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Abstract

In multi-source zero shot domain generalization, the goal is to train using data
from multiple source domains and generalize to any arbitrary target domain. Sur-
prisingly, it has been found that standard empirical risk minimization (ERM) is a
highly competitive baseline for this problem. More importantly, even sophisticated
approaches that explicitly optimize for invariance across different domains do not
necessarily provide non-trivial gains over ERM. We hypothesize that this behavior
arises due to the poor definition of the domain splits itself. In this paper, we make
a first attempt to understand the role pre-defined domain labels play in the success
of domain-aware DG methods. We conduct analysis on two standard benchmarks
PACS and VLCS and demonstrate the benefit of re-categorizing samples into new
domain groups on DG performance.

1 Introduction

When the commonly made i.i.d. (independent and identically distributed) assumption between train
and test data is violated, the performance of machine learned models can suffer [16]. In this paper, we
consider the problem of generalizing to any arbitrary target domain, when data from multiple source
domains are used to train models. Commonly referred to as zero-shot, multi-domain generalization
(MDG), this does not assume any a priori knowledge about the target domain. The simplest, yet
highly effective, solution to this problem is a naïve empirical risk minimization (ERM) [7, 17]
approach that minimizes an average loss computed on data pooled together from all available source
domains. Interestingly, even sophisticated approaches that explicitly optimize for invariance across
different domains do not always provide non-trivial gains over ERM.

Theoretical results of average risk estimation error bound for MDG in the binary classification setting
were provided in [2] and they have been extended to muti-class classification in [12]. We reproduce
Theorem 3 from [18] which provides an upper bound on average risk estimation error for MDG using
binary classifiers. Here M is the number of domains, n denotes number of samples in each domain,
h denotes the hypothesis and E(h) represents average risk over all possible target domains by h.
Theorem 1 (Average risk estimation error bound for binary classification [2]). Assume that the loss
function ` is L`-Lipschitz in its first argument and is bounded by B`. Assume also that the kernels
kX , k

′
X and κ are bounded by B2

k, B
2
k′ ≥ 1 and B2

κ, respectively, and the canonical feature map
Φκ : v ∈ Hk′X 7→ κ(v, ·) ∈ Hκ of κ is Lκ-Hölder of order α ∈ (0, 1] on closed ball BHk′

X

(Bk′)
1.

1This means that for any u, v ∈ BHk′
X

(BHk′ ), it holds that ‖Φκ(u)− Φκ(v)‖ ≤ Lκ‖u− v‖α, where the
norms are of the respective RKHSs.
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Then for any r > 0 and δ ∈ (0, 1), with probability at least 1− δ, it holds that:

sup
h∈BH

k̄
(r)

∣∣∣Ê(h)− E(h)
∣∣∣ ≤ C(B`√−M−1 log δ

+rBkL`

(
Bk′Lκ

(
n−1 log(M/δ)

)α/2
+Bκ/

√
M
))

, (1)

where C is a constant.

Note that this average risk upper bound becomes larger in general if (M, n) is replaced with (1, Mn)
thus indicating that using domain-wise datasets is better than pooling them into one single dataset [18].
Under the light of this result, the success of ERM over methods that use domain-specific datasets
is very surprising and warrants attention. We hypothesize the reason for the poor performance of
domain-aware DG solutions to be the poor quality of domain labels. Through this paper, we make a
first attempt at understanding the important link between domain-aware MDG solutions and domain
labels. We are especially interested in re-grouping data so that they can be meaningfully leveraged for
improving the worst-case performance. To this end, we propose a new MDG solution that includes an
iterative unsupervised clustering step to infer domain labels which are then used by a domain-aware
algorithm to build generalizable models. For implementing the domain-specific MDG algorithm, we
consider GroupDRO a distributional robust optimization algorithm, which improves upon standard
ERM by maintaining an adaptive weight for every group so that worst-case performance is maximized.
Furthermore, we propose a novel regularization into GroupDRO to better guide the unsupervised
learning step. We conduct experiments on two popular MDG benchmarks, PACS [11] and VLCS [5],
and show that our approach improves over ERM and GroupDRO, which uses the domain labels that
come with the dataset. Our results clearly validate our hypothesis of needing better domain labels for
achieving non-trivial improvements over ERM.

2 Multi-domain Generalization

Problem Setup. Given access to M labeled source domains {D1, . . . ,DM} where Dm =

{(xi, yi)}Nm
i=1 ∼ P (m)(X,Y ) is the mth domain comprising Nm samples-label pairs, the goal

is to generalize to a novel test domain D†, without requiring any labeled or unlabeled examples. In
this paper, we consider the homogeneous MDG setting i.e., observed and unobserved domains share
the same label space. Existing solutions for MDG can be grouped into three non-mutually exclusive
categories [18] as: (i) Data manipulation which encompasses data augmentation and data generation ;
(ii) Domain invariant representation learning; and (iii) methods that use advanced learning strategies,
e.g., meta-learning, self-supervised learning. We refer readers to surverys [18] for a detailed exposi-
tion. More importantly, MDG methods can also be broadly seen as as domain-aware i.e., methods
that use pre-defined domain labels like [4,10,14,15] and domain-agnostic methods such as ERM [17],
IRM [1] etc. which ignore those labels. In this paper, we study the relationship between pre-defined
domain-labels and domain-aware MDG algorithms.

ERM Baseline. A straight-forward and a simple MDG method is to train a network on data pooled
from all source domains. Formally, With ` : X × Y → R+ as the loss function that measures
predictive error such as cross-entropy loss, we aim to learn a function f : x→ y that maps samples
x to labels y by minimizing the empirical risk. This simple baseline method does not leverage the
inherent discrepancies between the source domains, and as a result one might expect this to be
ineffective in practice. However, surprisingly, this solution has been shown to produce competitive
performance to state-of-the-art methods on standard DG benchmarks through the use of appropriate
model selection strategies [7] and hyper-parameter search.

3 Approach

Improving ERM by maximizing worst-case performance. A major drawback of ERM formulation
is that it treats all samples from all domains/groups equally and thus decreases the loss in an average
sense. An insight from distributional robust optimization literature is that increasing the worst-group
performance can lead to better generalization. Hence, a natural extension of ERM is to decrease a
weighted mean of the group-level loss with an adaptive weight per-domain such that large weights
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are given to groups that have poor performance. Formally, let gi = k ∈ {1, · · · ,K} denote the group
to which a sample (xi, yi) belongs to, where K is the total number of groups, and qk is the weight
for a particular group. The risk now becomes

1

|D|
∑

(xi,yi,gi)∈D

` (qgif (xi) , yi) ; D :=
⋃
m

Dm, (2)

A similar formulation was adopted in [14] for MDG, wherein an update rule for qg across iterations
was also proposed, such that a group with larger error will get a higher weight. Note that this approach
while has shown to be effective for certain datasets, the improvements in performance compared to
ERM are not consistent across benchmarks. As GroupDRO requires explicit domain labels gi for
each sample to maximize the worst-case performance, appropriate domain labels are critical for its
success. We argue that this is the case for all MDG methods that explicitly leverage domain labels in
the dataset like [6, 10, 14, 15, 19] etc. We make thus, a first attempt at studying the important link
between choosing the appropriate group labels and generalization performance.

ClusterDG. To this end, we ignore the domain-labels that come with standard MDG benchmarks
such as (photos, sketch etc in PACS [11] dataset) and attempt to re-categorize the data during
training. This re-grouping is performed such that domain-aware MDG approaches can better
leverage the inter-group and intra-group variations so as to produce better generalizable solutions.

Figure 1: An outline of the proposed ap-
proach.

Our proposed solution ClusterDG alternatively perform
unsupervised clustering to re-group samples and mini-
mize the objective in Eq (2). We also introduce a novel
regularization strategy to make latent space amenable
for meaningful clustering.

Unsupervised Clustering. While there are many algo-
rithms to cluster data, our design choice is to use a
simple algorithm such as k-means. DeepCluster [3] is
a popular deep learning based clustering solution that
iteratively does (i) cluster latent representations via k-
means and (ii) use the cluster-labels as pseudo-labels to
train the network with a classification loss. Our pipeline
is inspired from DeepCluster with a key difference in
the notion of clusters- i.e., our clusters could contain
samples from many classes rather than samples from
only one category like in DeepCluster.

Approach. We begin by first extracting the latent rep-
resentations of data from all source domains via a pre-
trained network. We represent it by Z : {z1, z2....zN}
with zi = fθ(xi) where f is the model parameterized by
θ and N denotes total number of samples pooled from
all training domains. Using k-means, Z is clustered to
form K groups and each sample can now be represented
as a tuple (xi, yi, gi). Model fθ is trained with a Group-
DRO style optimization i.e., with adaptive weights for each group for certain iterations following
which, we freeze the model to obtain the latent representations of data and re-cluster. We repeat this
process until convergence.

ClusterDG-reg. In our approach, since the clustering algorithm is disconnected from the training
except for utilizing the latent vectors, it thus becomes important to regularize the training so that
suitable domain groups can be created. Note that, ERM on one end aggregates losses at a micro scale
i.e., sample-level, while GroupDRO operates at macro scale i.e, at group level, there is need to have a
finer control between these two strategies. To illustrate this intuitively, consider these non-desirable
cases: (i) An individual sample can have a high loss while its group has been assigned a smaller
weight. In this case, the update to fθ via GroupDRO will not have the desired effect as the weight is
low; (ii) On the other hand, a sample having a low loss value when its group has a larger weight. Due
to this wrong group association, that sample would still be updated during SGD.

To combat these issues, we introduce a novel regularization term that balances both the group-level
weighting and sample-level weighting: Lreg = `iq

γ
gi where `i is sample level mis-classification error,

qgi is the weight of the group to which the sample belongs to, and 0 < γ < 1 controls the sharpness
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Table 1: PACS dataset. By re-labeling the domains, ClusterDG-Reg provides significant improve-
ments over ERM and GroupDRO. Ablation experiments GroupDRO-random and ClusterDG further
demonstrate the efficacy of ClusterDG-Reg.

A C P S Average

ERM 83.2 ± 0.3 76.8 ± 1.1 97.2 ± 0.5 74.8 ± 0.8 83.0
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4

GroupDRO-random 86.1 ± 2.1 81.8± 2.08 95.16±0.82 78.97 ± 4.35 85.54
ClusterDG 86.03 ± 0.5 77.72 ± 0.3 96.4 ± 0.4 79.01 ± 1.0 84.79

ClusterDG-Reg 84.99± 0.2 82.78± 0.4 97.2± 0.3 81.2± 0.6 86.6

Table 2: VLCS dataset. This result also clearly demonstrates the benefit of domain re-labeling.
C L S V Average

ERM 97.7± 0.4 64.3± 0.9 73.4± 0.5 74.6± 1.3 77.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7

ClusterDG-Reg 98.41 ± 0.5 67.34± 0.8 75.7± 0.2 77.79 ± 0.4 79.81

of regularization. Thus the final objective is given by L + λLreg where L,Lreg and λ denotes
the hyper-parameter that weights the regularization term when attempting to maximize worst-case
performance. Our algorithm is explained in Figure 1.

4 Experiments

We evaluate ClusterDG using two standard visual multi-domain generalization benchmarks (i)
PACS [11] and (ii) VLCS [5] dataset. Following standard practice in MDG, for every dataset, we
run experiments by leaving out one of M domains for testing while using the M − 1 domains for
training. To enable a fair comparison with the state-of-the-art, we implement ClusterDG in publicly
available DomainBed2 and use ResNet-50 [8], pre-trained on ImageNet [13] as the backbone feature
extractor. Across experiments we use the following hyper-parameters: (i) batch size of 32 per domain;
(ii) learning rate α as 5e − 5; (iii) Adam optimizer [9], (iv) number of training iterations niter set
to 5000 and T as 300 (v) number of groups K is set to 4 as we didnot see any significant benefit
going beyond 4 and (vi) λ, γ, ηq are set to 0.1, 0.3 and 0.2 respectively. To cluster we use k-means
implementation from 3. All experiments are run thrice and mean and standard deviation are reported.

In Tables 1 and 2, we present results on PACS and VLCS datasets. In PACS, we first note that
GroupDRO a domain-aware method does not give strong benefits compared to ERM whereas our
proposed method ClusterDG-Reg which re-labels domains gives an improvement of around 2.2%
over vanilla GroupDRO and 3.6% over ERM . Similarly in the case of VLCS, we see a boost of
3.1% compared to GroupDRO and around 2% compared to ERM. It is evident from both the cases
that ClusterDG-Reg provides non-trivial gains over GroupDRO, a domain aware approach. These
experiments provide empirical evidence to our hypothesis that re-grouping domains along with better
regularization leads to better generalizable solutions. For comparison, we include GroupDRO-random
which creates K random groups (i.e., domains) from data and trains GroupDRO model.

5 Conclusion

We explored the important link between the role pre-defined domain labels play in the success of
domain-aware MDG methods. We proposed ClusterDG-Reg which includes a domain re-labeling
step along with training a domain-aware approach such as GroupDRO. We conducted experiments
on two popular MDG benchmarks and our results show improvements over both a domain agnostic
approach like ERM and an domain-wise approach such as GroupDRO. Our results support our
hypothesis that domain-aware approaches benefit by re-labeling the data rather than using pre-defined
human-annotated domain labels.

2https://github.com/facebookresearch/DomainBed
3https://scikit-learn.org/
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