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ABSTRACT

Representation learning via embeddings has become a central component in many
machine learning tasks. This featurization process has gotten gradually less inter-
pretable from each coordinating having a specific meaning (e.g., one-hot encodings)
to learned distributed representations where meaning is entangled across all coor-
dinates. In this paper, we provide a new mechanism that converts state-of-the-art
embedded representations and carefully augments them to allocate some of the
coordinates for specific meaning. We focus on applications in multi-class image
processing applications, where our method Iterative Class Rectification (ICR)
makes the representation of each class completely orthogonal, and then changes
the basis to be on coordinate axes. This allows these representations to regain their
long-lost interpretability, and demonstrating that classification accuracy is about
the same or in some cases slightly improved.

1 INTRODUCTION

Embedded vector representations of structured data objects is nowadays a common intermediate goal
for much of machine learning. The goal of these representations are typically to transform data into a
form that is easy to work with for downstream applications, most centrally classification tasks. If the
representations are successful, then for direct tasks only a simple classifier is required afterwards,
e.g., logistic regression.

In this work, we argue that due to the fundamental nature of these representations, they should also
aim for explicit interpretability. Note this is not attempting to make the process or neural architecture
parameters used in arriving at these representations interpretable, but that given a data point’s vector
structure, one should be able to understand the components of its representation. In particular, we
argue that for labeled classes provided among training data, that we should be able to (a) associate
these classes with class mean vectors, (b) these class mean vectors should be completely orthogonal,
and (c) each should be aligned with a particular coordinate (a one-hot encoding).

Given such an embedding of data point, then many tasks can be done directly by simply reading the
representation. A multi-class classification task can be solved by returning the class associated with
the coordinate with largest value. To understand a data point’s relative association among multiple
classes, one can compare their coordinate values; note that due to full orthogonality there are no
hidden associations. If one fears there is implicit bias in a task, and that bias is associated with a
captured class (e.g., gender bias captured by "woman" or "man" class), one can remove that class
via projection like in Bolukbasi et al. (2016); Dev & Phillips (2019) – by simply not using those
coordinates in downstream analysis. Other tasks without association to the bias should be unaffected,
while those contaminated with bias will have that component removed.

A couple of recent papers have attempted to use neural networks to learn embedded representations
which have class means orthogonal – their goal was increased generalization. The orthogonal projec-
tion loss (OPL) Ranasinghe et al. (2021), and CIDER Ming et al. (2023) both add a regularization
term which favors compactness among points within a class and near orthogonality among class
means. While these methods are useful seeding for our approach, we observe that they fail to produce
class means that are nearly orthogonal. The average dot-product between normalized class means on
CIFAR-100 is about 0.2; for ours it is below 0.01.
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Figure 1: Our approach for embedding multi-class data: f1 initializes classes to be clustered and
dispersed. In f2 our ICR and DCR make classes completely orthogonal, along coordinate axis.

Furthermore, our proposed framework structurally restricts the classifier to classification-by-nearest-
mean, also known as the Rocchio algorithm. This directly reflects the training data: for each class,
the mean of the training data is stored, and on evaluation of a test point, it is assigned a label of the
nearest mean vector. This classification model produces a linear classifier with only 2 classes, and its
standard evaluation reduces to the common task in information retrieval. This multi-class classifier
becomes especially effective when the representation of the data is learned, and is common among
state-of-the-art models (Yu et al., 2020) for few-shot learning approaches in image processing.

Our paper achieves the following:

1. We propose two class rectification methods (ICR and DCR) for multi-class classification
under the Rocchio algorithm, which completely orthogonalize class means.

2. We prove that these methods either require one step (DCR), or iteratively converge to an
orthogonal representation (ICR), conditioned that the class data is already clustered.

3. We show that this orthogonalized representation maintains state-of-the-art performance in a
variety of classification tasks, given a backbone architecture.

The iterative class rectification (ICR) at the heart of our approach is an extension of a recent method
ISR Aboagye et al. (2023) designed for bias reduction in natural language. That approach, ISR,
required subspaces defined by two opposing classes (e.g., male-female, pleasant-unpleasant), which is
restrictive. That paper only found a handful of such classes with sufficient training data, demonstrated
the approach converged with two subspaces (2 pairs of classes), and did not always quickly converge
to orthogonal on three subspaces (3 pairs of classes). A challenge addressed in that paper was
determining a proper point of rotation. By using single-class means as we propose, this challenge
goes away, and we show our approach effortlessly scales to 100 classes. We also introduce a second
class rectification method (DCR) which achieves this result without iteration, but has less continuity.

After class means are fully orthogonal, we align them to coordinate axes. This basis transformation,
by an orthogonal matrix, does not change any distance or dot-products between data representations.

Example Uses. Consider the CIFAR-100 test image with label orange; see Figure 2 and also
Appendix E. The largest dot-products among the normalized class mean vectors for our technique
(OPL+)ICR is with orange (0.995), the correct class, and then a big drop to cockroach at 0.0087
and other smaller values. In contrast the normalized class mean vectors for other approaches still
identify orange as the correct class, but have much larger association with other classes. For OPL it
is orange at 0.9975 but also apple, pear, and sweet_pepper between 0.82 and 0.72. Since the image
is so associated with the class mean (dot product of virtually 1), we ascertain that the issue is the

top dot products 0.9975 0.8204 0.7880 0.7215 0.4562
for OPL orange apple pear sweet_pepper poppy

top dot products 0.9950 0.0087 0.0061 0.0059 0.0051
for OPL+ICR orange cockroach maple_tree girl orchid

Figure 2: Dot Products with class mean vectors for orange image with OPL and OPL+ICR.
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top dot products 0.8840 0.7959 0.7698 0.7161 0.6866 0.6296
for OPL hamster rabbit mouse squirrel possum fox

top dot products 0.7612 0.4278 0.2296 0.1940 0.1847 0.1323
for OPL+ICR hamster apple pear squirrel kangaroo baby

Figure 3: Dot products with class mean vectors for hamster+apple image with OPL and OPL+ICR.

class means are not sufficiently orthogonal so that the image earns spurious correlation with the other
classes. However, with ICR this does not happen since the class means are forced to be orthogonal.

Next, in Figure 3 we consider an image that has two classes present: hamster and apple. The
representations vector has the largest dot-products with the normalized class means for OPL+ICR
are 0.76 for hamster, 0.43 for apple, and the next largest has large drop to 0.23 for pear and 0.19 for
squirrel. In contrast for OPL, the largest dot products are 0.88 for hamster, but then the next largest
are for rabbit, mouse, squirrel, possum, and fox, all between 0.63 and 0.80. Because the hamster
class has correlation with the other small fury mammals under OPL, they obscure the association
with hamster and hide the association with apple which has a score of 0.58. This is not the case with
OPL+ICR, so the association with pear and squirrel can be interpreted to geometrically represent
uncertainty about those class labels.

Then we can consider removing the "hamster" class via a projection based approach (e.g., (Dev &
Phillips, 2019)). Under OPL+ICR the largest dot-product is now apple, still at 0.43 and next largest
are unchanged with pear (0.23) and squirrel (0.19). For OPL after projection, we also have the largest
dot-product is with apple at 0.56, but somewhat obscured with other correlated classes including pear,
orange, and sweet_pepper all between 0.45 and 0.52. Notably the other small fury mammals are also
removed from strong association because of their correlation with the hamster class.

2 ALGORITHMIC FRAMEWORK

Our method considers a data set Z ⊂ Z , where each zi ∈ Z is associated with a label yi ∈ [k],
where k is the number of distinct classes. We use image data Z as an exemplar. Then it operates in
two phases towards creating an embedding in Rd, with d > k; see Figure 1. The first phase learns
an embedding f1 : Z → Rd with the goal of classes being (nearly) linearly separable in Rd. The
second phase, the innovation of this paper, is another map f2 : Rd → Rd which aims to retain (and
perhaps improve) linear separability, but also achieve a form of orthogonality among classes. While
this second phase can be interpreted as a form of learning–so it only sees training and not testing
data–it is deterministic and does not follow the traditional optimize parameters over a loss function.

For input data (Z, y), denote X ′ = {x′i = f1(zi) ∈ Rd | zi ∈ Z} as the embedding after phase 1.
Then denote X = {xi = f2(x

′
i) ∈ Rd | x′i ∈ X ′} as the embedding after phase 2. Let Zj , X ′

j , and
Xj be the data points in class j ∈ [k] for the initial data, first, and final embedding, respectively.

Rocchio algorithm. We leverage the Rocchio algorithm to build classifiers. For an embedded data
set (X, y), it first creates class means vj = 1

|Xj |
∑
xi∈Xj

xi for each class j ∈ [k]. Then on a training

data point x ∈ Rd it predicts class ĵ = argminj∈[k] D(x, vj). If we normalize all class means (so
vj ← vj/∥vj∥) then using Euclidean D(x, vj) = ∥x− vj∥ has the same ordering as cosine distance.
That is, we can instead use ĵ = argmaxj∈[k]⟨x, vj⟩; we do this hereafter unless stated otherwise.

Phase 1 embedding. For the first phase embeddings f1 we leverage existing recent algorithms that
aim for an embedding with three goals: (a) accuracy: each class can be (nearly) linearly separable
from all other classes. (b) compactness: each class X ′

j has points close to each other, i.e., small
variance. (c) dispersion: each pair of classes j and j′ are separated, and in fact nearly orthogonal. In
particular, a couple of recent papers proposed loss functions for f1 asLf1 = LCE+λ(Lcomp+Ldisp).
The LCE is the standard cross entropy loss which optimizes (a), λ ∈ [0, 1], and where Lcomp and
Ldisp optimize (b) and (c). These are actualized with |Z| = n, k classes, n1 =

∑
j∈[k] |Zj |(|Zj | − 1)

and n2 =
∑
j∈[k] |Zj |(n− |Zj |) as:
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Lcomp = 1− 1

n1

∑
j∈[k]

∑
zi,zi′∈Zj

⟨f1(zi), f1(zi′)⟩, Ldisp =

∣∣∣∣∣∣ 1n2
∑

zi∈Zj ;zi′∈Zj′ ̸=j

⟨f1(zi), f1(zi′)⟩

∣∣∣∣∣∣(1)

Lcomp = −
1

n

n∑
i=1

log
exp(⟨f1(zi), vji)⟩∑k
j=1 exp(⟨f1(zi), vj⟩)

, Ldisp =
1

k

∑
j∈[k]

log
1

k − 1

∑
j′ ̸=j

exp(⟨vj , vj′⟩)(2)

The loss for OPL Ranasinghe et al. (2021) is in eq 1 and for CIDER Ming et al. (2023) in eq 2.

We observe (see Table 1), that these achieve good clustering among classes, but the classes are
not fully orthogonal. On training data for CIFAR-100, they achieve about 98% accuracy or better.
This holds under the trained linear classifier (under logistic regression) or the Rocchio algorithm.
Pre-processing in phase 1 will prove an important first step for the success of our phase 2.

Phase 2 embedding: Full orthogonalization. As we observe that the result of learning an or-
thogonal embedding through regularization is not completely effective, the second phase provides
a deterministic approach that enforces orthogonality of the class means. A first, but unworkable,
thought is to just run Gram-Schmidt on the class mean vectors v1, . . . , vk. However, this does not
instruct a generic function f2 that also applies to training data; if we recalculate their class means
they are not orthogonal – our goal is that they are. Towards this end, we propose two approaches:

Algorithm 1 BinaryICR(X,X1, X2, iters: T )

1: for i = 0, 1, . . . , T − 1 do
2: v1, v2 ← normalized means(X1, X2)
3: BinaryCR(X, v1, v2)

Algorithm 2 BinaryCR(X,u, v)

1: Set v′ = v − ⟨u, v⟩u
2: Define projection π(·) = (⟨·, u⟩, ⟨·, v′⟩)
3: for x ∈ X do
4: x̃← GradedRotat(π(u), π(v), π(x))
5: x← x+ (⟨π(u), x̃− π(x)⟩u

+⟨π(v′), x̃− π(x)⟩v′)

Algorithm 3 BinaryDCR(X , X1, X2)

1: v1, v2 ← normalized means(X1, X2)
2: θ′ ← angle between v1 and v2; θ = π

2 − θ
′

3: if (θ′ ≤ π
2 ) then set angle ϕ = θ′/2

else set angle ϕ = π
4

4: for x ∈ {x ∈ X | ⟨v2, x⟩ ≤ ϕ} do
5: x← Rθx

Iterative Class Rectification (ICR): We adapt a recent approach called Iterative Subspace Rectifi-
cation (ISR) (Aboagye et al., 2023) designed to orthogonalize language subspaces to reduce bias.
This approach handles two concepts, each defined by a pair of classes (e.g., male-female, pleasant-
unpleasant) as vectors v1, v2; and centers the data around these. Then it applies a “graded rotation"
operation (Dev et al., 2021) (see Algorithm 5 in appendix) on the span of the two linear concept
directions (span(v1, v2)). Because it operates only in this span, it only alters the embedding in this
2-dimensional span. The graded rotation moves v2 7→ v′2 so it is orthogonal to v1, and it applies a
different rotation for each data, depending on the angles to v1, v2 so the amount of rotation continu-
ously interpolates between that for v2 7→ v′2 and no rotation at v1. The ISR paper (Aboagye et al.,
2023) demonstrated that by repeating this process we get v2 7→ v⋆2 , with v⋆2 orthogonal to v1, even
recomputing v1 and v⋆2 from the updated embedded data points which define the associated classes.

We adapt this process in two ways in this paper, in Algorithms 1 and 2. First we only use individual
classes, and their class-means (line 2 of Alg 1), in place of concepts which spanned across two
opposing ideas (and hence two sets of embedded points for each concept). Second, because we
initialize with clustered concepts by cosine similarity around their class mean vectors, we can rotate
around the origin (line 4 of Alg 2), and do not require a centering step as in ISR. Algorithm 2 does
the core operation of projecting to the span of two subspaces u, v, apply GradedRotation on each
point x ∈ X , and then adjust only the coordinates in span(u, v) (line 5). Algorithm 1 iterates this
procedure T steps as the recalculated class means become orthogonal.

To apply this to all classes, we now do apply a Gram-Schmidt sort of procedure; see details in
Algorithm 4. We first identify the class mean vectors most orthogonal (line 3), and apply one step
of Binary ICR. Then at each round, we find and maintain the subspace of the class means we have
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attended to so far Sj−1, and find the class mean vj most orthogonal to that subspace (line 8). We
project vj onto Sj−1, to get v̄j , and then run one step of BinaryCR to orthogonalize vj from v̄j (and
hence to all of Sj−1). Once we have addressed all classes, we iterate this entire procedure a few times
(typically T = 1 or 2 iterations, and not more than 5).

Finally, at the conclusion of the MultiClass ICR, the class means on the embeddings v1, . . . , vk are
all orthogonal (up to several digits of precision). To complete the definition of function f2, we add a
final transformation step that aligns v1, . . . , vk to the first k coordinate axes. This step is defined by a
single orthogonal matrix, so it does not change Euclidean distance or dot products.

Algorithm 4 MultiICR(X,X1, . . . , Xk, iters: T )

1: for i = 0, 1, . . . , T − 1 do
2: Let vi be the normalized mean vector of class Xi for i = 1, 2, . . . , k.
3: Set r, s = argmin1≤i,j≤k |⟨vi, vj⟩|, WLOG suppose r = 1, s = 2
4: Let S1 and S2 be the span of {v1} and {v1, v2} respectively
5: Run BinaryCR(X, v1, v2)
6: Recalculate normalized class means vi for all i
7: for i = 3, . . . , k do
8: Choose t = argminj≥i⟨v1, vj⟩2 + ⟨v2, vj⟩2 + · · · ⟨vi−1, vj⟩2
9: WLOG assume t = i

10: Let v̄i be the projection of vi onto Si−1

11: Set ui = vi −
∑i−1
j=1⟨vj , vi⟩vj and v′i = ui/∥ui∥

12: Run BinaryCR(X, v′i, v̄i)
13: Set Si to be the span of {Si−1, vi}
14: Recalculate class normalized means vj for all j

Discontinuous Class Rectification (DCR): This approach is similar, but does not require iteration, at
the expense of a discontinuous operation. It replaces the graded rotation Dev et al. (2021) with a
step that identifies a conical region around v2, and applies an angle ϕ to all points in this region so
afterwards ⟨v1, v2⟩ = 0. If the angle between v1 and v2 is acute, then the conical region is defined
in the span of v1, v2 by an angle θ from v2 to the bisector direction between v1 and v2. That is,
for points closer to v2, they are moved along with v2, the rest are left alone. If v1 and v2 have an
obtuse angle, then we set the conical angle around v2 at π/4, so we only move points which will be
closer to v2 after the transformation when ⟨v1, v2⟩ = 0. The multiclass version of DCR follows the
Gram-Schmidt recipe of ICR, but with no iteration.

Freezing learned embedding X ′. It is important to note that before ICR or DCR is applied to
determine X , we need to learn and freeze the initial embedding X ′ ← f1(Z). Then f2 operates on
X ′, to create X ← f2(X

′) without adjusting f1. There are slight differences in how OPL Ranasinghe
et al. (2021) and CIDER Ming et al. (2023) choose an embedding layer: for OPL it is the penultimate
layer, where as for CIDER it is the “head,” the last layer. We follow recommendations in those works.

In evaluation mode, we also need a classifier. In Section 3.2, we discuss two ways to train classifiers –
one is the Rocchio classifier (which we recommend for its structural properties, and since it needs
no further training). However a common approach is to build a logistic regression model on the last
layer of f2(f1(Z)); we also do this on the training data. Finally, we can consider the evaluation/test
data z ∈ Ztest, which are evaluated with the chosen classifier operating on f2(f1(z)).

2.1 PROPERTIES OF ICR AND DCR

We highlight key properties of the ICR and DCR procedures. Proofs are deferred to Appendix A.

First, we show that binary ICR, even if iterated, only affects coordinates of data points in the span of
the original mean vectors. This implies that the mean vectors of classes stay in their original span.
Moreover, it implies that as MultiICR gradually includes more classes, it maintains a modified span,
and all components of coordinates outside those spans are unchanged. Hence, if d > k, then the null
space of the classes is unchanged under the MultiICR procedure. These results follow trivially for
binaryDCR and MultiDCR since we just apply Gram-Schmidt procedure on class cones (the cones
around the class means that contain the whole associated class).
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Second, we show that this process converges to have the mean vectors completely orthogonal to each
other. This argument requires that initial classes X ′

j are clustered, this explains and justifies the use of
optimizing f1 under the OPL or CIDER loss, or something similar, before applying BinaryICR. The
assumption we use (Assumption 1; see also Appendix A.2) is probably more restrictive than necessary
(it requires clusters are completely separable), but it makes already messy proofs manageable.

Assumption 1 Let vi be the mean of Xi, and let Xi be included in the cone of radius ϕi around vi
for i = 1, 2, . . . , k. Assume theses cones are disjoint (except at the origin).

Theorem 1 (Convergence of BinaryICR) Let Assumption 1 hold with k = 2, and the angle be-
tween v1 and v2 is less than π

2 . Then the BinaryICR algorithm converges: as we iterate, in the limit,
the angle between class means approaches π

2 .

The comparable arguments for DCR are more straightforward. Following Assumption 1, all points of
X ′

2 are in a cone, and all of them and only them are updated in the operation. Since those points are
all moved an angle exactly ϕ, and ϕ moves v2 orthogonal to v1, then if we recalculate v2 after the
move, it will still be orthogonal to v1. Hence this achieves the orthogonality goal after one step, and
only affects data in the span of v1, v2.

Theorem 2 (Convergence of BinaryDCR) Assume Assumption 1 holds with k = 2. In addition, if
the angle between v1 and v2 is bigger than π

2 , then we assume ϕ1, ϕ2 are less than π
4 . Then after

running the BinaryDCR algorithm, the class means will be orthogonal to each other.

However, data may not be completely separable; we observe experimentally that OPL and CIDER
achieve 99-100% accuracy in P@1 on the training data; see Appendix C. So instead, we can consider
a robust version of v1, v2: set points in the appropriate conical regions as “inliers” and redefine robust
v̄1 and v̄2 as the means of these inlier points only, then apply the DCR step, and then the v̄1 and
v̄2 of the inliers will be orthogonal after one step. We observed that the difference in output from
the original and robust version is in the third digit of precision, so only show results for the simpler
non-robust variant of DCR.

The MultiDCR algorithm is running Gram-Schmidt algorithm on class cones such that normalized
class means will constitute an orthonormal bases for a k-dimensional subspace of Rd.

Theorem 3 (Convergence of MultiDCR) Let Assumption 1 hold. In addition suppose that cones
are sufficiently well-separated (see Assumption 3 in Appendix A.3). Then after running the MultiDCR
algorithm, all class means will be orthogonal to each other.

3 EXPERIMENTS

We evaluate our methods ICR and DCR in two main ways. First we show that these approaches,
with high precision, achieve orthogonality of class means while previous approaches do not, and
while maintaining good class compactness. Second, we show these approaches maintain or improve
upon the near state-of-the-art accuracy in various learning frameworks. Note that ICR and DCR are
designed to maintain class cohesiveness, not improve upon it, so we do not expect improvement
on training data, and any improvement on the evaluation sets can be seen as a fortuitous effect of
regularizing to a meaningful structure. We use standard image classification data sets and tasks.

Datasets and Training Details. In our main experiments, we use Resnet-9 as the backbone
architecture for CIFAR-100 Krizhevsky (2009) classification task, and train for 120 epochs. The
CIFAR-100 is an image dataset that consists of 60,000 natural images that are distributed across 100
classes with 600 images per class. All training, including ICR & DCR is performed on the training
samples of 50,000 images. All evaluation is shown on the test data of the remaining 10,000 images.

3.1 ORTHOGONALITY AND COMPACTNESS

The dimension of the penultimate layer in OPL Ranasinghe et al. (2021) that was optimized towards
being orthogonal was set to d = 64 dimensions. It is mathematically impossible to fit k classes
orthogonally for k > d dimensions; note k = 100 for CIFAR-100 has 100 = k > d = 64.
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Alternatively, CIDER Ming et al. (2023) uses d = 512 dimensions in the final layer where dispersion
and compactness is optimized. To help identify the best choice of d we first measure geometric
properties for OPL and CIDER for d = 64, 128, 256, 512, 1024. Table 1 shows for each: first, the
average absolute dot-product between class means 1

(k2)

∑
j ̸=j′ |⟨vj , vj′⟩|, and second, the average

intra-class dispersion 1
k

∑
j∈[k]

1
X′

j

∑
x∈X′

j
⟨vj , x⟩. For both, orthogonality increases (average dot

products decrease) with higher dimensions, and while OPL’s compactness keeps increasing, CIDER’s
decreases after d = 128. Notably, even at d = 1024, both OPL and CIDER are still far from
orthogonal with an average dot-product of about 0.1.

Table 1: Average class absolute dot products; and intra-class compactness.

dim: 64 128 256 512 1024

OPL 0.2709 0.2412 0.1945 0.1509 0.1267
CIDER 0.1602 0.1435 0.1247 0.1017 0.0930

64 128 256 512 1024

0.9742 0.9784 0.9851 0.9885 0.9900
0.9816 0.9809 0.9789 0.9764 0.9754

Next, in Table 2 we show the top-1 and top-5 accuracy for OPL and CIDER by dimension, on the
CIFAR-100 evaluation set. OPL performs better than CIDER, and has the best top-1 accuracy at
1024 dimensions. Somewhat surprisingly, all others peak at smaller dimension (128 or 256), but the
decrease is mostly not too significant. We decide to continue with the best result for top-1 accuracy
and orthogonality, and so set d = 1024 dimensions as a default.

In Figure 4 we also plot block matrices for the absolute value of dot products between all pairs of
class means, for OPL and CIDER embeddings at 64 and 1024 dimensions. While increasing d can be
seen to improve orthogonality, none are fully orthogonal. Note CIDER dot products appear more
uniform than OPL, but the overall average absolute dot products do not differ much in Table 1.
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Figure 4: Orthogonality visualization of the dot product of the average per-class feature vectors.
From Left to right: OPL(64), OPL(1024), CIDER(64), CIDER(1024).

Thus, OPL and CIDER cannot achieve complete orthogonality of different class features by clustering
of the same class features. As one of our goals is to translate class indicators to align exactly onto
coordinates for interpretability, these loss-function based approaches are not sufficient.

Augmentation of OPL features with ICR and DCR. Next we add our rectification algorithms, ICR
and DCR, on top of the near-orthogonal, and compact embeddings as output by OPL or CIDER. We
use d = 1024 as default, but also show the dimensions used in the paper as OPL(64) and CIDER(512).
The orthogonality and compactness results are in Table 3. For ICR, we show the result after each
of 5 iterations. Note that ICR improves the average dot product by about 1 digit of precision each
iteration, and compactness stays about the same, sometimes increasing. DCR achieves two digits of
precision in the average dot-product after one step, with a slight degradation in compactness.

3.2 CLASSIFICATION ACCURACY AFTER ICR/DCR

We next investigate the effect on classification accuracy after applying ICR and DCR. We now note
that there are two standard ways in this setting to enact class predictions. The first is recommended in
the OPL paper: build a simple logistic regression for each class, and choose the class with highest
score for a query (denoted Smax). In this paper we prefer using the less powerful model of the
Rocchio algorithm ĵ = argmaxj∈[k]⟨vj , q⟩, for a query q (denoted NN). Table 4 shows the top-1
and top-5 accuracy for OPL, CIDER, and after applying +DCR or +ICR for up to 5 iterations.
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Table 2: Softmax Top 1 and Top 5 Accuracy of each d

Loss 64 dim 128 dim 256 dim 512 dim 1024 dim

OPL Top 1 73.38 74.29 74.26 74.87 75.22
CIDER Top 1 71.94 72.23 72.00 72.00 71.80

OPL Top 5 91.41 92.42 92.61 92.62 92.14
CIDER Top 5 89.02 89.35 89.15 89.20 88.84

Table 3: Orthogonality and Compactness scores for OPL, CIDER, and each after applying +DCR or
+ICR j, for j iterations. As default with 1024 dimensions.

Score OPL (64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Orthogonality 0.2709 0.1268 0.0015 0.0056 0.0006 8.2321e-5 1.1560e-5 1.7660e-6
Compactness 0.9742 0.9899 0.9669 0.9785 0.9779 0.9779 0.9779 0.9779

Score CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Orthogonality 0.1017 0.0930 0.0057 0.0138 0.0021 0.0004 7.4106e-5 1.5946e-5
Compactness 0.9764 0.9754 0.9594 0.9586 0.9566 0.9563 0.9562 0.9562

For both the Smax (logistic) and NN (Rocchio) classifiers, the OPL initialization outperforms CIDER.
Unsurprisingly, the more powerful Smax (logistic) classifier (about 75.2% on top-1) has a bit better
performance than the NN (Rocchio) approach (about 74.5− 75% on top-1). The overall best score is
found with just OPL (d = 1024) at 75.28% improving upon the baseline OPL (d = 64) at 73.20%;
applying ICR slightly decreases this to 75.21% or 75.20%. However, for the NN classifier, applying
ICR actually improves the score from OPL (d = 64) at 72.36% and OPL (d = 1024) at 74.57% up
to a score of 75.03% – which is not far from the best Smax (logistic) score. Similar effects are seen
with top-5 accuracy (and CIFAR-10 in Appendix B), where OPL outperforms CIDER, and in this
case using ICR has little effect and provides improvement in NN (Rocchio) classifiers.

To verify that OPL+ISR does not deteriorate representations, we applied it to the training data (see
Tables 13 and 14 in Appendix C) where all methods achieve between 99.5% and 100% accuracy;
with the exception of some degradation under the Smax (logistic) classifier after using CIDER loss.

3.3 OUT-OF-DISTRIBUTION DETECTION

Out-of-Distribution Detection (OOD) is the task of identifying testing samples that originate from
an unknown distribution, which data representation did not encountered during training. This task
evaluates the model’s dependability when encountering both known in-distribution (ID) inputs and
OOD samples – these should not be forced into an existing classification structure, and may represent
anomalies requiring further attention. A wide variety of OOD detection methods have been explored,
with distance-based OOD detection demonstrating considerable potential Lee et al. (2018); Xing et al.
(2019) via representation learning. A central approach extends a Rocchio-type set up and determines
ID vs. OOD based on the distance to class means. Very recently Ming et al. (2023) introduced CIDER,
a Compactness and Dispersion Regularized learning framework for OOD detection, discussed earlier
in equation 2. This provides a significant improvement in the state of the art.

Datasets and Training Details In line with the approach taken by Ming et al. (2023), we adopt the
CIFAR-10 and CIFAR-100 Krizhevsky (2009) as the in-distribution datasets (CIFAR-10 results in
Appendix B). For evaluating the OOD detection performance, we use a diverse collection of natural
image datasets encompassing SVHN Netzer et al. (2011), Places365 Zhou et al. (2018), Textures
Cimpoi et al. (2013), LSUN Yu et al. (2015), and iSUN Xu et al. (2015); (⋆) for space, we only
show iSUN and Texture in Appendix D. In our experiments, we utilize the pre-trained ResNet-9 used
in the Image Classification task for the CIFAR-100 dataset. We freeze the pre-trained model up to
the penultimate layer to extract CIDER ID and OOD features for our OOD detection experiments.
After obtaining the extracted CIDER features, we apply ICR to further refine the features, enhancing
inter-class separation within the feature embedding space. Upon acquiring the ICR-rectified CIDER
ID and OOD features at test time, we employ CIDER’s distance-based code for OOD detection.
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Table 4: Test data results for OPL, CIDER and + DCR or +ICR with 1024 dimensions

Metric OPL(64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Smax Top 1 73.20 75.28 74.47 75.21 75.19 75.19 75.20 75.20
Smax Top 5 91.23 91.93 89.31 91.71 91.35 91.28 91.29 91.29

NN Top 1 72.36 74.57 73.39 75.02 75.03 75.03 75.03 75.03
NN Top 5 90.17 89.84 89.25 91.76 91.35 91.26 91.24 91.23

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 72.00 71.80 71.46 71.59 71.60 71.58 71.58 71.79
Smax Top 5 89.20 88.84 86.02 88.26 87.72 87.60 87.60 87.67

NN Top 1 72.19 71.74 71.50 71.60 71.66 71.61 71.61 71.61
NN Top 5 89.08 88.65 85.95 88.240 87.63 87.52 87.47 87.47

Table 5: OOD performance for CIDER, CIDER+DCR/ICR on CIFAR-100

SVHN Places365 LSUN Average ⋆

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
CE+SimCLR 24.82 94.45 86.63 71.48 56.40 89.00 59.62 84.15
KNN+ 39.23 92.78 80.74 77.58 48.99 89.3 60.22 86.14
OPL 98.83 43.00 99.16 38.08 99.85 25.93 96.18 44.42
CIDER 44.16 89.47 69.44 80.82 57.59 86.29 43.24 89.28

CIDER+DCR 48.52 88.21 71.29 79.95 62.18 84.33 46.05 88.25
CIDER+ICR 1 49.28 87.97 70.28 79.93 60.42 84.94 45.75 88.32
CIDER+ICR 2 49.72 87.92 70.53 79.89 60.51 84.86 45.97 88.27

The following metrics are reported in Table 5: 1) False Positive Rate (FPR) of OOD samples at 95%
True Positive Rate (TPR) of ID samples, and 2) Area Under the Receiver Operating Characteristic
Curve (AUROC). We show two representative prior art: CE+SimCLR Winkens et al. (2020) and
KNN+Sun et al. (2022), the best two methods before CIDER. Observe how CIDER significantly
improves FPR from about 60% to about 43% and AUROC from about 84-86% to 89% (averaged
across data sets). Applying ICR or DCR shows a small degradation of these improvements, with a
FPR about 45% and AUROC about 88%, still a significant improvement over the previous baselines,
but now with interpretable structure. On CIFAR-10 CIDER+ICR slightly improves over just CIDER;
see Appendix B. This tasks seems delicate, and for instance using OPL equation 1 in place of CIDER
equation 2 achieves much worse results with an average FPR of 96% and AUROC of only 44%.

4 CONCLUSION & DISCUSSION

This paper introduces a post-processing to the training phase of a learned embedding mechanism
which provides interpretable structure. Namely, for a learned embedded representation for a multi-
class classification task, our method Iterative Class Rectification (ICR) continuously adjusts the
embedding function so each of k identified class means is associated with a coordinate. Thus the
representation of each class is orthogonal, and can be independently measured. This does not preclude
an object from having an association with multiple classes, but it decouples those contributions.

This class orthogonality could also be useful if the class is associated with a protected class (e.g.,
gender, race, etc). By restricting to classifiers which predict labels based on dot products along these
class coordinates, we could eliminate association learned about that trait by simply ignoring that
coordinate from the representation at the evaluation phase. This pre-processes and makes simple the
technique that has become popular in language debiasing Bolukbasi et al. (2016); Dev & Phillips
(2019); Ravfogel et al. (2020); Wang et al. (2020) which first attempts to identify a linear subspace,
and then projects all data in the representation off that subspace.
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A PROOFS OF CONVERGENCE OF BINARYICR

A.1 GRADED ROTATION

For an angle θ we denote the 2 × 2 rotation matrix by Rθ, that is, Rθ =

[
cos θ − sin θ
sin θ cos θ

]
. The

graded rotation of a vector x with respect to the mean vectors v1 and v2 was introduced in Dev et al.
(2021); Aboagye et al. (2023), which we recall below.

Algorithm 5 GradedRotat(v1, v2, x)

1: Input: Unit vectors v1, v2 in R2 and x ∈ R2

2: Set θ′ = arccos(⟨v1, v2⟩) and θ = π
2 − θ

′

3: Set ϕ1 = arccos ⟨v1, x|x| ⟩
4: Set v′2 = v2 − ⟨v1, v2⟩v1
5: Set d2 = arccos ⟨v′2, x|x| ⟩

6: Compute θx =


θ ϕ1

θ′ if d2 > 0 and ϕ1 ≤ θ′
θ π−ϕ1

π−θ′ if d2 > 0 and ϕ1 > θ′

−θ π−ϕ1

θ′ if d2 < 0 and ϕ1 ≥ π − θ′
−θ ϕ1

π−θ′ if d2 < 0 and ϕ1 < π − θ′
7: return Rθxx

A.2 CONVERGENCE OF BINARYICR AND BINARYDCR

In order to prove the convergence of BinaryICR and BinaryDCR algorithms, we need to make the
following assumptions on data, which are illustrated in Figure 5. Notice Assumption 1 is a special
case of Assumption 2.

Assumption 2 Let 0 < θ′ < π
2 , θ = π

2 − θ
′, −ϕ1 ≤ 0 ≤ ϕ2 < ψ1 ≤ ψ2 ≤ π and γ = ψ1−ϕ2 > 0.

Let also X1 and X2 be subsets of the cones Γ1 = {reiϕ : ϕ1 ≤ ϕ ≤ ϕ2, r > 0} and Γ2 = {reiψ :
ψ1 ≤ ψ ≤ ψ2, r > 0}, respectively, and θ′ be the angle between the mean vectors v1 and v2 of X1

and X2, respectively (see Figure 5).

θ′

v2

v1

φ1

φ2

ψ1

ψ2

γ

φ2

φ2

φ1

φ1

X2 X2

X1 X1
v1

v2

Figure 5: Pictorial view of Assumption 1 (left) and Assumption 2 (right) on two classes X1 and X2.

Lemma 4 Under Assumption 2, for any i, the angle θi = π
2 − θ

′
i stays positive, where θ′1 = θ′ and

θ′i (i ≥ 2) shows the angle between two class means after i-th iteration of BinaryICR.

Proof. First we discuss what happens for the cones Γ1 and Γ2 after one iteration of BinaryICR. Then
by an induction argument we conclude that θi > 0 for any i.

In Γ1, the half-cone under v1 shrinks but the other half expands. It means that the y-values of data
points in the half-cone under v1 increases and their x-values decreases a bit but stays positive. The
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same phenomenon happens for the other half of the cone. Since we had increase in y-values, their
average will increase as well (i.e. will be positive as it was 0 previously). Therefore, v′1 will be in the
first quadrant.

For Γ2, after running one iteration of BinaryICR the half-cone above v2 shrinks but the other half
expands. Now in order to make comparison easy, we rotate all the points of X ′

2 by −θ1 (i.e. y-axis
will be transformed on top of v2) and call it X ′′

2 , where X ′
2 is the transformation of X2 after applying

graded rotations on top of X2. This means that the x-values of data points in X ′′
2 are increased with

respect to their x-values in X2 (consider two cases ψ2 ≤ π/2 and ψ2 > π/2 separately). This will be
happened to their average as well, and thus their average will be under v2. Rotating the points of X ′′

2
back by θ1 degree to get X ′

2, it means that the average of X ′
2, which we call v′2, will be less than π/2.

We observe that both mean vectors v′1 and v′2 stay in the first quadrant, implying θ′2 < π/2 or
equivalently θ2 > 0.

Now by an induction argument if θi > 0, completely similar to going from θ1 > 0 to θ2 > 0 above,
we can conclude that θi+1 > 0. □

Theorem 5 (Restatement of Theorem 1) Under Assumption 2 the BinaryICR algorithm converges,
that is, after enough epochs, θ′i will approach to π

2 , where θ′i is the angle between two class means
after ith iteration of BinaryICR.

Proof. Let θ1 = θ and θ′1 = θ′. Notice that all vectors in (X1 ∪X2) \ R × {0} will be changed
after any iteration of BinaryICR if θ′1 ̸= π

2 . Now consider the gap γ1 = γ between ϕ2 and ψ1,
i.e. γ1 = ψ1 − ϕ2 > 0. Since both ϕ2 and ψ1 lie in [0, θ′1], after one iteration of BinaryICR, they
will be mapped to ϕ2 + θ1

θ′1
ϕ2 and ψ1 +

θ1
θ′1
ψ1. Thus γ1 will be changed to γ2 = γ1 +

θ1
θ′1
γ1 > γ1

(note θi ≥ 0 and 0 < γ < θ′i < π/2 by Lemma 4). Considering θ′2, running another iteration of
BinaryICR will modify γ2 to γ3 = γ2 +

θ2
θ′2
γ2 > γ2 and so on. Therefore, the sequence (γn) ⊂ [0, π2 ]

is a bounded increasing sequence and thus convergent, say to γ′. This means that running another
iteration of BinaryICR will not change γ′, that is θn → 0, otherwise γ′ will need to be changed.
Hence, BinaryICR algorithm converges. □

Theorem 6 (Restatement of Theorem 2) Assume Assumption 1 holds. In addition, if the angle
between v1 and v2 is bigger than π

2 , then we assume ϕ1, ϕ2 are less than π
4 . Then after running the

BinaryDCR algorithm, the class means will be orthogonal to each other.

Proof. The proof is trivial, but we include it for completeness. Let θ′ be the angle between v1 and v2.
There are two cases.

Case 1. When θ′ < π
2 and the two classes are disjoint, according to the BinaryDCR algorithm, all

vectors in class 2 will be rotated by θ = π
2 − θ

′ degrees, and so their mean v2 will be rotated by
θ degrees as well. However, the vectors in class 1 will not be rotated. Thus v1 will stay the same.
Therefore, after running the algorithm, the class means will be orthogonal to each other.

Case 2. In the case θ′ > π
2 , according to the BinaryDCR algorithm, all the vectors within π

4 of v2
will be rotated by θ = π

4 degrees. So, by the assumptions all the points in class 2, and thus their mean
v2, will be rotated by π

4 degrees. Since the points in class 1 will stay the same, this means that, after
running the algorithm, the class means will be orthogonal to each other. □

A.3 CONVERGENCE OF MULTIDCR

Assumption 3 We consider the following assumptions on the dataset in order to prove convergence
of MultiClassDCR algorithm (see Figure 6). Without loss of generality we assume if we run the
Gram-Schmidt process on class means {v1, . . . , vk}, and it runs successfully (handled by assumption
(1)), then the resulting orthonormal basis would be the standard basis {e1, . . . , ek}.

1. Class means are linearly independent.

2. For each i, class Xi is included in a cone Ci around vi with radius ϕi, where for i ≥ 3, Ci
is located inside a cone Bi around ei of radius less than π/2.

3. All class means are in the first orthant, or ϕi < π
4 for all i.
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4. For all j < i, where i ≥ 3, Xj is outside of the cone Bi.

vi

Ci Bi

ei

Figure 6: Pictorial view of Assumption 3.

Theorem 7 (Restatement of Theorem 3) Let Assumption 3 hold. Then after running the MultiDCR
algorithm all class means will be orthogonal to each other.

Proof. In MultiDCR algorithm for each class we rotate the encompassing cone in a Gram-Schmidt
manner. Considering the separation assumptions and linear independence property in Assumption
3, after any step in Gram-Schmidt process, all cones will stay separated. This is because in Gram-
Schmidt process, we orthogonalize vectors one by one; notice that this process happens in the same
subspace as before, that is, in the ith step the span of {e1, . . . , ei} and {v1, . . . , vi} will be the same.
Now Assumption 3 implies that the ith class cone Ci around vi will be rotated in such a way so that
ei will be its center after the rotation. We call this rotated cone C ′

i. Thus C ′
i will be inside the cone

Bi, by Assumption 3(2). This means that the C ′
i will be disjoint from the previously orthogonalized

cones C ′
j for j < i as they live outside the cone Bi and so outside the cone C ′

i. Therefore, after
running the MultiDCR algorithm, all class means will be orthogonal to each other. □

B EXPERIMENTS ON CIFAR-10

B.1 ORTHOGONALITY AND COMPACTNESS

Table 6: Average class dot products; and intra-class compactness.

dim: 64 128 256 512 1024

OPL 0.0111 0.0093 0.0083 0.0036 0.0058
CIDER 0.1111 0.1111 0.1111 0.1111 0.1111

64 128 256 512 1024

0.9989 0.9990 0.9990 0.9990 0.9991
0.9892 0.9885 0.9880 0.9875 0.9859

Table 7: Softmax Top 1 and Top 5 Accuracy of each k

Loss 64 dim 128 dim 256 dim 512 dim 1024 dim

OPL Top 1 93.020 93.610 93.200 93.420 93.310
CIDER Top 1 92.730 92.640 92.870 92.730 92.590

OPL Top 5 99.590 99.570 99.610 99.570 99.650
CIDER Top 5 99.570 99.590 99.550 99.520 99.690
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CIFAR-10 Classes

CI
FA

R-
10

 C
la

ss
es

1.000000 0.004286 0.011896 0.004946 0.001497 0.002417 0.001316 0.001665 0.005464 0.003637

0.004286 1.000000 0.000978 0.002473 0.000743 0.009500 0.001213 0.001215 0.001885 0.026687

0.011896 0.000978 1.000000 0.016570 0.005488 0.011622 0.015775 0.002361 0.001407 0.001947

0.004946 0.002473 0.016570 1.000000 0.005528 0.271455 0.013993 0.006456 0.002594 0.003147

0.001497 0.000743 0.005488 0.005528 1.000000 0.008542 0.003163 0.007131 0.001349 0.001780

0.002417 0.009500 0.011622 0.271455 0.008542 1.000000 0.003407 0.011625 0.002520 0.009495

0.001316 0.001213 0.015775 0.013993 0.003163 0.003407 1.000000 0.001490 0.001293 0.001433

0.001665 0.001215 0.002361 0.006456 0.007131 0.011625 0.001490 1.000000 0.001146 0.001897

0.005464 0.001885 0.001407 0.002594 0.001349 0.002520 0.001293 0.001146 1.000000 0.002441

0.003637 0.026687 0.001947 0.003147 0.001780 0.009495 0.001433 0.001897 0.002441 1.000000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) OPL(64)

CIFAR-10 Classes

CI
FA

R-
10

 C
la

ss
es

1.000000 0.000805 0.002282 0.001840 0.000932 0.001055 0.000664 0.000791 0.001792 0.001020

0.000805 1.000000 0.000684 0.001367 0.000739 0.001079 0.000611 0.000536 0.000723 0.002094

0.002282 0.000684 1.000000 0.003221 0.004221 0.006477 0.002645 0.001283 0.000836 0.000672

0.001840 0.001367 0.003221 1.000000 0.002931 0.082080 0.004580 0.003458 0.001497 0.001657

0.000932 0.000739 0.004221 0.002931 1.000000 0.003622 0.001962 0.003084 0.000977 0.000793

0.001055 0.001079 0.006477 0.082080 0.003622 1.000000 0.001918 0.010077 0.001016 0.001261

0.000664 0.000611 0.002645 0.004580 0.001962 0.001918 1.000000 0.000501 0.000510 0.000533

0.000791 0.000536 0.001283 0.003458 0.003084 0.010077 0.000501 1.000000 0.000637 0.000783

0.001792 0.000723 0.000836 0.001497 0.000977 0.001016 0.000510 0.000637 1.000000 0.000797

0.001020 0.002094 0.000672 0.001657 0.000793 0.001261 0.000533 0.000783 0.000797 1.000000
0.00

0.02

0.04

0.06

0.08

0.10

(b) OPL(1024)

CIFAR-10 Classes

CI
FA

R-
10

 C
la

ss
es

1.000000 0.112030 0.111178 0.109410 0.110922 0.108393 0.110652 0.112437 0.112183 0.111981

0.112030 1.000000 0.112891 0.110612 0.110847 0.108579 0.110351 0.111494 0.111573 0.114914

0.111178 0.112891 1.000000 0.112318 0.112436 0.110364 0.112605 0.113132 0.110245 0.113586

0.109410 0.110612 0.112318 1.000000 0.111192 0.121446 0.108475 0.109509 0.109121 0.111535

0.110922 0.110847 0.112436 0.111192 1.000000 0.110558 0.110710 0.110814 0.110766 0.111663

0.108393 0.108579 0.110364 0.121446 0.110558 1.000000 0.109125 0.105491 0.107594 0.110830

0.110652 0.110351 0.112605 0.108475 0.110710 0.109125 1.000000 0.109501 0.109396 0.112325
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Figure 7: Orthogonality visualization of the dot product of the average per-class feature vectors. From Left to
right: OPL(64), OPL(1024), CIDER(64), CIDER(1024).

B.2 ORTHOGONALITY VISUALIZATION

B.3 AUGMENTATION OF OPL FEATURES WITH ICR AND DCR

Table 8: Orthogonality and Compactness scores for OPL, CIDER, and each after applying +DCR or
+OPL j, for j iterations. As default with 1024 dimensions.

Score OPL (64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Orthogonality 0.0111 0.0036 2.0720e-05 5.2844e-05 1.0261e-06 1.8735e-08 3.2816e-10 5.7593e-12
Compactness 0.9989 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991

Score CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Orthogonality 0.1111 0.1111 0.0744 0.0838 0.0592 0.0372 0.0239 0.0143
Compactness 0.9875 0.9859 0.9779 0.9351 0.8976 0.8778 0.8662 0.8601

B.4 CLASSIFICATION ACCURACY AFTER ICR/DCR ON TEST DATA

Table 9: Test data results for OPL, CIDER and + DCR or +ICR with 1024 dimensions

Metric OPL(64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Smax Top 1 93.020 93.310 93.330 93.330 93.330 93.330 93.330 93.330
Smax Top 5 99.590 99.650 98.700 98.700 98.700 98.700 98.700 98.700

NN Top 1 93.030 93.300 93.290 93.300 93.300 93.300 93.300 93.300
NN Top 5 99.560 99.720 98.900 98.920 98.920 98.920 98.920 98.920

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 92.730 92.590 92.360 92.630 92.610 92.440 92.370 92.400
Smax Top 5 99.520 99.690 99.180 99.630 99.610 99.580 99.570 99.590

NN Top 1 92.730 92.560 92.180 92.420 91.210 90.000 89.940 89.940
NN Top 5 99.420 99.550 99.010 99.170 98.870 96.840 95.510 95.350
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B.5 CLASSIFICATION ACCURACY AFTER ICR/DCR ON TRAINING DATA

Table 10: Training data results for OPL, OPL+DCR, and OPL+ICR with 1024 dimensions

Metric OPL (64) OPL (1024) OPL+DCR OPL+ICR1 OPL+ICR2 OPL+ICR3 OPL+ICR4 OPL+ICR5

Smax Top 1 99.976 99.976 99.976 99.976 99.976 99.976 99.976 99.976
Smax Top 5 99.998 100.000 100.000 100.000 100.000 100.000 100.000 100.000

NN Top 1 99.974 93.300 93.290 99.974 99.974 99.974 99.974 99.974
NN Top 5 100.000 99.720 98.900 100.000 100.000 100.000 100.000 100.000

Table 11: Training data results for CIDER, CIDER+DCR, and CIDER+ICR with 1024 dimensions

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 99.944 99.952 99.150 94.176 93.402 87.858 86.980 86.890
Smax Top 5 100.000 100.000 99.998 98.456 93.588 93.582 93.192 87.336

NN Top 1 99.946 99.950 99.716 99.872 98.178 96.554 96.478 96.474
NN Top 5 100.000 100.000 100.000 100.000 99.926 97.570 96.590 96.572
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B.6 FULL TABLE FOR OUT OF DISTRIBUTION EXPERIMENT USING CIFAR-10 AS
IN-DISTRIBUTION (ID) DATA

Table 12: OOD performance for for CIDER, CIDER+DCR, and CIDER+ICR on the CIFAR10
Dataset
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C MORE EXPERIMENTS ON ACCURACY FOR CIFAR-100

Table 13: Training data results for OPL, OPL+DCR, and OPL+ICR with 1024 dimensions

Metric OPL (64) OPL (1024) OPL+DCR OPL+ICR1 OPL+ICR2 OPL+ICR3 OPL+ICR4 OPL+ICR5

Smax Top 1 99.946 99.976 99.762 99.594 99.686 99.698 99.698 99.698
Smax Top 5 100.000 100.000 99.992 100.000 100.000 100.000 100.000 100.000

NN Top 1 99.858 99.972 99.222 99.974 99.974 99.974 99.974 99.974
NN Top 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Table 14: Training data results for CIDER, CIDER+DCR, and CIDER+ICR with 1024 dimensions

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 99.888 99.892 94.370 97.396 84.540 82.798 82.612 82.572
Smax Top 5 100.000 100.000 98.266 99.408 89.178 88.088 87.920 87.902

NN Top 1 99.890 99.898 99.720 99.872 99.864 99.862 99.862 99.862
NN Top 5 100.000 100.000 99.988 100.000 99.998 99.998 99.998 99.998
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D FULL TABLE FOR OUT OF DISTRIBUTION EXPERIMENT USING CIFAR-100
AS IN-DISTRIBUTION (ID) DATA

Table 15: OOD performance for for CIDER, CIDER+DCR, and CIDER+ICR on the CIFAR100
Dataset
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E QUALITATIVE EXAMPLE COMPARISON

In Figure 8 we show a few illustrative examples from CIFAR-100, and compare their predictions on
OPL, CIDER, and applying +DCR or +ICR. For each image we show that top 5 results under the
NN (Rocchio) classifier. After ICR or DCR, these are the coordinates in the new coordinate system
associated with the k = 100 classes.

We observe that while all methods have the label correct as the top prediction, the drop-off after the
first prediction is steeper after ICR. For instance, because under OPL the class means for orange
are correlated with other fruit (e.g., apple, pear), under OPL the orange example also has a high
dot-product with those fruits. But after ICR or DCR, the class means are orthogonal and so the forced
high association is gone. The same phenomenon can be see with man & boy and with woman & girl.

OPL(64) : worm(98.81), snake(89.8), lizard(63.97), caterpillar(61.23), crab(59.34)
OPL(1024) : worm(99.6), snake(73.7), plate(37.51), caterpillar(34.95), lizard(31.65)
OPL + DCR : worm(99.58), pear(2.57), sweet_pepper(1.55), orange(0.76), shrew(0.74)
OPL + ICR : worm(99.38), sweet_pepper(3.72), pear(3.32), cockroach(2.11), orange(1.81)  

CIDER(512) : worm(73.21), caterpillar(72.69), lizard(31.32), snake(29.45), rocket(25.37)
CIDER(1024) : worm(88.74), caterpillar(43.52), ray(27.07), snake(23.22), road(19.6)
CIDER + DCR : worm(68.16), caterpillar(41.54), road(28.5), ray(25.51), sunflower(18.38)
CIDER + ICR : worm(77.79), caterpillar(37.37), ray(21.99), road(19.35), snail(11.55)

WORM

OPL(64) : orange(99.75), apple(82.04), pear(78.8), sweet_pepper(72.15), poppy(45.62)
OPL(1024) : orange(99.8), apple(80.54), pear(77.65), sweet_pepper(77.58), tulip(59.06)
OPL + DCR : orange(99.8), cup(0.65), bee(0.46), bicycle(0.42), cloud(0.37)
OPL + ICR : orange(99.65), cockroach(0.87), maple_tree(0.61), girl(0.59), orchid(0.51)  

CIDER(512) : orange(99.43), chair(20.74), crab(20.26), pear(19.86), sweet_pepper(19.18)
CIDER(1024) : orange(99.83), pear(20.0), chair(19.31), poppy(17.53), bus(15.24)
CIDER + DCR : orange(99.69), house(2.2), butterfly(1.9), bear(1.75), skyscraper(1.3)
CIDER + ICR : orange(99.32), motorcycle(1.82), train(1.42), rose(1.34), forest(1.24)

ORANGE

OPL(64) : woman(96.37), girl(93.05), man(83.07), boy(81.57), baby(74.65)
OPL(1024) : woman(98.67), girl(88.85), boy(88.26), man(87.61), baby(82.9)
OPL + DCR : woman(98.13), lobster(10.45), crab(5.05), dolphin(5.02), lamp(2.43)
OPL + ICR : woman(97.67), lobster(7.79), crab(4.62), wolf(2.45), lamp(2.01)  

CIDER(512) : woman(98.0), man(41.46), lamp(26.47), girl(25.69), camel(25.63)
CIDER(1024) : woman(97.71), man(45.12), camel(35.11), pear(24.46), girl(21.77)
CIDER + DCR : woman(96.94), lamp(7.56), shark(7.05), couch(6.89), bee(5.48)
CIDER + ICR : woman(93.42), man(23.59), pear(9.9), palm_tree(6.85), lamp(6.51)

WOMAN

OPL(64) : man(98.73), boy(89.51), woman(84.38), girl(78.22), baby(74.1)
OPL(1024) : man(99.4), boy(92.82), girl(89.67), woman(89.63), baby(88.4)
OPL + DCR : man(99.32), boy(2.94), baby(2.41), streetcar(2.39), beaver(1.4)
OPL + ICR : man(97.75), boy(16.47), baby(6.99), bicycle(2.75), dolphin(1.9)  

CIDER(512) : man(99.06), boy(39.74), woman(35.32), flatfish(33.74), cattle(21.79)
CIDER(1024) : man(96.26), boy(41.29), flatfish(35.21), lamp(29.47), palm_tree(18.43)
CIDER + DCR : man(95.46), turtle(12.15), lamp(11.19), flatfish(8.64), boy(7.17)
CIDER + ICR : man(96.42), lamp(7.87), porcupine(5.53), possum(5.36), bee(5.11)

MAN

Figure 8: Example images and top-5 scoring NN (Rocchio) values among classes in CIFAR-100.
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