
Under review as a conference paper at ICLR 2024

GRAPH GENERATION WITH
DESTINATION-PREDICTING DIFFUSION MIXTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Generation of graphs is a major challenge for real-world tasks that require under-
standing the complex nature of their non-Euclidean structures. Although diffusion
models have achieved notable success in graph generation recently, they are ill-
suited for modeling the structural information of graphs since learning to denoise
the noisy samples does not explicitly capture the graph topology. To tackle this limi-
tation, we propose a novel generative framework that models the topology of graphs
by predicting the destination of the diffusion process, which is the original graph
that has the correct topology information, as a weighted mean of data. Specifically,
we design the generative process as a mixture of diffusion processes conditioned on
the endpoint in the data distribution, which drives the process toward the predicted
destination, resulting in rapid convergence. We introduce new simulation-free
training objectives for predicting the destination, and further discuss the advantages
of our framework that can explicitly model the graph topology and exploit the
inductive bias of the data. Through extensive experimental validation on general
graph and 2D/3D molecule generation tasks, we show that our method outperforms
previous generative models, generating graphs with correct topology with both
continuous (e.g. 3D coordinates) and discrete (e.g. atom types) features.

1 INTRODUCTION

Generation of graph-structured data has emerged as a crucial task for real-world problems such
as drug discovery (Simonovsky & Komodakis, 2018), protein design (Ingraham et al., 2019), and
program synthesis (Brockschmidt et al., 2019). To tackle the challenge of learning the underlying
distribution of graphs, deep generative models have been proposed, including models based on
generative adversarial networks (GANs) (De Cao & Kipf, 2018; Martinkus et al., 2022), recurrent
neural networks (RNNs) (You et al., 2018), and variational autoencoders (VAEs) (Jin et al., 2018).

Recently, diffusion models have achieved state-of-the-art performance on the generation of graph-
structured data (Niu et al., 2020; Jo et al., 2022; Hoogeboom et al., 2022). These models learn the
generation process as the time reversal of the forward process, which corrupts the graphs by gradually
adding noise that destroys its topological properties. Since the generative process is derived from
the unknown score function (Song et al., 2021) or noise (Ho et al., 2020), existing graph diffusion
models aim to estimate them in order to denoise the data from noise, which are commonly referred to
as the denoising diffusion models (Figure 1 (a)).

Despite their success, learning the score or noise is fundamentally ill-suited for the generation of
graphs. Although the key to generating valid graphs is modeling the topological information such as
connectivity or clusteredness, the score or noise does not explicitly model these features. Thereby it is
challenging for the diffusion models to recover the topological properties from the corrupted graphs
through denoising, which leads to failure cases even for small graphs. A way to more accurately
generate graphs with correct topology would be explicitly learning to predict the final graph to be
generated, instead of learning how to denoise a noisy version of the original graph.

However, predicting the destination of the generative process in a deterministic manner is challenging
since the prediction would be highly inaccurate in the early steps of the diffusion process, and such
an inaccurate prediction may lead the process in the wrong direction, resulting in invalid results. Few
existing works (Hoogeboom et al., 2021; Austin et al., 2021; Vignac et al., 2022) based on denoising
diffusion models aim to predict the probability of the data by parameterizing the denoising process,

1

Under review as a conference paper at ICLR 2024

0.30.2 0.4 0.6 0.8 1.0

Final Result

ConvergeDestination
Mixture

Weighted
Mean

Toward

Noising

: IncorrectPredicted
Noise:

Denoising

(b)(a)

(c)

Converged!

Destination
Mixture

Reverse-time
Diffusion

OU Bridge
Mixture

Figure 1: Illustration of the graph generative process. (a: Denoising diffusion model, b: DruM (ours), c:
Destination mixture of DruM) Our DruM (blue) successfully generates graphs with valid topology by predicting
the final result, via learning the destination mixture (Eq. (1)) as a weighted mean of data (green). The predicted
destination of DruM converges in an early stage to the correct topology as visualized in (c). To this end, we
design the generative process as a mixture of endpoint-conditioned diffusion processes (Eq. (2)), namely the OU
bridge mixture (Eq. (4)), which is driven toward the destination mixture. On the other hand, previous denoising
diffusion models (red) often fail to capture the correct topology as they learn the score or noise for denoising,
without explicit knowledge of the destination.

but it is only applicable to categorical data with a finite number of states and thus cannot generate
graphs with continuous features, which is not suitable for tasks such as 3D molecule generation.

To address these limitations of existing diffusion models, we propose a novel generative diffusion
framework that explicitly models the graph topology by predicting the destination of the generative
process as a weighted mean of data (Figure 1 (b)). Specifically, we design the generative process
as a mixture of Ornstein-Uhlenbeck processes conditioned on the endpoint in the data distribution
which is different from the denoising diffusion process, where the drift drives the process toward
the predicted destination. We establish a theoretical basis for our destination-predicting generative
framework (Section 3.1) and introduce new simulation-free objectives for learning to predict the
destination, which is equivalent to maximizing the likelihood (Section 3.2). Thanks to its ability to
predict the destination of the generative process which has an accurate topology of the graph being
generated, our framework converges faster to the correct graph topology in an early sampling step
(Figure 1 (c) and Figure 3 (Right)).

We experimentally validate our method on diverse real-world graph generation tasks. We first
validate it on general graph generation benchmarks with synthetic and real-world graphs, on which
it outperforms previous deep graph generative models including graph diffusion models, by being
able to generate valid graphs with correct topologies. We further validate our method on 2D and 3D
molecule generation tasks to demonstrate its ability to generate graphs with both the continuous and
discrete features, on which ours generates a significantly larger number of valid and stable molecules
compared to the state-of-the-art baselines. Our main contributions can be summarized as follows:
• We observe that previous graph diffusion models cannot accurately model the graph topology as

they learn to denoise at each step w/o the knowledge of the destination of the generative process.
• To fix such a myopic behavior of previous diffusion models, we propose a novel graph generation

framework that captures the graph topology by directly predicting the destination of the generative
process modeled by a mixture of endpoint-conditioned diffusion processes.

• We derive theoretical groundwork for destination-predicting framework and discuss its advantages.
• Our method significantly outperforms previous graph diffusion models on the generation of diverse

real and synthetic graphs, as well as on 2D/3D molecule generation tasks, by being able to generate
graphs with accurate topologies, and both the discrete and continuous features.

2 RELATED WORK

Diffusion models Diffusion models have been shown to successfully generate high-quality sam-
ples from diverse data domains such as images (Dhariwal & Nichol, 2021; Saharia et al., 2022),
audios (Chen et al., 2021; Jeong et al., 2021), point clouds (Cai et al., 2020), and videos (Ho et al.,
2022). Despite their success, existing diffusion models for graphs (Niu et al., 2020; Jo et al., 2022)
often fail to generate graphs with correct structures since the denoising process they use does not
explicitly consider the graph topology. Discrete diffusion model (Vignac et al., 2022) proposed

2

Under review as a conference paper at ICLR 2024

to model the noising process as successive graph edits for graphs with categorical node and edge
attributes, but this is not a desirable solution for real-world graph generation tasks since it cannot be
alone applied to graphs with continuous features, such as the 3D coordinates of atoms. To address
these limitations, we propose a novel graph diffusion framework that models the generative process
as a mixture of diffusion processes and learns to predict the destination as a weighted mean of data,
instead of predicting the denoising function at each step. This promotes our generative process to be
driven toward the predicted destination, resulting in generating valid graphs with correct topology.

Diffusion bridge process A line of recent works has improved the generative framework of
diffusion models by leveraging the diffusion bridge processes, which are processes conditioned to an
endpoint. Schrödinger Bridge (Vargas et al., 2021; Bortoli et al., 2021b; Chen et al., 2022; Shi et al.,
2023) aims to find both the forward and the backward process that transforms arbitrary distributions
back and forth using iterative proportional fittings that require heavy computations. More recent
works (Peluchetti, 2021; Wu et al., 2022; Ye et al., 2022; Liu et al., 2023) consider learning the
generation process as a mixture of diffusion processes instead of reversing the noising process as
in denoising diffusion models. Peluchetti (2021) introduces a diffusion mixture representation that
constructs a generation process as a mixture of the bridge processes. Wu et al. (2022) injects physical
information into the process by adding informative prior to the drift, while Ye et al. (2022) and
Liu et al. (2022) extend the bridge process to constrained domains. However, approximating the
drift as in these works cannot accurately capture the discrete structure of graphs since it does not
explicitly consider the topology, and could be problematic as the drift diverges near the terminal time.
Instead, we propose a new approach to learning to predict the destination of the generative process by
leveraging the diffusion mixture, which allows it to model the graph topology.

Graph generative models Deep generative models for graphs either generate nodes and edges
in an autoregressive manner using VAE (Jin et al., 2018), RNN (You et al., 2018), normalizing
flow (Luo et al., 2021; Shi et al., 2020), and attention (Liao et al., 2019), or generate all the nodes and
edges at once using GAN (De Cao & Kipf, 2018; Martinkus et al., 2022), VAE (Ma et al., 2018),
or normalizing flow (Madhawa et al., 2019; Zang & Wang, 2020). However, these models show
poor performance due to restrictive model architectures for modeling the likelihood or their inability
to model the permutation equivariant nature of graphs. Recently, diffusion models for graphs (Niu
et al., 2020; Jo et al., 2022; Vignac et al., 2022; Hoogeboom et al., 2022) have made large progress in
generating synthetic graphs as well as molecules. However, existing graph diffusion models either
fail to capture the graph topology or are not applicable to general tasks due to the structural restriction
of the framework. To overcome these limitations, we propose a novel graph diffusion framework that
explicitly models the topology by learning to predict the destination. Our method largely outperforms
existing models (Jo et al., 2022; Vignac et al., 2022; Hoogeboom et al., 2022) on general graph
generation as well as 2D and 3D molecule generation tasks.

3 DESTINATION-PREDICTING DIFFUSION MIXTURE FOR GRAPH GENERATION

In this section, we present our novel graph generative framework, Destination-Predicting Diffusion
Mixture (DruM), which learns to predict the destination using the mixture of diffusion processes.
Throughout the paper, a graph G with N nodes is defined by a pair (X,A) where X ∈ RN×F is the
node features with feature dimension F and A ∈ RN×N is the weighted adjacency matrix

3.1 DESIGNING THE GRAPH GENERATIVE PROCESS

The key to generating graph-structured data is understanding the underlying topology of graphs
which is crucial to determining its validity, since a slight modification in the edges may significantly
change its structure and the attributes, for example, planarity or the molecular properties. However,
previous diffusion models fail to do so as their objective is to denoise the noisy graphs, in which
the topology is only implicitly captured (Figure 1 (a)). To overcome the limitation, we propose to
design a generative framework that can directly learn to predict the accurate graph structures and
their structural properties for capturing valid topology.

Destination mixture Our goal is to directly predict the destination of the diffusion process that
transports the prior distribution to the data distribution Π∗. To be specific, for a diffusion process
represented as a trajectory of random variables {Gτ}τ∈[0,T], we aim to predict the terminus of the
process GT given the current state Gt. However, identifying the exact destination at the early stage

3

Under review as a conference paper at ICLR 2024

of the process is problematic, since Gt contains almost no information. Hence predicting a single
deterministic data could lead the generative process in the wrong direction.

To address this problem, we present a new approach to predicting the probable destination, which we
define as a weighted mean of the destinations (Figure 1 (b)). Since the probability of a graph g being
the destination is equal to the transition probability of the process denoted as pT |t(g|·), we define the
probable destination given the current state Gt via the expectation as follows:

D(Gt, t) =

∫
g · pT |t(g|Gt) dg, (1)

which we refer to as the destination mixture of the process, visualized in Figure 1 as green. In order
to explicitly model this, we construct a generative process as a mixture of diffusion processes that is
driven toward the destination mixture, which we describe in the following paragraphs.

Ornstein-Uhlenbeck bridge process As a building block of our generative framework, we leverage
diffusion processes with fixed endpoints, namely the diffusion bridge processes. A bridge process
that is destined to end up on a fixed point can be derived from a reference process Q : dGt =
f(Gt, t)dt+ σtdWt, to be conditioned to an endpoint g by applying the Doob’s h-transform (Doob
& Doob, 1984) as follows:

dGt =
[
f(Gt, t) + σ2

t∇Gt
log pT |t(g|Gt)

]
dt+ σtdWt.

We propose to use a new family of bridge processes, namely the Ornstein-Uhlenbeck (OU) bridge
process that provides flexibility for designing the complex generative process. (see Section A.1 of the
Appendix for the derivation):

Qg : dGt =

[
ασ2

tGt +
σ2
t

vt

(
g

ut
−Gt

)
︸ ︷︷ ︸

ηg(Gt,t)

]
dt+ σtdWt, G0 ∼ pprior, (2)

where α is a constant, σt is a scalar function, and Wt is the standard Wiener process, pprior is a prior
distribution, and the scalar functions ut and vt are defined as follows:

ut = exp
(
α

∫ T

t

σ2
τdτ

)
, vt =

1

2α

(
1− u−2

t

)
. (3)

The destination of this process is fixed to GT = g, since the drift ηg(·, t) of the process in Eq. (2)
forces the trajectory Gt towards the destination g. Although there exists a more general class of
bridge processes with non-linear drift (see Section A.1 of the Appendix), they have intractable
transition probability and require expensive SDE simulation to obtain trajectories. In contrast, the OU
bridge process yields tractable transition probabilities due to its affine nature that allows the training
of our generative model to be simulation-free, which we further discuss in Section 3.2. Note that
the Brownian bridge process used in previous works (Wu et al., 2022; Liu et al., 2022) is a special
case of the OU bridge process when α → 0 (see Section A.1 of the Appendix). With the OU bridge
processes in hand, we present a generative process for direct prediction of the destination.

Diffusion mixture for destination prediction As the destination mixture in Eq. (1) is a weighted
mean of endpoints, conceptually, this can be modeled by aggregating the endpoint-conditioned
processes with respect to these weights. Inspired by the diffusion mixture (Peluchetti, 2021; Wu
et al., 2022; Liu et al., 2022), we design the generation process by mixing the OU bridge processes
conditioned on the endpoints from the data distribution. Here, we leverage the diffusion mixture
representation (Brigo, 2008; Peluchetti, 2021), which yields the representation of a mixture process
that combines a collection of diffusion processes. In a nutshell, the SDE representation of the mixture
process is modeled by the weighted mean of the SDEs of the diffusion process in the collection (we
provide a full definition in Section A.2 of the Appendix).

To be more precise, we mix a collection of OU bridge processes {Qg : g ∼ Π∗} to construct a
generative process, for which the mixture process is modeled by the following SDE:

QΠ∗
: dGt =

[∫
ηg(Gt, t)

pgt (Gt)

pt(Gt)
Π∗(dg)

]
dt+ σtdWt, G0 ∼ pprior, (4)

4

Under review as a conference paper at ICLR 2024

where pgt is the marginal density of the bridge process Qg and pt(·) :=
∫
pgt (·)Π∗(dg) is the marginal

density of the mixture process. Notably, the terminal distribution of the mixture process QΠ∗
is equal

to the data distribution Π∗by construction. We refer to this mixture process as the OU bridge mixture.

Remarkably, the mixture process QΠ∗
can be explicitly represented in terms of the destination mixture.

To be specific, the drift of QΠ∗
can be derived from the SDE representation of the OU bridge process

in Eq. (2) as follows (see Section A.3 of the Appendix for the derivation of the drift):

η(Gt, t) = ασ2
tGt +

σ2
t

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)
, DΠ∗

(z, t) :=

∫
g
pgt (z)

pt(z)
Π∗(dg). (5)

Notice that from the definition of the transition distribution, we can derive the following:

DΠ∗
(Gt, t)=

∫
g
pgt (Gt)

pt(Gt)
Π∗(dg)=

∫
g
p(Gt|GT =g)p(GT =g)

pt(Gt)
dg=

∫
g pT |t(g|Gt)dg, (6)

which shows that DΠ∗
(·, t) coincides with the destination mixture of QΠ∗

in Eq. (1). As a result,
DΠ∗

(·, t) is the prediction at time t of the final graph to be generated. A key observation here is
that the marginal density pgt converges to 1 if g corresponds to the final graph while the probability
becomes 0 otherwise, due to the endpoint condition of the bridge processes. Thereby, the destination
mixture converges to the final graph, and this convergence is achieved at an early stage as visualized
in Figure 1 (c) and Section E.2 of the Appendix. We further analyze the convergence behavior with
respect to the coefficient α and the noise schedule σt in Section D.2 of the Appendix.

In particular, the drift of the OU bridge mixture in Eq. (5) highly resembles the drift of the OU
bridge process in Eq. (2), except that the endpoint is replaced by the destination mixture. From this
observation, we can see that the trajectory of the OU bridge mixture is driven toward the destination
mixture as the drift guides the process to the direction of DΠ∗

(·, t), where the process terminates in
the data distribution by construction. Thus, if we could estimate the destination mixture, the OU
bridge mixture can be used as a generative model where the estimated destination mixture acts as the
prediction of the destination through the generative process. In this sense, we name our proposed
generative framework as Destination-Predicting Diffusion Mixture (DruM). We further extend the
framework for the generation of attributed graphs in Section A.4 of the Appendix, which allows us
to directly model the graph topology with both the continuous and discrete features.

Before introducing new training objectives for estimating the destination mixture, we discuss the
difference of our generative process from the denoising diffusion models. The generative process of
DruM which is modeled by the mixture of bridge processes describes the exact transport from the
prior distribution to the data distribution Π∗, whereas the time reversal of denoising diffusion models
is not an exact transport to the data distribution for finite terminal time T , for instance, SMLD (Song
& Ermon, 2019) or DDPM (Ho et al., 2020). We provide further discussion on the difference between
our mixture process and the denoising diffusion processes in Section A.11.

3.2 LEARNING THE DESTINATION MIXTURE

In this section, we introduce new training objectives for the generative model via estimating the
destination mixture and further discuss the advantages of our framework.

Training objectives Our goal is to explicitly model the graph topology by learning to predict the
destination of the generative process. Thus we design the generative process as an OU bridge mixture
and aim to estimate the destination mixture using a neural network sθ(·, t). Remarkably, we show
that estimating the destination mixture is equivalent to maximizing the likelihood.

We propose to define the generative model Pθ to approximate the mixture process QΠ∗
as follows:

Pθ : dGt = ηθ(Gt, t)dt+ σtdWt, ηθ(Gt, t) = ασ2
tGt +

σ2
t

vt

(
1

ut
sθ(Gt, t)−Gt

)
, (7)

where sθ is desired to estimate the destination mixture. In order to train Pθ to approximate QΠ∗

via maximum likelihood estimation, we leverage the Girsanov theorem (Øksendal, 2003) for upper
bounding the KL divergence between the data distribution Π∗ and the terminal distribution of the
generative model Pθ denoted as pθT (see Section A.6 for the application of the Girsanov theorem):

DKL(Π
∗∥pθT) ≤ DKL(QΠ∗

∥Pθ) = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥sθ(Gt, t)−DΠ∗
(Gt, t)

∥∥∥2 dt]+ C, (8)

5

Under review as a conference paper at ICLR 2024

where G∼QΠ∗
denotes the sampled trajectories from the OU bridge mixture, γt := σt/(utvt), and

C is a constant independent of θ. However, since the ground truth destination mixture of QΠ∗
is

not analytically accessible, Eq. (8) cannot be used directly. Therefore, using the definition of the
destination mixture, we introduce a new tractable objective for estimating the destination mixture
that is equivalent to minimizing Eq. (8) (see Section A.6 of the Appendix for the derivation):

L(θ) = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t ∥sθ(Gt, t)−GT ∥2dt

]
. (9)

Note that the goal of the loss in Eq. (9) is for sθ to estimate the destination mixture DΠ∗
(Gt, t) not

the exact endpoint GT , and we refer to this objective as the destination mixture matching. Learning
to predict the destination not only allows us to directly model the topology of the final graph, but
further guarantees the terminal distribution of our generative model to closely approximate the data
distribution. We derive in Section A.10 that learning the destination mixture is not interchangeable
with learning the score function of the mixture process, and further discuss the difference from the
training objectives of denoising diffusion models in Section A.11.

During training, the trajectories G ∼ QΠ∗
can be easily obtained by first sampling G0 ∼ pprior,

GT ∼Π∗ and t∼ [0, T], then sampling Gt∼pt|0,T (Gt|G0,GT) which is the distribution of QΠ∗
at

time t given the endpoints G0 and GT . We highlight that this probability is analytically computable
(see Section A.7 and Section A.8 of the Appendix) due to the affine nature of the OU bridge process,
and therefore training with the destination mixture matching is simulation-free. Our approach of
using the transition probability is 17.5 times faster compared to Wu et al. (2022) which requires
expensive SDE simulation.

Sampling We can generate valid graphs by starting from samples from the prior distribution and
simulating the parameterized bridge process of Eq. (7) from time t = 0 to t = T , where the drift
is computed from the trained model sθ. We can leverage any SDE solver used in previous works,
for example, Euler-Maruyama method or Heun’s 2nd order method. Note that for the generation of
attributed graphs, we generate the node features and the adjacency matrices simultaneously using the
system of SDEs as in Eq. (31) which we describe in Section A.4. We provide the pseudo-code for the
training and sampling in Section B.1 and further explain in details in Section B.2 and Section B.4.

Advantages of our framework We conclude this section by explaining the advantages of our
framework. First, DruM can directly model the graph topology by predicting the destination instead
of implicitly capturing via noise or score. The destination mixture matching guarantees that learning
the topology of the final graph is equivalent to learning the generative model as a diffusion process
that transports the prior distribution to the data distribution. Furthermore, our framework is not
restricted to the type of data to be generated, since there is no constraint on data representation for the
parameterization of our generative model. Thus our framework is applicable to both continuous and
discrete data, for example, 3D molecules with both discrete atom types and continuous coordinates.

From the perspective of the model hypothesis space, learning the destination mixture is considerably
easier compared to previous objectives such as learning the score function or the drift of the diffusion
process. While the destination mixture is supported inside the bounded data space, the score function
or the drift tends to diverge near the terminal time which could be problematic for the model to learn.
Furthermore, we can exploit the inductive bias of the data for learning the destination mixture, which
is critical as it dramatically reduces the hypothesis space. To be specific, we can leverage the prior
knowledge of the data representation such as one-hot encoding or the categorical type by adding an
additional function at the last layer of the model sθ, for instance, softmax function for the one-hot
encoded node features and the sigmoid function for the 0-1 adjacency matrices (see Section B.3 of
the Appendix for details). We experimentally verify these advantages in Section 4.

4 EXPERIMENTS

4.1 GENERAL GRAPH GENERATION

We validate DruM on general graph generation tasks to show that it can generate valid graph topology.

Datasets and metrics We evaluate the quality of generated graphs on three synthetic and real
datasets used as benchmarks in previous works (Martinkus et al., 2022; Vignac et al., 2022): Planar,

6

Under review as a conference paper at ICLR 2024

Table 1: Generation results on the general graph datasets. Best results are highlighted in bold, where smaller
MMD and larger V.U.N. indicate better results. Baseline results are taken from Vignac et al. (2022) or obtained
by running the open-source codes. Hyphen(-) denotes out-of-resources that take more than 2 weeks.

Planar SBM Proteins

Synthetic, |V | = 64 Synthetic, 44 ≤ |V | ≤ 187 Real, 100 ≤ |V | ≤ 500

Deg. Clus. Orbit Spec. V.U.N. Deg. Clus. Orbit Spec. V.U.N. Deg. Clus. Orbit Spec.

Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0 0.0003 0.0068 0.0032 0.0009

GraphRNN 0.0049 0.2779 1.2543 0.0459 0.0 0.0055 0.0584 0.0785 0.0065 5.0 0.0040 0.1475 0.5851 0.0152
GRAN 0.0007 0.0426 0.0009 0.0075 0.0 0.0113 0.0553 0.0540 0.0054 25.0 0.0479 0.1234 0.3458 0.0125
SPECTRE 0.0005 0.0785 0.0012 0.0112 25.0 0.0015 0.0521 0.0412 0.0056 52.5 0.0056 0.0843 0.0267 0.0052

EDP-GNN 0.0044 0.3187 1.4986 0.0813 0.0 0.0011 0.0552 0.0520 0.0070 35.0 - - - -
GDSS 0.0041 0.2676 0.1720 0.0370 0.0 0.0212 0.0646 0.0894 0.0128 5.0 0.0861 0.5111 0.732 0.0748
ConGress 0.0048 0.2728 1.2950 0.0418 0.0 0.0273 0.1029 0.1148 - 0.0 - - - -
DiGress 0.0003 0.0372 0.0009 0.0106 75 0.0013 0.0498 0.0434 0.0400 74 - - - -

DruM (Ours) 0.0005 0.0353 0.0009 0.0062 90.0 0.0007 0.0492 0.0448 0.0050 85.0 0.0019 0.0660 0.0345 0.0030

Figure 2: (Left) Topology analysis through the generative process. We compare Spec. MMD and V.U.N
of the destination mixture from DruM against the implicit destinations computed from GDSS, ConGress, and
DiGress which we provide details in Appendix C.1. (Middle) MMD between the test set and the destination
mixture of DruM through the generative process. (Right) The complexity of DruM with and without using
the inductive bias, measured by the Frobenius norm of the Jacobian of the models.

Stochastic Block Model (SBM), and Proteins (Dobson & Doig, 2003). We follow the evaluation
setting of Martinkus et al. (2022) using the same data split. We measure the maximum mean
discrepancy (MMD) of four graph statistics between the set of generated graphs and the test set:
degree (Deg.), clustering coefficient (Clus.), count of orbits with 4 nodes (Orbit), and the eigenvalues
of the graph Laplacian (Spec.). To verify that the model truly learns the distribution, we report the
percentage of valid, unique, and novel (V.U.N.) graphs for which the validness is defined as satisfying
the specific property of each dataset. We provide further details in Section C.1 of the Appendix.

Baselines We compare DruM against the following graph generative models: GraphRNN (You
et al., 2018) an autoregressive model based on RNN, GRAN (Liao et al., 2019) an autoregressive
model with attention, SPECTRE (Martinkus et al., 2022) a one-shot model based on GAN, EDP-
GNN (Niu et al., 2020) a score-based model for adjacency matrix, GDSS (Jo et al., 2022) and
ConGress (Vignac et al., 2022) a continuous diffusion model, and DiGress (Vignac et al., 2022), a
discrete diffusion model. We provide the details of training and sampling of DruM in Section B of
the Appendix and describe further implementation details in Section C.1 of the Appendix.

Results Table 1 shows that our DruM outperforms all the baselines on all datasets. Especially,
DruM achieves the highest validity (V.U.N.) metric, as it accurately learns the underlying topology of
the graphs. Notably, our method outperforms DiGress by a large margin in V.U.N., even though we
do not use specific prior distributions or structural feature augmentation that are utilized in DiGress.
We provide an ablation study on the model architecture in Section D.2 to validate that the superior
performance of DruM comes from its ability to accurately model the graph topology by predicting the
destination mixture. We provide the visualization of the generated graphs and the generative process
of DruM in Section E, showing that DruM can accurately capture the attributes of each dataset.

Topology analysis To show how the destination prediction results in graphs with correct topology,
we conduct an analysis of the destination mixture. Figure 2 (Left) demonstrates that DruM is able to
achieve the spectral property of the target graph at an early stage by explicitly modeling the topology
via predicting the destination mixture. In contrast, GDSS and ConGress fail to recover the spectral
properties as they implicitly model the topology via predicting the noise or score functions. Further,
ours recovers the spectral property faster than DiGress, resulting in graphs with higher validity. In
particular, we observe that the V.U.N. of the estimated destination mixture increases after achieving
the desired spectral property, resulting in 90% V.U.N. This shows that predicting the final graph to
be generated allows us to better capture the global topologies. Moreover, we plot the MMD results

7

Under review as a conference paper at ICLR 2024

Table 2: Generation results on the 2D molecule datasets. We report the mean of 3 different runs. Best results
are highlighted in bold. The baseline results are taken from Jo et al. (2022) or obtained by running open-source
codes. We provide the results of uniqueness, novelty and variance in Section D.1 of the Appendix.

QM9 (|V | ≤ 9) ZINC250k (|V | ≤ 38)

Method Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑ Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑

Training set 100.0 0.0398 0.0001 0.9719 100.0 0.0615 0.0001 0.8395

MoFlow (Zang & Wang, 2020) 91.36 4.467 0.0169 0.1447 63.11 20.931 0.0455 0.0133
GraphAF (Shi et al., 2020) 74.43 5.625 0.0207 0.3046 68.47 16.023 0.0442 0.0672
GraphDF (Luo et al., 2021) 93.88 10.928 0.0636 0.0978 90.61 33.546 0.1770 0.0000

EDP-GNN (Niu et al., 2020) 47.52 2.680 0.0046 0.3270 82.97 16.737 0.0485 0.0000
GDSS (Jo et al., 2022) 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
DiGress (Vignac et al., 2022) 98.19 0.095 0.0003 0.9353 94.99 3.482 0.0021 0.4163

DruM (Ours) 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299

QM9 (|V | ≤ 29) GEOM-DRUGS (|V | ≤ 181)

Method Atom Stab.(%) Mol. Stab.(%) Atom Stab.(%) Mol. Stab.(%)

G-Schnet (Gebauer et al., 2019) 95.7 68.1 - -
EN-Flow (Satorras et al., 2021) 85.0 4.9 75.0 0.0
GDM (Hoogeboom et al., 2022) 97.0 63.2 75.0 0.0
EDM (Hoogeboom et al., 2022) 98.7 ±0.1 82.0 ±0.4 81.3 0.0
Bridge (Wu et al., 2022) 98.7 ±0.1 81.8 ±0.2 81.0 ±0.7 0.0
Bridge+Force (Wu et al., 2022) 98.8 ±0.1 84.6 ±0.2 82.4 ±0.7 0.0

DruM (Ours) 98.81 ±0.03 87.34 ±0.19 82.96 ±0.12 0.51 ±0.03 0 500 1000
Timesteps

0.0

0.5

1.0

1.5

2.0

L2
-d

ist
an

ce

0

20

40

60

80

M
ol

. S
ta

bi
lit

y
(%

)

DruM: L2
EDM: L2

DruM: Stab.
EDM: Stab.

Figure 3: (Left) Generation results on the 3D molecule datasets. Best results are highlighted in bold which is
the average of 3 different runs. The baseline results are taken from Hoogeboom et al. (2022) and Wu et al. (2022).
(Right) Convergence of the generative process. We compare the convergence of the destination mixture from
DruM and the implicit destination computed from the predicted noise of EDM. We measure the convergence
with L2 distance and further visualize the molecule stability of the predictions through the generative process.

of DruM through the generative process in Figure 2 (Middle), which demonstrates that the local
characteristics of the predicted destination rapidly converge to that of the graphs from the training set.

4.2 2D MOLECULE GENERATION

We further validate DruM on 2D molecule generation tasks to show that it can accurately generate
graphs with both the node features and the topologies of the target graphs.

Datasets and metrics We evaluate the quality of generated 2D molecules on two molecule datasets
used as benchmarks in Jo et al. (2022): QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al.,
2012). Following the evaluation setting of Jo et al. (2022), we evaluate the models with four metrics:
Validity is the percentage of the valid molecules among the generated without any posthoc correction.
FCD (Preuer et al., 2018) measures the distance between the sets of molecules in the chemical space.
NSPDK MMD (Costa & De Grave, 2010) evaluates the quality of the graph structure compared to
the test set. Scaffold similarity (Scaf.) evaluates the ability to generate similar substructures. We
provide more details in Section C.2 of the Appendix.

Baselines We compare to the following molecular graph generative models: MoFlow (Zang &
Wang, 2020) is a one-shot flow-based model. GraphAF (Shi et al., 2020) and GraphDF (Luo
et al., 2021) are autoregressive flow-based model. EDP-GNN, GDSS, ConGress, and DiGress are
diffusion models previously explained. We describe further details in Section C.2 of the Appendix.

Results Table 2 shows that our method achieves the highest validity on all datasets verifying that
DruM can generate valid molecules without correction. Further, DruM outperforms the baselines
in FCD and NSPDK metrics demonstrating that the molecules synthesized by DruM are similar to
the molecule from the training set in both chemical and graph-structure aspects. Especially, DruM
achieves the highest scaffold similarity indicating that it is able to generate similar substructures from
that of the training set. We visualize the generated molecules in Section E.1 of the Appendix.

4.3 3D MOLECULE GENERATION

To show that DruM is able to generate graphs with both continuous and discrete features, we validate
it on 3D molecule generation tasks, which come with discrete atom types and continuous coordinates.

8

Under review as a conference paper at ICLR 2024

Datasets and metrics We evaluate the generated 3D molecules on two standard molecule datasets
used as benchmarks in Hoogeboom et al. (2022): QM9 (Ramakrishnan et al., 2014) (up to 29
atoms) and GEOM-DRUGS (Axelrod & Gomez-Bombarelli, 2022) (up to 181 atoms). Following
Hoogeboom et al. (2022), both datasets include hydrogen atoms. For GEOM-DRUGS, we select 30
conformations for each molecule with the lowest energy. We evaluate the quality of the generated
molecules with two stability metrics: Atom stability is the percentage of the atoms with valid valency.
Molecule stability is the percentage of the generated molecules that consist of stable atoms. We
provide more details in Section C.3 of the Appendix.

Baselines We compare DruM against 3D molecule generative models: G-Schnet (Gebauer et al.,
2019) is an autoregressive model based on the 3d point sets. EN-Flow (Satorras et al., 2021) is
a flow-based model. GDM and EDM (Hoogeboom et al., 2022) are denoising diffusion models.
Bridge (Wu et al., 2022) is a diffusion model based on the diffusion mixture that learns to approximate
the drift and Bridge+Force (Wu et al., 2022) adds physical force to the drift. For DruM, we follow
the training setting of Hoogeboom et al. (2022) using the same architecture of EGNN (Satorras et al.,
2021). We describe further implementation details in Section C.3 of the Appendix.

Results As shown in the table of Figure 3, our method yields the highest atom stability compared to
all the baselines on both datasets. Furthermore, DruM achieves higher molecule stability since DruM
directly models the topology by learning the destination mixture. Moreover, DruM outperforms
Bridge+Force (Wu et al., 2022) even though DruM does not require task-dependent prior force in a
simulation-free manner. Notably, DruM achieves non-zero molecule stability in the GEOM-DRUGS
dataset consisting of large molecules with up to 181 atoms. We visualize the generated molecules
that are stable and the generative process of DruM in Section E of the Appendix, demonstrating that
DruM can predict the final molecule at an early stage of the process leading to stable molecules. We
observe that DruM generates more number of connected molecules shown in Table 8 of the Appendix.

Stability analysis To further investigate the superior performance of DruM in generating more
stable molecules, we conduct an analysis of the convergence and stability of DruM. Figure 3 (Right)
shows the convergence of the predicted destination from DruM and the implicit destination from
EDM computed from the predicted noise. We observe that for DruM, the predicted destinations
converge rapidly to the final destination. After the convergence, the stability of DruM increases as
it has sufficient steps to calibrate the details to produce valid molecules, which is visualized in the
generative process of Figure 19 of the Appendix. As for EDM, the implicit destinations converge
slowly since EDM does not explicitly learn the information of the destination, which leads to lower
stability. This analysis shows that learning to predict the final result is significantly superior in
capturing the correct topology compared to previous diffusion models.

4.4 FURTHER ANALYSIS

We conduct an analysis to investigate the advantages of our framework explained in Section 3.2.

Exploiting the inductive bias To validate that exploiting the inductive bias of the data is critical,
we compare DruM against a variant of it without an additional function at the last layer in the
model. Figure 2 (Right) shows the complexity of the models sθ trained on the Planar dataset, which
verifies that the transformation at the last layer significantly reduces the complexity of the model
for predicting the destination. Especially, the larger complexity gap at the late stage of the diffusion
process suggests that exploiting the inductive bias is crucial for learning the exact destination.

Comparison with learning the drift To verify that learning the destination mixture as in our DruM
is superior to learning the drift, we compare with Bridge (Wu et al., 2022) which models the drift
of the diffusion mixture process. Table 3 shows that DruM outperforms Bridge especially for the
molecule stability, since learning the drift is challenging due to its diverging nature, and further cannot
model the topology directly. We further validate that learning the drift performs poorly on general
graph generation tasks and fails to generate the correct topology in Section D.2 of the Appendix.

Early stopping for the generative process In Figure 2 (Left) and (Middle), the V.U.N. and the
MMD results of DruM in the Planar dataset demonstrate that the estimated destination mixture
converges to the exact destination at early sampling steps, accurately capturing both the global
topology and local graph characteristics. This allows us to early-stop the diffusion process, which
reduces the generation time by up to 20% on this task. The generation results on SBM and Proteins
datasets in Section D.2 of the Appendix show a similar tendency.

9

Under review as a conference paper at ICLR 2024

5 CONCLUSION

In this work, we proposed a novel diffusion-based graph generation framework, DruM, that explicitly
models the topology of the graphs. Unlike existing graph diffusion models that learn to denoise, our
framework directly predicts the destination of the generative process as a weighted mean of data,
thereby accurately capturing the topologies of the final graphs that need to be generated. Specifically,
DruM constructs the generation process as a mixture of diffusion bridges, which is different from
the denoising diffusion process, that drives the generation process toward the predicted destination
that converges in an early stage. We extensively validated DruM on diverse graph generation tasks,
including 2D/3D molecular generation, on which ours significantly outperforms previous graph
generation methods. A promising direction would be the generalization to domains other than graphs
where the topology of the data is important, such as proteins and manifolds.

REPRODUCIBILITY STATEMENT

We use Pytorch (Paszke et al., 2019) to implement our method, which we have included our codes in
the supplementary material. We have specified implementation details in Section B and Section C.

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv:2303.08797, 2023.

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 17981–17993, 2021.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):1–14, 2022.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Valentin De Bortoli, Arnaud Doucet, Jeremy Heng, and James Thornton. Simulating diffusion bridges
with score matching. CoRR, abs/2111.07243, 2021a.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 17695–17709, 2021b.

Damiano Brigo. The general mixture-diffusion sde and its relationship with an uncertain-volatility
option model with volatility-asset decorrelation. arXiv:0812.4052, 2008.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov. Generative
code modeling with graphs. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge J. Belongie, Noah Snavely, and
Bharath Hariharan. Learning gradient fields for shape generation. In ECCV, 2020.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. Waveg-
rad: Estimating gradients for waveform generation. In ICLR, 2021.

10

Under review as a conference paper at ICLR 2024

Tianrong Chen, Guan-Horng Liu, and Evangelos A. Theodorou. Likelihood training of schrödinger
bridge using forward-backward sdes theory. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Sylvain Corlay. Properties of the ornstein-uhlenbeck bridge. arXiv preprint arXiv:1310.5617, 2013.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In
Proceedings of the 26th International Conference on Machine Learning, pp. 255–262. Omnipress;
Madison, WI, USA, 2010.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models,
2018.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis.
arXiv:2105.05233, 2021.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of Molecular Biology, 330(4):771–783, 2003.

Joseph L Doob and JI Doob. Classical potential theory and its probabilistic counterpart, volume 549.
Springer, 1984.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv:2012.09699, 2020.

Niklas W. A. Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d
point sets for the targeted discovery of molecules. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 7564–7576, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models. arXiv:2204.03458, 2022.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 12454–12465, 2021.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 8867–8887. PMLR, 2022.

John Ingraham, Vikas K. Garg, Regina Barzilay, and Tommi S. Jaakkola. Generative models for
graph-based protein design. In Deep Generative Models for Highly Structured Data, ICLR 2019
Workshop, New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net, 2019.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, and Nam Soo Kim. Diff-tts:
A denoising diffusion model for text-to-speech. In Interspeech 2021, 22nd Annual Conference of
the International Speech Communication Association, Brno, Czechia, 30 August - 3 September
2021, pp. 3605–3609. ISCA, 2021.

Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pp. 2328–2337. PMLR, 2018.

11

Under review as a conference paper at ICLR 2024

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 10362–10383. PMLR, 2022.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

Greg Landrum et al. Rdkit: Open-source cheminformatics software, 2016. URL http://www. rdkit.
org/, https://github. com/rdkit/rdkit, 2016.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in Neural Information Processing Systems, 32:4255–4265, 2019.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
extending diffusion generative models. arXiv:2208.14699, 2022.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Learning diffusion bridges on constrained
domains. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101, 2017.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. International Conference on Machine Learning, 2021.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
regularizing variational autoencoders. Advances in Neural Information Processing Systems, 31:
7113–7124, 2018.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE:
spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
ICML, 2022.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In AISTATS, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Stefano Peluchetti. Non-denoising forward-time diffusions. Openreview, 2021.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence,, pp. 3942–3951. AAAI Press, 2018.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer. Fréchet
chemnet distance: a metric for generative models for molecules in drug discovery. Journal of
chemical information and modeling, 58(9):1736–1741, 2018.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
deep language understanding. In NeurIPS, 2022.

12

Under review as a conference paper at ICLR 2024

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E(n)
equivariant normalizing flows. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 4181–4192, 2021.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. In International Conference on
Learning Representations, 2020.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schröodinger
bridge matching. arXiv:2303.16852, 2023.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In ICANN, 2018.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. In
NeurIPS, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations. Institute of Mathematical
Statistics Textbooks. Cambridge University Press, 2019.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil D. Lawrence. Solving schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv:2209.14734, 2022.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. arXiv:2209.00865, 2022.

Mao Ye, Lemeng Wu, and Qiang Liu. First hitting diffusion models. arXiv:2209.01170, 2022.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp. 5708–5717. PMLR, 2018.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 617–626, 2020.

Bernt Øksendal. Stochastic Differential Equations. Universitext. Springer Berlin Heidelberg, 2003.

13

Under review as a conference paper at ICLR 2024

Appendix

Organization The Appendix is organized as follows: In Section A, we provide the derivations of
the results from the main paper. In Section B, we explain the details of our generative framework
including the training objectives, the sampling method, and the model architectures. In Section C,
we provide experimental details for the generation tasks and further present additional experimental
results in Section D. In Section E, we visualize the generated graphs and molecules, with visualized
generative processes. Finally, in Section F, we discuss the research directions of our work.

A DERIVATIONS

A.1 DIFFUSION BRIDGE PROCESSES

Here we derive the Ornstein-Uhlenbeck (OU) bridge process using Doob’s h-transform (Doob &
Doob, 1984) and show that the Brownian bridge process is a special case of the OU bridge process.
We further discuss a general class of bridge processes and explain the advantage of the OU bridge
process.

Ornstein-Uhlenbeck bridge process First, we consider the simple case when the reference process
is given as a standard OU process without a time-dependent diffusion coefficient:

Q̂ : dGt = αGtdt+ dWt, (10)

where α is a constant. Then the Doob’s h-transform on Q̂ yields the representation of an endpoint-
conditioned process Q̂g := Q̂(·|GT = g) defined by the following SDE:

Q̂g : dGt =
[
αGt +∇Gt log p̂T |t(g|Gt)

]
dt+ dWt, (11)

where p̂T |t(g|Gt) is the transition probability from time t to T of the standard OU process in
Eq. (10). Since the standard OU process has a linear drift, the transition probability is Gaussian, i.e.
p̂T |t(g|Gt) = N (g;µt,Σt), where the mean µt and the covariance Σt satisfies the following ODEs
(derived from the results of Eq.(5.50) and Eq.(5.51) of Särkkä & Solin (2019)):

dµt

dt
= αµt ,

dΣt

dt
= I+ 2αΣt. (12)

The ODE with respect to Σt can be modified as:

d

dt
e−2αtΣt = e−2αtI, (13)

which give the following closed-form solutions:

µt = ûtGt , Σt =
1

2α

(
û2
t − 1

)
I for ût = eα(T−t). (14)

Therefore, the SDE representation of the standard OU bridge process with fixed endpoint g is given
as follows:

Q̂g : dGt =

[
αGt +

2α

1− û−2
t

(g

ût
−Gt

)]
dt+ dWt. (15)

Now we derive the bridge process for the general OU process with a time-dependent diffusion
coefficient defined by the following SDE:

Q : dGt = ασ2
tGtdt+ σtdWt, (16)

where σt is a scalar function. Since the time change (Section 8.5. of Øksendal (2003)) with
βt =

∫ t

0
σ2
τdτ of Q̂ in Eq. (10) is equivalent to Q of Eq. (16), the transition probability p̃T |t(g|Gt)

of the general OU process satisfies the following:

p̃T |t(g|Gt) = p̂βT |βt
(g|Gt) (17)

14

Under review as a conference paper at ICLR 2024

Thereby, the OU bridge process conditioned on the endpoint g is defined by the following SDE:

Qg : dGt =

[
ασ2

tGt +
σ2
t

vt

(g

ut
−Gt

)]
dt+ σtdWt, (18)

where the scalar function ut and vt are given as:

ut = eα(βT−βt) = exp
(
α

∫ T

t

σ2
τdτ

)
, vt =

1

2α
(1− u−2

t). (19)

Note that the OU bridge process, also known as the constrained OU process, was studied theoretically
in previous works (Corlay, 2013; Peluchetti, 2021; Bortoli et al., 2021a). However, we are the
first to validate the effectiveness of the OU bridge processes for modeling the generative process
through extensive experiments, especially for the generation of graphs in diverse tasks including the
generation of general graphs as well as 2D and 3D molecular graphs.

Brownian bridge process We show that the Brownian bridge process is a special case of the OU
bridge process. When the constant α of the OU bridge process approaches 0, the scalar function ut

converges to 1 that leads to the convergence of vt as follows:

vt =
1

2α
(1− u−2

t) =
1

2α

(
1− e−2α(βT−βt)

)
→ βT − βt,

which is due to the Taylor expansion of the exponential function. Therefore, the OU bridge process
for α → 0 is modeled by the following SDE:

Qg
bb : dGt =

σ2
t

βT − βt
(g −Gt) dt+ σtdWt, (20)

which is equivalent to the SDE representation of the Brownian bridge process. Compared to the
OU bridge process in Eq. (18), the Brownian bridge process has a simpler SDE representation with
less flexibility for designing the generative process as the process is solely determined by the noise
schedule σt.

Note that the Brownian bridge is an endpoint-conditioned process with respect to a reference Brownian
Motion defined by the following SDE:

dGt = σtdWt, (21)
which is a diffusion process without drift, and also a special case of the OU process that is used for
the reference process of the OU bridge process.

More bridge processes Wu et al. (2022) proposes an approach for designing a more general class
of diffusion bridges using the Lyapunov function method. Starting from a simple Brownian bridge
Qg

bb, we can create a new bridge process by adding an extra drift term as follows:

Qg
bb,f : dGt =

[
σtft(Gt)︸ ︷︷ ︸

extra drift

+
σ2
t

βT − βt
(g −Gt)

]
dt+ σtdWt, (22)

for ft satisfying EG∼Qg
bb,f

[∥ft(Gt)∥2] < ∞. (23)

Qg
bb,f of Eq. (22) is still a bridge process with endpoint g since the drift of the Brownian bridge (i.e.

Eq. (20)) dominates the extra drift term due to the condition of Eq. (23). Moreover, Wu et al. (2022)
introduces problem-dependent prior f inspired by physical energy functions.

These general bridge processes could be used for our DruM to construct a mixture process for
modeling the generative process, as described in Section 3.1. If the explicit SDE representation for
the general bridges is accessible, the mixture process can be represented by leveraging the diffusion
mixture representation, and further the Brownian bridge could be replaced with the OU bridge
process.

However, in contrast to constructing the generative process as a mixture of the OU bridge processes,
using the mixture of the general bridge processes results in difficulty during training; Training a
generative model that approximates the mixture of the general bridge processes requires expensive
SDE simulation due to the intractable transition probability. We show through extensive experiments
that for our approach, the family of OU bridge processes is sufficient to model the complex generation
process while the generative model can be trained in a simulation-free manner.

15

Under review as a conference paper at ICLR 2024

A.2 DIFFUSION MIXTURE REPRESENTATION

In this section, we provide the formal definition of the diffusion mixture representation (Brigo, 2008;
Peluchetti, 2021).

Consider a collection of diffusion processes {Qλ : λ ∈ Λ} defined by the SDEs:
Qλ : dZλ

t = ηλ(Zt, t)dt+ σλ
t dW

λ
t , Zλ

0 ∼ pλ0 (24)

where Wλ
t are independent standard Wiener processes and pλ0 are the initial distributions. Denote pλt

as the marginal density of the process Qλ. Further, define the mixture of marginal densities and the
mixture of initial distributions with respect to a mixing distribution L on the collection Λ as follows:

pt(z) =

∫
Λ

pλt (z)L(dλ) , p0(z) =

∫
Λ

pλ0 (z)L(dλ), (25)

Then there exists a diffusion process that induces a marginal density pt, and the diffusion process is
modeled by the following SDE:

QL : dZt = η(Zt, t)dt+ σtdWt , Z0 ∼ p0, (26)
where the drift and diffusion coefficients are given as the weighted mean of the corresponding
coefficients of Qλ as follows:

η(z, t) =

∫
Λ

ηλ(z, t)
pλt (z)

pt(z)
L(dλ) , σ2

t =

∫
Λ

(σλ
t)

2 p
λ
t (z)

pt(z)
L(dλ). (27)

Below, we provide a proof of this statement.

proof. It is enough to show that pt defined in Eq. (25) is the solution to the corresponding Fokker-
Planck equation of Eq. (26), which is given as follows:

∂qt(z)

∂t
= −∇z ·

(
qt(z)η(z, t)−

1

2
σ2
t∇zqt(z)

)
, (28)

where qt denotes the marginal density of Eq. (26). Using the definition of Eq. (25) and the corre-
sponding Fokker-Planck equations with respect to Qλ for λ ∈ Λ, we derive the following result:

∂pt(z)

∂t
=

∂

∂t

∫
Λ

pλt (z)L(dλ) =
∫
Λ

∂

∂t
pλt (z)L(dλ)

=

∫
Λ

[
−∇z ·

(
ηλ(z, t)pλt (z)−

1

2
(σλ

t)
2∇zp

λ
t (z)

)]
L(dλ)

= −∇z ·
∫
Λ

[
ηλ(z, t)pλt (z)−

1

2
(σλ

t)
2∇zp

λ
t (z)

]
L(dλ)

= −∇z ·
(
pt(z)

∫
Λ

ηλ(z, t)
pλt (z)

pt(z)
L(dλ)− 1

2
∇z

[
pt(z)

∫
Λ

(σλ
t)

2 p
λ
t (z)

pt(z)
L(dλ)

])
= −∇z ·

(
pt(z)η(z, t)−

1

2
σ2
t∇zpt(z)

)
, (29)

which proves that pt is the solution to the Fokker-Planck equation of Eq. (28).

A.3 OU BRIDGE MIXTURE

Now we use the diffusion mixture representation described in Appendix A.2 to derive the OU bridge
mixture. Consider a mixture of the collection of OU bridge processes with endpoints in the data
distribution, i.e. {Qg : g ∼ Π∗}. We mix this collection of processes with the data distribution Π∗ as
the mixing distribution, which is represented by the following SDE:

QΠ∗
: dGt =

[∫ (
ασ2

tGt +
σ2
t

vt

(g

ut
−Gt

)) pgt (Gt)

pt(Gt)
Π∗(dg)

]
dt+ σtdWt

=

[
ασ2

tGt +
σ2
t

vt

(
1

ut

∫
g
pgt (Gt)

pt(Gt)
Π∗(dg)−Gt

)]
dt+ σtdWt

=

[
ασ2

tGt +
σ2
t

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)]
dt+ σtdWt (30)

16

Under review as a conference paper at ICLR 2024

where pt(z) =
∫
pgt (z)Π

∗(dg) is used for the second equality and the definition of the destination
mixture (Eq. (5)) is used for the last equality.

A.4 DESTINATION MIXTURE FOR ATTRIBUTED GRAPHS

We extend the framework of DruM for the generation of attributed graphs. To be specific, an
attributed graph G with N nodes is defined by the node features X ∈ RN×F and the adjacency
matrix A ∈ RN×N , where F is the dimension of the node features and the adjacency represents
the topology as well as the edge features. Representing the trajectory of the diffusion process as
Gt = (Xt,At) ∈RN×F× RN×N for time t ∈ [0, T], we can derive the OU bridge mixture QΠ∗

for
attributed graphs as follows:

dXt =
[
α1σ

2
1,tXt +

σ2
1,t

v1,t

(
DX(Gt,t)

u1,t
−Xt

)]
dt+ σ1,t dW1,t

dAt =
[
α2σ

2
2,t At +

σ2
2,t

v2,t

(
DA(Gt,t)

u2,t
− At

)]
dt+ σ2,t dW2,t

(31)

where the noise schedules σ1,t and σ2,t are scalar functions, W1,t and W2,t are independent Wiener
processes, and the destination mixtures are given as(

DX(Gt, t)
DA(Gt, t)

)
=

∫
g
pgt (Gt)

pt(Gt)
Π∗(dg). (32)

Notably, DX(Gt, t) and DA(Gt, t) are the destination mixtures of the node features and the adjacency
matrices, respectively for given graph Gt. Thereby, our extended framework allows us to directly
model the graph topology via learning DA(·, t) as well as the node features with DX(·, t). Especially,
the generation process of Eq. (31) is applicable to both the continuous and discrete features. We
provide the training objective for the attributed graphs in Section B.2.

A.5 REVERSE-TIME DIFFUSION PROCESS OF THE OU BRIDGE MIXTURE

Here we derive the reverse-time diffusion process of DruM, i.e. the time reversal of the OU bridge
mixture. Since the generative process of DruM transports the prior distribution Γ to the data
distribution Π∗, the time reversal of DruM transports Π∗ to Γ. We show that it has a similar SDE
representation as Eq. (30).

We derive the reverse process of the OU bridge mixture by constructing a mixture of the reverse
processes of each OU bridge process. To be precise, for the mixture process Q :=

∫
QgdΠ∗, the

reverse process of Q denoted as Q is equal to the mixture process
∫
QxdΓ where Qx is the reverse

process of the bridge process Qg with starting point x. For the simplicity of the representation, we
first derive the time-reversal of general bridge processes, where the reference process is given as

dGref
t = µ(Gref

t , t) + σtWt, (33)

with the marginal density denoted as p̃t. In order to obtain the reverse-time diffusion process, we
leverage the reverse-time SDE representation (Anderson, 1982; Song et al., 2021) as follows:

dGref
t =

[
− µ(Gref

t , T−t) + σ2
T−t∇Gref

t
log q̃t(G

ref)
]
dt+ σT−tdWt, (34)

where q̃t = p̃T−t is the marginal density of the process {Gref
t }t∈[0,T]. Then the bridge process of

Eq. (34) with fixed end point x ∼ Γ can be derived by using the Doob’s h-transform (Doob & Doob,
1984) as follows:

Qx : dGt =
[
−µ(Gt, T−t) +σ2

T−t∇Gt
log q̃t(Gt) +σ2

T−t∇Gt
log q̃T |t(x|Gt)

]
dt+σT−tdWt,

(35)

which is a reverse process for the conditioned process of Gref with starting point x and endpoint
g ∼ Π∗fixed. Here using the fact that q̃t = p̃T−t, we can see that

q̃t(y)q̃T |t(x|y) = q̃(GT =x,Gt=y) =
q̃(GT =x,Gt=y)

q̃T (x)
q̃T (x) = p̃T−t|0(y|x)q̃T (x), (36)

17

Under review as a conference paper at ICLR 2024

and since ∇Gt
log q̃T (x) = 0 for fixed x, Eq. (35) can be simplified as follows:

Qx : dGt =
[
− µ(Gt, T−t) + σ2

T−t∇Gt
log p̃T−t|0(Gt|x)

]
dt+ σT−tdWt. (37)

Finally, the mixture of the bridge processes {Qx : x∼Γ} can be derived using the diffusion mixture
representation as follows:

Q : dGt =

[
−µ(Gt, t) + σ2

T−t

∫
∇Gt

log p̃T−t|0(Gt|x)
qxt (Gt)

qt(Gt)
Γ(dx)

]
dt+ σT−tdWt, (38)

where qxt is the marginal density of Qx and qt is the marginal density of the mixture process Q
defined as qt(·) :=

∫
qxt (·)Γ(dx).

Using the result of Eq. (38), now we can derive the time reversal of the OU bridge mixture by setting
µ(z, t) = ασ2

t z. Since the transition distributions of the OU process satisfy the following (we provide
closed-form mean and covariance of the transition distribution in Eq. (54)):

p̃T−t|0(z|x) = N
(
z; utx, u

2
t vtI

)
for ut= exp

(
α

∫ T−t

0

σ2
τdτ

)
, vt=

1

2α

(
1− u−2

t

)
, (39)

the log gradient of the transition distribution can be computed as follows:

∇z log p̃T−t|0(z|x) = − 1

u2
t vt

(z − utx) . (40)

Thereby, the reverse-time diffusion process of the OU bridge mixture is given by:

Q : dGt =

[
−ασ2

T−tGt +
σ2
T−t

u2
t vt

(
utD

Γ(Gt, t)−Gt

)]
dt+ σT−tdWt, G0 ∼ Π∗, (41)

where DΓ(·, t) is the destination mixture of Q defined as follows:

DΓ(Gt, t) =

∫
x
qxt (Gt)

qt(Gt)
Γ(dx). (42)

Since Q describes the diffusion process from the data distribution to the prior distribution, it can be
considered a perturbation process. Further, we can observe that the time reversal of the OU bridge
mixture is non-linear with respect to Gt in general, and completely different from the forward process
(i.e. perturbation process) of denoising diffusion models, i.e. the VESDE or VPSDE (Song et al.,
2021).

Note that the reverse process of the OU bridge mixture perfectly transports the data distribution Π∗

to the arbitrary prior distribution Γ in the sense that the terminal distribution exactly matches Γ for
finite terminal time T . On the other hand, the forward process of denoising diffusion models, for
example, VPSDE (Song et al., 2021), does not perfectly transport the data distribution to the prior
distribution. The terminal distribution of the forward process is approximately Gaussian but not
exactly a Gaussian distribution for finite T , although the mismatch is small for sufficiently large T .
This is because the forward process requires infinite T in order to decouple the prior distribution Γ
from the data distribution Π∗.

In conclusion, the generative process of DruM is different from denoising diffusion models which
naturally follows from the fact that the time reversal of the OU bridge mixture is different from the
forward processes of denoising diffusion models.

A.6 DERIVATION OF THE DESTINATION MIXTURE MATCHING OBJECTIVE

We provide the derivation of our destination mixture matching objective, corresponding to Eq. (8) and
Eq. (9). First, we leverage the Girsanov theorem Øksendal (2003) to upper bound the KL divergence

18

Under review as a conference paper at ICLR 2024

between the data distribution Π∗ and the terminal distribution of Pθ denoted as pθT :

DKL(Π
∗∥pθT) ≤ DKL(QΠ∗

∥Pθ) (43)

= DKL(QΠ∗

0 ∥Pθ
0) + EQΠ∗

[
log

dQΠ∗

dPθ

]
(44)

= EG∼QΠ∗

[
− log pθ0(G0) +

1

2

∫ T

0

∥∥σ−1
t (ηθ(Gt, t)− η(Gt, t))

∥∥2 dt]+ C (45)

= EG∼QΠ∗

[
− log pθ0(G0) +

1

2

∫ T

0

γ2
t

∥∥∥sθ(Gt, t)−DΠ∗
(Gt, t)

∥∥∥2 dt]+ C, (46)

where pθ0 is a predetermined prior distribution that is easy to sample from, for instance, Gaussian
distribution, and C is a constant independent of θ. Note that the first inequality is known as the data
processing inequality. The expectation in Eq. (46) corresponds to Eq. (8).

Furthermore, the expectation of Eq. (46) can be written as follows:

EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥sθ(Gt, t)−DΠ∗
(Gt, t)

∥∥∥2 dt]
= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥(sθ(Gt, t)−GT

)
+
(
GT −DΠ∗

(Gt, t)
)∥∥∥2 dt]

= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t ∥sθ(Gt, t)−GT ∥2dt

]
+ E + ET + C1, (47)

where E and C1 are defined as:

E = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

(
sθ(Gt, t)−GT

)T(
GT −DΠ∗

(Gt, t)
)
dt

]
,

C1 = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

∥∥∥GT −DΠ∗
(Gt, t)

∥∥∥2dt]. (48)

From the definition of the destination mixture (Eq. (5)), the following identity holds for all t ∈ [0, T]:

EG∼QΠ∗DΠ∗
(Gt, t) = EG∼QΠ∗GT , (49)

which gives the following result:

E = EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

(
sθ(Gt, t)−GT

)T(
GT −DΠ∗

(Gt, t)
)
dt

]
(50)

= EG∼QΠ∗

[
1

2

∫ T

0

γ2
t

(
sθ(Gt, t)−GT

)T(
GT −GT

)
dt

]
= 0 (51)

Therefore, we can conclude that minimizing Eq. (46) is equivalent to minimizing the following loss:

EG∼QΠ∗

[
1

2

∫ T

0

γ2
t ∥sθ(Gt, t)−GT ∥2dt

]
(52)

which corresponds to the destination mixture matching presented in Eq. (9).

A.7 ANALYTICAL COMPUTATION OF THE PROBABILITY

In order to practically use the denoising mixture matching (Eq. (9)), we provide the analytical form of
the probability pt|0,T (Gt|G0,GT). Notice that by construction, the OU bridge mixture with a fixed
starting point G0 and an endpoint GT coincides with the reference OU process in Eq. (16) with a fixed
starting point G0 and an endpoint GT . Thereby, pt|0,T (Gt|G0,GT) is equal to p̃t|0,T (Gt|G0,GT)
where p̃ denotes the marginal probability of the reference OU process of Eq. (16). Using the Bayes
theorem, we can derive the following:

p̃(Gt|G0,GT) =
p̃(Gt,GT |G0)

p̃(GT |G0)
=

p̃(GT |Gt,G0) p̃(Gt|G0)

p̃(GT |G0)
=

p̃(GT |Gt) p̃(Gt|G0)

p̃(GT |G0)
, (53)

19

Under review as a conference paper at ICLR 2024

where the last equality is due to the Markov property of the OU process. Note that the transition
distributions of the reference OU process are Gaussian with the mean and the covariance as follows:

p̃b|a(Gb|Ga) = N (Gb;ub|aGa, u
2
b|avb|aI) for 0 ≤ a < b ≤ T,

where ub|a := exp
(
α

∫ b

a

σ2
τdτ

)
, vb|a :=

1

2α

(
1− u−2

b|a

)
.

(54)

Therefore, the probability p(Gt|G0,GT) is also Gaussian resulting from the product of Gaussian
distributions, where the mean µ∗

t and the covariance Σ∗
t have analytical forms as follows:

µ∗
t =

vT |t

ut|0vT |0
G0 +

vt|0

uT |tvT |0
GT , Σ∗

t =
vT |tvt|0

vT |0
I. (55)

The mean and the covariance can be simplified by using the hyperbolic sine function as follows:

µ∗
t =

sinh (φT − φt)

sinh (φT)
G0 +

sinh (φt)

sinh (φT)
GT , Σ∗

t =
1

α

sinh (φT − φt) sinh (φt)

sinh (φT)
I, (56)

where φt := αβt = α
∫ t

0
σ2
τdτ .

A.8 DRUM AS A STOCHASTIC INTERPOLANT

Recently, Albergo et al. (2023) introduced the concept of stochastic interpolant which unifies the
framework for diffusion models from the perspective of continuous-time stochastic processes.

From the results of Eq. (56), we can represent the OU bridge mixture as a stochastic interpolant
between the distributions Γ and Π∗ as follows:

Gt =
sinh (φT − φt)

sinh (φT)
G0 +

sinh (φt)

sinh (φT)
GT +

(
1

α

sinh (φT − φt) sinh (φt)

sinh (φT)

)1/2

Z. (57)

where G0, GT , and Z are random variables sampled independently from the distributions Γ, Π∗, and
N (0, I), respectively. Eq. (57) shows that Gt is linear in both the starting point G0 ∼ Γ and the
endpoint GT ∼ Π∗. Note that our proposed destination mixture matching is different from the loss
introduced in Albergo et al. (2023), as destination mixture matching does not require estimation of
the score function. Additionally, we further derive the score function of our DruM in Section A.10.

A.9 UNDERSTANDING THE INFORMATIVE PRIOR AS REGULARIZING THE DESTINATION
MIXTURE

Wu et al. (2022) introduces incorporating prior information into the generative process, for example
injecting physical and statistical information. To be specific, given a generative process:

dGt = η(Gt, t)dt+ σtWt,

Wu et al. (2022) modifies the drift by adding a prior function f(·, t) as follows:

dGt =
(
σtf(Gt, t) + η(Gt, t)︸ ︷︷ ︸

ηR(Gt,t)

)
dt+ σtWt, (58)

where f(·, t) is designed to be a force defined as f(·, t) = −∇E(·) where E(·) is a problem-
dependent energy function. Although Wu et al. (2022) shows that incorporating prior information is
beneficial for the generation of stable molecules or realistic 3D point clouds, how this modification
leads to better performance was not fully explained.

Notably, from the perspective of our framework, we can interpret the incorporation of the prior
information as modifying the generative path toward an energy-regularized destination. To be precise,
given a generative process modeled by the OU bridge mixture as in Eq. (30), adding the prior function
f(·, t) to the drift can be written as follows:

ηR(Gt, t) = ασ2
tGt +

σ2
t

vt

[
1

ut

(
DΠ∗

(Gt, t) +
utvt
σt

f(Gt, t)
)
−Gt

]
, (59)

20

Under review as a conference paper at ICLR 2024

which is equivalent to regularizing the destination mixture with the weighted prior function as follows:

DΠ∗

R (Gt, t) := DΠ∗
(Gt, t) +

utvt
σt

f(Gt, t). (60)

Since the weight of the prior function converges to 0 through the generative process:

utvt
σt

=
exp

(
α
∫ T

t
σ2
τdτ

)
− exp

(
−α

∫ T

t
σ2
τdτ

)
2ασt

→ 0 as t → T,

we can see that DΠ∗

R converges to the original destination mixture DΠ∗
where the convergence is

determined by the prior function. By defining f(·, t) = −∇E(·) where E is an energy function,
for example, potential energy for the 3D molecules or Riesz energy for the 3D point cloud, the
regularized destination mixture has the following representation:

DΠ∗

R (Gt, t) = DΠ∗
(Gt, t)−

utvt
σt

∇E(Gt). (61)

Thereby, DΠ∗

R follows a path that minimizes the energy function E through the generative process.
Therefore, the generative process is guided toward the regularized destination mixture which results
in samples that achieve desired physical properties, for instance, stable 3D-structured molecules or
point clouds.

A.10 ASSOCIATED PROBABILITY FLOW ODE OF DRUM

Since we have derived the reverse-time diffusion process of the OU bridge mixture in Section A.5,
we can further derive its associated probability flow ODE (Song et al., 2021), i.e. a deterministic
process that shares the same marginal density with the OU bridge mixture.

First, the OU bridge mixture is modeled by the following SDE:

dGt =

[
ασ2

tGt +
σ2
t

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)]
dt+ σtdWt,

where the scalar functions ut and vt, and the destination mixture DΠ∗
are defined as:

ut = exp
(
α

∫ T

t

σ2
τdτ

)
, vt =

1

2α
(1− u−2

t), DΠ∗
(Gt, t) =

∫
g
pgt (Gt)

pt(Gt)
Π∗(dg).

Then using the results of Section A.5, the reverse-time diffusion process of the OU bridge mixture is
modeled by the following SDE:

dGt =

[
−ασ2

T−tGt +
σ2
T−t

u2
t vt

(
utD

Γ(Gt, t)−Gt

)]
dt+ σT−tdWt,

where the scalar functions ut and vt, and the reversed destination mixture DΓ are defined as:

ut = exp

(
α

∫ T−t

0

σ2
τdτ

)
, vt =

1

2α

(
1− u−2

t

)
, DΓ(Gt, t) =

∫
x
qxt (Gt)

qt(Gt)
Γ(dx).

From the relation between the diffusion process and its reverse-time diffusion process (for instance,
Eq. (33) and Eq. (34)), the score function of the OU bridge mixture can be computed as follows:

∇Gt
log pt(Gt) =

1

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)
+

1

u2
T−tvT−t

(
uT−tD

Γ(Gt, T−t)−Gt

)
. (62)

Therefore, the associated probability flow ODE can be derived as follows:

dGt

dt
= ασ2

tGt +
σ2
t

vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)
− 1

2
σ2
t∇Gt log pt(Gt) (63)

= ασ2
tGt +

σ2
t

2vt

(
1

ut
DΠ∗

(Gt, t)−Gt

)
− σ2

t

2u2
T−tvT−t

(
uT−tD

Γ(Gt, T−t)−Gt

)
. (64)

21

Under review as a conference paper at ICLR 2024

To practically use the probability flow ODE as a generative model, the destination mixtures DΠ∗
(·, t)

and DΓ(·, t) should be approximated by the neural networks sθ(·, t) and sϕ(·, t), respectively. sθ
can be trained using the destination mixture matching (Eq. (52)). sϕ also can be trained in a similar
way where the trajectories are sampled from the reverse-time process of the OU bridge mixture.

In particular, from the result of Eq. (62), we can see that learning the score function of the mix-
ture process is not interchangeable with learning the destination mixture since the score function
additionally requires the knowledge of the reversed destination mixture DΓ. Our mixture process
differs from the denoising diffusion processes for which learning the score function is equivalent to
recovering clean data from its corrupted version (Kingma et al., 2021). The difference originates
from the difference in the construction of the generative process, where denoising diffusion processes
are derived by reversing the forward noising processes while our mixture process is built as a mixture
of bridge processes without relying on the time-reversal approach. We further discuss the difference
between our framework and the denoising diffusion models in Section A.11.

A.11 COMPARISON WITH DENOISING DIFFUSION MODELS

Here we explain in detail the difference between our framework based on diffusion mixture and
previous denoising diffusion models.

Comparison of the generative processes The main difference with the denoising diffusion mod-
els (Ho et al., 2020; Song et al., 2021) is in the different generative processes. While denoising
diffusion models derive the generative process by reversing the forward noising process, our DruM
constructs the generative process from the mixture of OU bridge processes described in Eq. (2) which
does not rely on the time-reversal approach. Due to the difference in the generative process, our
DruM demonstrates two distinct properties: First, the mixture process of DruM defines an exact
transport from an arbitrary prior distribution to the data distribution by construction. In contrast,
denoising diffusion processes are not an exact transport to the data distribution since the forward
noising processes require infinitely long diffusion time in order to guarantee convergence to the prior
distribution.

Furthermore, our framework does not suffer from the restrictions of denoising diffusion models.
Denoising diffusion models require pprior to be approximately independent of the data distribution
Π∗, e.g. Gaussian, as the perturbation process decouples pprior from Π∗, and further this decoupling
requires infinitely long diffusion time T . On the contrary, DruM does not have any constraints on the
prior distribution pprior and does not require large T , since the OU bridge mixture can be defined
between two arbitrary distributions for any T > 0, where its drift forces the process to the terminal
distribution regardless of the initial distribution. Therefore, the OU bridge mixture provides flexibility
for our generative framework in choosing the prior distribution and the finite terminal time while
maintaining the generative process to be an exact transport from the prior to the data distribution.

Comparison of the training objectives We further compare our training objective in Eq. (52) with
the training objectives of denoising diffusion models. First, we clarify that learning the destination
mixture is not equivalent to learning the score function for the mixture process of DruM. As derived
in Eq. (62) of Section A.10, the score function of the OU bridge mixture additionally requires the
knowledge of the reversed destination mixture DΓ, thus learning the score function needs to predict
not only the destination mixture but also the reversed destination mixture. In contrast, the training
objectives of denoising diffusion models are interchangeable (Kingma et al., 2021), i.e., learning
the score function of the denoising diffusion process is equivalent to recovering clean data from
its corrupted version. This difference in the training objective originates from the difference in the
generative process, which we have discussed in detail in the previous paragraph.

Furthermore, our training objective differs from the objectives of previous works (Saharia et al.,
2022) that aim to recover clean data from its corrupted version. While our DruM learns to predict the
destination mixture, i.e. the probable destination represented as the weighted mean of data, Saharia
et al. (2022) aims to predict the exact destination which could be problematic as the prediction would
be highly inaccurate in early steps which may lead the process in the wrong direction.

It should be noted that the goal of Eq. (52) is to estimate the destination mixture, i.e. the weighted
mean of data, not to predict the exact destination as in Saharia et al. (2022). This is because Eq. (52)

22

Under review as a conference paper at ICLR 2024

Table 3: Comparison of graph diffusion models.

Explicitly model Simulation-free Arbitrary prior Does not require large Learning object Model
graph topology training distribution diffusion time T is bounded prediction

EDM (Hoogeboom et al., 2022) ✗ ✓ ✗ ✗ ✓ Noise
GDSS (Jo et al., 2022) ✗ ✓ ✗ ✗ ✗ Score
Bridge (Wu et al., 2022) ✗ ✗ ✓ ✓ ✗ Drift

DruM (Ours) ✓ ✓ ✓ ✓ ✓ Data

is derived from Eq. (8) which minimizes the difference between our model prediction and the ground
truth destination mixture. We emphasize that learning the destination mixture of Eq. (8) is only
feasible for the OU bridge mixture process in DruM, which cannot be used for denoising diffusion
models due to the difference in the generative processes.

In the perspective of the mathematical formulation of the training objective, Eq. (52) differs from
the objective of Saharia et al. (2022) in two parts: (1) The computation of the expectation for the
squared error loss term is different. The expectation is computed by sampling from the trajectory of
the diffusion process, where our DruM uses the OU bridge mixture while previous works use the
denoising diffusion process. These two processes are not the same and therefore result in different
objectives. (2) The weight function in the loss is different. The weight function γt of Eq. (8) is
different from the weight function used in denoising diffusion models, and γt is derived to guarantee
that minimizing Eq. (52) is equivalent to minimizing the KL divergence between the data distribution
and the terminal distribution of our approximated process.

Another line of works on discrete diffusion models (Austin et al., 2021; Hoogeboom et al., 2021;
Vignac et al., 2022) aims to predict the probabilities of each state of the final data to be generated.
Since these works predict the probabilities, they are limited to data with a finite number of states
and cannot be applied to data with continuous features. In contrast, our DruM directly predicts the
weighted mean of the data (i.e., destination mixture) instead of the probabilities, which can be applied
to data with continuous features, for example, 3D molecules as well as the discrete data, which we
experimentally validate to be effective. It is worth noting that our DruM is a continuous diffusion
model, and thereby our framework can leverage the advanced sampling strategies that reduce the
sampling time or improve sample quality (Campbell et al., 2022), whereas the discrete diffusion
models are forced to use a simple ancestral sampling strategy.

A.12 COMPARISON OF GRAPH DIFFUSION MODELS

We summarize the comparison between closely related graph diffusion models in Table 3.

B DETAILS OF DRUM

In this section, we provide the details of the training and sampling methods of DruM, describe the
models used in our experiments, and further discuss the hyperparameters of DruM.

B.1 OVERVIEW

We provide the pseudo-code of the training and sampling of our generative framework in Algorithm 1
and 2, respectively. We further provide the implementation details of the training and sampling for
each generation task in Section C.

B.2 TRAINING OBJECTIVES

Random permutation The general graph datasets, namely Planar and SBM, contain only 200
graphs. Thus to ensure the permutation invariant nature of the graph dataset, we apply random
permutation to the graphs of the training set during training. To be specific, for a graph data
G = (X,A) in the training set and random permutation matrix P , we use the permuted data
(P TX,P TAP) for training, where P T denotes the transposed matrix. We empirically found that
this leads to more stable training.

23

Under review as a conference paper at ICLR 2024

Algorithm 1 Training of DruM
Input: Model sθ , constant ϵ
For each epoch:
1: Sample graph G from the training set
2: N ← number of nodes of G
3: Sample t ∼ [0, T − ϵ] and G0 ∼ N (0, IN)
4: Sample Gt ∼ pt|0,T (Gt|G0,G) ▷ Section A.7
5: γt ← σt/utvt
6: Lθ ← γ2

t ∥sθ(Gt, t)−G∥2 ▷ Eq. (52)
7: Update θ using Lθ

Algorithm 2 Sampling of DruM
Input: Trained model sθ , number of sampling steps
K, diffusion step size dt

1: Sample number of nodes N from the training set.
2: G0 ∼ N (0, IN) ▷ Start from noise
3: t← 0
4: for k = 1 to K do
5: η ← ασ2

tGt +
σ2
t

vt

(
1
ut
sθ(Gt, t)−Gt

)
6: w ∼ N (0, IN)

7: Gt+dt← ηdt+ σt

√
dtw ▷ Euler-Maruyama

8: t← t+ dt
9: end for

10: G← quantize(Gt) ▷ Quantize if necessary
11: Return: Graph G

Algorithm 3 PC Sampler for DruM
Input: Trained models sθ and sϕ (described in Sec-
tion A.10), number of sampling steps K, number of
correction steps per prediction M , diffusion step size
dt, score-to-noise ratio r
Output: Sampled graph G

1: Sample number of nodes N from the training set.
2: G0 ∼ N (0, IN) ▷ Start from noise
3: t← 0
4: for k = 1 to K do
5: η ← ασ2

tGt +
σ2
t

vt

(
1
ut
sθ(Gt, t)−Gt

)
6: w ∼ N (0, IN)

7: G̃t ← ηdt+ σt

√
dtw ▷ Predictor

8: for m = 1 to M do ▷ Corrector loop
9: D, D̄ ← sθ(G̃t, t), sϕ(G̃t, T−t)

10: s←Compute_Score(D, D̄, G̃t) ▷
Eq.(62)

11: w ∼ N (0, IN)

12: ϵ← 2 (r∥w∥2/∥s∥2)2

13: G̃t←Corrector(G̃t, s, ϵ)
14: end for
15: Gt+dt ← G̃t

16: t← t+ dt
17: end for
18: G← quantize(Gt) ▷ Quantize if necessary
19: Return: Graph G

Simplified loss We provide the explicit form of simplified loss explained in Section 3.2, which
uses constant loss coefficient c instead of the time-dependent γt as follows:

L(θ) = EG∼QΠ∗

[
1

2

∫ T

0

c2 ∥sθ(Gt, t)−GT ∥2dt
]
. (65)

We empirically found that using this loss is beneficial for the generation of continuous features such
as eigenvectors of the graph Laplacian or 3D coordinates.

Attributed graphs Especially for the generation of attributed graphs G = (X,A), the destination
mixture matching for X and A can be derived from our extended framework in Eq. (31). Specifically,
for the model sθ(·, t) = (sXθ (·, t), sAθ (·, t)), we use the following objective:

L(θ) = EG∼QΠ∗

[
1

2

∫ T

0

γ2
1,t

∥∥sXθ (Gt, t)−XT

∥∥2dt+ λ

2

∫ T

0

γ2
2,t

∥∥sAθ (Gt, t)−AT

∥∥2dt] (66)

where λ is the hyperparameter. We use λ = 5 for all our experiments and empirically observed that
changing λ did not make much difference for sufficient training epochs.

B.3 MODEL ARCHITECTURE

For the general graph and 2D molecule generation tasks, we leverage the graph transformer network
introduced in Dwivedi & Bresson (2020) and Vignac et al. (2022). The node features and the
adjacency matrices are updated with multiple attention layers with global features obtained by the
self-attention-based FiLM layers (Perez et al., 2018). We additionally use the higher-order adjacency
matrices following Jo et al. (2022). For general graph generation tasks, we add the sigmoid function
to the output of the model since the entries of the weighted mean of the data are supported in the
interval [0, 1]. For 2D molecule generation tasks, we apply the softmax function to the output of the
node features to model the one-hot encoded atom types, and further apply the sigmoid function to the
output of the adjacency matrices. Note that we do not use the structural augmentation as in Vignac
et al. (2022). For the 3D molecule generation task, we use EGNN (Satorras et al., 2021) to model the
E(3) equivariance of the molecule data. We additionally add a softmax function at the last layer to
model the one-hot encoded atom types.

24

Under review as a conference paper at ICLR 2024

B.4 SAMPLING FROM DRUM

Sampling from the generative model requires solving the SDE of Eq. (7). If our model sθ can closely
approximate the destination mixture, a simple Euler-Maruyama method would be enough to simulate
the generative model, which is true for most of the experiments. Since sθ is trained on the marginal
density pt, Gt outside of pt could cause incorrect predictions that lead to an undesired destination.
To address the limitation, we may leverage the predictor-corrector (PC) sampling method introduced
in Song et al. (2021). Using the corrector method such as Langevin dynamics (Song et al., 2021), we
force Gt to be drawn from pt which ensures a more accurate estimation of the destination mixture.
The score function to be used for the corrector can be computed as in Eq. (62) of Section A.10.
We provide the pseudo-code of the predictor-only sampler and the PC sampler for our DruM in
Algorithm 2 and 3. Note that our DruM does not require additional time for sampling compared to
the denoising diffusion models, since the generation is equivalent to solving the SDE where the drift
is computed each step from the forward pass of the model.

B.5 HYPERPARAMETERS OF DRUM

The generative process of DruM modeled as the OU bridge mixture is uniquely determined with the
noise schedule σt and constant α. Through our experiments, we use α = −1/2 and a decreasing
linear noise schedule, starting from σ2

0 and ends in σ2
0 defined as follows:

σ2
t = (1− t)σ2

0 + tσ2
1 for 0 < σ1 < σ0 < 1 (67)

We perform a grid search for the hyperparameters σ0 and σ1 in {0.4, 0.6, 0.8, 1.0} and {0.1, 0.2, 0.3},
respectively, where the search space slightly differs for each generation task.

C EXPERIMENTAL DETAILS

C.1 GENERAL GRAPH GENERATION

Datasets and evaluation metrics We evaluate the quality of generated graphs on three graph
datasets used as benchmarks in Martinkus et al. (2022): Planar graph dataset consists of 200
synthetic planar graphs where each graph has 64 nodes. We determine that a graph is a valid Planar
graph if it is connected and planar. Stochastic Block Model (SBM) graph dataset consists of 200
synthetic stochastic block model graphs with the number of communities uniformly sampled between
2 and 5, where the number of nodes in each community is uniformly sampled between 20 and 40. The
probability of the inter-community edges and the intra-community edges are 0.3 and 0.05, respectively.
We determine that a graph is a valid SBM graph if it has the number of communities between 2 and
5, the number of nodes in each community between 20 and 40, and further using the statistical test
introduced in Martinkus et al. (2022). Proteins graph dataset (Dobson & Doig, 2003) consists of
918 real protein graphs with up to 500 nodes in each graph. The protein graph is constructed by
considering each amino acid as a node and connecting two nodes if the corresponding amino acids are
less than 6 Angstrom. For our experiments, we use the datasets provided by Martinkus et al. (2022).

We follow the evaluation setting of Liao et al. (2019) using total variation (TV) distance for measuring
MMD which is considerably fast compared to using the earth mover’s distance (EMD) kernel,
especially for large graphs. Moreover, we use the V.U.N. metric following Martinkus et al. (2022)
that measures the proportion of valid, unique, and novel graphs among the generated graphs, where
the validness is defined as satisfying the specific property of the dataset explained above.

Implementation details We follow the standard setting of Martinkus et al. (2022) using the same
data split and evaluation procedures. We report the baseline results taken from Martinkus et al.
(2022) and Vignac et al. (2022), or the results obtained from running the open-source codes using
the hyperparameters given by the original work. We could not report the results of EDP-GNN (Niu
et al., 2020) and DiGress (Vignac et al., 2022) on the Proteins dataset as they took more than 2 weeks.
For the diffusion models including our proposed method, we set the diffusion steps to 1000 for a fair
comparison.

For our proposed DruM, we train our model for 30,000 epochs for all datasets using a constant
learning rate with AdamW optimizer (Loshchilov & Hutter, 2017) and weight decay 10−12, applying

25

Under review as a conference paper at ICLR 2024

the exponential moving average (EMA) to the parameters (Song & Ermon, 2020). We perform the
hyperparameter search explained in Section B.5 for the lowest MMD and highest V.U.N. results. We
initialize the node features with the eigenvectors of the graph Laplacian of the adjacency matrices,
which we further scale with constant. During training (Algorithm 1), we sample the noise for the
adjacency matrices to be symmetric with zero diagonals. During generation (Algorithm 2), we
generate both the node features and adjacency matrices starting from noise, and we quantize the
entries of the resulting adjacency matrices. Empirically, we found that the entries of the resulting
sample lie very close to the desired values 0 and 1, for which the L1 distance between the resulting
sample and the quantized sample is smaller than 10−2.

In Figure 2 (Left), we measure the Spec. MMD and V.U.N. of our method and the baselines as
follows: For DruM we evaluate the destination mixture predicted by DruM. For DiGress, we evaluate
the prediction obtained from the predicted probability of each state. For GDSS and ConGress, we
evaluate the implicit destination computed from the estimated score or noise following Eq. (16)
of Hoogeboom et al. (2022). The Spec. MMD and the V.U.N. are measured after quantizing the
predicted adjacency matrix with thresholding at 0.5.

C.2 2D MOLECULE GENERATION

Datasets and evaluation metrics We evaluate the quality of generated 2D molecules on two
molecule datasets used as benchmarks in Jo et al. (2022). QM9 Ramakrishnan et al. (2014) dataset
consists of 133,885 molecules with up to 9 heavy atoms of four types. ZINC250k Irwin et al. (2012)
dataset consists of 249,455 molecules with up to 38 heavy atoms of 9 types. Molecules in both
datasets have 3 edge types, namely single bond, double bond, and triple bond. For our experiments,
we follow the standard procedure Shi et al. (2020); Luo et al. (2021); Jo et al. (2022) of kekulizing
the molecules using the RDKit library (Landrum et al., 2016) and removing the hydrogen atoms from
the molecules in the QM9 and ZINC250k datasets.

We evaluate the models with four metrics: Validity is the percentage of the valid molecules among
the generated without any post-hoc correction such as valency correction or edge resampling. Fréchet
ChemNet Distance (FCD) (Preuer et al., 2018) measures the distance between the feature vectors
of generated molecules and the test set using ChemNet, evaluating the chemical properties of the
molecules. Neighborhood subgraph pairwise distance kernel (NSPDK) MMD (Costa & De Grave,
2010) measures the MMD between the generated molecular graphs and the molecular graphs from
the test set, assessing the quality of the graph structure. Scaffold similarity (Scaf.) measures the
cosine similarity of the frequencies of Bemis-Murcko scaffolds (Bemis & Murcko, 1996), evaluating
the ability to generate similar substructures. See Section C.2 for more details. Among these, FCD
and NSPDK MMD metrics measure the distribution similarity between the test dataset and generated
samples while scaffold similarity evaluates the similarity of the generated scaffolds.

Implementation details We report the results of the baselines taken from Jo et al. (2022), except
for the results of the Scaffold similarity (Scaf.) and the results of DiGress, which we obtained by
running the open-source codes. Especially, the 2D molecule generation results of DiGress on the
QM9 dataset are different compared to the results reported in its original paper, since we have used
the preprocessed dataset following the setting of Jo et al. (2022) for a fair comparison with other
baselines. We set the diffusion steps to 1000 for all the diffusion models.

For our DruM, we train our model sθ with a constant learning rate with AdamW optimizer and
weight decay 10−12, applying the exponential moving average (EMA) to the parameters. We perform
the hyperparameter search similar to that of the general graph generation tasks. Especially for DruM,
we follow Jo et al. (2022) by using the adjacency matrices in the form of A ∈ {0, 1, 2, 3}N×N where
N is the maximum number of atoms in a molecule and each entries indicating the bond types: 0 for
no bond, 1 for the single bond, 2 for the double bond and 3 for the triple bond. Further, we scale the
entries with a constant scale of 3 in order to bound the input of the model in the interval [0, 1], and
rescale the final sample of the generation process to recover the bond types. We also sample the noise
for the adjacency matrices to be symmetric with zero diagonals during training. We quantize the
entries of the resulting adjacency matrices to obtain the discrete bond types {0, 1, 2, 3}. Empirically,
we found that the entries of the resulting sample lie very close to the desired bond types {0, 1, 2, 3},
for which the L1 distance between the resulting sample and the quantized sample is approximately 0.

26

Under review as a conference paper at ICLR 2024

Table 4: 2D molecule generation results on the QM9 dataset. The baseline results are taken from Jo et al.
(2022) or obtained by running the open-source codes. Best results are highlighted in bold.

Method Valid (%)↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑

MoFlow (Zang & Wang, 2020) 91.36 ±1.23 4.467 ±0.595 0.017 ±0.003 0.1447 ±0.0521 98.65 ±0.57 94.72 ±0.77
GraphAF‘(Shi et al., 2020) 74.43 ±2.55 5.625 ±0.259 0.021 ±0.003 0.3046 ±0.0556 88.64 ±2.37 86.59 ±1.95
GraphDF (Luo et al., 2021) 93.88 ±4.76 10.928 ±0.038 0.064 ±0.000 0.0978 ±0.1058 98.58 ±0.25 98.54 ±0.48

EDP-GNN (Niu et al., 2020) 47.52 ±3.60 2.680 ±0.221 0.005 ±0.001 0.3270 ±0.1151 99.25 ±0.05 86.58 ±1.85
GDSS (Jo et al., 2022) 95.72 ±1.94 2.900 ±0.282 0.003 ±0.000 0.6983 ±0.0197 98.46 ±0.61 86.27 ±2.29
DiGress (Vignac et al., 2022) 98.19 ±0.23 0.095 ±0.008 0.0003 ±0.000 0.9353 ±0.0025 96.67 ±0.24 25.58 ±2.36

DruM (ours) 99.69 ±0.19 0.108 ±0.006 0.0002 ±0.000 0.9449 ±0.0054 96.90 ±0.15 24.15 ±0.80

Table 5: 2D molecule generation results on the ZINC250k dataset. The baseline results are taken from Jo
et al. (2022) or obtained by running the open-source codes. Best results are highlighted in bold.

Method Valid (%)↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑

MoFlow (Zang & Wang, 2020) 63.11 ±5.17 20.931 ±0.184 0.046 ±0.002 0.0133 ±0.0052 99.99 ±0.01 100.00 ±0.00
GraphAF (Shi et al., 2020) 68.47 ±0.99 16.023 ±0.451 0.044 ±0.005 0.0672 ±0.0156 98.64 ±0.69 99.99 ±0.01
GraphDF (Luo et al., 2021) 90.61 ±4.30 33.546 ±0.150 0.177 ±0.001 0.0000 ±0.0000 99.63 ±0.01 100.00 ±0.00

EDP-GNN Niu et al. (2020) 82.97 ±2.73 16.737 ±1.300 0.049 ±0.006 0.0000 ±0.0000 99.79 ±0.08 100.00 ±0.00
GDSS (Jo et al., 2022) 97.01 ±0.77 14.656 ±0.680 0.019 ±0.001 0.0467 ±0.0054 99.64 ±0.13 100.00 ±0.00
DiGress (Vignac et al., 2022) 94.99 ±2.55 3.482 ±0.147 0.0021 ±0.0004 0.4163 ±0.0533 99.97 ±0.01 99.99 ±0.01

DruM (ours) 98.65 ±0.25 2.257 ±0.084 0.0015 ±0.0003 0.5299 ±0.0441 99.97 ±0.03 99.98 ±0.02

C.3 3D MOLECULE GENERATION

Datasets and evaluation metrics We evaluate the quality of generated 3D molecules on two
molecule datasets used as benchmarks in Hoogeboom et al. (2022). QM9 Ramakrishnan et al.
(2014) dataset consists of 133,885 molecules with up to 29 atoms of five types including hydrogen
atoms. The node features of the QM9 dataset include the one-hot representation of atom type and
atom number. GEOM-DRUGS Axelrod & Gomez-Bombarelli (2022) dataset consists of 430,000
molecules with up to 181 atoms of fifteen types including hydrogen atoms. GEOM-DRUGS dataset
contains different conformations for each molecule. Among many conformations, the 30 lowest
energy conformations for each molecule are retained. For the GEOM-DRUGS dataset, we utilize the
one-hot representation of atom type without the atom number. To evaluate the generated molecules,
we measure the atom and molecule stability by predicting the bond type between atoms with the
standard bond lengths and then checking the valency.

Implementation details We follow the standard setting of Hoogeboom et al. (2022) for a fair
comparison: for the QM9 experiment, we use EGNN with 256 hidden features and 9 layers and train
the model, and for the GEOM-DRUGS experiment, we use EGNN with 256 hidden features and 4
layers and train the model. We report the results of the baselines taken from Hoogeboom et al. (2022)
and Wu et al. (2022). In Figure 3 (Right), we compute the implicit destination using the estimated
noise following Eq. (16) of Hoogeboom et al. (2022).

For our DruM, we train our model sθ for 1,300 epochs with batch size 256 for the QM9 experiment,
and for 13 epochs with batch size 64 for the GEOM-DRUGS experiment. We apply EMA to the
parameters of the model with a coefficient of 0.999 and use AdamW optimizer with learning rate
10−4 and weight decay 10−12. The 3D coordinates and charge values are scaled as ×4 and ×0.1,
respectively, and we use the simplified loss with a constant c = 100. We perform the hyperparameter
search with smaller values for coordinates in {0.1, 0.2, 0.3} and higher values for node features in
{0.6, 0.7, 0.8, 0.9, 1.0}. For the generation, we use the Euler-Maruyama predictor.

C.4 COMPUTING RESOURCES

For all experiments, we use NVIDIA GeForce RTX 3090 and 2080 Ti and implement the source code
with PyTorch Paszke et al. (2019).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 2D MOLECULE GENREATION

We provide the standard deviation results in Table 4 and Table 5. We additionally report the following
two metrics: Novelty is the proportion of the molecules generated that are valid and not in the training

27

Under review as a conference paper at ICLR 2024

Figure 4: (Left) Generation results on the Planar dataset. Best results are highlighted in bold, where
smaller MMD and larger V.U.N. indicates better results. (Right) Generated graphs by learning the drift. The
visualized graphs are randomly sampled from the set of generated graphs.

Planar

Deg. Clus. Orbit Spec. V.U.N.

Training set 0.0002 0.0310 0.0005 0.0052 100.0

GraphRNN (You et al., 2018) 0.0049 0.2779 1.2543 0.0459 0.0
SPECTRE (Martinkus et al., 2022) 0.0005 0.0785 0.0012 0.0112 25.0

EDP-GNN (Niu et al., 2020) 0.0044 0.3187 1.4986 0.0813 0.0
GDSS (Jo et al., 2022) 0.0041 0.2676 0.1720 0.0370 0.0
DiGress (Vignac et al., 2022) 0.0003 0.0372 0.0009 0.0106 75

Drift 0.0008 0.0845 0.0075 0.0126 15

DruM (Ours) 0.0005 0.0353 0.0009 0.0062 90.0

Figure 5: Additional MMD results of the destination mixture of DruM through the generative process. The
dotted lines indicate the MMD results of the training set.

(a) Planar (b) SBM (c) Proteins

Sampled Graph Destination Mixture

Figure 6: Convergence of sampled graphs and destination mixtures with varying σ0 and σ1 values.

set, and Uniqueness is the proportion of the molecules generated that are valid and unique, where
valid molecules are the ones that do not violate the chemical valency rule.

D.2 FURTHER ANALYSIS

Comparison with learning the drift To verify that learning the destination mixture as in our
DruM is superior compared to learning the drift, we additionally report the generation result of the
variant of DruM which learns the drift, similar to Wu et al. (2022), on the Planar dataset. Table
in Figure 4 shows that learning the drift, denoted as Drift in the table, performs poorly generating
only 15% valid, novel, and unique graphs. The generated Planar graphs in Figure 4 demonstrate that
learning the drift fails to capture the correct topology.

0.00 0.25 0.50 0.75 1.00
Diffusion time

25
20
15
10

5
0
5

10

lo
g

F(t
)

DruM (Ours)
w/o Inductive Bias
Drift

Figure 7: Model complexity
comparison of DruM and Drift.

Further, to verify why learning the drift fails to capture the correct
topology, we compare the complexity of the models for learning dif-
ferent objectives. As shown in Figure 7, the complexity of learning
the drift (Drift) is significantly higher than learning the destination
mixture (DruM) for all time steps. Moreover, learning the drift is much
harder compared to learning the destination mixture without exploiting
the graph structure (w/o Inductive Bias). In particular, the complexity
gap dramatically increases at the late stage of the diffusion process,
because the drift diverges approaching the terminal time while the
destination mixture is supported inside the data space, as discussed in
Section 3.2.

28

Under review as a conference paper at ICLR 2024

Figure 8: The experimental results for the variant of EDM where it aims to predict the destination (EDM-Dest.).
(Left) Generation results on the 3D molecule QM9 datasets. Best results are highlighted in bold where the
higher stability indicates better results. (Right) Convergence of the generative process. We compare the
convergence of the destination mixture from DruM, the implicit destination computed from the predicted noise
of EDM, and the predicted destination of EDM-Dest. We measure the convergence with L2 distance and further
visualize the molecule stability of the predictions through the generative process.

QM9 (|V | ≤ 29)

Method Atom Stab.(%) Mol. Stab.(%)

G-Schnet (Gebauer et al., 2019) 95.7 68.1
GDM (Hoogeboom et al., 2022) 97.0 63.2
EDM (Hoogeboom et al., 2022) 98.7 82.0
Bridge (Wu et al., 2022) 98.7 81.8
Bridge+Force (Wu et al., 2022) 98.8 84.6

EDM-Dest. 94.02 35.95

DruM (Ours) 98.81 87.34
0 500 1000

Timesteps
0.0

0.5

1.0

1.5

2.0

L2
-d

ist
an

ce

0

20

40

60

80

M
ol

. S
ta

bi
lit

y
(%

)

DruM: L2
EDM: L2
EDM-Dest: L2

DruM: Stab.
EDM: Stab.
EDM-Dest: Stab.

Early stopping for generation process We provide additional MMD results of the generative
processes in Figure 5, which show that the estimated destination mixture converges to the exact
destination around 800 diffusion steps for all datasets.

Role of the diffusion coefficient We can observe that the generative process of DruM is uniquely
determined by the constant α and the diffusion coefficient σt. These two coefficients control the
convergence behavior of the diffusion process: large α and small σt lead to a drift with a large
norm that forces the trajectory to converge quickly. Here, we demonstrate the effect of the diffusion
coefficient σt on the convergence of the generative process. Figure 6 (Sampled Graph) shows that
the smaller values of σt (i.e. 0.2∼0.1) lead to faster convergence of the trajectory to the final result,
compared to the larger σt. This is due to the fast convergence of each bridge process with small σt.
Especially, as shown in Figure 6 (Destination Mixture), large σt for the continuous feature (i.e., 3D
coordinates) leads to slower convergence of the destination mixture since it destroys the topology of
graphs and makes it hard to predict the final result.

Destination prediction through EDM Additionally, we compare our DruM with the variant
of EDM Hoogeboom et al. (2022) which learns to predict the final result of the denoising process
instead of learning the noise. Table of Figure 8 shows the generation result of this variant, denoted as
EDM-Dest., on the 3D molecule QM9 dataset. EDM-Dest. exhibits the lowest atom stability and
extremely low molecule stability of less than 40%, which performs significantly worse than DruM as
well as the original EDM. This is because EDM-Dest. depends on a single deterministic prediction
of the destination during the generative process, and the inaccurate prediction of the final result at
the early step of the generative process leads the process in the wrong direction resulting in invalid
molecules, as discussed in the Introduction and Section 3.1.

On the other hand, our DruM predicts the destination of the generative process using the destination
mixture which represents the probable destination as a weighted mean of the data, thereby guiding
the process in the right direction resulting in valid molecules with correct topology. We further
provide the convergence results of EDM-Dest. in Figure 8, which demonstrates that the prediction of
DruM converges significantly faster than that of EDM and EDM-Dest. The inaccurate prediction of
EDM-Dest. results in slower convergence and low molecule stability.

Analysis on the model architecture As shown in Table 6 and 7, GDSS using graph transformer
architecture shows improved performance over original GDSS but is still outperformed by our DruM
with a large margin in V.U.N, FCD, and NSPDK. These results verify that the superior performance
of DruM comes from its ability to accurately model the topology of the final graph to be generated.

29

Under review as a conference paper at ICLR 2024

Table 6: General graph generation results with GDSS using graph transformer.

Planar SBM

Synthetic, |V | = 64 Synthetic, 44 ≤ |V | ≤ 187

Deg. Clus. Orbit Spec. V.U.N. Deg. Clus. Orbit Spec. V.U.N.

Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0

GDSS 0.0041 0.2676 0.1720 0.0370 0.0 0.0212 0.0646 0.0894 0.0128 5.0
GDSS+Transformer 0.0036 0.1206 0.0525 0.0137 5.0 0.0411 0.0565 0.0706 0.0074 27.5
ConGress 0.0048 0.2728 1.2950 0.0418 0.0 0.0273 0.1029 0.1148 - 0.0
DiGress 0.0003 0.0372 0.0009 0.0106 75 0.0013 0.0498 0.0434 0.0400 74

DruM (Ours) 0.0005 0.0353 0.0009 0.0062 90.0 0.0007 0.0492 0.0448 0.0050 85.0

Table 7: 2D molecule generation results with GDSS using graph transformer.

QM9 (|V | ≤ 9) ZINC250k (|V | ≤ 38)

Method Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑ Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑

Training set 100.0 0.0398 0.0001 0.9719 100.0 0.0615 0.0001 0.8395

GDSS 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
GDSS+Transformer 99.68 0.737 0.0024 0.9129 96.04 5.556 0.0326 0.3205
DiGress 98.19 0.095 0.0003 0.9353 94.99 3.482 0.0021 0.4163

DruM (Ours) 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299

E VISUALIZATION

In this section, we visualize the generated graphs and molecules of DruM, and further provide
visualization of the diffusion processes for diverse generation tasks.

E.1 GENERATED SAMPLES OF DRUM

General graphs Graphs from the training set and the generated graphs of DruM are visualized
in Figure 9, 10, and 11. The visualized graphs are randomly selected from the training set and the
generated graph set. Note that we visualize the entire graph for the Proteins dataset, unlike Martinkus
et al. (2022) which visualizes the largest connected component since it fails to consistently generate
connected graphs. For DruM, we found that 92% of the generated Proteins graphs are connected.

(a) Training set (b) DruM (Ours)

Figure 9: Visualization of graphs from the Planar dataset and the generated graphs of DruM.

30

Under review as a conference paper at ICLR 2024

(a) Training set (b) DruM (Ours)

Figure 10: Visualization of graphs from the SBM dataset and the generated graphs of DruM.

(a) Training set (b) DruM (Ours)

Figure 11: Visualization of graphs from the Proteins dataset and the generated graphs of DruM.

31

Under review as a conference paper at ICLR 2024

2D molecules We provide the visualization of the molecules from the training set and the generated
2D molecules in Figure 12 and 13. These molecules are randomly selected from the training set and
the generated molecule set.

(a) Training set (b) DruM (Ours)

Figure 12: Visualization of molecules from the QM9 dataset and the generated molecules of DruM for the
2D molecule generation experiment.

(a) Training set (b) DruM (Ours)

Figure 13: Visualization of the molecules from the ZINC250k dataset and the generated molecules of
DruM for the 2D molecule generation experiment.

32

Under review as a conference paper at ICLR 2024

Table 8: Fraction of connected
graphs on GEOM-DRUGS ex-
periment.

Methods Connected (%)

EDM 37.70 ±0.79
DruM (Ours) 56.57 ±0.31

3D molecules We visualize the generated molecules for the 3D
molecule generation experiment in Figure 14 and 15. Note that the vi-
sualized molecules are all stable. For the GEOM-DRUGS experiment,
we observe that a few of the generated molecules are not connected
as pointed out in Hoogeboom et al. (2022). To measure how many
graphs are connected, we report the fraction of the connected graphs of
3 different runs. Table 8 shows that DruM can generate a significantly
larger number of connected molecules compared to EDM Hoogeboom
et al. (2022).

(a) Training Set (b) DruM (Ours)

Figure 14: Visualization of the molecules from the QM9 dataset and the generated molecules of DruM for
the 3D molecule generation experiment.

(a) Training Set (b) DruM (Ours)

Figure 15: Visualization of the molecules from the GEOM-DRUGS dataset and the generated molecules
of DruM for the 3D molecule generation experiment.

33

Under review as a conference paper at ICLR 2024

E.2 GENERATIVE PROCESS OF DRUM

Here we visualize the generative process of DruM. We visualize the generative process of general
graphs in Figure 16, 17, and 18. We also visualize the generative process of the 3D molecules in
Figure 19.

Pl
an

ar

t=0 t=0.25 t=0.5 t=0.75 t=1

t=0 t=0.25 t=0.5 t=0.75 t=1

Figure 16: Visualization of the generative process of DruM. We visualize the destination mixture from DruM
on the Planar dataset.

t=0 t=0.25 t=0.5 t=0.75 t=1

SB
M

t=0 t=0.25 t=0.5 t=0.75 t=1

Figure 17: Visualization of the generative process of DruM. We visualize the destination mixture from DruM
on the SBM dataset.

Pr
ot

ei
ns t=0 t=0.3 t=0.7 t=0.8 t=1

t=0 t=0.3 t=0.7 t=0.8 t=1

Figure 18: Visualization of the generative process of DruM. We visualize the destination mixture from DruM
on the Proteins dataset.

34

Under review as a conference paper at ICLR 2024

D
es

tin
at

io
n

M
ix

tu
re

Sa
m

pl
ed

G
ra

ph
De

st
in

at
io

n
M

ix
tu

re
Sa

m
pl

ed
G

ra
ph

De
st

in
at

io
n

M
ix

tu
re

Sa
m

pl
ed

G
ra

ph
De

st
in

at
io

n
M

ix
tu

re
Sa

m
pl

ed
G

ra
ph

Figure 19: Visualizations of the 3D molecule generative process of DruM on QM9 dataset (Top) and
GEOM-DRUGS dataset (Bottom). For each dataset, we visualize the trajectory Gt in the first row, and we
visualize the estimated destination mixtures from DruM in the second row. Note that the visualized molecules
are stable. The atom types and the 3D coordinates of the atoms inside the green circles are calibrated after the
convergence of the destination mixtures, where the convergence is achieved at an early stage.

35

Under review as a conference paper at ICLR 2024

F FUTURE WORK

We proposed a novel diffusion-based graph generation framework that directly predicts the destination
of the generative process as a weighted mean of data, thereby accurately capturing the topologies of the
final graphs that need to be generated. We have shown that our framework is able to generate graphs
with correct topology for diverse graph generation tasks, including 2D/3D molecular generation,
on which ours significantly outperforms previous graph generation methods. While DruM shows
superior performance, future work would benefit from improving our framework.

First, the likelihood of the generative process of DruM cannot be directly computed from the training
objective. In order to compute the likelihood, one could derive an associated probability flow ODE of
DruM as described in Section A.10, but this requires training an additional model for estimating the
reverse destination mixture.

Furthermore, the proposed framework is focused on unconditional graph generation tasks. We could
design a conditional framework of DruM by training a model sθ(Gt, t, c) for a given condition (i.e.,
class label) c for estimating the c-conditional destination mixture defined as follows:

DΠ∗
c (Gt, t) :=

∫
g
pgt (Gt)

pt(Gt)
Π∗

c(dg), Π∗
c := {g : g ∼ Π∗with label c}. (68)

Intuitively, the generative process of the modified OU bridge mixture, for which the destination
mixture is replaced by DΠ∗

c (Gt, t) is guided by the conditional destination mixture that terminates
in the conditioned distribution Π∗

c. We leave this conditional framework as future work.

36

	Introduction
	Related Work
	Destination-Predicting Diffusion Mixture for graph generation
	Designing the graph generative process
	Learning the destination mixture

	Experiments
	General graph generation
	2D molecule generation
	3D molecule generation
	Further analysis

	Conclusion
	Derivations
	Diffusion bridge processes
	Diffusion mixture representation
	OU bridge mixture
	Destination mixture for attributed graphs
	Reverse-time diffusion process of the OU bridge mixture
	Derivation of the destination mixture matching objective
	Analytical computation of the probability
	DruM as a stochastic interpolant
	Understanding the informative prior as regularizing the destination mixture
	Associated probability flow ODE of DruM
	Comparison with Denoising Diffusion Models
	Comparison of graph diffusion models

	Details of DruM
	Overview
	Training objectives
	Model architecture
	Sampling from DruM
	Hyperparameters of DruM

	Experimental Details
	General graph generation
	2D molecule generation
	3D molecule generation
	Computing resources

	Additional Experimental Results
	2D molecule genreation
	Further analysis

	Visualization
	Generated samples of DruM
	Generative process of DruM

	Future Work

