification results in the main text, and place the onset241

regression result in Appendix B.242

Setup of the baseline models and SeisLMs. In the benchmark study of Münchmeyer et al. (2022),243

PhaseNet (Zhu & Beroza, 2018) achieves the best overall performance for the three phasepicking tasks244

described above. We, therefore, use PhaseNet as a baseline, with the same PhaseNet hyperparameters245

as in Münchmeyer et al. (2022). Note that PhaseNet solves the three-way phase-picking task: for each246

sample, PhaseNet outputs a 3-dimensional probability vector corresponding to the noise probability,247

P-phase probability, and the S-phase probability (Zhu & Beroza, 2018; Münchmeyer et al., 2021).248

For a head-to-head comparison, we follow this joint-training approach to finetune SeisLM. We add249

two convolutional layers on top of the pre-trained SeisLM with a Softmax activation function in the250

end, so that it outputs a 3-dimensional probability vector at each timestep, just like the PhaseNet.251

More details of the finetuning hyperparameters are in Appendix B. For both models, we use 1 minus252

the noise probability for the event detection. We use the ratio of the peak of the P and S as predictions253

for the phase identification task. We use the peak position of the relevant phase prediction for the254

onset regression task.255

Finetuning dataset. We use three labeled phase-picking datasets from Seisbench for finetuning256

(Woollam et al., 2022; Münchmeyer et al., 2022): ETHZ, GEOFON, and STEAD. These datasets257

reflect different data availability scenarios: ETHZ contains 22k training traces (low data), GEOFON258

provides 161k traces (medium data), and STEAD offers more than 1 million traces (abundant data).259

To evaluate model performance across various sample sizes, we divide each dataset into fractions,260

ranging from 5% to 100%. This allows us to test the models with varying amounts of labeled data.261

We hypothesize that pretrained models to perform much better than randomly initialized networks in262

low-data scenarios. In abundant-data scenarios, we anticipate that randomly initialized networks will263

also perform well, but pretraining should not hinder performance; therefore, we include the large264

STEAD dataset to stress test the pretrained model.265

Event detection. Figure 4 illustrates the event identification results across three datasets. When266

comparing event detection accuracy at various fractions of the training dataset, pretrained SeisLM267

models ( , ) consistently outperformed PhaseNet ( ). The advantage of SeisLM is especially268
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Figure 4: Performance of models on the event detection task. Each panel indicates a finetuning
dataset. The x axis indicate the fraction of training dataset; the y axis shows the AUC metric: it
represents the area under the curve that plots the true positive rate against the false positive rate at
various threshold levels for a binary classification task.

pronounced with a limited number of labeled samples, such as when using just 5% of the training data.269

However, the difference in performance between SeisLM-base ( ) and SeisLM-large ( ) is minimal,270

presumably because this event detection is relatively simple task. Additionally, we compared a271

SeisLM model fine-tuned from pretrained weights ( , ) with a SeisLM-base model initialized with272

random weights ( ). The results show that pretraining benefits performance, particularly when labels273

are scarce. When there is sufficient labeled data, such as the case of STEAD dataset, then a randomly274

initialized SeisLM can perform reasonably well.275
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Figure 5: Performance of models on the phase identification task.

Phase identification. Figure 5 displays phase identification results across the same three datasets.276

As with event detection, pretrained SeisLM models ( , ) generally deliver higher accuracy than277

models trained from scratch ( , ), with the gap widening in low-data scenarios. Additionally,278

SeisLM-large ( ) surpasses SeisLM-base ( ) in this task. When using a substantial amount of data279

from the largest STEAD dataset, all SeisLM models—whether randomly initialized or pretrained—280

perform the task near perfect.281

5.3 Finetuning on foreshock–aftershock classification tasks282

A major challenge in seismology is detecting subtle changes in seismic recordings before and after283

earthquakes. Gaining insights to these subtle changes can offer early warnings of impending hazards.284

Previous research has impressively shown that machine learning models can be trained to identify285

foreshock and aftershock seismic waves (Laurenti et al., 2024). Specifically, Laurenti et al. (2024)286

classified waveform signals into different categories based on the time relative to the 2016 M6.5287

Norcia mainshock in Italy. We apply SeisLM to tackle the same task.288
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Figure 6: Confusion matrices of models evaluated on the test fold of the foreshock-–aftershock
classification dataset. The x-axis represents the predicted labels, and the y-axis represents the true
labels. The values in the matrices indicate the percentage of predicted samples. The event classes are
ordered by time.

Data and model. Following the exact dataset setting of Laurenti et al. (2024, Section 3.1.1),289

we focused on the waveform recordings from the NRCA station. The foreshock, mainshock, and290

aftershock events are categorized into nine classes, ranging from FEQ1 (earliest foreshocks), to Visso291

(the main shock), and finally to AEQ4 (latest aftershocks). These classes are displayed as the labels292

of the x and y of Figure 6. We use the 7-layer ConvNet from Laurenti et al. (2024, Section 8.2.1) as293

our baseline model. To fine-tune SeisLM, we add convolutional layers on top of its transformer block;294

these convolutional layers are followed by global average pooling and a linear head. See Appendix B295

for more details.296

Results. Figure 6 displays the confusion matrices on the test-fold of the foreshock–aftershock297

dataset. SeisLM’s fine-tuning (middle and right panels) improves accuracy over the ConvNet baseline298

(left panel). Furthermore, reassuringly, the confusion matrices show that SeisLM’s errors often299

occur in temporal proximity—e.g., misclassifying FEQ2 traces as FEQ3 traces and vice versa.300

Overall, our results provide further support to the hypothesis in Laurenti et al. (2024): fault or source301

properties before and after a major earthquake show detectable changes that can be identified in302

seismic recordings.303

6 Discussion304

Foundation models for seismic waveforms are in their early stages, and important insights are still305

missing. Take model scaling, for example. In text modeling, researchers have investigated the306

optimal model size and token count for training transformers within a fixed compute budget, most307

notably through the Chinchilla scaling law (Hoffmann et al., 2022). We currently lack comparable308

insights for seismic tasks. Despite this, SeisLM shows the promise of self-supervised learning on309

unlabeled seismic waveforms—the same strategy behind many seminal foundation models in vision310

and language modelling. This self-supervised approach enables the pre-trained model to excel in311

downstream tasks, often surpassing task-specific baselines. It becomes especially helpful when312

labeled data for downstream tasks is scarce.313

The early stage of seismic foundation model research is in contrast with their potential for immense314

impact. Indeed, earthquakes rank among the most dangerous natural hazards, and even small advances315

in early warning and hazard assessment could substantially improve safety and reduce economic316

damage. Leveraging the petabytes of existing seismic data—and likely exponentially more from317

emerging technologies (Shearer et al., 2023; Zhan, 2020)—self-supervised learning methods applied318

to vast amounts of unlabeled seismic data may significantly improve seismic data analysis. With the319

introduction of SeisLM, we have taken a step in this direction.320
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A Details of the model518

Quantization. We show that this phenomenon of uneven usage of randomly initialized codebooks519

can be easily understood. During training, the forward pass of the Gumbel-quantizer computes520

pt := softmax
[
(Wzt + n)/τ

]
∈ Rnq , with nj

iid∼ Gumbel(0, 1) for all j ∈ [nq], (5)

it ∼ Categorical(pt), it ∈ {1, . . . , nq} (6)

where τ is a temperature. At initialization, the entries of the weight projection matrix W are typically521

drawn from a Normal distribution1. Assume that the convolutional feature z ∈ Rdv follows a normal522

distribution. In this case, the entries of (Wz + n)/τ follow a zero-mean Gaussian distribution523

with variance proportional to dv , the dimension of convolutional features. Given that dv is typically524

in the order of hundreds, the variance is in the same order, leading to nearly one-hot vectors after525

the softmax. This makes the categorical sampling nearly deterministic and less exploratory for526

codevectors. Additionally, since larger models often use greater codevector dimensions dv, larger527

models more prone to this problem. We illustrate this in Figure 7. As a simple fix, we re-parametrize528

the temperature τ as τ := τ ′
√
nq . This re-parametrization breaks the link between the convolutional529

feature dimension dv and its impact on uneven codevector usage at initialization.530

1As in the implementation of Gumbel quantizer of Fairseq and Hugging Face transformer
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B Experimental details531

B.1 Pretraining experiments532

Model hyperparameters We pretrained two variants of models: SeisLM-base and SeisLM-large.533

They share the same ConvNet and quantization configurations but SeisLM-large uses a larger trans-534

former module than SeisLM-base. For the ConvNet module, each model uses two convolutional layers535

with 256 channels, a kernel size of 3, and a stride of 2. In the vector quantization module, each model536

uses two groups of code vectors, each containing 320 vectors. Furthermore, each model’s position537

embedding component (placed at the start of the transformer module) uses a grouped convolutional538

layer (Krizhevsky et al., 2012) with a kernel size of 128 and 16 groups. In the rest of the transformer539

module, SeisLM-base includes 6 pre-norm transformer blocks, while SeisLM-large has 12. Unlike the540

standard transformer block, the pre-norm version applies layer normalization before the self-attention541

and feedforward layers. This modification often leads to more stable training (Baevski & Auli,542

2019; Nguyen & Salazar, 2019; Xiong et al., 2020). Each transformer block employs a 12-headed543

self-attention layer and a residual 2-layer MLP with 3072 hidden units. The number of output units544

of the MLP is 240 for SeisLM-base and 768 for SeisLM-large. With these settings, SeisLM-base545

contains 11.4 million parameters, while SeisLM-large contains 90.7 million parameters.546

Training hyperparameters For the contrastive loss, we randomly sample K = 100 quantization547

vectors from the convolutional feature sequences as negative examples, with a temperature κ = 0.1 in548

(4). We trained our model with the Adam optimizer (Kingma & Ba, 2015) for 40 epochs. We traind549

SeisLM-base with a global batch size of 112 on four A100-40G GPUs, and trained SeisLM-large with550

a global batch size of 192 on four A100-80G GPUs. The learning rate scheduler uses cosine annealing551

with a linear warmup. The maximum learning rate is 5e-4 for SeisLM-base and 1e-3 for SeisLM-large,552

with the same warmup fraction of 20%. During training, we decreased the Gumbel temperature from553

2.0 to 0.5. We did not apply dropout, drop layers, or weight decay during pretraining. We trained554

SeisLM-base with 16-bit precision and SeisLM-large with 32-bit precision. With these settings,555

the pretraining of SeisLM-base and SeisLM-large takes approximately 5 and 8 days, respectively.556

Figure 2 plots the validation losses of two SeisLM models during pretraining.557

B.2 Phase-picking experiments558

Hyperparameters of the finetuned SeisLM. Since Pretrained SeisLM down-samples waveforms559

through its convolutional layers, the transformer’s output is shorter than the raw input. For phase-560

picking tasks, we upsample the latent representation to match the input length using linear interpo-561

lation. We then concatenate this upsampled representation with the raw waveforms and apply two562

convolutional layers to fit the labels. Specifically, we use two convolutional layers with a kernel563

width of 3, stride of 1, and GELU activations. These layers maintain the number of channels in the564

transformer features. For fine-tuning SeisLM-base, we use 240 + 3 convolutional filters, and for565

SeisLM-large, we use 768 + 3 filters. We also apply dropout with a rate of 0.2 after each convolutional566

layer.567

Onset regression. Figure 8 displays the onset regression result, which recapitulated our findings568

on the two phasepicking tasks above. Pretrained SeisLM ( , ) generally achieves lower onset569

regression than train-from-scratch baselines ( , ).570

B.3 Foreshock–aftershock experiments571

Hyperparameters of the finetuned SeisLM. For foreshock–aftershock tasks, we add a 4-layer572

convolutional network on top of pretrained SeisLM. These convolutional layers have a kernel width573

of 3, stride of 2, and GELU activations, and they maintain the number of channels in the transformer574

features. A global average pooling layer and a linear head follow the convolutional layers, turning the575

features into a vector of 9 classes.576
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Figure 8: Onset regression.
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