
Towards Consistent Language Models Using Controlled Prompting and Decoding

Jasmin Mousavi, Arash Termehchy
mousavij@oregonstate.edu, termehca@oregonstate.edu

Abstract

Large language models (LLMs) have shown unprecedented
abilities in generating linguistically coherent and syntacti-
cally correct natural language output. However, they often
return incorrect and inconsistent answers to input questions.
Due to the complexity and uninterpretability of the inter-
nally learned representations, it is challenging to modify
LLMs such that they provide correct and consistent results.
To address this challenge, recent research has focused on
controlling the outputs of LLMs through methods like con-
strained optimization and probabilistic inference. While these
approaches mark significant progress, they have limitations
in terms of usability, efficiency, and linguistic coherence.
Some methods require extensive fine-tuning, making them
less practical for general use, while others compromise the
linguistic quality of the output. In order to address these limi-
tations, we explore adding constraints to the prompt. Our ex-
perimental findings reveal that this approach significantly re-
duces the need for model fine-tuning and enhances the quality
of the outputs, leading to improvements in efficiency and in
the linguistic coherence of the generated output. These find-
ings highlight the importance of end-to-end solutions, where
prompts and decoders work together in addressing inconsis-
tencies in LLMs.

1 Introduction
Large language models (LLMs) have shown unprecedented
abilities in processing natural languages (Radford et al.
2018; OpenAI 2023). They effectively generalize to perform
various tasks with few or no training examples. Thus, there
is a rapidly growing interest in using them to solve data-
driven problems, such as, interactive question answering.

Nonetheless, LLMs often provide incorrect answers to in-
put queries and perform inaccurate inferences (Ji et al. 2023;
OpenAI 2023). Several studies indicate the recent LLMs
provide up to 40% erroneous answers to factual questions
(OpenAI 2023). These erroneous results are important ob-
stacle for use of LLMs in real-world applications.

To address the problem of inaccurate answers returned by
LLMs, we should recognize that LLMs are not knowledge
bases, but rather probabilistic or approximate models of
factual information. LLMs may over-generalize patterns

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and relationships observed in the sub-sequences of pretrain-
ing documents, which might lead to returning spurious re-
lationships and inaccurate results. The uninterpretable mix-
ture of linguistic patterns and factual information has made
it challenging to eliminate incorrect information.

One approach is to augment LLMs with additional and
potentially relevant information from external data sources
(Liu, Yogatama, and Blunsom 2022; Borgeaud et al. 2022;
Mialon et al. 2023), i.e., retreival-based LLMs. These meth-
ods often add extra information to the context considered
during pretraining. This line of research have improved the
accuracy of LLMs to a limited degree, as it does not address
the core issue of having spurious and incorrect information
in LLMs. It is unclear whether adding more relevant infor-
mation eliminate inaccurate information stored in the model.
Moreover, finding sufficiently many relevant data sources,
particularly for long-tail entities, may pose challenges.

It is challenging to ensure that an LLM learns accurate
generalizations and returns correct answers as it may require
perfect knowledge of unobserved data. Even with perfect
knowledge of unobserved data, it is challenging to guarantee
that LLMs learn accurate generalizations and returns correct
answers. Nevertheless, we may be able to restrict its decod-
ing to adhere to declarative constraints in the domain to
avoid generating incorrect results.

Constraints are essentially rules or guidelines that gov-
ern the behavior or output of a system. They can be de-
fined by human experts or learned from data in an unsu-
pervised manner (Papenbrock et al. 2015; Baskaran et al.
2017). Compared to retrieval-based augmentation, we ar-
gue that constraints offer a more robust and adaptable
framework for reducing inconsistencies in LLMs. There
are two key advantages to using constraints. First, their abil-
ity to encapsulate rules governing the underlying domain
enables a system to generalize beyond particular instances
in a dataset, i.e., out of distribution generalization. Second,
that constraints are a form of high-level knowledge, effec-
tively abstracting large quantities of data. Their compressed
representation offers a flexible and efficient method of aug-
menting LLMs by (1) allowing for soft incorporation of
constraints (e.g. adhere to a constraint with 80% probabil-
ity), (2) reducing the size of information used as context to
LLMs, and (3) providing a structured way to control the out-
put of LLMs.

There has been recent effort on limiting the output of
LLMs so they follow given constraints, e.g., contain certain
keywords (Lu et al. 2021; Lew et al. 2023). These methods
use constrained optimization or probabilistic inference over
the sequences generated by the LLM to reduce the proba-
bility of the outputs with invalid patterns. These efforts are
steps in the right direction but fall short of ensuring usable,
scalable, and linguistically coherent outputs from LLMs. For
instance, NeuroLogic (Lu et al. 2021) requires task-specific
fine-tuning, which is impractical as LLMs grow in size. On
the other hand, Sequential Monte Caro (Lew et al. 2023)
is compatible with off-the-shelf models, but often fails to
maintain linguistic coherence due to its simple masking de-
coding strategy. Both methods, applied only during decod-
ing, don’t address the LLM’s potential to learn and repre-
sent spurious relationships. This is hard to control due to the
difficulty in interpreting LLMs’ learned representations. For
instance, the learned spurious relationship about one entity
might impact how an LLM answers a question about a dif-
ferent but related entity.

To overcome these limitations, we augment the prompt
with domain-specific constraints. Prompting with con-
straints offers three advantages. First, it leverages LLMs’
in-context learning capabilities, thereby eliminating the need
for fine-tuning. Second, it can introduce domain knowledge
not present in the training data, e.g., each patient is a hu-
man. Hence, the modified prompt might convey more infor-
mation about the domain than the original one. Third, it ex-
presses the properties of entities that are consistent with con-
straints in the domain. Moreover, consistent answers depend
on the context of the domain constraints, i.e., different do-
mains require different lines of reasoning. By incorporating
these constraints into the input context, LLMs can generate
higher quality output distributions, enabling the decoder to
work more effectively.

In this paper, we explore the use of constraints within
prompts to improve the limitations of NeuroLogic (Lu et al.
2021) and Sequential Monte Carlo (Lew et al. 2023) decod-
ing strategies. We conduct empirical results for integrating
constraints in Llama-2 (Touvron et al. 2023) on the Com-
monGen benchmark (Lin et al. 2019), without fine-tuning
(Section 6). We identify and discuss the trade-offs between
generation quality, constraint satisfaction, and efficiency. We
find that optimizing all these aspects is not possible by just
adding constraints to the prompt or decoder alone. How-
ever, an end-to-end approach, combining constraints in both
prompting and decoding, shows improvement. Specifically,
compared to using only decoder strategies, adding con-
straints to prompts leads to improvements in efficiency and
generation quality. These results underscore the effective-
ness of end-to-end strategies, where prompts and decoders
work together in addressing inconsistencies in LLMs.

2 Background
Constraints. In our problem, a constraint is defined over the
sequence of tokens, i.e., words, generated by an LLM. Given
a generated sequence of words S, let us define an indicator
function I(wj , S) that returns true if a word wj occurs in S.

A set of constraints can be formulated in Conjunctive
Normal Form (CNF) as a conjunction (∧) of clauses ∧n

i Ci,
where each clause Ci is a disjunction (∨) of literals:

(I(w11, S) ∨ · · · ∨ I(w1k1 , S))︸ ︷︷ ︸
C1

∧ · · ·∧(I(wn1, S) ∨ · · · ∨ I(wnkn
, S))︸ ︷︷ ︸

Cn

where each constraint I(wj , S) represents a literal.
For example, suppose we would like to generate a sen-

tence that uses the concepts from the set of keywords x =
[dog, run, field]. Therefore, the objective is to generate an
output sequence S that contains all keywords in x or its in-
flections (e.g., dog = [dog, dogs, dogging, dogged]). This
expressed in CNF is:

(I(dog, S) ∨ I(dogs, S) ∨ I(dogging, S) ∨ I(dogged, S))
∧(I(run, S) ∨ I(runs, S) ∨ I(running, S) ∨ I(ran, S))
∧(I(field, S) ∨ I(fields, S)) (1)

Constraint Satisfaction. Given a set of constraints C
expressed in CNF and sequence S, constraint satisfaction
refers to the process of checking if sequence S violates con-
straints in C. This process is gauged using two key metrics:
coverage and satisfaction. Coverage is a number between 0
and 1, calculated as the proportion of clauses in C that eval-
uate to true:

1

|C|

|C|∑
i=1

Ci

where |C| is the number of clauses in C. Satisfaction is a
Boolean assignment (0 or 1) that assesses whether S adheres
to all clauses in C:

∧|C|
i=1Ci

For example, given sequence S = “The dogs are in the field”
and CNF from equation 1, let us define clause C1 for the
clause containing “dog”, C2 for “run”, and C3 for “field”.
Here, “dogs” meets the constraint for clause C1, “field” for
C2, but C3 is not satisfied. Therefore, the coverage is 2

3 ,
while satisfaction is 0, as not all constraints are met.

3 Problem Formulation
Input. We are given pre-trained language model LM , a set
of constraints C = [c1, c2, ...cn], and prompt P . In our prob-
lem, P is the prompt that describes the downstream task and
can be further modified with a set of in-context few-shot ex-
amples.
Output. The output is a sequence of tokens, i.e. words, S,
generated by language model LM
Metrics. In our problem we consider three metrics: con-
straint satisfaction, generation quality, and time. As de-
scribed in Section 2, constraint satisfaction CS(S,C) refers
to the coverage and total satisfaction with respect to con-
straints in C and sequence S. Generation quality GQ(S),
evaluates the linguistic coherence and fluency of S. This
evaluation can be conducted through human evaluation or
automated metrics, e.g., ROUGE (Lin and Hovy 2003) or

BLEU (Papineni et al. 2002). These automated metrics com-
pare S to a human-generated reference sequence, calculating
a quality score (usually ranging from 0 to 1). The scoring is
based on specific heuristics, such as the use of n-grams or
similarity measures. Time T (S), quantifies efficiency, i.e.,
the computational time required to generate sequence S (e.g.
inference time).
Problem Definition. Given a pre-trained language model
LM , a set of constraints C = [c1, c2, ...cn], and prompt
P , the objective is to generate a sequence S that maxi-
mizes constraint satisfaction CS(S,C) and generation qual-
ity GQ(S), while minimizing time T (S).

4 Current Approaches for Decoding with
Constraints

Due to the uninterpretability of the learned representations
in a language model, it is difficult to guarantee that aug-
menting the prompt with constraints will produce consistent
models that return accurate answers. To address this chal-
lenge, one may augment the decoder, such that constraints
are leveraged during text generation.
Challenges. Due to the autoregressive nature of language
model LM , i.e. PrLM (st+1|s1:t), it is often expensive
to check constraint satisfaction as sequence S is gener-
ated. Hence, it is challenging to mitigate this trade-off be-
tween constraint satisfaction CS(S,C) and inference time
T (S). Another challenge stems from the dramatic distribu-
tion changes induced by conditioning LM on constraints
C during generation, i.e., PrLM (s1:N |C). This introduces
another trade-off between constraint satisfaction CS(S,C)
and generation quality GQ(S).
Objective. The objective is to generate a sequence S
that maximizes constraint satisfaction CS(S,C), by con-
ditioning the autoregressive generation process of lan-
guage model LM on constraints C, i.e. PrLM (s1:N |C) =
ΠN

t PrLM (st+1|s1:t, C), while minimizing time T (S) and
maximizing generation quality GQ(S).

4.1 Decoding Strategies
We leverage two decoding strategies with varying levels of
satisfaction: soft constraint decoding with NeuroLogic (Lu
et al. 2021) and hard constraint decoding with Sequential
Monte Carlo (Lew et al. 2023).
NeuroLogic (NL) (Lu et al. 2021) is an inference time de-
coding algorithm that uses a variant of beam-search. The ob-
jective is to optimize the probability of generating sequences
while also steering towards constraints using a penalty term.
Due to the interest of using off-the-shelf models, we chose
not to fine-tune an LLM for using the NeuroLogic decoder.
It is important to note, however, their experiments were con-
ducted using a fine-tuned model.
Sequential Monte Carlo (SMC) (Lew et al. 2023) is an in-
ference time masked decoding algorithm. They model se-
quence generation as a probabilistic inference problem us-
ing a variant of Sequential Monte Carlo with particle filter-
ing. In SMC, a user writes a program that specifies the de-
sired constraints in a sequential manner. The user may also

specify the number of particles used, where each particle
acts as a weighted sample of the posterior distribution. We
programmed constraints, i.e. contains certain keywords, as
an infilling problem, where keywords are sampled with a
masked vocabulary.

5 Prompting with Constraints
Integrating structured data, such as constraints, into prompts
poses challenges for LLMs, as they have been trained on
unstructured data. It is unclear whether the LLM’s low-
dimensional representation can accurately and reliably re-
flect these domain-specific constraints. Hence, it is challeng-
ing to ensure constraint satisfaction solely through prompt
augmentation. Nonetheless, prompting with constraints can
still bias the output distribution, allowing the decoder to
work more effectively.
Challenges. In our problem, we are trying to augment
the prompt P to language model LM with constraints C.
However, we face the challenge of the limited input con-
text length k, e.g., 4096 tokens for Llama-2 (Touvron et al.
2023). This limitation necessitates an optimization approach
for prompting, focusing on the effective inclusion and rep-
resentation of constraints within this restricted token space.
Objective. The optimization objectives for prompting are
twofold: first, to minimize the textual representation of con-
straints C, i.e., level of abstractness, necessary for effec-
tively guiding the LM to comply with C for prompt P
while occupying minimal token space. Second, minimizing
the number of constraints used in the input, ensuring the to-
tal input length, including prompt P and constraints C, does
not exceed context length k.

5.1 Prompting Strategies
For input prompt P = “write a sentence”, we construct two
prompting techniques for constraints with varying represen-
tation sizes.
Conjunctive Normal Form (CNF) prompting style models
constraints, i.e., keywords, in conjunctive normal form. For
example, the keywords [dog, run, field] in conjunctive nor-
mal form is (dog ∨ dogs ∨ ...) ∧ (run ∨ running ∨ ...) ∧
(field ∨ fields). We can translate this constraint to text by
converting ∨ to or and ∧ to and. Hence, our final prompt is
“Write a sentence using the words (dog or dogs or ...) and
(run or running or ...) and (field or fields)”.
Abstract (ABS) prompting style describes an abstract in-
stance of a constraint, e.g., “Given a set of words x, write
a sentence using all words in x or inflections of x”. Since
ABS prompts do not include specific instances of keyword
inflections, it is more compressed than CNF prompts.

5.2 Prompting and Decoding with Constraints
Augmenting either the prompt or the decoder in isolation can
help reduce inconsistencies in LLMs, but each approach has
its drawbacks. While decoders can offer satisfaction guaran-
tees, they may slow down inference and reduce generation
quality due to significant shifts in output distribution. In con-
trast, prompting maintains generation quality but lacks the

ability to ensure constraint satisfaction. Decoder only strate-
gies fail to tackle the LLM’s tendency to learn and represent
spurious relationships. For example, a misleading associa-
tion learned about one entity could affect responses about
a related entity. Prompting can mitigate this by providing
extra context, thereby offering a more comprehensive un-
derstanding of the domain and aligning entities with domain
constraints. Likewise, decoders can enhance prompts by en-
suring constraint satisfaction. To overcome the limitations of
each method individually, we propose exploring an end-to-
end approach, integrating constraints in both prompting and
decoding. Additionally, we aim to investigate how various
prompting techniques impact the effectiveness of decoder
strategies.

6 Empirical Results
In this section we present our empirical results for integrat-
ing constraints with LLMs using the CommonGen bench-
mark (Lin et al. 2019). We identify the risks and trade-offs
of augmenting LLMs with constraints for the prompt only
and decoder only strategies, in terms of generation quality,
constraint satisfaction, and time.

Prompt only strategies include Conjunctive Normal Form
(CNF) and Abstract (ABS) style prompting (Section 5.1). We
also supply the prompt with additional in-context examples,
i.e. 0-shot, 1-shot, and 2-shot. Examples were extracted from
the training set. Decoder only strategies include NeuroLogic
(NL) (Lu et al. 2021) and Sequential Monte Carlo (SMC)
(Lew et al. 2023) (Section 4.1).

We also explore whether injecting constraints into both
prompt + decoder, will help or hurt any risks and trade-offs
that exist in the prompt or decoder alone.

6.1 LLM Implementation Details
We use Llama-2 (Touvron et al. 2023) as our pretrained lan-
guage model across all experiments. Llama-2 was pretrained
over 2 trillion tokens of data between January 2023 and July
2023. Llama-2 consists of 7 billion parameters, 32 layers,
4096 hidden representation size, 32 attention heads, a 4096
token context window size.

6.2 Dataset
The CommonGen dataset (Lin et al. 2019) is a benchmark
designed for controlling language model generation with
constraints, i.e., contain certain keywords. Given a set of
keywords, e.g., “dog run field”, the goal is to generate a sen-
tence using all the keywords or the infections of the key-
words, e.g., “dogs” or “dog”. Each set contains a minimum
of 3 keywords and a maximum of 5 keywords. The dataset is
split into train, validation, and test sets of sizes 64.7k, 4.02k,
and 1.5k, respectively. Typically, those using the Common-
Gen dataset would first fine-tune their language model using
the training set. However, given the size of modern LLMs,
users may not have the resources for fine-tuning an LLM.
Hence, we focus on using inference-based algorithms that
can be used with off-the-shelf models without fine-tuning.
Our results are conducted over the test set.

Constraints. In CommonGen, constraints can be defined
for a set of keywords [w1, w2, w3] as follows. If S is a sen-
tence, then S must contain w1 or one of its inflections, w2
or one of its inflections, and w3 or one of its inflections. The
objective is to generate sentences that adhere to this con-
straint. A key characteristic of this constraint is its allowance
for multiple valid outputs, stemming from the underspeci-
ficity of the input. This leads to a wide array of possible
sentences that represent instances of the constraint.
Data Leakage. Recently, researchers have been concerned
with data leakage in LLMs (Carlini et al. 2021, 2022). Due
to their ability to memorize training data (Carlini et al.
2022), benchmark performance is often inflated. Given that
Commongen is a public dataset, it is likely that Llama-2 has
seen this dataset and even memorized ground truth sentences
for the train and validation sets. However, since ground truth
sentences for the test set are not publicly available, it is un-
likely that Llama-2 memorized them.

6.3 Metrics
Generation Quality is measured using automatic metrics,
such as ROUGE (Lin and Hovy 2003), BLEU (Papineni
et al. 2002), CIDEr (Vedantam, Zitnick, and Parikh), and
SPICE (Anderson et al. 2016). These metrics generate a
quality score for the generated sentence based on human
generated reference sentences, where a perfect score is 100.

ROUGE-L is a precision and recall based metric that
identifies the longest common co-occurring n-grams and
sentence-level similarity by calculating the weighted har-
monic mean. BLEU-4 is a precision based metric that counts
the matching 4-grams between the generated and reference
sentences. CIDEr is a consensus based metric that takes the
average cosine similarity of Term Frequency - Inverse Doc-
ument Frequency weighted n-grams. SPICE is a semantic
propositional based metric that establishes syntactic depen-
dencies between words, then maps the syntactic dependen-
cies using logical rules, and finally computes the F-score de-
fined over the logical rules.

Constraint Satisfaction measures the method’s ability to
fully satisfy the constraint (used all keywords or their inflec-
tions), i.e., satisfied. We also calculate coverage, which is
an average over the percentage of keywords (or their inflec-
tions) used in the generated sequence.

Time is computed as the time taken (in seconds) for gen-
erating a sequence, i.e., inference time.

6.4 Results & Analysis
Results over all experiments can be found on Table 1. For a
single concept set, we provide the sentence generated across
all experiments in Appendix A.
Prompt Only. We aim to understand how varying the con-
straint representation in the prompt, i.e., ABS vs. CNF and
in-context examples, i.e., n-shot, impact generation quality,
constraint satisfaction, and time.

Across most experiments ABS prompting achieves higher
satisfaction than CNF prompting. This suggests that LLMs
can understand abstract, high-level descriptions of con-
straints. Given the fact that CNF prompts include all the

Method
Generation Quality Constraint Satisfaction Time

ROUGE-L BLEU-4 CIDEr SPICE Coverage Satisfied Seconds
Prompt Only

ABS 0-shot 25.37 06.29 04.34 13.81 51.61 18.84 01.56
ABS 1-shot 29.46 08.41 06.22 18.49 74.49 35.34 01.85
ABS 2-shot 31.34 10.60 07.33 20.06 76.74 38.74 01.83
CNF 0-shot 22.82 03.74 02.37 12.13 42.17 11.09 01.84
CNF 1-shot 29.60 08.07 05.88 18.77 77.47 38.88 01.51
CNF 2-shot 30.93 09.92 06.81 19.22 74.48 34.34 01.46
Decoder Only

NL (Lu et al. 2021), beam=8 10.05 00.00 00.08 02.67 02.41 00.00 03.46
NL (Lu et al. 2021), beam=32 10.36 00.00 00.06 02.31 01.12 00.00 12.47
NL (Lu et al. 2021), beam=64 9.74 00.23 00.04 02.59 00.96 00.00 24.01
SMC (Lew et al. 2023), particle=8 23.10 02.60 01.71 15.37 100.0 100.0 22.92
SMC (Lew et al. 2023), particle=16 22.86 02.52 01.62 15.55 100.0 100.0 22.96
SMC (Lew et al. 2023), particle=32 22.92 02.64 01.69 15.26 100.0 100.0 23.17
Prompt & Decoder

ABS 0-shot + NL (Lu et al. 2021), beam=8 36.54 14.82 10.72 20.65 95.93 83.43 05.30
ABS 1-shot + NL (Lu et al. 2021), beam=8 39.07 19.25 12.13 23.25 94.13 76.55 04.61
ABS 2-shot + NL (Lu et al. 2021), beam=8 39.39 19.76 12.26 23.65 93.81 75.48 05.11
CNF 0-shot + NL (Lu et al. 2021), beam=8 15.41 03.98 01.56 06.42 09.38 01.00 07.47
CNF 1-shot + NL (Lu et al. 2021), beam=8 39.66 25.73 13.30 24.18 79.91 39.08 09.37
CNF 2-shot + NL (Lu et al. 2021), beam=8 39.81 25.35 12.84 23.57 75.49 27.99 11.30
ABS 0-shot + SMC (Lew et al. 2023), particle=8 25.86 04.00 02.79 18.80 100.0 100.0 25.33
ABS 1-shot + SMC (Lew et al. 2023), particle=8 27.86 05.66 04.46 20.27 100.0 100.0 25.14
ABS 2-shot + SMC (Lew et al. 2023), particle=8 28.62 06.17 04.90 20.55 100.0 100.0 29.96
CNF 0-shot + SMC (Lew et al. 2023), particle=8 26.27 04.07 03.14 19.85 100.0 100.0 27.51
CNF 1-shot + SMC (Lew et al. 2023), particle=8 27.40 04.65 03.84 20.29 100.0 100.0 34.10
CNF 2-shot + SMC (Lew et al. 2023), particle=8 28.44 05.93 04.54 20.70 100.0 100.0 48.76

Table 1: Performance results on generation quality, constraint satisfaction, and time over the CommonGen test set for different
generation methods: decoder only, prompt only, and prompt + decoder. Results include a comparison against soft constraint
decoding, i.e., beam-based NeuroLogic (NL), and hard constraint decoding, i.e., masked-based Sequential Monte Carlo (SMC).
Two prompting strategies were conducted: abstract (ABS) and conjunctive normal form (CNF). Each prompting strategy lever-
aged 0-shot, 1-shot, and 2-shot in-context examples. With the exception of time (lower is better), a perfect score is 100.

inflections, one would expect higher constraint satisfaction
across all experiments, however, this is not the case. With
the exception of CNF 1-shot, ABS style prompting obtains
higher satisfaction than CNF.

ABS prompting outperforms CNF prompting in terms
of generation quality across all experiments. CNF style
prompts are inherently more structured and further from
‘natural language’ compared to ABS style prompts. This
suggests structured prompts are less beneficial and may re-
quire a fine-tuning strategy.

Increasing input length does not have significant impacts
on inference time. Despite ABS prompts having a smaller
constraint representation size than CNF prompts, there is lit-
tle change in inference time across all n-shot experiments.

In-context examples boosts quality in both prompting
strategies, but hurts satisfaction in CNF 2-shot. Including
more than one in-context example worsens constraint satis-
faction for CNF style prompts. This suggests that extending
the input context with inflections for every in-context ex-
ample may lead to noisy, sub-optimal distributions during

generation.
Decoder Only. In this section we discover the impacts of
the output layer, i.e., decoder, on generation quality, con-
straint satisfaction, and time. We compare two decoding
strategies: soft constraint decoding, i.e., beam-based NL and
hard constraint decoding, i.e., masked-based SMC.

In the absence of fine-tuning, beam-based/soft constraint
decoding, i.e., NL, encounters challenges in both generation
quality and constraint satisfaction. Compared with SMC,
NL is more dependent on a high quality output distribu-
tions. This suggest that soft constraint decoding may require
higher quality output distributions from the LLM.

Increasing the number of particles for SMC decoding
does not yield quality or satisfaction improvements while in-
creasing inference time. This observation indicates that the
underlying distribution may be of low quality, as increas-
ing the number of particles does not enhance performance.
Moreover, in cases of uncertainty, the decoder will not see
benefits by increasing computational resources.

Although the SMC decoder achieves 100% constraint sat-

isfaction, this achievement comes at the cost of significantly
increased inference time. For example, the longest infer-
ence time recorded among the tested prompting strategies
was only 1.85 seconds, in contrast, SMC with 8 particles re-
quired a considerably longer duration of 22.92 seconds for
generation. This indicates a substantial increase in computa-
tional time required to achieve complete constraint satisfac-
tion with masked decoding strategies, such as SMC.

Despite the improvements in constraint satisfaction, de-
coder only strategies tend to degrade generation quality and
increase time.
Prompt & Decoder. Although prompt only strategies have
higher performance on generation quality and time, they
cannot provide any guarantees on constraint satisfaction.
Conversely, decoding strategies optimize over constraint sat-
isfaction, but at the cost of generation quality and time.
In this section we aim answer whether the prompt and de-
coder can work together to improve the disadvantages of us-
ing the prompt or decoder alone, i.e., an end-to-end system.
More specifically, we would like to understand how different
strategies work together and whether they induce any trade-
offs between our metrics.

Augmenting the prompt with constraints enhances gen-
eration quality and constraint satisfaction, indicating that
prompting results in a higher-quality output distribution for
the decoder to operates on. Notably, the NL decoder, al-
though underperforming as a standalone decoder, shows
remarkable improvement in quality when combined with
prompts. This demonstrates that soft constraint decoder per-
formance depends on the quality of the output distribution.

Although prompting improves quality in SMC, it has
significant impacts on time. Checking for hard constraints
within the SMC decoding strategy is less scalable when com-
pared to the implementation of soft constraints in NL. In
contrast, the NL decoder benefits in both quality and time.
Due to the higher quality output distributions produced with
prompting, the NL decoder spent less time searching, lead-
ing to reductions in inference time.

Across most experiments, the NL decoder achieves higher
generation quality than SMC. The use of soft constraints in
NL results in less drastic distribution changes compared to
SMC, allowing for higher quality generation, albeit with a
trade-off in constraint satisfaction.

Despite the NL decoder leveraging CNF formula, it ex-
hibits higher satisfaction levels with ABS style prompts. This
indicates that structured prompts could potentially limit the
model’s performance by producing sub-optimal output dis-
tributions for the decoder. It suggests that high-level con-
cepts and relationships might be more effective inputs to the
model when optimizing the output distribution for decoding.

7 Discussion & Future Work
Our results illustrate that we are not able to optimize over all
metrics by using prompting or decoding alone. However, we
can leverage the benefits of one strategy, e.g., prompting, to
mitigate the risks of another, e.g., decoding, thereby finding
a sweet spot between all metrics in an end-to-end system. In
future work, we would like to extend current prompting and

decoding methods to handle complex constraints, e.g., se-
mantic constraints. Additionally, we would like to develop
prompting techniques that result in optimal output distribu-
tions for the decoder to operate on.

Challenges of Decoding with Semantic Constraints. Ex-
tending current approaches (Lu et al. 2021; Lew et al. 2023)
to handle semantic constraints poses challenges. Some do-
mains may have many constraints, it might be too time-
consuming to check to what degree a set of possible se-
quences satisfy all constraints in these domains during query
time. One might check constraints in order of their impor-
tance or probability of being violated based on previous ob-
servations to save some time. We can also use current re-
search on reasoning over constraints to find a minimal set of
constraints that imply the entire set of reduce the number of
constraints (Abiteboul, Hull, and Vianu 1994).

Another possible challenge is that one might have to
check relatively long sequences of text to detect violations
of semantic constraints. For example, the relationship be-
tween two entities might be represented in a relatively long
sentence (paragraph) with each entity is placed in one end
of the sentence (paragraph). The longer the size of exam-
ined sequences gets, the more generated sequences must be
checked to compute the one with the largest posterior prob-
ability. This may significantly increase the time of returning
an answer to the user. To speed up this process, one may test
the constraints in the order of how close the mentions to the
concepts or relationships usually appear in the text to prune
some candidate sequences early. Another useful technique is
to consider a relatively small sample of possible sequences
instead of the entire set to return the final consistent result.

Challenges of Prompting with Semantic Constraints.
Due to the uninterpretability of the LLM’s learned repre-
sentations, it is unclear whether prompting with constraints
will result in consistent and accurate models. Recently, re-
searchers have observed that explaining the properties of the
desired answers gradually, i.e., Chain of Thoughts (CoT),
improves the accuracy of answering questions over LLMs
(Wei et al. 2023). One may use this property and provide the
language model with step by step explanation of the mod-
ified prompt. To modify input prompt P , one should first
identify the entities that appear in the prompt to find rele-
vant constraints in C. Since constraints are usually written
in subsets of first-order logic, one can express them in form
of natural language, e.g., by translating ⊂ to is a subset of.
The final prompt will be a composition of the original one
and natural language translation of its relevant constraints.

In cases where the modified prompt exceeds context
length k, it may be necessary to employ constraint min-
imization and prioritization strategies. To minimize con-
straint representations, one may leverage the hierarchical
structure of constraints , i.e., consolidate multiple constraints
into broader constraints that imply them. To prioritize con-
straints, one technique is to weight constraints based on their
coverage or relevance to the input prompt P . Another ap-
proach involves prioritizing constraints with more edges or
connections, i.e. relationships, to other concepts.

8 Related Work
Semantic Parsing. LLMs have been an effective approach
for program synthesis via semantic parsing (Poesia et al.
2022; Singh et al. 2023). These methods employ constrained
semantic decoding techniques to guarantee that the gener-
ated output aligns with the syntax and grammar of the target
programming language. This approach is similar to the use
of lexical constraints in our work. However, unlike our work,
semantic parsing does not address the complexities and lin-
guistic coherence inherent in natural language. In our work,
we aim to extend beyond simple lexical constraints to sup-
port more complex constraints.

Self-Consistency of Language Models. It is known that
language models produce contradictory answers to the ques-
tions that seek the same information but phrased differently.
Researchers have proposed methods to address this issue by
prompting the language model to critique and refine its own
output during inference (Madaan et al. 2023). This method
prompts the language model with differently phrased ques-
tions and builds a (weighted) model over answers to infer
the most likely result. We, however, mainly focus on ensur-
ing that the language model follows semantic constraints.

Extracting Knowledge from Language Models. Re-
searchers have proposed methods to extract generic state-
ments or factual knowledge from language models using
prompt engineering and human supervision (Bhagavatula
et al. 2023). The prompts are constructed in a way that en-
courages succinct factual statements. They use human la-
beled data to detect inaccurate outputs and fine-tune the lan-
guage model. It might be challenging to collect a sufficient
amount of training data to extract accurate statements.

Querying Language Models. There has been some re-
cent effort to design programming languages for prompt-
ing large language models, i.e., language model program-
ming (Beurer-Kellner, Fischer, and Vechev 2023; Microsoft
and Lundberg 2023; Computing and Louf 2023). There are
generally domain-specific programming languages to ex-
tract information from and control the output of a large lan-
guage model to satisfy the users’ input hard constraints, akin
to where conditions in SQL queries. Some of these lan-
guages resemble database query languages, e.g., SQL (Mi-
crosoft and Lundberg 2023). These languages aim at mak-
ing it easier to query and prompt and optimize the number of
calls to large language models. However, these languages do
not generate consistent results conditioned on domain con-
straints. Thus, they may return answers that violate semantic
constraints in the domain.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1994. Foundations of
Databases: The Logical Level. Addison-Wesley.
Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S.
2016. Spice: Semantic propositional image caption evalua-
tion. In Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part V 14, 382–398. Springer.
Baskaran, S.; Keller, A.; Chiang, F.; Golab, L.; and Szlichta,
J. 2017. Efficient discovery of ontology functional depen-

dencies. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, 1847–1856.
Beurer-Kellner, L.; Fischer, M.; and Vechev, M. 2023.
Prompting Is Programming: A Query Language for Large
Language Models. Proceedings of the ACM on Program-
ming Languages, 7: 1946–1969.
Bhagavatula, C.; Hwang, J. D.; Downey, D.; Bras, R. L.; Lu,
X.; Qin, L.; Sakaguchi, K.; Swayamdipta, S.; West, P.; and
Choi, Y. 2023. I2D2: Inductive Knowledge Distillation with
NeuroLogic and Self-Imitation. arXiv:2212.09246.
Borgeaud, S.; Mensch, A.; Hoffmann, J.; Cai, T.; Ruther-
ford, E.; Millican, K.; van den Driessche, G.; Lespiau, J.-B.;
Damoc, B.; Clark, A.; de Las Casas, D.; Guy, A.; Menick, J.;
Ring, R.; Hennigan, T.; Huang, S.; Maggiore, L.; Jones, C.;
Cassirer, A.; Brock, A.; Paganini, M.; Irving, G.; Vinyals,
O.; Osindero, S.; Simonyan, K.; Rae, J. W.; Elsen, E.; and
Sifre, L. 2022. Improving language models by retrieving
from trillions of tokens. arXiv:2112.04426.
Carlini, N.; Ippolito, D.; Jagielski, M.; Lee, K.; Tramer, F.;
and Zhang, C. 2022. Quantifying memorization across neu-
ral language models. arXiv preprint arXiv:2202.07646.
Carlini, N.; Tramer, F.; Wallace, E.; Jagielski, M.; Herbert-
Voss, A.; Lee, K.; Roberts, A.; Brown, T.; Song, D.; Erlings-
son, U.; et al. 2021. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), 2633–2650.
Computing, N.; and Louf, R. 2023. Outlines: Generative
model programming. https://github.com/normal-computing/
outlines.
Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.;
Bang, Y. J.; Madotto, A.; and Fung, P. 2023. Survey of Hal-
lucination in Natural Language Generation. ACM Comput-
ing Surveys, 55(12): 1–38.
Lew, A. K.; Zhi-Xuan, T.; Grand, G.; and Mansinghka, V. K.
2023. Sequential Monte Carlo Steering of Large Language
Models using Probabilistic Programs. arXiv:2306.03081.
Lin, B. Y.; Zhou, W.; Shen, M.; Zhou, P.; Bhagavatula, C.;
Choi, Y.; and Ren, X. 2019. CommonGen: A constrained
text generation challenge for generative commonsense rea-
soning. arXiv preprint arXiv:1911.03705.
Lin, C.-Y.; and Hovy, E. 2003. Automatic evaluation of sum-
maries using n-gram co-occurrence statistics. In Proceed-
ings of the 2003 human language technology conference of
the North American chapter of the association for computa-
tional linguistics, 150–157.
Liu, Q.; Yogatama, D.; and Blunsom, P. 2022. Relational
Memory Augmented Language Models. arXiv:2201.09680.
Lu, X.; West, P.; Zellers, R.; Le Bras, R.; Bhagavatula, C.;
and Choi, Y. 2021. NeuroLogic Decoding: (Un)supervised
Neural Text Generation with Predicate Logic Constraints.
In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. Online: Association
for Computational Linguistics.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,

Y.; Welleck, S.; Majumder, B. P.; Gupta, S.; Yazdanbakhsh,
A.; and Clark, P. 2023. Self-Refine: Iterative Refinement
with Self-Feedback. arXiv:2303.17651.
Mialon, G.; Dessı̀, R.; Lomeli, M.; Nalmpantis, C.; Pa-
sunuru, R.; Raileanu, R.; Rozière, B.; Schick, T.; Dwivedi-
Yu, J.; Celikyilmaz, A.; Grave, E.; LeCun, Y.; and Scialom,
T. 2023. Augmented Language Models: a Survey.
arXiv:2302.07842.
Microsoft; and Lundberg, S. 2023. Guidance: A guid-
ance language for controlling large language models. https:
//github.com/microsoft/guidance.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Papenbrock, T.; Ehrlich, J.; Marten, J.; Neubert, T.; Rudolph,
J.-P.; Schönberg, M.; Zwiener, J.; and Naumann, F. 2015.
Functional dependency discovery: An experimental evalua-
tion of seven algorithms. Proceedings of the VLDB Endow-
ment, 8(10): 1082–1093.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 311–318.
Poesia, G.; Polozov, O.; Le, V.; Tiwari, A.; Soares, G.;
Meek, C.; and Gulwani, S. 2022. Synchromesh: Reliable
code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227.
Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.;
et al. 2018. Improving language understanding by gener-
ative pre-training.
Singh, M.; Cambronero, J.; Gulwani, S.; Le, V.; Negreanu,
C.; Nouri, E.; Raza, M.; and Verbruggen, G. 2023. FormaT5:
Abstention and Examples for Conditional Table Formatting
with Natural Language. arXiv preprint arXiv:2310.17306.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.
Vedantam, R.; Zitnick, C. L.; and Parikh, D. ????
Consensus-based image description evaluation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 4566–4575.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arXiv:2201.11903.

A Generated Sentence on Concept Set
In figure 1, we provide the sentence generated for a concept
set in the CommonGen test set across all reported experi-
ments in Section 6.

[ABS 0-shot]: A boy read book in laundromat waiting for his laundry to finish.
[ABS 1-shot]: A boy in a book store waits to buy a book, now with my laundry, about to go to my laundromat.
[ABS 2-shot]: A boy waiting for a ride on the curb reads a magazine before putting the dusty suitcase inside a laundromat.
[CNF 0-shot]: A boy ia washed his his clothes that she has in the the laundromats for the laundry and to wait for the bus.
[CNF 1-shot]: A boy was reading books while sitting in a laundromatum waiting for laundry to be done.
[CNF 2-shot]: A boy who read books at a laundromats waited in a line to be the next to use the washers and dryers.

Concept Set = [laundromat, book, laundry, read, wait]
Prompt Only

Decoder Only
[NL, beam=8]: A boy 12 years old, a girl 12 years old, a boy 11 years old, a girl 11 years old, a boy
[NL, beam=32]: A boy 16-year-old boy has been arrested on suspicion of murder after a 17-year-old boy was stabbed to death in
[NL, beam=64]: A boy 16-year-old boy has been arrested on suspicion of murder after a 17-year-old boy was stabbed to death in
[SMC, particle=8]: A boy buys books steals reading sheets his laundry emanates waiting in the laundromat his soda pointy h.
[SMC, particle=16]: A boy uses a book to light reading at a laundromat at a laundry structure identified waiting in the background as an Army Aviation Regiments
[SMC, particle=32]:A boy was in the waiting room and the books he was reading were the laundry drying laundromat and the man in the TV reef area

[ABS 0-shot + NL, beam=8]: A boy laundromat book laundry read waited.
[ABS 1-shot + NL, beam=8]: A boy laundromat book laundry read wait.
[ABS 2-shot + NL, beam=8]: A boy laundry his laundromat while waiting for his book to read.
[CNF 0-shot + NL, beam=8]: A boy \ud83d\udc66 \ud83d\udc66 \ud83d\udc66 \ud83d\udc66 \ud83d\udc66 \ud83d\udc66 \ufffd\ufffd
[CNF 1-shot + NL, beam=8]: A boy read a book in the laundromat while waiting for his laundry.
[CNF 2-shot + NL, beam=8]: A boy is reading a book in a laundromat.
[ABS 0-shot + SMC, particle=8]: A boy at the laundromat reads a book about laundries on his wait for his wait for the book to be laundered.
[ABS 1-shot + SMC, particle=8]: A boy in a laundry meets his laundromat friend who reads the book waiting for a wait that has been answered.
[ABS 2-shot + SMC, particle=8]: A boy waits at laundromat in front laundry with a book reading until it reads with the help of a waitress
[CNF 0-shot + SMC, particle=8]: A boy in a laundromat reads a book while he waits until a laundry to read another book.
[CNF 1-shot + SMC, particle=8]: A boy reads bill books at a laundromat as he waits to measure laundry in capsules.
[CNF 2-shot + SMC, particle=8]:A boy calls and waits at the laundromat to read the books on his laundry list before finally returning to wait.

Prompt & Decoder

Figure 1: Generated sentence sentence for concept set=[laundromat, book, laundry, read, wait] across different generation
methods: decoder only, prompt only, and prompt + decoder. Two decoding strategies were used: soft constraint decoding,
i.e., beam-based NeuroLogic (NL) (Lu et al. 2021), and hard constraint decoding, i.e., masked-based Sequential Monte Carlo
(SMC) (Lew et al. 2023). Two prompting strategies were conducted: abstract (ABS) and conjunctive normal form (CNF). Each
prompting strategy leveraged 0-shot, 1-shot, and 2-shot in-context examples. We begin the generated output sequence with “A
boy”.

