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Abstract

This work aims to study the possibility of melody genera-
tion based on any arbitrary image using the power of deep-
learning neural networks. We suggest a VAE-based pipeline
that generates cohesive 16-bar MIDI melodies from images
through emotion detection and modality transfer using fea-
ture embeddings. To implement this pipeline, we used an im-
age encoder, a MIDI VAE and three bridging computer vision
models. We then evaluate the system by examining the musi-
cal features of four distinct outputs to see how well they have
captured the features of the input images.

Introduction
In the age of machine learning, there have been multiple at-
tempts to connect music with images. A few focus on data
from album covers (Chao et al. 2011; Libeks and Turnbull
2011; Oramas et al. 2017), natural scenes (Qiu and Kataoka
2018), paintings (Rivas Ruzafa 2020) and videos (Wang
et al. 2012; Yu, Shen, and Zimmermann 2012; Wu et al.
2016, 2012). Nevertheless, most of these works target spe-
cific images and are not ideal for generalised use. Learning
features from raw audio files also poses a challenge, as audio
features may not necessarily have connections with musical
features such as melody and rhythm.

Inspired by the methods in (Tham and Kim 2021) and
(Zhang 2021), we propose a novel VAE-based system that
can generate coherent 16-bar melodies from any image
based on its emotion profile. To elaborate, a feature em-
bedding is created from the raw pixels and converted to a
MIDI embedding. The arousal and valence values (Mehra-
bian 1995) are deduced to obtain the tempo and tonality of
the generated melody, and this information is added to the
decoded MIDI embedding to generate a playable MIDI file.

Method
As seen in Fig. 1, the proposed pipeline contains five key
models: an input (image) encoder, an embedding genera-
tor, an arousal generator, a valence classifier, and an out-
put (MIDI) decoder. Additionally, to generate the training
dataset, another MIDI encoder is used.
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Figure 1: An overview of the pipeline.

Input encoders
Image For this work, we have selected the well-known
InceptionV3 model (Szegedy et al. 2016) trained on Ima-
geNet (Deng et al. 2009) as the image encoder. We prepro-
cess the image and pass it to the Inception model without the
fully connected layer to generate an image embedding zimg

of size (8, 8, 2048).

MIDI We use the pre-trained 16-bar variational au-
toencoder (hierdec-mel 16bar) from the MusicVAE
project (Roberts et al. 2018) developed by TensorFlow Ma-
genta, which includes a bidirectional LSTM encoder. We
read each MIDI file as a “note sequence” and pass it to an
OneHotMelodyConverter. It extracts the melody and
converts multiple randomly-chosen 16-bar slices to one-hot
tensors xmid. Then, we encode them with the MIDI encoder
model to obtain an output embedding zmid of size (512).

Bridging models
Embedding generator We train a model with a 2D con-
volution layer and multiple dense layers to generate a MIDI
embedding zmid of size (512) from an image embedding
zimg of size (8, 8, 2048). This embedding can be passed on
to the output decoder to generate a melody, which is saved
as a MIDI file. To augment the dataset, we have clustered the
image and MIDI embeddings into 10 abstract categories by
running the K-nearest neighbour algorithm on arousal and
valence as two dimensions. During each training step, em-



Algorithm 1: Training function at step q.
Data: zimgq as x, zmidq as y, cq as z, list of clusters as call.
Result: Loss value at step q.

xq ← [];
yq ← [];
foreach c ∈ call do

ind← vector of positions where z = c;
xc ← x[ind];
yc ← y[ind];
shuffle(yc);
xq ← [xq,xc];
yq ← [yq,yc];

logits = model(xq,yq);
loss = MSE(yq, logits);
applyGradient(loss);
return loss;

beddings in the same category are shuffled so that the image-
MIDI embedding pairs are different every epoch (see Algo-
rithm 1).

Arousal generator We introduce an arousal generator
model that can estimate the extent of stimulation of an im-
age, as a probability aimg , through binary classification of
its embedding. The source dataset is divided into 6 approxi-
mately equal classes based on arousal and valence informa-
tion, and the two most extreme classes are used to train the
model . We then apply the following formula to calculate the
tempo of the generated melody in BPM (beats per minute):

T (aimg) = 160 · 1

1 + e−5(aimg−0.5)
+ 40

where 0 ≤ aimg ≤ 1. This gives an output in the range
of approximately [52.14, 187.86] centred at (0.5, 120), since
120 BPM is the most common “standard tempo”.

Valence classifier We use the valence information to train
a binary classification model that can classify whether a
given image shows “positive” or “negative” emotions and
assign a major or minor tonality accordingly. As a part of
the touch-up, “non-diatonic” (out of the scale) notes are ran-
domly moved up or down a semitone to make them so. The
tonic is decided based on the first note of the melody and is
returned to at the end to establish a sense of completeness.
Afterwards, one chord is added to every bar based on the
first note of the bar to accompany the melody.

Output decoder
The MusicVAE autoencoder mentioned above comes with
a hierarchical LSTM decoder that uses a categorical LSTM
decoder at its core. It takes in an embedding zimg of shape
(256) and decodes it to a note sequence.

Dataset
Image
Given our request for an image dataset with valence and
arousal feature labels, we decide to combine two datasets.

Figure 2: Distribution of the final datasets.

1. CGnA10766 (Kim et al. 2018), a dataset consisting of
10, 766 images of people, animals and landscapes. Va-
lence and arousal values are provided for the entire im-
age, ranging from [0, 9], and are labelled by volunteer
annotators through Amazon Mechanical Turk (AMT).

2. EMOTIC (Kosti et al. 2019), a dataset consisting of
23, 571 images of people in the context of their surround-
ings. For each person, the emotion evoked falls into 26
distinct categories and three continuous dimensions (va-
lence, arousal and dominance) ranging from [0, 10], all
labelled by volunteers via AMT.

In particular, to obtain the overall valence and arousal of
the images in the EMOTIC dataset, we take the weighted
average of all people in an image, where the weight is the
relative size of the bounding box of the person to the size of
the image itself. In other words, for each image,

fimg =

∑n
i=1 wifi∑n
i=1 wi

where f is a feature vector of each person in the image, and

w =
(b3 − b1) (b4 − b2)

s

where b is the coordinates of the bounding boxes for each
person, given in the form of (x1, y1, x2, y2), and s is the size
of the image.

We then proceed to normalise the arousal and valence val-
ues of both datasets to [0, 1] and combine them. Duplicated
images and images that produce embeddings with NaN val-
ues are removed.

Result In the end, we obtained a total of 33, 612 images
with arousal and valence. Fig. 2a reveals that the valence in
the combined image dataset is quite unbalanced. In fact, the
ratio of high valence (> 0.5) to low valence (≤ 0.5) im-
ages is approximately 3 : 1. One explanation given by Kim
et al. (2018) is that “people usually share the positive im-
ages, rather than negative images”, as happiness is beneficial
to health and well-being (Seligman and Csikszentmihalyi
2000). As for arousal, Fig. 2b shows a pretty balanced dis-
tribution, with a high-to-low ratio of approximately 1.3 : 1.



Music
In this work, we use a subset of the Lakh MIDI Dataset
(LMD)1 (Raffel 2016), LMD-matched, which contains
45, 129 transcribed MIDI files matched to approximately
31, 034 tracks in the Million Song Dataset (MSD) (Bertin-
Mahieux et al. 2011). This allows us to have a huge collec-
tion of MIDI files with metadata of the original songs.

Valence MSD has each track labelled with much metadata
from the Echo Nest API, but valence is not provided. In ad-
dition, the API has been shut down in 2016 and is no longer
reachable, so we are unable to retrieve more information us-
ing the Echo Nest IDs. Fortunately, AcousticBrainz Labs has
provided an archive of mappings between Echo Nest IDs and
IDs of other platforms . In this way, we can obtain valence
information from Spotify, which uses a proprietary musical
analysis tool (from their acquisition of Echo Nest) to deduce
a value in the range of [0, 1]. For each recognised track, we
use the Spotify Web API to query its valence.

Arousal There is no concrete definition for “arousal” in
musical terms; in this work, we use the tempo of a song as
the intuitive definition. We assume that a faster song leads
to stronger positive or negative emotions and vice versa. To
incorporate the situation where tempo changes occur, we de-
fine the arousal of a MIDI file to be the weighted average
of its tempos, where the weight is the relative duration for
which a tempo is heard. In other words,

amid =
d · t

d
where d is a vector of the duration of each tempo, the sum of
which should add up to the total duration of the MIDI file,
and t is a vector of tempos expressed in BPM.

Result The final dataset contains approximately 33, 380
MIDI files from 18, 395 tracks. The distribution of valence
is reasonable, as shown in Fig. 2c, with the mean at around
0.45. Although the distribution of arousal in Fig. 2d seems
quite tilted to the lower range, it is actually because this data
is decided by tempo, which ranges from 26 to 310 BPM.
Even the 75% percentile is only around 0.39, so the thresh-
old for “low” and “high” arousal should not be set at 0.5.

Training
To prepare the source dataset for training, we have built two
training datasets with TensorFlow Dataset.

Embedding dataset To streamline the supervised train-
ing process of the embedding generator, we have prepared
a dataset with “(image embedding, MIDI embedding, clus-
ter)” triples. To generate this dataset, we first see whether the
image or the MIDI dataset has a greater number of samples
for each cluster. We then randomly up-sample embeddings
from the domain with fewer samples to ensure both are of
the same size and write each triple to the dataset. The order
of pairing is irrelevant since the embeddings will be shuf-
fled during training anyway. In the end, we have obtained a
dataset with 242, 200 examples.

1https://colinraffel.com/projects/lmd/

Figure 3: The four images used to test the model.

(a) Angry bird (b) Excited dog

(c) Sad person (d) Happy children

Figure 4: Melodies generated for corresponding images,
with chords omitted for brevity.

Arousal-valence dataset To integrate the datasets into a
useful format that can be used to train arousal and va-
lence models, we have also prepared a dataset with “(image
embedding, normalised arousal value, normalised valence
value, arousal class, valence class)” information, which all
come from the source datasets above. During training, only
the image embedding and the target feature are extracted and
used.

Results
To analyse the performance of the model musically, we have
selected four images with varying arousal and valence, as
seen in Fig. 3. The resulting music sheets generated by Mus-
eScore are shown in Fig. 4, and the corresponding audio has
been made public2.

The tempos for images with high and low arousal values
are very different. Fig. 4a and Fig. 4b show that the two
emotionally stimulating images both lead to a melody of
179 BPM, which is high in the range. Sometimes there are
peculiar variations; for instance, Fig. 4c and Fig. 4d show
that the happy children image receives a lower tempo (at 69
BPM) than the sad person image (at 83 BPM). Nonetheless,
this is understandable as after the image was resized during
pre-processing, the detailed features of the children might
have been lost and could not be captured accurately by In-
ceptionV3. Another observation is that the two images with
higher valence are assigned a major key, while the other two
with lower valence are assigned a minor key. This is within
our expectations.

The range of the melody generated is quite impressive,
almost always spanning more than an octave. Sometimes
the melody even changes to the bass clef, as seen in bars

2https://v2.photong.ml/samples



6 and 10 of Fig. 4d. In the playback, with chords two oc-
taves lower, this adds an interesting interaction between the
melody and the accompaniment. To give an example, the
D2 note on the last beat of bar 10 leads nicely into the G
chord on beat 1 of bar 11, creating a satisfying perfect ca-
dence. Rhythm-wise, it seems like the melodies mostly con-
tain quarter notes, although there are many interesting varia-
tions in the rhythm. For example, dotted notes create a triplet
groove, and syncopation (offbeat) can be heard in all four
extracts. These are sophisticated features that add rhythmic
diversity to the melody. There are also notes with different
duration, notably the shorter notes interpreted as staccatos.

Conclusion
In this work, we present a system with three original models
to achieve modality transfer between an image and a 16-bar
melody using embeddings. They are trained on established
emotional features (valence and arousal) to detect the emo-
tions in the image and generate a melody with features that
represent these emotions. To demonstrate the capability of
the models, we have performed a musical analysis of the
generated melodies for four distinct images.

Of course, there are aspects that could be further explored.
For example, training the valence model is an imbalanced
classification task as there are fewer images with lower va-
lence for reasons described in the dataset section, which can
be optimised using methods not yet studied in this work. The
source dataset is another element that can be improved on.
Although MSD contains (at the time) “contemporary pop-
ular music tracks” (Bertin-Mahieux et al. 2011), pop music
has evolved notably since then. It would be preferred to have
a dataset with newer songs, more genres and artists from dif-
ferent countries so that the model can learn a variety of mu-
sical styles. The embedding model can be enhanced by ex-
perimenting with techniques such as latent constraints (En-
gel, Hoffman, and Roberts 2018) and attribute vector arith-
metic (Carter and Nielsen 2017). This allows adjustments of
certain features of the output embedding, including tonality
and note density. An robust evaluation system could also be
employed to test the models on more diverse images.
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