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Abstract

We propose a framework for probabilistic fore-
casting of dynamical systems based on genera-
tive modeling. Given observations of the sys-
tem state over time, we formulate the forecasting
problem as sampling from the conditional distri-
bution of the future system state given its current
state. To this end, we leverage the framework
of stochastic interpolants, which facilitates the
construction of a generative model between an
arbitrary base distribution and the target. We de-
sign a fictitious, non-physical stochastic dynamics
that takes as initial condition the current system
state and produces as output a sample from the
target conditional distribution in finite time and
without bias. This process therefore maps a point
mass centered at the current state onto a proba-
bilistic ensemble of forecasts. We prove that the
drift coefficient entering the stochastic differen-
tial equation (SDE) achieving this task is non-
singular, and that it can be learned efficiently by
square loss regression over the time-series data.
We show that the drift and the diffusion coeffi-
cients of this SDE can be adjusted after training,
and that a specific choice that minimizes the im-
pact of the estimation error gives a Föllmer pro-
cess. We highlight the utility of our approach
on several complex, high-dimensional forecasting
problems, including stochastically forced Navier-
Stokes and video prediction on the KTH and
CLEVRER datasets. The code is available at
https://github.com/interpolants/forecasting.
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1. Introduction
Forecasting the future state of a dynamical system given
complete or partial information about the current state is a
ubiquitous problem across science and engineering, with di-
verse applications in climate modeling (Smagorinsky, 1963;
Palmer et al., 1993; Gneiting et al., 2005; Pathak et al.,
2022), fluid dynamics (Buaria & Sreenivasan, 2023), video
prediction (Oprea et al., 2020; Finn et al., 2016; Lee et al.,
2018), and extrapolation of time series data (Lim & Zohren,
2021; Masini et al., 2023). Forecasting can be performed
deterministically, whereby the goal is to compute a single
prediction for the future state (Giannakis et al., 2023), or
probabilistically, whereby the goal is to predict a distribu-
tion over future states consistent with the current informa-
tion (Gneiting & Katzfuss, 2014). Probabilistic forecast-
ing is the natural formulation when the underlying system
dynamics are stochastic, when the full system state can-
not be measured, or when measurements are corrupted by
noise, as is the case for most real-world systems of interest.
Moreover, while deterministic forecasting appears to be a
simpler problem, recent works have uncovered difficulties
with deterministic forecasting methods when the underlying
dynamics are chaotic (Jiang et al., 2023).

Motivated by the recent success of generative models built
upon dynamical transport of measure, such as score-based
diffusion (Ho et al., 2020; Song et al., 2020), flow matching
(Lipman et al., 2022), and stochastic interpolants (Albergo
& Vanden-Eijnden, 2022; Albergo et al., 2023), here we
introduce a generative modeling approach for probabilistic
forecasting. This approach maps the current state of the
system onto the ensemble of possible future outcomes after
a fixed time lag. From a transport perspective, this requires
pushing a point mass measure onto a probability distribu-
tion with larger support. In what follows, we show that the
interpolant framework enables us to design an artificial dy-
namics that performs this task using a stochastic differential
equation. In practice, the drift fields entering the SDEs we
introduce can be learned via square loss regression. We
also show that the diffusion coefficient in these SDEs can
be tuned a-posteriori (i.e. without having to retrain a drift).
We show that a specific choice that minimizes the impact
of the estimation error recovers a Föllmer process (Föllmer,
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1986), a specific instantiation of the Schrödinger bridge
problem (Schrödinger, 1932; Léonard, 2014) in which the
base distribution is a point mass measure.

To demonstrate the utility and scalability of our ap-
proach, we consider several examples: an illustrative low-
dimensional scenario based on a multi-modal jump diffu-
sion process, a high-dimensional problem generated by a
stochastic Navier-Stokes equation on the torus, and video
generation on the KTH (Schuldt et al., 2004) and CLEVRER
datasets (Yi et al., 2019). In the case of Navier-Stokes, we
show that our probabilistic forecasting method is capable
of reproducing quantitative metrics, such as the enstrophy
spectrum of the dataset, using either high- or low-resolution
measurement of the current system state. In each case,
we highlight that we are able to obtain diverse samples
consistent with the conditional distribution of interest, and
demonstrate the need for probabilistic, as opposed to deter-
ministic, forecasting. For the video generation tasks, we
show that our learned models are more effective than stan-
dard conditional generative modeling. We also show that
this forecasting procedure can be iterated autoregressively
without retraining to compute a predicted trajectory. Our
main contributions can be summarized as follows:

• We design new generative models for probabilistic fore-
casting based on stochastic differential equations (SDEs)
that map a point mass measure to a distribution with full
support by incorporating stochasticity in a principled way,
enabling us to initialize the SDE directly at the measured
system state.

• We prove that the drifts entering these SDEs can be
learned via square loss regression over the data, and that
the resulting loss has bounded variance.

• We show that the drift and noise terms in these SDEs can
be adjusted post-training, and that the specific choice of
noise that minimizes the Kullback-Leibler (KL) diver-
gence between the path measures of the exact forecasting
process and the estimated one is realizable. We show that
this drift and diffusion pair gives a Föllmer process.

• We validate our theoretical results empirically on several
challenging high-dimensional forecasting tasks, includ-
ing the Navier-Stokes equation and video prediction.

2. Related Work
There is a vast body of literature on forecasting. Methodolo-
gies can be broadly classified into two main categories: fore-
casting a single output, typically achieved through regres-
sion and operator theoretic approaches (Kutz et al., 2016;
Alexander & Giannakis, 2020; Li et al., 2021), and proba-
bilistic forecasting (Gneiting & Katzfuss, 2014), based on
stochastic and generative modeling.

Deterministic vs Probabilistic Forecasting. For the class
of methodologies focused on generating a single output,
a widely used approach is regression or supervised learn-
ing, which entails directly learning a map in the state space.
One can also work in the space of probability densities
or functionals on the state space, under the setting of the
Frobenius-Perron or Koopman operator approach (Dellnitz
& Junge, 1999; Kaiser et al., 2021); this leads to linear dy-
namics in an infinite-dimensional space, and forecasting
reduces to finding a tractable finite-dimensional approxima-
tion. In all formulations, the key is to identify and learn ac-
curate representations of the dynamics, for example through
nonparametric approaches such as diffusion maps (Berry
et al., 2015) and kernel regression (Alexander & Giannakis,
2020), or parametric approaches such as linear regression,
dynamical mode decomposition (Kutz et al., 2016), neural
networks (Li et al., 2021; Gu et al., 2021) and operators (Lu
et al., 2021; Jiang et al., 2023; Li et al., 2020). Ultimately,
these approaches produce a function that maps the current
state to a single output which is the deterministic forecast.
Many methods under this category train models with the
MSE (mean square error) or RMSE (root mean square error)
as the objective, but these losses may be poor signals for
training forecasters for chaotic systems (Jiang et al., 2023).

For dynamics that are inherently stochastic, or with incom-
plete information, a stochastic forecast is important to incor-
porate uncertainties. This stochasticity can be introduced
by fitting a probabilistic model, such as a stochastic process
or a graphical model, to data. They can also be approached
by stochastic Koopman operators (Wanner & Mezic, 2022;
Zhao & Jiang, 2023). Although many approaches have been
proposed, most of them target low-dimensional problems or
simple conditional statistics such as Gaussians.

Probabilistic Forecasting with Generative Models. Re-
cently, generative modeling techniques in machine learn-
ing have received increasing attention for handling high-
dimensional, complex distributions. Probabilistic forecast-
ing can be seen as a form of the conditional generation
problem. Various conditional generative models, including
conditional GAN (Mirza & Osindero, 2014), VAE (Sohn
et al., 2015), and normalizing flows (de Bézenac et al., 2020;
Kidger et al., 2021) have been developed. More recently,
diffusion generative models (Ho et al., 2020; Song et al.,
2020) have gained popularity due to their state-of-the-art per-
formance. The stochastic interpolant methodology, which
is related to contemporary work like flow matching (Lip-
man et al., 2022), is a general framework that encompasses
diffusion models. In the literature, there has been some
work to develop conditional models for time series (Rasul
et al., 2021; Lienen et al., 2023), including diffusion (Ho
et al., 2022a; Blattmann et al., 2023) and flow matching
models for video prediction (Davtyan et al., 2023). These
approaches learn ODEs or SDEs that map a Gaussian base
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to the conditional distribution of interest. There are also
works that forecast stochastic dynamics by adding noise
to the neural network layers (Rühling Cachay et al., 2024)
using techniques such as dropout. In contrast, we incorpo-
rate stochasticity rigorously through interpolants and direct
SDE modeling. Our construction of the stochastic genera-
tive model, which maps the current state to the distribution
of the forecasted state, is new and can be seen as a direct
stochastic extension of the deterministic map approach that
is predominant in single output forecasting.

Föllmer processes. The construction of SDEs that map
a point mass to a target distribution dates back at least to
the Föllmer process (Föllmer, 1986), which is a particular
solution of the Schrödinger bridge problem (Schrödinger,
1932; Léonard, 2014; Chen et al., 2021) that minimizes
the relative entropy with respect to the Wiener process.
This approach has the desirable feature that it offers an
entropy-regularized solution to the optimal transport prob-
lem. For this reason, the concepts of the Föllmer process
and the Schrödinger bridge have found many applications in
sampling densities with unknown normalization constants
(Zhang & Chen, 2021; Huang et al., 2021; Jiao et al., 2021;
Vargas et al., 2023), generative modeling (Tzen & Raginsky,
2019; Wang et al., 2021; De Bortoli et al., 2021; Liu et al.,
2023; Peluchetti, 2023; Shi et al., 2024) as well as stochastic
analysis and functional inequalities (Lehec, 2013; Eldan &
Lee, 2018; Eldan et al., 2020). In this article, we show that
the stochastic interpolant framework offers a simple way
to construct new types of Föllmer processes. In addition,
we give a new interpretation of Föllmer processes as min-
imizers of a KL divergence between the path measure of
an SDE that forecasts exactly and the approximate, learned
SDE. These results support the uses of Föllmer processes in
probabilistic forecasting.

3. Setup and Main Results
3.1. Conditional PDF

Assume that we are given a joint probability density function
(PDF) ρ(x0, x1) supported on Rd ×Rd and strictly positive
everywhere. Our aim is to design a generative model to
sample the conditional PDF of x1 given x0:

ρc(x1|x0) =
ρ(x0, x1)

ρ0(x0)
> 0, (1)

where ρ0(x0) =
∫
Rd ρ(x0, x1)dx1 > 0.1 Phrasing the ques-

tion this general way allows us to consider several instantia-
tions of interest by appropriately defining the joint PDF ρ.

1Our approach actually requires that x1|x0 has a positive den-
sity, but (x0, x1) does not have to. In particular, we can target any
density ρ1(x1) > 0 by drawing (x0, x1) from the joint distribu-
tion µ(dx0, dx1) = µ0(dx0)ρ1(x1)dx1 with any µ0 (e.g. a point
mass), since we then have ρc(x1|x0) = ρ1(x1).

In particular, we study the following three problem settings:

Probabilistic forecasting. Suppose that we are given a dis-
crete time-series {. . . , x−τ , x0, xτ , . . .} = {xkτ}k∈Z with
each xkτ ∈ Rd containing, for example, daily weather mea-
surements or video frames, acquired every lag-time τ > 0.
Assume that this time-series is a stationary process2 and
that the law of successive observations (xkτ , x(k+1)τ ) is
captured by the joint PDF ρ(xkτ , x(k+1)τ ). Then sampling
from ρc(·|xkτ ) produces the ensemble of forecasts x(k+1)τ

given the observation xkτ .

Signal recovery from corrupted data. Suppose that,
given clean data x1 ∈ Rd, we observe the corrupted signal
x0 ∈ Rd (e.g. a low-resolution or noisy image obtained
from a high-resolution image). If we assume that the joint
PDF of (x0, x1) is ρ(x0, x1), then sampling from ρc(·|x0)
producesthe ensemble of clean data x1 consistent with the
corrupted signal x0.

Probabilistic forecasting from noisy observations. We
can combine the previous two setups if we assume that
we are given a discrete-time-series {xkτ , x̃kτ}k∈Z with xkτ
the clean data and x̃kτ the corrupted observation at time
kτ . If we assume that the joint PDF of (x̃kτ , x(k+1)τ ) is
ρ(x̃kτ , x(k+1)τ ), then sampling from ρc(·|x̃kτ ) produces
the ensemble of clean forecasts x(k+1)τ given the noisy
observation x̃kτ .

3.2. Generation with Stochastic Interpolants

The generative models that we develop here are based on
stochastic differential equations that map a fixed initial con-
dition Xs=0 = x0 to samples from the conditional distribu-
tion Xs=1 ∼ ρc(·|x0). Towards the design of such SDEs,
we first introduce the stochastic interpolant

Is = αsx0 + βsx1 + σsWs (2)

where (x0, x1) ∼ ρ(x0, x1) and W = (Ws)s∈[0,1] is a
Wiener process with W ⊥ (x0, x1). In addition, we impose
that α, β, σ ∈ C1([0, 1]) satisfy the boundary conditions
α0 = β1 = 1 and α1 = β0 = σ1 = 0. To facilitate some
calculations, we assume that β̇s > 0 for all s ∈ (0, 1] and
σ̇s < 0 for all s ∈ [0, 1]. Here we will use αs = σs = 1−s,
and βs = s or βs = s2 (see Appendix B.1). This second
choice for βs has some advantages that we discuss below.

The boundary conditions on α, β, and σ guarantee that
Is=0 = x0 and Is=1 = x1, so that the probability distri-
bution of Is|x0 bridges the point mass measure at x0 to
ρc(·|x0) as s varies from 0 to 1. The following result shows
that this probability distribution is also the law of the solu-
tion to a SDE that can be used as a generative model.

2This assumption can be relaxed; see Appendix A.
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Theorem 3.1. Let bs(x, x0) be the unique minimizer over
all b̂s(x, x0) of the objective

Lb[b̂s] =

∫ 1

0

E
[
|b̂s(Is, x0)−Rs|2]ds, (3)

where E denotes an expectation over (x0, x1) ∼ ρ and W
with (x0, x1) ⊥W , Is is given in (2), and we defined3

Rs = α̇sx0 + β̇sx1 + σ̇sWs, (4)

Then the solutions to the SDE

dXs = bs(Xs, x0)ds+ σsdWs, Xs=0 = x0, (5)

are such that Law(Xs) = Law(Is|x0) for all (s, x0) ∈
[0, 1]× Rd. In particular, Xs=1 ∼ ρc(·|x0).

This theorem is proven in Appendix B.2. The result is for-
mulated in a way that is tailored to practical approximation
of the drift bs, since the objective (3) can be estimated em-
pirically by generating samples of Is and Rs using sample
pairs (x0, x1) from ρ and realizations of Ws

d
=

√
sz with

z ∼ N(0, Id). That is, bs may be learned over neural net-
works by minimizing the simulation-free loss (3) over the
parameters. It is easy to see that the minimizer is given by

bs(x, x0) = Ex0 [Rs|Is = x], (6)

where Ex0 [·|Is = x] denotes an expectation over x1 ∼
ρc(·|x0) andW with x1 ⊥W conditioned on the event Is =
x. The drift (6) is well-defined for all (s, x, x0) ∈ [0, 1]×
Rd×Rd, and we show in Appendix B.3 that enforcing β̇0 =
0 offers additional control on the boundedness and Lipschitz
constant of b at the initial time. We observe empirically that
this has computational advantages at both optimization and
sampling time; see the experiments in Appendix C.

3.3. Generalizations with Tunable Diffusion

We now show that learning the drift coefficient (6) gives
access to a broader set of SDEs to use as a generative model
beyond just (5), and that selecting from them has appealing
theoretical motivation.

Let ρs(x|x0) be the PDF of Xs
d
= Is|x0. From (5), ρs

solves the Fokker-Planck equation

∂sρs +∇ · (bs(x, x0)ρs) = 1
2σ

2
s∆ρs. (7)

Given a candidate diffusion coefficient gs, we can use the
identity 1

2σ
2
s∆ρs =

1
2g

2
s∆ρs− 1

2 (g
2
s −σ2

s)∇· (ρs∇ log ρs)
to trade diffusion for transport in (7). This construction
leads to a family of SDEs with tunable diffusion

3Here and below the dot denotes derivative with respect to s.

Theorem 3.2. Given any g ∈ C0([0, 1]) such that
lims→0+ s

−1[g2s − σ2
s ] and lims→1− g

2
sσ

−1
s exist, define

bgs(x, x0) = bs(x, x0) +
1
2 (g

2
s − σ2

s)∇ log ρs(x|x0) (8)

where bs(x, x0) is the minimizer of (3) given in (6) and

ρs(x|x0) is the PDF of Xs
d
= Is|x0. Then the solutions to

the SDE

dXg
s = bgs(X

g
s , x0)ds+ gsdWs, Xg

s=0 = x0, (9)

are such that Law(Xg
s ) = Law(Xs) = Law(Is|x0) for all

(s, x0) ∈ [0, 1]× Rd. In particular Xg
s=1 ∼ ρc(·|x0).

This theorem is proven in Appendix B.4, where we explain
why the conditions on gs guarantee that the SDE (9) is well-
posed. Working with this SDE requires the score ∇ log ρs.
Interestingly, this score can be expressed in terms of the
drift bs. A direct calculation reported in Appendix B.4
shows that

∇ log ρs(x|x0) = As [βsbs(x, x0)− cs(x, x0)] , (10)

where

As = [sσs(β̇sσs − βsσ̇s)]
−1,

cs(x, x0) = β̇sx+ (βsα̇s − β̇sαs)x0.
(11)

Using (10) in (8) shows that, to work with the SDE (9), we
can estimate b first and then adjust both the noise amplitude
gs and the drift bg a-posteriori without having to retrain b.4

This offers flexibility at sampling time that can be lever-
aged to maximize performance, as shown in our numerical
experiments below.

3.4. KL Optimization and Föllmer Processes

In light of Theorem 3.2, it is natural to ask if a specific
choice of gs is optimal in a suitable sense. To provide one
answer to this question, we consider the KL divergence
between the path measure of the process Xg = (Xg

s )s∈[0,1]

(which solves the ideal SDE (9)) and the path measure of the
process X̂g = (X̂g

s )s∈[0,1] (which solves an approximate,
learned version of (9) obtained through an estimate b̂ of b).
Because Law(Xg

s ) = Law(Is|x0) for all (s, x0) ∈ [0, 1]×
Rd, this KL divergence is given by (see Appendix B.5 for
details)

DKL(X
g||X̂g) =

∫ 1

0

|1 + 1
2βsAs(g

2
s − σ2

s)|2Ls

2|gs|2
ds (12)

where Ls = Ex0
[
|b̂s(Is, x0)− bs(Is, x0)|2

]
. Eq. (12) mea-

sures how the estimation error on b impacts the generative

4Using (10) in (8) requires some care at s = 0 and s = 1 due to
the factor [sσs]

−1 in As, but this leads to no issue see Algorithm 2
and also Appendices B.1 and B.4.
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process, and as such it is natural to minimize it over g. Since
Ls is independent of gs, this minimization can be performed
analytically. The result is that (12) is minimized if we set
gs = gF

s with

gF
s =

∣∣∣2sσs(β−1
s β̇sσs − σ̇s)− σ2

s

∣∣∣1/2 . (13)

This expression is well-defined for all s ∈ [0, 1], since
lims→0+ 2sβ−1

s β̇s <∞ because βs is differentiable at s =
0 by assumption. The result in (13) is also amenable to an
interesting interpretation:

Theorem 3.3. If βs/[
√
sσs] is non-decreasing, then the

processXF ≡ XgF
that solves (9) with gs = gF

s is a Föllmer
process.

This theorem is proven in Appendix B.6. To understand
its significance, recall that the Föllmer process is the so-
lution to the Schrödinger bridge problem when one of the
endpoint measures is a point mass (in this case, at x0). As
such, it offers an entropy-regularized solution to the op-
timal transport problem. The Föllmer process is usually
defined by minimizing its KL divergence with respect to
the Wiener process subject to constraints on the endpoints.
Theorem 3.3 offers a generalization and new interpretation
of this process as the minimizer of the KL divergence of
the exact forecasting process from the estimated one, which
is more tailored to statistical inference. For more details
about Föllmer processes and the Schrödinger bridge prob-
lem we refer the reader to Appendix B.5. We also test the
performance of (13) in Appendix C.2.

3.5. Implementation

For concreteness, we consider the problem of probabilistic
forecasting, but the alternative problem settings covered by
our framework can be handled similarly. Given the truncated
time series SK = {xkτ}K+1

k=0 with K ∈ N and K ′ ≤ K, we
can approximate the objective in (3) by the empirical loss

LK
b [b̂] =

1

K ′

∑
k∈BK′

∫ 1

0

|b̂s(Iks , xkτ )−Rk
s |2ds, (14)

where BK′ ⊂ {0 : K} is a subset of indices of cardinal-
ity K ′ and

Iks = αsxkτ + βsx(k+1)τ +
√
sσszk

Rk
s = α̇sxkτ + β̇sx(k+1)τ +

√
sσ̇szk

(15)

with zk ∼ N(0, Id), zk ⊥ (xkτ , x(k+1)τ ). To arrive at (14)

we used that Ws
d
=

√
sz with z ∼ N(0, Id) at all s ∈

[0, 1]. In (14) and (16) below, the physical lag τ > 0 is
fixed, while s varies over [0, 1], and the integral over s can
be approximated via an empirical expectation over draws
of s ∼ U([0, 1]). By approximating b̂ in an expressive

parametric class such as a class of neural networks, we can
optimize (14) over the parameters with standard gradient-
based methods. This can be performed by batching over
subsequences in the available time series, or via online
learning if a stream of data is continuously observed.

Having learned an approximation b̂, we can construct an
approximation of b̂g using (8), (10), and (11). We may then
form our model given the new observation xkτ by solving

dX̂k
s = b̂gs(X̂

k
s , xkτ )ds+ gsdWs, X̂k

s=0 = xkτ , (16)

with various realizations of the noise Ws to generate a set of
X̂k

s=1 that approximately samples ρc(·|xkτ ). This generates
an ensemble of forecasts with statistics consistent with those
of the time-series seen during training. This process can also
be iterated autoregressively by setting X̂k+1

s=0 = X̂k
s=1 and

by solving the SDE (16) with k replaced by k + 1 to get an
approximate sample X̂k+1

s=1 of ρc(·|x(k+1)τ ). This iteration
does not require any additional training, since it uses the
same b̂s. These procedures are summarized in Algorithms 1
and 2. The first step to get Xs=s1 = X̂1 in Algorithm 2 is
consistent and designed so that it avoids computing b̂gs=0,
since using (8) and (10) can exhibit numerical singularities
even though bgs=0 is well defined when the conditions of
Theorem 3.2 are met.

Algorithm 1 Training

1: Input: Data set SK = {xkτ}K+1
k=0 ; minibatch sizeK ′ ≤

K; coefficients αs, βs, σs.
2: repeat
3: Compute the empirical loss LK

b [b̂] in (14).
4: Take gradient step on LK

b [b̂] to update b̂s.
5: until converged
6: Return: drift b̂s(x, x0).

Algorithm 2 Sampling

1: Input: Observation xkτ ; model b̂s(x, x0); noise coeffi-
cient gs, grid s0 = 0 < s1 · · · < sN = 1 with N ∈ N;
iid ηn ∼ N(0, Id) for n = 0 : N − 1.

2: Set ∆sn = sn+1 − sn, n = 0 : N − 1.
3: Set X̂1 = xkτ + b̂s0(xkτ , xkτ )∆s0 + σs0

√
∆s0η0.

4: for n = 1 : N − 1 do
5: Compute b̂gsn(X̂n, xkτ ) from (8) and (10).
6: Set X̂n+1 = X̂n+b̂

g
sn(X̂n, xkτ )∆sn+gsn

√
∆snηn.

7: end for
8: Return: X̂N+1 ∼ ρ̂c(·|xkτ ) ≈ ρc(·|xkτ ).

4. Numerical illustrations
In what follows, we test our proposed method in several
application domains. For all tests, an interpolant with co-
efficients αs = 1− s, σs = ε(1− s) for some ε > 0, and
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βs = s2 is used. The condition that β̇0 = 0 empirically en-
sures that the norm of the parameter gradients used to train
our neural networks are well behaved. We report results
with the diffusion coefficient in (16) chosen to be gs = σs,
as we found that the impact of learning b̂s well by choice
of the right interpolant outweighed the effect of varying the
SDE for the systems we study. For additional numerical
experiments with αs = 1 − s, σs = ε(1 − s) and βs = s,
and with gs = gF

s , we refer the reader to Appendix C.2. In-
vestigation of the Föllmer SDE described in Theorem 3.3, in
both theory and experiment, will be saved for future work.

4.1. Multi-modal jump diffusion process

Figure 1. Invariant PDF for
the jump-diffusion process.

Our first example is syn-
thetic, and consists of fore-
casting a two-dimensional
jump-diffusion process with
invariant PDF given by a
Gaussian mixture (Fig. 1).
We study a particle gov-
erned by Langevin dynam-
ics that is randomly kicked
in the counterclockwise di-
rection, where the times be-
tween kicks are specified by a Poisson process (see Ap-
pendix C.1 for details).

In this example, if the process starts at a point in one mode,
its PDF spreads in the mode and leaks into the other nearby
modes in the counterclockwise direction (see Fig. 2). Corre-
spondingly, the conditional PDF of xτ given x0 is itself
a Gaussian mixture PDF that is sharply peaked around
x0 when τ is small, and which slowly evolves into the
5-mode invariant measure associated with the potential as
τ increases. We generate a long time series of this process
and use it at different lags τ in the empirical loss (14) to
learn the drift velocity b̂, which we model as a fully con-
nected neural network. We then use the estimated b̂g in
the SDE (16) to generate probabilistic forecasts. The re-
sults (Fig. 2) indicate that the law of these forecasts is in
excellent agreement with the true ρc(xτ |x0). We can also
iterate using the procedure described in Sec. 3.5 to estimate
ρc(xkτ |x0) for k > 1 without additional retraining. We
find excellent agreement in doing so, including beyond the
decorrelation time, when the conditional PDF relaxes into
the equilibrium distribution independent of x0. We note
that this is an example in which probabilistic forecasting is
key, as regressing xτ given x0 would give results with little
information. Probabilistic forecasting is needed to capture
the non-Gaussian and multimodal nature of the forecasts,
which would be hard to capture with deterministic methods.

Angular KDE

truth

forecast

Ground Truth KDE Forecasted KDE

-1π -0.5π 0 0.5π 1π

τ
=

0.
5

τ
=

1.
0

τ
=

2.
0

Figure 2. Forecasting comparison for the jump-diffusion pro-
cess. (Left) Comparison of the truth to the forecasted prediction in
the angular coordinates. (Middle) Ground truth KDEs at various
lag times τ . (Right) Forecasted KDEs at the same lag times τ .

4.2. Forecasting the 2d Navier-Stokes Equations

Our second numerical example considers forecasting the
dynamics of the solution to the 2d Navier-Stokes equations
with random forcing on the torus T2 = [0, 2π]2. With the
vorticity formulation, the Navier-Stokes equations read

dω + v · ∇ωdt = ν∆ωdt− αωdt+ εdη. (17)

Here v = ∇⊥ψ = (−∂yψ, ∂xψ) is the velocity expressed
in terms of the stream function ψ, which is a solution to
−∆ψ = ω, dη is white-in-time random forcing acting on
a few Fourier modes, and ν, α, ε > 0 are parameters (see
Appendix C.2 for details). We work in a setting where (17)
is provably ergodic with a unique invariant measure (Hairer
& Mattingly, 2006). Our objective is to forecast the solution
to (17) at time t + τ given its solution at time t after the
process has reached a statistically steady state. We do so
using both full- and low-resolution data at time t, but our
goal is always to forecast at full resolution.

Vorticity Data. We employ a pseudo-spectral method to
simulate (17) and hence to obtain a dataset of snapshots of
the vorticity field. We set the timestep ∆t = 10−4 and grid
size to 256 × 256. We store snapshots at regular intervals
of ∆t = 0.5. We conduct simulations for 2000 trajectories
within the time range of t ∈ [0, 100]; we then exclude the
initial phase t ∈ [0, 50] from our data. Ultimately, we collect
a total of 2× 105 snapshots, which are treated as samples
from the invariant measure of (17). To reduce memory
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requirements, we downsize the dataset to a resolution of
128×128. In all our experiments, we used a UNet (Ho et al.,
2020) as our network for approximating the velocity field.
Detailed parameters for the training and dataset generation
can be found in the Appendix C.2.

Forecasting at Full Resolution. First, we consider pre-
dicting the distribution of the vorticity field that may evolve
from a given realization. To this end, we learn the SDE
that samples the conditional distribution of vorticity fields
after lag τ = 0.5, and we iterate this SDE to get forecasted
predictions after lag 2τ , 3τ , etc. In the top row of Fig. 3, the
first panel shows a snapshot of a vorticity field, while the
next three panels show different samples of vorticity fields
generated after lag 2 by iterating our forecasting procedure.
Note that these generated vorticity fields are different from
one another, emphasizing the need for probabilistic fore-
casting. This is corroborated by the true and forecasted
conditional means of the field shown in the first two panels
on the bottom row of Fig. 3. While correctly captured by our
approach, this conditional mean is clearly not informative
on its own, as it averages over the spatial features present in
the actual forecast. The spread of this ensemble of forecasts
is also apparent from the standard deviation of the field,
shown in the third and fourth panel on the bottom row of
Fig. 3. Also shown in the right panel is the enstrophy spec-
trum of the true vorticity field and the ensemble of forecasts
(see Appendix C.2), showing that our method captures this
important physical quantity correctly.

Forecasting from Low-Resolution Data. We now con-
sider forecasting the vorticity field at a resolution of 128×
128 from a downsized version at resolution 32 × 32 by
learning the SDE as before with a drift velocity that is condi-
tioned on the low-resolution field used as x0. The outcome
of this task is shown in Fig. 4, where the four panels on the
right show the low-resolution field used as input surrounded
by three full-resolution forecasts generated after lag = 1.
We also plot the enstrophy spectrum of the low-resolution
field (which does not go past wavenumber 16) and the spec-
tra of the true and the forecasted field at full resolution in
the left panel. As can be seen, our approach recovers the
true spectrum very accurately.

We present additional experiments such as superresolution,
comparisons between using σs and gFs (Föllmer process) in
terms of KL accuracy, and comparisons to flow matching
and deterministic forecasting in Appendix C.2. In addition,
in Appendix C.2, we present results showing that the SDE
forecasting can be 100× faster than directly simulating the
stochastic PDE in the Navier-Stokes example.

4.3. Video Forecasting

We model the KTH and CLEVRER datasets. We follow
RIVER (Davtyan et al., 2023) and model these videos in

the latent space of a VQGAN (Esser et al., 2021) trained to
auto-encode the datasets, as is common for high-resolution
image and video synthesis (Vahdat et al., 2021; Rombach
et al., 2022; Peebles & Xie, 2023; Blattmann et al., 2023;
Davtyan et al., 2023; Ma et al., 2024).

Task Description. For video frames xt with C channels
and resolution H×W , the VQGAN maps each video frame
to a latent image yt = Encode(xt) with Cℓ latent channels
and latent resolutionHℓ×Wℓ. Our aim is to sample from the
conditional density ρc(yt|yt−1, . . . , yt−C) describing the
probability of a frame given a sequence of previous frames,
which can then be decoded xt = Decode(yt). We set the
interpolant base distribution to a point mass on ys=0 = yt−1

and we model ys=1 = yt.

Generation. Because conditioning on the whole set of C
previous time slices is costly, we follow RIVER (Davtyan
et al., 2023) and use a Monte-Carlo estimator that gener-
ates our estimate of the tth latent frame ŷt conditional on
latent frame yt−1 and an additional frame yt−j randomly
chosen for 1 ≥ j < t − 1. To give the network context
for the conditioned frame, we also condition on the time
index t−j. This random conditioning set (yt−1, yt−j , t−j)
avoids the need to compute functions of the entire condition-
ing context. Samples are then decoded to produce images
xt = Decode(yt). To sample a full video, we apply this
forecasting strategy autoregressively. For further details,
see Algorithm 3 in Appendix C.3.

FVD metric. The Fréchet Video Distance (FVD) (Un-
terthiner et al., 2018) extends the Fréchet Inception Distance
(FID) (Heusel et al., 2017). We select 256 test set videos
and generate 100 completions for each one, thereby com-
paring 256 real videos to 25,600 generated videos. We also
report several qualitative features of the generated videos.
One consequence of using the VQGAN is that the perfor-
mance is bounded by the FVD of the decoded encoded
data since the generative model targets the encoded dis-
tribution. More information on evaluation is provided at
https://github.com/interpolants/forecasting.

Baseline. We compare with the setup from Davtyan et al.
(2023), which learns a deterministic flow using flow match-
ing (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-
Eijnden, 2022) to map a Gaussian sample to the next video
frame, conditioned on the same information as in our setup.
By contrast, we generate with an SDE sampler initialized
at the previous video frame, which is more proximal to the
next target frame than pure noise. We use the VQGAN
checkpoints from RIVER so that we can study our proposed
generative modeling method in a controlled context.

Datasets. The KTH dataset (Schuldt et al., 2004) consists
of black-and-white videos of 25 people completing one of 6
actions such as jogging and hand-waving. We use the last
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ωt

true v.s. forecast conditional mean

← three forecasts of ωt+2 →

true v.s. forecast conditional std
100 101

10 2

10 1

100

101

true conditional
forecast conditional

enstrophy spectrum (v.s. k)

Figure 3. Temporal forecasting on stochastically-forced Navier Stokes. (Top left) Different forecasts from our method at lag τ = 2, for
a fixed ωt. (Bottom left) Comparisons between the forecast sample mean and standard deviation for this ωt against the truths. (Right)
Enstrophy spectrum of the true and forecasted conditional distribution. Note: All the NS figures in this paper share the same color bars for
the vorticity field (on a scale from −5 to 5) and std (on a scale from 0 to 3) respectively.

32 × 32 ωt

forecast ωt+1

forecast ωt+1

forecast ωt+1

100 10110 3

10 2

10 1

100

101

k = 16
truth
super resolution
low resolution

enstrophy spectrum (v.s. k)

Figure 4. Spatiotemporal forecasting on stochastically-forced
Navier Stokes. (Left) Low resolution ωt and three of our fore-
casted samples at t+ 1. (Right) Enstrophy spectrums of the low
resolution ωt, the superresolution forecast of ωt+1, and the true
ωt+1.

5 people as the test set. The 1× 64× 64-dimensional data
space is mapped to a 4 × 8 × 8-dimensional latent space
by the VQGAN. During generation, we start with 10 given
video frames, and we generate the next 30 frames. The
CLEVRER dataset5 (Yi et al., 2019) contains videos created
for studying reasoning and physics tasks. The videos feature
cubes, spheres, and other shapes traveling across the screen
and interacting through collisions while being subject to
forces and rotations. One interpretation of this data is that
a generative model needs to deduce physical phenomena
to succeed at generation. For example, objects should not
go through each other, and instead should bounce off one
another. The 3 × 128 × 128-dimensional data space is
mapped to a 4× 16× 16 latent space. During generation,
we condition on just 2 real frames and generate 14.

5http://clevrer.csail.mit.edu/

KTH CLEVRER

Method 100k 250k 100k 250k

RIVER 46.69 41.88 60.40 48.96
PFI (ours) 44.38 39.13 54.7 39.31

Auto-enc. 33.45 33.45 2.79 2.79

Shifted FVD

RIVER 13.24 8.43 57.61 46.17
PFI (ours) 10.93 5.68 51.91 36.52

Table 1. Video Results. FVD computed on 256 test set videos,
with the model generating 100 completions for each video. Results
are reported for 100k and for 250k gradient steps. “Auto-enc.”
represents the FVD of the pretrained encoder-decoder compared
to the real data. It serves as a bound on the possible model perfor-
mance, because the modeling is done in the latent space computed
by the encoder-decoder pair. We also supply a shifted FVD, where
encoded-decoded FVD is subtracted from FVD values to show
they approach this approximate bound.

Results. Training details are in Appendix C.3. Table 1
shows the FVD performance of our model, probabilistic
forecasting with interpolants (PFI), as compared to the
RIVER baseline. We train both models under the same con-
ditions for a controlled comparison. On both the KTH and
CLEVRER datasets, PFI surpasses the standard flow match-
ing approach. In addition to the numerical comparison, we
demonstrate that our models produce diverse forecasts that
capture physical rules inherent to the videos. In Figure 5,
we illustrate two trajectories of the animation. For each,
we supply the initial condition, the dataset trajectory, and
a generated trajectory based off of the same initial condi-
tion to show that the continuation of frames is probabilistic.
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Figure 5. Video generation on the CLEVRER dataset. (Top row) Real trajectory. (Second row) Generated trajectory. A new, red cube
enters the scene. (Third row) Real trajectory. (Fourth row) Generated trajectory. A new green cube enters the scene, and collision physics
is respected (green ball hits red cube).

Figure 6. Video generation on the KTH dataset. (Top row) Real trajectory. (Middle and bottom rows) Generated trajectories. As time
proceeds, the generated videos drift from the true video, but still display temporally-consistent hand-waving motions.

For example, there is variation in the dataset trajectory of
a green cube colliding with a green cylinder as compared
to the forecasted trajectory, while also preserving the ani-
mated physics. In Figure 6, we show that, from the same
initial frame, the forecasts give varied realizations of the
hand-waving video category.

5. Conclusion and Future Work
In this work, we introduced a principled approach to the
use of generative modeling for probabilistic forecasting. By
introducing stochastic processes that transport a point mass
centered at a current observation of the system to a distribu-
tion over future states of that system, our proposed method
uses dynamical measure transport in a way that naturally
aligns with the framework of probabilistic forecasting. It
also allows us to minimize the impact of the estimation error
by tuning of the diffusion coefficient, which can be done af-
ter training and offers a new perspective on the Föllmer pro-

cess. We have shown various uses of this approach, ranging
from predicting the evolution of stochastic fluid dynamics
to video completion tasks. Future work will consider using
these models for empirical weather data and incorporation
of physical structure into the generative model. Other gener-
alizations will include mitigating the cost of simulating the
SDE e.g. by tuning the diffusion coefficient to that effect, or
using data sampled at random time-lags τ by conditioning
the drift on these τ .

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here. We note, however, that video
generation, which is one of the possible applications of the
forecasting framework, is a less explored domain that could
promote harm through biases in the model. We surmise that
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it carries the same risks as image generation technologies.
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A. Discussion on the stationarity assumption
The stationarity assumption of the time series in Section 3 implies that ρ(xkτ , x(k+1)τ ) is independent of time. This
assumption is sufficient, but not necessary for the use of our algorithm. More specifically, we can decompose the possible
scenarios into 4 categories:

Markovian Non-Markovian
Stationary Works as currently presented Works by the stationarity assumption

Non-stationary Works; learn a time-independent transition kernel Works; need to condition on time in the model

In more details:

• If the time series is stationary and Markovian, then the method works as it is currently presented.

• If the time series is non-stationary but Markovian, our algorithm can still accurately learn the conditional distribution
ρc(·|x0), provided that the transition kernel is time-independent. This can be seen from our formulation, which only
requires a joint distribution ρ(x0, x1) to be time-independent. We have the flexibility to use any distribution for the
input x0 and use it with the conditional distribution ρc(·|x0) to define the joint distribution.

• If the time series is stationary but non-Markovian, then the method works again by the stationarity assumption.

• If the time series is non-stationary and non-Markovian, then the method can still work if it is adapted so that the drift
also conditions on the physical time.

The Navier-Stokes experiments we present are in the category ‘stationary and Markovian’ since to obtain the training data,
we ran the simulation for a sufficiently long time and discarded the initial samples. The video experiments seem to belong to
the category ‘non-stationary but Markovian’, though this assertion is hard to test.

B. Details on stochastic interpolants
B.1. Analytical formulas for some specific αs, βs, σs

In this section, we present the formulas for some specific choices of αs, βs, and σs, the corresponding optimal (Föllmer)
drift gFs , and the expression for bgs in terms of bs.

For αs = 1− s, σs = ε(1− s) where ε > 0 is a tunable parameter, and βs = s, we have

bs(x, x0) = Ex0 [x1 − x0 − ε
√
sz|(1− s)x0 + sx1 + ε(1− s)

√
sz = x], for s ∈ (0, 1)

b0(x0, x0) = Ex0 [x1]− x0,

b1(x, x0) = x− x0.

(18)

Moreover, bs is the minimizer of the loss (with respect to b̂)

Lb[b̂] =

∫ 1

0

E
[
|b̂s((1− s)x0 + sx1 + (1− s)ε

√
sz, x0)− (x1 − x0 − ε

√
sz)|2

]
ds. (19)

We also have

As =
1

ε2s(1− s)
, cs(x, x0) = x− x0 (20)

so that, for any gs such that lims→0+ s
−1[g2s − ε2(1− s)2] and lims→1− g

2
s/(ε(1− s)) exists,

bgs(x, x0) = bs(x, x0) +
1
2

(
g2s − ε2(1− s)2

)( bs(x, x0)
ε2(1− s)

− x− x0
ε2s(1− s)

)
for s ∈ (0, 1),

bg0(x0, x0) = b0(x0, x0) = Ex0 [x1]− x0,

bg1(x, x0) = b1(x, x0) = x− x0.

(21)
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In addition, we have
gF
s = ε

√
(1− s)(1 + s), (22)

so that
bF
s(x, x0) = (1 + s)bs(x, x0)− x+ x0 for s ∈ [0, 1]. (23)

For αs = 1− s, σs = ε(1− s), and βs = s2, we have

bs(x, x0) = Ex0 [2sx1 − x0 − ε
√
sz|(1− s)x0 + s2x1 + ε(1− s)

√
sz = x], for s ∈ (0, 1)

b0(x0, x0) = −x0,
b1(x, x0) = x− x0.

(24)

Moreover, bs is the minimizer of the loss

Lb[b̂] =

∫ 1

0

E
[
|b̂s((1− s)x0 + s2x1 + ε(1− s)

√
sz, x0)− (2sx1 − x0 − ε

√
sz)|2

]
ds. (25)

We also have
As =

1

ε2s2(1− s)(2− s)
, cs(x, x0) = 2sx− s(2− s)x0, (26)

so that, for any gs such that lims→0+ s
−1[g2s − ε2(1− s)2] and lims→1− g

2
s/(ε(1− s)) exist,

bgs(x, x0) = bs(x, x0) +
1
2

(
g2s − ε2(1− s)2

)( bs(x, x0)

ε2(1− s)(2− s)
− x− x0
ε2s2(1− s)(2− s)

)
for s ∈ (0, 1)

bg0(x0, x0) = b0(x0, x0) = Ex0 [x1]− x0

bg1(x, x0) = b1(x, x0) = x− x0.

(27)

In addition we have
gF
s = ε

√
(1− s)(3− s) (28)

so that
bF
s(x, x0) =

(
1 +

1

2− s

)
bs(x, x0)−

1

s(2− s)
(2x− (2− s)x0) for s ∈ (0, 1],

bF
0(x0, x0) = −2x0.

(29)

We summarize the above calculations in the following table:

αs βs σs gFs As cs(x, x0) bF
s(x, x0)

1− s s ε(1− s) ε
√
(1− s)(1 + s) 1

ε2s(1−s) x− x0 (1 + s)bs − x+ x0

1− s s2 ε(1− s) ε
√
(3− s)(1− s) 1

ε2s2(1−s)(2−s) 2sx− s(2− s)x0 (1 + 1
2−s )bs −

2x−(2−s)x0

s(2−s)

B.2. Proof of Theorem 3.1

Recall that:

Definition B.1. The stochastic interpolant Is is the stochastic process defined as

Is = αsx0 + βsx1 + σsWs s ∈ [0, 1], (30)

where

• α, β, σ ∈ C1([0, 1]) satisfy α2
s + β2

s + σ2
s > 0 for all s ∈ [0, 1], β̇s > 0 for all s ∈ (0, 1], and σ̇s < 0 for all s ∈ [0, 1], as

well as the boundary conditions α0 = β1 = 1, α1 = β0 = σ1 = 0.

• The pair (x0, x1) are jointly drawn from a PDF ρ(x0, x1) such that E(x0,x1)∼ρ

[
|x0|2 + |x1|2

]
<∞.
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• W = (Ws)s∈[0,1] is a standard Wiener process with W ⊥ (x0, x1).

In view of this definition, let us give a more precise formulation of Theorem 3.1:

Theorem B.2. Let Is be the stochastic interpolant introduced in Definition B.1 and let

∀s ∈ [0, 1] : xs = αsx0 + βsx1 + σs
√
sz

∀(s, x, x0) ∈ (0, 1]× Rd × Rd : bs(x, x0) = Ex0 [α̇sx0 + β̇sx1 + σ̇s
√
s z|xs = x]

(31)

where Ex0 [·|xs = x] denotes an expectation over x1 ∼ ρc(·|x0) and z ∼ N(0, Id) conditional on xs = x. Moreover, set
bs=0(x0, x0) := α̇0x0 + β̇0Ex0 [x1]. Then the solutions to the SDE

dXs = bs(Xs, x0)ds+ σsdWs, Xs=0 = x0, (32)

are such that Law(Xs) = Law(Is|x0) at all (s, x0) ∈ [0, 1]× Rd. In particular Xs=1 ∼ ρc(·|x0). In addition the drift b is
the unique minizer over all b̂ of the objective function

Lb[b̂] =

∫ 1

0

E
[
|b̂s(xs, x0)− (α̇sx0 + β̇sx1 + σ̇s

√
s z)|2]ds, (33)

where E denotes an expectation over (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, Id) with (x0, x1) ⊥ z.

Note that the objective (33) is the same as (3) because xs
d
= Is and α̇sx0 + β̇sx1 + σ̇s

√
s z

d
= Rs at all s ∈ [0, 1]. Note also

that, since α, β, σ ∈ C1([0, 1]), the factors α̇s, β̇s, σ̇s
√
s in the loss (33) are all bounded.

Proof of Theorem B.2. Notice that the process Is defined in (30) has the same law at any s ∈ [0, 1] as xs. If we denote by
µ(s, dx|x0) the measure of Is|x0 or xs|x0, and by ϕ : Rd → R a twice-differentiable test function with compact support,
by definition we have

∀(s, x0) ∈ [0, 1]× Rd :

∫
Rd

ϕ(x)µ(s, dx|x0) = E[ϕ(xs)|x0] = E[ϕ(Is)|x0], (34)

where the first conditional expectation is over (x0, x1) ∼ ρ and z ∼ N(0, Id) and the second over (x0, x1) ∼ ρ and W . By
the Itô formula we have

dϕ(Is) = (α̇sx0 + β̇sx1 + σ̇sWs) · ∇ϕ(Is)ds+ 1
2σ

2
s∆ϕ(Is)ds+∇ϕ(Is) · dWs. (35)

Integrating this equation in time over [0, s], taking the expectation conditional on x0, and using both Ws ⊥ (x0, x1) and the
Itô isometry, we deduce that

E[ϕ(Is)|x0] = ϕ(x0) +

∫ s

0

(
E
[
(α̇rx0 + β̇rx1 + σ̇rWr) · ∇ϕ(Ir)

∣∣x0]+ 1
2σ

2
rE[∆ϕ(Ir)|x0]

)
dr. (36)

Inserting (36) into (34), we deduce that, ∀(s, x0) ∈ [0, 1]× Rd,∫
Rd

ϕ(x)µ(s, dx|x0) = ϕ(x0) +

∫ s

0

(
E
[
(α̇rx0 + β̇rx1 + σ̇r

√
r z) · ∇ϕ(xr)

∣∣x0]
+ 1

2σ
2
rE[∆ϕ(xr)|x0]

)
dr,

(37)

where we used the fact that xs and Is share the same law at each s. Also, Ws and
√
sz share the same law at each s.
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Using the tower property of the conditional expectation, (37) can also be written as∫
Rd

ϕ(x)µ(s, dx|x0)

= ϕ(x0) +

∫ s

0

∫
Rd

E
[
(α̇rx0 + β̇rx1 + σ̇r

√
r z) · ∇ϕ(xr)

∣∣xr = x, x0
]
µ(r, dx|x0)dr

+ 1
2

∫ s

0

σ2
r

∫
Rd

∆ϕ(x)µ(r, dx|x0)dr

= ϕ(x0) +

∫ s

0

∫
Rd

E
[
(α̇rx0 + β̇rx1 + σ̇r

√
r z)
∣∣xr = x, x0

]
· ∇ϕ(x)µ(r, dx|x0)dr

+ 1
2

∫ s

0

σ2
r

∫
Rd

∆ϕ(x)µ(r, dx|x0)dr

= ϕ(x0) +

∫ s

0

∫
Rd

(
br(x, x0) · ∇ϕ(x) + 1

2σ
2
r∆ϕ(x)

)
µ(r, dx|x0)

(38)

where we used the definition of b in (31) to get the last equality. If we now repeat the same steps to derive an evolution
equation for E[ϕ(Xs)] where Xs solves the SDE (5) we arrive at the same equation (38) for the measure of this process,
indicating that this measure is also µ(s, dx|x0).

It remains to show that the drift bs(x, x0) = E[α̇sx0 + β̇sx1 + σ̇s
√
s z|xs = x, x0] is the unique minimizer of the objective

function (3). To this end, notice that b is the unique minimizer over all b̂ of∫ 1

0

E
[
|b̂s(xs, x0)− bs(xs, x0)|2ds,

=

∫ 1

0

(
E
[
|b̂s(xs, x0)− (α̇sx0 + β̇sx1 + σ̇s

√
s z)|2 + varx0 [α̇sx0 + β̇sx1 + σ̇s

√
s z|xs]

])
ds,

(39)

where E denotes an expectation over (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, Id) with (x0, x1) ⊥ z and where

varx0 [α̇sx0 + β̇sx1 + σ̇s
√
s z|xs] = Ex0

[
|α̇sx0 + β̇sx1 + σ̇s

√
s z|2|xs

]
−
∣∣Ex0 [α̇sx0 + β̇sx1 + σ̇s

√
s z|xs]

∣∣2,
= Ex0

[
|α̇sx0 + β̇sx1 + σ̇s

√
s z|2|xs

]
− |bs(xs, x0)|2,

(40)

and where we used the tower property of the conditional expectation E[E[|α̇sx0 + β̇sx1 + σ̇s
√
s z|2|xs]] = E[|α̇sx0 +

β̇sx1 + σ̇s
√
s z|2|xs]. Since varx0 [α̇sx0 + β̇sx1 + σ̇s

√
s z|xs = x] is independent of b̂, we can drop this term to arrive at

the objective (33).

B.3. Regularity of the drift at s = 0

In this section, we discuss the regularity of the drift bs(x, x0).

Assumption B.3. The conditional distribution ρc(·|x0) is exponential tailed. More precisely, there exist constants C1, C2 >
0 (which can depend on x0), such that

ρc(x|x0) ≤ C2 exp(−C1|x|) ,

for any x ∈ Rd.

The aforementioned assumption is needed for technical reasons, and is used to ensure the validity of a step that involves the
interchange of limits and integrations in the proof of Theorem B.4.

By linearity of xs in x0, x1, and z, we can also establish a few properties of the velocity b in (31) which we state as:

Theorem B.4. Under Assumption B.3, if β̇s=0 = 0, then the velocity field bs(x, x0) can be decomposed as

∀(s, x, x0) ∈ [0, 1]× Rd × Rd bs(x, x0) = α̇sx0 + β̇sη1(s, x, x0) + σ̇sηz(s, x, x0), (41)
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where

∀(s, x, x0) ∈ (0, 1]× Rd × Rd :

{
η1(s, x, x0) = Ex0 [x1|xs = x],

ηz(s, x, x0) =
√
sEx0 [z|xs = x],

∀(x, x0) ∈ Rd × Rd :


η1(0, x, x0) = lim

s→0
η1(s, x, x0) = Ex0 [x1],

ηz(0, x, x0) = lim
s→0

ηz(s, x, x0) =
x− x0
σ0

.

(42)

In addition, these two functions satisfy the constraint

∀(s, x, x0) ∈ [0, 1]× Rd × Rd : x = αsx0 + βsη1(s, x, x0) + σsηz(s, x, x0). (43)

We have lims→0 bs(x, x0) = α̇0x0 +
σ̇0

σ0
(x− x0) and lims→0 ∇xbs(x, x0) =

σ̇0

σ0
Id for any x, x0 ∈ Rd.

Remark B.5. Note that (43) implies that we can get η1 from ηz at any time such that βs ̸= 0, and ηz from η1 at any s ∈ (0, 1]
such that σs > 0: in particular

∀(s, x, x0) ∈ (0, 1]× Rd × Rd with σs > 0 : ηz(s, x, x0) =
x− αsx0 − βsη1(s, x, x0)

σs
. (44)

The proof of Theorem B.4 will rely the following result:

Lemma B.6. We have

∀(s, x, x0) ∈ (0, 1)× Rd × Rd : η1(s, x, x0) =

∫
Rd x1ρc(x1|x0)e−

1
2Ms|x1|2+msx1·(x−αsx0)dx1∫

Rd ρc(x1|x0)e−
1
2Ms|x1|2+msx1·(x−αsx0)dx1

(45)

where η1(s, x, x0) = Ex0 [x1|xs = x, x0] and we defined

Ms =
β2
s

sσ2
s

, ms =
βs
sσ2

s

. (46)

Proof: By definition,

η1(s, x, x0) =

∫
Rd x1ρc(x1|x0)e−

1
2 |z|

2

δ(x− αsx0 − βsx1 − σs
√
sz)dzdx1∫

Rd ρc(x1|x0)e−
1
2 |z|2δ(x− αsx0 − βsx1 − σs

√
sz)dzdx1

, (47)

where δ(x) denotes the Dirac delta distribution. For any s ∈ (0, 1] such that σs > 0, we can perform the integration over z
explicitly to get

η1(s, x, x0) =

∫
Rd x1ρc(x1|x0)e−

1
2Ms|x1|2+msx1·(x−αsx0)e−

1
2 s

−1σ−2
s |x−αsx0|2dx1∫

Rd ρc(x1|x0)e−
1
2Ms|x1|2+msx1·(x−αsx0)e−

1
2 s

−1σ−2
s |x−αsx0|2dx1

. (48)

Since the factors e−
1
2 s

−1σ−2
s |x−αsx0|2 at the numerator and the denominator do not depend on x1, they can be taken out of

the integrals and simplified, and we arrive at (45).

Proof of Theorem B.4. The only statement that is not a direct consequence of Theorem B.2 is (42). To establish these limits,
notice that, since β ∈ C2([0, 1]) and β̇0 = 0, we must have βs = O(s2) as s → 0. As a result, since σ ∈ C1([0, 1]) and
σ0 > 0, we have

lim
s→0

Ms = lim
s→0

ms = 0. (49)

As a result,
∀(x, x0) ∈ Rd × Rd : lim

s→0
η1(s, x, x0) = Ex0 [x1], lim

s→0
ηz(s, x, x0) =

x− x0
σ0

, (50)

which establishes the limits in (42), where we used the formula in (44) to derive the limits of ηz from that of η1. Note that in
the above derivation, we need to verify the interchange of limits and integrations; it is guaranteed by using Assumption
B.3 and the Lebesgue dominated convergence theorem since, for a fixed x, x0, when s is sufficiently small, the factor
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ρc(x1|x0)e−
1
2Ms|x1|2+msx1·(x−αsx0) is dominated by ρc(x1|x0)e

1
2C1|x|, which is integrable as a function of x1 due to our

Assumption B.3.

To analyze the limit of ∇xbs(x, x0), using Lemma B.6, we have

∇xη1(s, x, x0) = ms
P (s, x, x0)Q(s, x, x0)−R(s, x, x0)R

T (s, x, x0)

Q(s, x, x0)2
, (51)

where
P (s, x, x0) =

∫
Rd

x1x
T
1 ρc(x1|x0)e−

1
2Ms|x1|2+msx1·(x−αsx0)dx1,

Q(s, x, x0) =

∫
Rd

ρc(x1|x0)e−
1
2Ms|x1|2+msx1·(x−αsx0)dx1,

R(s, x, x0) =

∫
Rd

x1ρc(x1|x0)e−
1
2Ms|x1|2+msx1·(x−αsx0)dx1.

To derive the above formula, we also need verify the interchange of limits and integrations; it is again guaranteed by using
Assumption B.3 and the Lebesgue dominated convergence theorem, for sufficiently small s. We know that

lim
s→0

P (s, x, x0)Q(s, x, x0)−R(s, x, x0)R
T (s, x, x0)

|Q(s, x, x0)|2
= E[x1xT1 |x0]− E[x1|x0]E[xT1 |x0] , (52)

and thus lims→0 ∇xη1(s, x, x0) = 0 as lims→0ms = 0. Using the formula in (44), we get lims→0 ∇xηz(s, x, x0) =
1
σ0

Id.
Therefore,

lim
s→0

∇xbs(x, x0) =
σ̇0
σ0

Id, (53)

which completes the proof.

B.4. Changing the Diffusion Coefficient: Proof of Theorem 3.2

Theorem 3.2 and formula (10) are consequences of the following result:
Theorem B.7. Let g ∈ C0([0, 1]) be such that lims→0+ s

−1[g2s − σ2
s ] and lims→1− g

2
sσ

−1
s exist. Let b be given by (31) and

define
∀s ∈ (0, 1) : As = [sσs(β̇sσs − βsσ̇s)]

−1

∀(s, x, x0) ∈ (0, 1)× Rd × Rd : cs(x, x0) = β̇sx+ (βsα̇s − β̇sαs)x0.
(54)

Then we have
∀(s, x, x0) ∈ (0, 1)× Rd × Rd : ∇ log ρs(x|x0) = As [βsbs(x, x0)− cs(x, x0)] , (55)

where ρs(x|x0) denotes the PDF of Xs
d
= Xg

s
d
= Is|x0. In addition the drift

bgs(x, x0) = bs(x, x0) +
1
2 (g

2
s − σ2

s)∇ log ρs(x|x0)
= bs(x, x0) +

1
2 (g

2
s − σ2

s)As [βsbs(x, x0)− cs(x, x0)]
(56)

is well-defined for all (s, x, x0) ∈ (0, 1)×Rd ×Rd, and has finite limits at s = 0, 1 for all (x, x0) ∈ Rd ×Rd. Finally, the
solutions to the SDE

dXg
s = bgs(X

g
s , x0)ds+ gsdWs, Xg

s=0 = x0, (57)

are such that Law(Xg
s ) = Law(Xs) = Law(Is|x0) for all (s, x0) ∈ [0, 1]× Rd. In particular Xg

s=1 ∼ ρc(·|x0).

Proof. Let us first establish (55). By a direct extension of Stein’s formula (Albergo et al., 2023), we have

∀(s, x, x0) ∈ (0, 1)× Rd × Rd : ∇ log ρs(x|x0) = − 1√
sσs

Ex0 [z|xs = x] (58)

where xs = αsx0 + βsx1 +
√
sσsz and where we used xs|x0

d
= Is|x0

d
= Xs for all s ∈ [0, 1]. Since

bs(x, x0) = α̇sx0 + β̇sEx0 [x1|xs = x] +
√
sσ̇sEx0 [z|xs = x]

x = αsx0 + βsEx0 [x1|xs = x] +
√
sσsEx0 [z|xs = x]

(59)
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we deduce that

Ex0 [z|xs = x] =
βsbs(x, x0)− β̇sx− (βsα̇s − β̇sαs)x0√

s(σ̇sβs − σsβ̇s)
(60)

which can be inserted in (58) to show that (55) holds.

Second, note that the PDF ρs(x|x0) of the solution to the SDE (57) is the same as the PDF of the solution to

dXs = bs(Xs, x0)ds+ σsdWs, Xs=0 = x0, (61)

since we can use the identity 1
2σ

2
s∆ρs = 1

2g
2
s∆ρs − 1

2 (g
2
s − σ2

s)∇ · (ρs∇ log ρs) to show that both densities satisfy the
same Fokker-Planck equation (7).

It remains to show that the drift coefficient (56) is well-defined. To this end let us write it explicitly as

bgs(x, x0) = bs(x, x0) +

(
g2s − σ2

s

2sσs

)(
βsbs(x, x0)− β̇sx− (βsα̇s − β̇sαs)x0

σsβ̇s − σ̇sβs

)
. (62)

Our assumptions that α, β, σ ∈ C1([0, 1]) and satisfy α0 = β1 = 1, α1 = β0 = σ1 = 0, and β̇s > 0 for all s ∈ (0, 1]
and σ̇s < 0 for all s ∈ [0, 1] guarantee that βs > 0 for all s ∈ (0, 1] and σs > 0 for all s ∈ [0, 1) and, as a result,
[sσs(β̇sσs−βsσ̇s)]−1 is positive and finite for all s ∈ (0, 1). These assumptions also guarantee that βs[σsβ̇s− σ̇sβs]−1 and
β̇s[σsβ̇s − σ̇sβs]

−1 have finite limits at s = 0, 1. Therefore the only factor in (62) that can be singular is (g2s − σ2
s)/(2sσs)

at s = 0, because of the factor s−1, and at s = 1 because of the factor σ−1
1 . These singularities disappear under our

assumptions that lims→0+ s
−1[g2s − σ2

s ] and lims→1− g
2
sσ

−1
s exist and are finite. Therefore the drift bgs has the same

regularity properties has bs.

B.5. Maximizing the likelihood with respect to the noise schedule

Let Xg = (Xg
s )s∈[0,1] be the process defined by the SDE (57), and let X̂g = (X̂g

s )s∈[0,1] denote an approximate, learned
process governed by

dX̂g
s =

(
1 + 1

2βsAs(g
2
s − σ2

s)
)
b̂s(X̂

g
s , x0)ds−Ascs(X̂

g
s , x0)ds+ gsdWs, X̂g

s=0 = x0, (63)

With a slight abuse of notation, let us denote by DKL(X
g||X̂g) the KL divergence of the path measure of Xg from the path

measure of X̂g . By Girsanov’s theorem, it is given by

DKL(X
g||X̂g) =

1

2

∫ 1

0

g−2
s |1 + 1

2βsAs(g
2
s − σ2

s)|2E|bgs(Xg
s , x0)− b̂gs(X

g
s , x0)|2ds, (64)

where E denotes an expectation over the law of Xg . Using Xg
s

d
= Is|x0, (64) can also be written as

DKL(X
g||X̂g) =

1

2

∫ 1

0

g−2
s |1 + 1

2βsAs(g
2
s − σ2

s)|2Lsds,

=
1

2

∫ 1

0

g−2
s |1− 1

2βsAsσ
2
s +

1
2βsAsg

2
s |2Lsds,

(65)

where As is given in (11) and Ls = Ex0
[
|b̂s(Is, x0)− bs(Is, x0)|2

]
. We now view the KL divergence (65) as an objective

function for g, and solve the optimization problem

min
g
DKL(X

g||X̂g). (66)

Since Ls is independent of gs, minimizing (65) amounts to minimizing

g−2
s |1− 1

2βsAsσ
2
s +

1
2βsAsg

2
s |2 (67)

for all s ∈ [0, 1]. Since As > 0, (67) is minimized at

g2s =
1
2βsAsσ

2
s − 1

1
2βsAs

when 1− 1
2βsAsσ

2
s ≤ 0 with (67) = 0, (68)
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and at

g2s =
1− 1

2βsAsσ
2
s

1
2βsAs

when 1− 1
2βsAsσ

2
s > 0 with (67) = 2βsAs(1− 1

2βsAsσ
2
s) > 0. (69)

Together, these relations show that the minimizer of (67) is gs = gF
s with

gF
s =

∣∣∣∣1− 1
2βsAsσ

2
s

1
2βsAs

∣∣∣∣1/2 =
∣∣∣2sσs(β−1

s β̇sσs − σ̇s)− σ2
s

∣∣∣1/2 , (70)

where we used the expression for As in (11) to get the second equality. This result is (13). Notice that we can also write

2sσs(β
−1
s β̇sσs − σ̇s)− σ2

s = 2sσ2
s

d

ds
log

βs√
sσs

. (71)

Since the sign of this expression is the same as the sign of 1 − 1
2βsAsσ

2
s , it shows that (68) and (69) arise at values of

s ∈ [0, 1] where βs/[
√
sσs] is respectively decreasing or increasing in s. Since β̇s > 0 and σ̇s < 0, βs/[

√
sσs] cannot be

decreasing for all s ∈ [0, 1], i.e. the minimum of (67) cannot be zero for all s ∈ [0, 1]. As a result, the minimum of the KL
divergence (65) must be positive if Ls > 0.

Finally, let us investigate the conditions on gs in Theorem B.7 if we use the SDE (63) with gs = gF
s . It is easy to see

from (70) that the second condition is always satisfied since

lim
s→1−

|gF
s |2σ−1

s = lim
s→1−

[2s(β−1
s β̇sσs − σ̇s)− σs] = −2σ̇1 > 0 (72)

since σ1 = 0. Regarding the first condition, we have

lim
s→0+

s−1[|gF
s |2 − σ2

s ] = lim
s→0+

[2σs(β
−1
s β̇sσs − σ̇s)− 2s−1σ2

s ] = 2 lim
s→0+

[β−1
s β̇s − s−1]− 2σ̇0σ0 (73)

since σ0 > 0, σ̇0 < 0. Since β0 = 0, if β̇0 > 0 and β̈0 exists, we have

lim
s→0+

[β−1
s β̇s − s−1] = 1

2 β̈0β̇
−1
0 , (74)

so that
lim

s→0+
s−1[|gF

s |2 − σ2
s ] = σ2

0 β̈0β̇
−1
0 − 2σ̇0σ0 if β̇0 > 0 and β̈0 exists. (75)

If, however β̇0 = 0, then gF
0 ̸= σ0, and the first condition is not satisfied since lims→0+ s

−1[|gF
s |2 − σ2

s ] does not exist.
In this case, we need to consider more carefully how to define the solution to the SDE (63). In the specific case when
αs = 1 − s, σs = ε(1 − s) and βs = s2, if we set gs = gF

s = ε
√

(1− s)(3− s) in (63), this SDE reduces to (see the
explicit formulas given in Appendix B.1 and denoting XF

s = XgF

s ):

dXF
s =

(
1 +

1

2− s

)
bs(X

F
s , x0)ds−

1

s(2− s)
(2XF

s − (2− s)x0)ds+ ε
√
(1− s)(3− s)dWs, XF

s=0 = x0. (76)

The drift in this equation is singular at s = 0 because of the term 2(XF
s − x0)/[s(2− s)]. Nevertheless, the solution to this

SDE is well-defined for the initial condition XF
s=0 = x0, and satisfies the integral equation

XF
s = x0 +

2− s

s

∫ s

0

u

2− u

((
1 +

1

2− u

)
bu(X

F
u, x0)−

1

(2− u)
x0

)
du+ ε

2− s

s

∫ s

0

u
√

(1− u)(3− u)

2− u
dWu. (77)

Since b0(x0, x0) = −x0 when β̇0 = 0, this equation implies that

XF
s

d
= x0(1− s) + εWs + o(s). (78)

which is also the law of Is|x0 as it should.
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B.6. Connection with Föllmer Processes and Proof of Theorem 3.3

To begin, we give some background on the Föllmer process (Föllmer, 1986; Tzen & Raginsky, 2019). Originally, the
Föllmer process was defined as the process X = (Xs)s∈[0,1] whose path measure has minimal KL divergence from the path
measure of the Wiener process W = (Ws)s∈[0,1] under the constraint that Xs=1 be distributed according to some target
distribution. This Föllmer process can be generalized to “reference processes” that differ from the standard Wiener process:
as we will show next, in our context the natural reference process is the solution to the linear SDE

dYs = as(Ys − αsx0)ds+ α̇sx0ds+ gF
sdWs, Ys=0 = x0, (79)

where gF
s is given by (70) and where we have defined

as := β−1
s β̇s −

2sσs(β
−1
s β̇sσs − σ̇s)− σ2

s

β2
s + sσ2

s

,

= β−1
s β̇s −

2β−1
s β̇s(β

2
s + sσ2

s)− 2βsβ̇s − 2sσsσ̇s − σ2
s

β2
s + sσ2

s

,

= −β−1
s β̇s +

2βsβ̇s + 2sσsσ̇s + σ2
s

β2
s + sσ2

s

=
d

ds
log

β2
s + sσ2

s

βs
.

(80)

We can then define the Föllmer process XF = (XF
s )s∈[0,1] by adjusting the drift b̌s(x, x0) in

dX̌s = b̌s(X̌s, x0)ds+ gF
sdWs, X̌F

s=0 = x0, (81)

in such a way that the KL divergence of the path measure of X̌ from the path measure of Y (the solution to (79)) is
minimized subject to the constraint that X̌s=1 ∼ ρc(·|x0). That is, the Föllmer process is defined via

min
b̌
DKL(X̌||Y ) subject to X̌s=1 ∼ ρc(·|x0). (82)

This traditional minimization problem for the Föllmer process is distinct from the minimization problem (66) considered in
Appendix B.5. Nevertheless, our next result shows that the minimizers of (66) and (82) coincide:

Theorem B.8. Assume that βs/[
√
sσs] is non-decreasing on s ∈ [0, 1]. Then, the Föllmer process associated with the

reference process (Ys)s∈[0,1] that solves (79) is the process XF ≡ (XgF

s )s∈[0,1] that solves (57) with gs = gF
s given by (70).

Theorem 3.3 is implied by this result.

Proof. We closely follow the steps of Föllmer’s original construction involving time-reversal (Föllmer, 1986). To begin,
notice that we can solve (55) to express bs in terms of the score ∇ log ρs. We can then use the resulting expression in (56) to
write the SDE (57) as

dXg
s =

(
β−1
s A−1

s + 1
2 (g

2
s − σ2

s)
)
∇ log ρs(X

g
s |x0)ds+ β−1

s cs(X
g
s , x0)ds+ gsdWs, Xg

s=0 = x0, (83)

where As and cs(x, x0) are defined in (11). Using the score, we can time-reverse (83) and derive the following SDE for
XR

s
d
= Xg

1−s

dXR
s = −

(
β−1
1−sA

−1
1−s − 1

2 (g
2
1−s + σ2

1−s)
)
∇ log ρ1−s(X

R
s |x0)ds− β−1

1−sc1−s(X
R
s , x0)ds+ g1−sdWs. (84)

If we take XR
s=0 ∼ ρc(·|x0) in (84), then by construction we have that XR

s=1 = x0. Remarkably, if we use gs = gF
s with gF

s

given in (70), and if we choose 1− 1
2βsAsσ

2
s ≥ 0 (i.e. choose βs/[

√
sσs] nondecreasing), the SDE (84) reduces to

dXR
s = −β−1

1−sc1−s(X
R
s , x0)ds+ gF

1−sdWs, XR
s=0 ∼ ρc(·|x0). (85)

This reverse-time SDE has the remarkable property that its drift is independent of the score ∇ log ρs, meaning that the
information about the target PDF ρc(·|x0) only enters through its initial condition XR

s=0 ∼ ρc(·|x0). This means that we
can change the initial condition in (85) to construct (after reversing time back) a reference process. We can use any density
for this purpose, but for simplicity it is convenient to choose a Gaussian, and therefore to consider

dY R
s = −β−1

1−sc1−s(Y
R
s , x0)ds+ gF

1−sdWs, Y R
s=0 ∼ N(0, Id). (86)
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Using the explicit form of cs in (54), we can write this SDE explicitly as

dY R
s = −β−1

1−sβ̇1−s(Y
R
s − α1−sx0)ds− α̇1−sx0 + gF

1−sdWs, Y R
s=0 ∼ N(0, Id). (87)

Using that dα1−s = −α̇1−sds and dβ1−s = −β̇1−sds, we may rewrite this as

d
(
β−1
1−s(Y

R
s − α1−sx0)

)
= β−1

1−sg
F
1−sdWs, Y R

s=0 ∼ N(0, Id). (88)

Hence,

Y R
s = α1−sx0 + β1−sY

R
s=0 + β1−s

∫ s

0

β−1
1−ug

F
1−udWu. (89)

Using the explicit form of gFs given in (70) together with (71), we deduce that

E

[∣∣∣∣β1−s

∫ s

0

β−1
1−ug

F
1−udWu

∣∣∣∣2
]
= β2

1−s

∫ s

0

β−2
1−u|gF

1−u|2du,

= β2
1−s

∫ 1

1−s

β−2
u |gF

u|2du,

= β2
1−s

∫ 1

1−s

2uσ2
u

β2
u

d

du
log

βu√
uσu

du,

= −β2
1−s

∫ 1

1−s

d

(
uσ2

u

β2
u

)
,

= (1− s)σ2
1−s,

(90)

where we used σ1 = 0. This means that

Y R
1−s

d
= αsx0 + βsz + σsWs ∼ N(αsx0, β

2
s + sσ2

s), (91)

where z ∼ N(0, Id) with z ⊥ W . Note that, unsurprisingly, the process on the right-hand side is simply the stochastic
interpolant (2) conditioned on x0 fixed, with x1 replaced by a Gaussian z. Denoting by ρYs (y|x0) the PDF of Y R

1−s, (91)
implies that

∇ log ρYs (y|x0) = −y − αsx0
β2
s + sσ2

s

. (92)

We can use this result to time reverse (86) and obtain the following SDE for Ys
d
= Y R

1−s

dYs = β−1
s β̇s(Ys − αsx0)ds+ α̇sx0 + |gF

s |2∇ log ρYs (Ys|x0)ds+ gF
sdWs Ys=0 = x0. (93)

If we insert the explicit form of |gFs |2 = 2sσs(β
−1
s β̇sσs − σ̇s)− σ2

s given in (70) into (93) we get

dYs = as(Ys − αsx0)ds+ α̇sx0ds+ gF
sdWs, Ys=0 = x0, (94)

with

as = β−1
s β̇s −

2sσs(β
−1
s β̇sσs − σ̇s)− σ2

s

β2
s + sσ2

s

, (95)

i.e. we recover the SDE (79). Since as = d
ds log

β2
s+sσ2

s

βs
, we can solve the above the SDE to obtain the reference process as

Ys = αsx0 +
β2
s + sσ2

s

βs

∫ s

0

βug
F
u

β2
u + uσ2

u

dWu.

We can then verify that

E

[∣∣∣∣β2
s + sσ2

s

βs

∫ s

0

βug
F
u

β2
u + uσ2

u

dWu

∣∣∣∣2
]
= (

β2
s + sσ2

s

βs
)2
∫ s

0

β2
uσ

2
uu

(β2
u + σ2

uu)
2

d

du
log

β2
u

σ2
uu
du

= (
β2
s + sσ2

s

βs
)2
∫ s

0

1

((β2
u/σ

2
uu) + 1)2

d(β2
u/σ

2
uu)

= (
β2
s + sσ2

s

βs
)2

β2
s

β2
s + sσ2

s

= β2
s + sσ2

s ,

(96)
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which implies that Ys
d
= αsx0 + βsz + σsWs ∼ N(αsx0, β

2
s + sσ2

s); this matches our previous calculation (91).

It remains to show that the process XF ≡ XgF

defined by solution to the SDE (57) with gs = gF
s given in (70) is the Föllmer

process associated with the process Y defined by the solution to (93). To this end, recall that the KL divergence between
two path measures is invariant under time-reversal, so that

DKL(X̌||Y ) = DKL(X̌
R||Y R) (97)

where X̌ is the process defined by the solution to the SDE (81), and where X̌R is its time-reversal. We can now use following
decomposition, known as “disintegration” (Léonard, 2014), of the Kullback-Leibler divergence

DKL(X̌
R||Y R) =

∫
Rd

DKL(X̌
R,x||Y R,x)ρc(x|x0)dx+DKL[ρc(·|x0)∥N(x0, Id)] (98)

where X̌R,x and Y R,x denote, respectively, the processes X̌R and Y R conditioned to start from x (i.e. on X̌R,x
s=0 = Y R,x

s=0 = x).
In addition, we used the fact that Y R

s=0 ∼ N(0, Id) whereas X̌R
s=0 ∼ ρc(·|x0) by the constraint imposed in the minimization

problem (82). The second term at the right hand side of (98) is fixed due to this constraint; the first term is always
non-negative, but we can make it zero if we take X̌R = XR with XR defined as the solution to (84) since this process is the
same as the one defined by the solution to (86) if we condition both on XR

s=0 = Y R
s=0 = x. Therefore X̌R = XR minimizes

(98), which means that its time-reversal XgF

minimizes (82).

B.7. Analytic formula of bs for Gaussian mixture distributions

When ρc(x|x0) is a Gaussian mixture model (GMM), the drift bs is available analytically:

Proposition B.9. Let the target density be a GMM with J ∈ N modes

ρc(x|x0) =
J∑

j=1

pjN(x;mj , Cj) (99)

where pj ≥ 0 with
∑J

j=1 pj = 1, mj ∈ Rd, and Cj = CT
j ∈ Rd × Rd positive-definite (with both mj and Cj possibly

dependent on x0). Then

bs(x, x0) = α̇sx0 + β̇s

∑J
j=1 pjmjN(x;mj(s), Cj(s))∑J
j=1 pjN(x;mj(s), Cj(s))

+

∑J
j=1 pj(βsβ̇sCj + sσsσ̇sId)C

−1

j (s)(x−mj(s))N(x;mj(s), Cj(s))∑J
j=1 pjN(x;mj(s), Cj(s))

(100)

where
mj(s) = αsx0 + βsmj , Cj(s) = β2

sCj + sσ2
s Id. (101)

Proof. By definition

bs(x, x0) = α̇sx0 + E[β̇sx1 + σ̇sWs|Is = x, x0]

= α̇sx0 + E[β̇sβ−1
s (x− αsx0 − σsWs) + σ̇sWs|Is = x, x0]

= α̇sx0 + β̇sβ
−1
s (x− αsx0) + sσs(σsβ̇sβ

−1
s − σ̇s)∇ log ρs(x|x0).

(102)

where we used the fact ∇ log ρs(x|x0) = −[sσs]
−1Ex0 [Ws|Is = x]. For the GMM,

ρs(x|x0) =
J∑

j=1

pjN(x;mj(s), Cj(s)), (103)

so that

∇ log ρs(x|x0) = −
∑J

j=1 pjC
−1

j (s)(x−mj(s))N(x;mj(s), Cj(s))∑J
j=1 pjN(x;mj(s), Cj(s))

. (104)
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Inserting this expression in (102) we obtain

β̇s
βs

(x− αsx0) + sσ2
s

β̇s
βs

∇ log ρs(x|x0)

=
β̇s
βs

(
x− αsx0 −

∑J
j=1 pj(Id − β2

sCjC
−1

j (s))(x−mj(s))N(x;mj(s), Cj(s))∑J
j=1 pjN(x;mj(s), Cj(s))

)

=
β̇s
βs

(∑J
j=1 pj

(
βsmj + β2

sCjC
−1

j (x−mj)
)
N(x;mj(s), Cj(s))∑J

j=1 pjN(x;mj(s), Cj(s))

)

=β̇s

∑J
j=1 pjmjN(x;mj(s), Cj(s))∑J
j=1 pjN(x;mj(s), Cj(s))

+

∑J
j=1 pjβsβ̇sCjC

−1

j (x− m̄j)N(x;mj(s), Cj(s))∑J
j=1 pjN(x;mj(s), Cj(s))

,

(105)

where in the first and second identities, we used the fact that sσ2
s Id = Id−β2

sCjC
−1

j (s) and x−αsx0 = x−mj(s)+βsmj .

Now, using bs(x, x0) = α̇sx0 + β̇sβ
−1
s (x− αsx0) + sσ2

s(β̇sβ
−1
s − σ̇s)∇ log ρs(x|x0), we get the final formula.

C. Details of Numerical Experiments
C.1. Multi-modal jump-diffusion process

Inspired by (Chen et al., 2020), we create the synthetic example by starting with a Gaussian component N(m0, C0) with
m0 = [5, 0] and

C0 =

[
1.5 0
0 0.1

]
.

We rotate this distribution counterclockwise by 2π/5 four times to obtain the remaining four Gaussian modes. We assign
each of the five modes equal weights to obtain our 2D Gaussian mixture model with density ρGMM(x)

The 2D particle jump-diffusion dynamics is constructed as follows. Between the jumps, the particle moves according to the
Langevin dynamics

dxt = ∇ log ρGMM(xt)dt+
√
2dWt.

At jump times specified by a Poisson process with rate λ = 2, the particle is rotated counterclockwise by an angle 2π/5.

We simulate this dynamics using the following scheme with δt = 0.01:

x(n+1)δt =

{
xnδt + δt∇ log p(xnδt) +

√
2δtξ with probability 1− λδt

R2π/5(xnδt + δt∇ log p(xnδt) +
√
2δtξ) with probability λδt

where ξ ∼ N(0, I2×2) and R2π/5 is the counterclockwise rotation operator in 2D with angle 2π/5. We integrate this
dynamics long enough to reach equilibrium and get enough data.

We keep the data at a regular time interval of ∆t = 0.5 and use paired (xt, xt+0.5) as training data for learning the
conditional distribution at lag τ = 0.5. In total we store 105 training data pairs. We use a fully connected neural network
with 5 hidden layes with hidden dimension 500 to approximate the velocity field bs(x, x0) in the SDEs. The input to the
net is of dimension 5 and the output is of dimension 2. We train the network using a batch size of 104, default AdamW
optimizer with base learning rate l = 10−3 and cosine scheduler that decreases in each epoch the learning rate eventually to
0 after 300 epochs. We test the SDEs for new simulated trajectory data.

C.2. 2D Stochastic Navier-Stokes Example

We set ν = 10−3, α = 0.1, ε = 1. We consider the following random forcing

η(t, x, y) =
(
W1(t) sin(6x) +W2(t) cos(7x) +W3(t) sin(5(x+ y)) +W4(t) cos(8(x+ y))

)
+
(
W5(t) cos(6x) +W6(t) sin(7x) +W7(t) cos(5(x+ y)) +W8(t) sin(8(x+ y))

)
,

(106)
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where Wi(t), 1 ≤ i ≤ 8 are independent Wiener processes. For such random forcing, the NSE (17) has a unique invariant
measure, as proved in Hairer & Mattingly (2006). Note that (106) is a Gaussian random field with covariance function
C(t, t′, x, y, x′, y′) = min(t, t′)[cos(6(x − x′)) + cos(7(x − x′)) + cos(5(x − x′ + y − y′) + cos(8(x − x′ + y − y′))]
which is translation invariant in space. The damping term −αω is used to accelerate the mixing of the dynamics as it damps
the vorticity at large length-scales/small Fourier modes to avoid all energy accumulating in large vortices.

We use a pseudo-spectral solver with Euler-Maruyama time-stepping scheme to solve the stochastic PDE in time and we use
the jax-cfd package (Dresdner et al., 2022) for the mesh generation and domain discretization. We perform simulations
with a grid sizes 256× 256 which is fine enough for resolving the numerical solutions of the 2D stochastic Navier-Stokes
equations with our specifications.

We notice that there are existing works on forecasting with generative models that experiment with the 2D NSE (Lienen
et al., 2023) (Rühling Cachay et al., 2024); however, they are interested in deterministic forecasting. In contrast, we are
interested in probabilistic forecasting which is why we add a stochastic forcing to the equation. The precise nature of this
forcing is probably not important in practice. In all of our experiments, we normalize the training and testing data so that on
average the L2 norm of each snapshot field in the training data is 1; we found such normalization is useful to ensure a stable
gradient that does not blow up during training. We use a standard UNet architecture popularized by Ho et al. (2020) to learn
the drift velocity bθ; the conditioning in the vector field is achieved by channel concatenation in the input, as this is the
usual way to incorporate high dimensional conditioning in UNets for Diffusion (Ho et al., 2022b). The total parameters for
the UNet is around 2 millions. We employ the default AdamW optimizer (Loshchilov & Hutter, 2017). We use a cosine
annealing schedule to decrease the learning rate in each epoch. The base learning rate is l = 10−3. We split the data into
90% training data and 10% test data. We use a batch size of 100. In total we train 50 epochs. The model is trained on a
single Nvidia A100 GPU and it takes less than 1 day. Once trained, we test our SDEs model (e.g. see Fig. 3) by examining
the conditional distributions. We fix 50 initial conditions drawn from the invariant measure and run simulations or our
SDE models to the desired lags, and collect an ensemble of solutions (we choose the number of ensembles to be 300). We
compute mean and std of these ensembles and compare them with those obtained by using the simulation data. We also
consider the enstrophy spectrum of the conditional distribution, which measures the size of the vorticity at each scale and
reveals important physical information. More precisely, we compute the enstrophy of the vorticity field ω at wavenumber
k ∈ R+ is defined as

Enstrophy(k) =
∑

k≤|m|≤k+1

|ω̂(m)|2,

where ω̂ with m ∈ Z2 denotes the Fourier coefficients of ω. The enstrophy spectrum curve is the graph of the function
k → Enstrophy(k). We can average the enstrophy over different simulation trajectories of ω to get the spectrum of the
distribution of the field. We often smooth the curve to get rid of the sawtooth.

We provide some additional numerical results on the 2D stochastic Navier-Stokes example below.

Superresolution We consider superresolution, i.e., predicting the field with a resolution of 128× 128, from the downsized
version with a resolution of 32× 32. In Fig. C.2, we show a 32× 32 resolution field, as well as the true 128× 128 resolution
field and the mean of samples drawn from our SDEs. Our method achieves an outstanding recovery. Additionally, we
calculate the standard deviation of the samples. The spatial distribution of this standard deviation serves as a tool for
uncertainty quantification; notably, there exists a pronounced correlation between the pattern of standard deviation and the
vorticity field.

Forecasting efficiency We conducted a comparative analysis of prediction speed between our models and the SPDE solver
utilized for the 2D stochastic Navier-Stokes equation. For a scenario involving a short time lag of τ = 0.5, wherein our model
accurately captures the resulting conditional distribution, sampling from our SDE forecaster with 200 Euler-Maruyama
steps takes 0.05 seconds, while executing the SPDE solver on the same Nvidia RTX8000 GPU requires 8 seconds. This
observation highlights that our method accelerates forecasting by over 100 times without sacrificing physical information
inherent in the conditional distribution. Furthermore, our approach could stand to gain even more acceleration in scenarios
with lower viscosity, which typically necessitates a substantially reduced time step size for the SPDE solver.

Comparison with a deterministic approach We also contrast our probabilistic forecasting method with a deterministic
approach. In the deterministic approach, we utilize the same UNet architecture to parameterize a point estimator, denoted
as ω̂t+τ = f(ωt; θ), and train it using the Mean Squared Error (MSE) loss function E∥ω̂t+τ − ωt+τ∥2, where τ = 0.5
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Figure 7. Left panel: Superresolution. Low-resolution and high-resolution field, mean and std of samples drawn from our learned SDE
model. Right panel: We calculate the auto-correlation of our data as a function of time. The auto-correlation function is computed
via averaging over the auto-correlation on all the grid points. Note that this averaging can be done because our random forcing term is
spatially homogeneous and each grid point is identical in a statistical sense. We notice that the auto-correlation drops to about 0.25 at
a time lag τ = 1 and about 0.1 at a time lag τ = 2, which indicates the potential diversity of the conditional distribution and thus the
difficulty of our forecasting task.

represents the time lag we aim to predict. This Minimum Mean Square Error (MMSE) estimator is designed to capture
the mean of the conditional probability distribution. While the deterministic point estimator performs adequately in
recovering the mean, it falls short in long-term total enstrophy prediction due to its inability to account for fluctuations in
variance; see Table 2. More precisely, we report the short time (lag = 0.5) error of the conditional mean prediction: for the
probabilistic approach we compute the mean of generated samples and compare it with the true conditional mean, and for
the deterministic approach we use the point estimator to compare. For the probabilistic approach, we can also compute
the predicted conditional std using samples and compare with the true std. We note that such comparison is regarding the
relative L2 err of the field of conditional mean and std. More precisely,

err(mean) =
∥m̂−m∥L2

∥m∥L2

, err(std) =
∥σ̂ − σ∥L2

∥σ∥L2

,

where m̂, σ̂ are estimated mean and std (in this numerical example, it is an image of size 128× 128) and m,σ are the true
mean and std computed from simulation data.

These short time metrics characterize the accuracy of the forecasting in one lag time. We can also iterate the learned SDE or
deterministic maps for many steps and use the generated dynamics to make predictions on the invariant distribution of the
true dynamics. We do so by iterating 100 steps and compute the averaged total enstrophy (which is the squared L2 norm of
the vorticity field). We compare the predicted total enstrophy of the invariant distribution with the truth, in relative error.
Here, the averaged total enstrophy is a scalar quantity; in contrast to the conditional mean and std. We obtain much better
estimate of averaged total enstrophy with our SDEs. The result demonstrates the necessity of using probabilistic forecasting
for stochastic dynamical systems.

Comparisons between different SDE generative models All the above experiments on NSE is done with the interpolant
αs = 1 − s, βs = s2, σs = 1 − s, as it performs the best. Below in Figures 8 and 9, we also post the loss and gradient
norm curves, as well as the enstrophy spectra of the generated samples, for other choices of interpolants and Föllmer
processes (trained with the same network, data, and number of epochs). We observe that βs = s2, namely β̇0 = 0,
is important to ensure a stable gradient norm curve. This experiment demonstrates the superiority of the interpolant
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Relative error Our SDEs Deterministic

Short time L2 error of mean 1.1e-1 2.3e-1
Short time L2 error of std 6.8e-2 N/A

Long time error of averaged total enstrophy 5.6e-3 3.0e-1

Table 2. Short-time and long-time relative accuracy comparisons between the SDE approach and the deterministic approach. The
short-time accuracy is measured by the relative L2 norm between the true conditional mean and the conditional mean of the samples in
our SDE approach or the single output given by the deterministic network, at a lag τ = 0.5. For SDEs, we also have the prediction of the
conditional std. For the long-time comparisons, we iterate the SDE and the deterministic map both for 100 steps and use the trajectories to
estimate the averaged total enstrophy of the invariant distribution and compare them against the truth computed using samples from the
true simulation data.

αs = 1 − s, βs = s2, σs = 1 − s. Moreover, by changing the diffusion coefficients from σsdWs to the optimal gFs dWs

does not influence the spectrums significantly in this example.
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Figure 8. The training loss on the stochastic Navier-Stokes experiments and the norm of gradients of parameters during the training for
stochastic interpolants with βs = s or βs = s2. We observe that the choice βs = s2 makes the gradient norm more stable.

KL divergence comparisons between σsdWs, gFs dWs, and Gaussian base ODE We fix one initial vorticity field and
compare the KL divergence between the true conditional distribution and the generated distribution. Here the KL divergence
is calculated for the 1D conditional distributions of total enstrophy and energy, for a fixed ωt and τ = 1. The goal here is to
test whether changing the diffusion coefficient from σs to gFs could improve the KL divergence accuracy of the generated
distribution at s = 1. Note that our theory in Theorem 3.3 shows that changing from σs to gFs could improve the path KL
divergence, which is an upper bound on the KL divergence of the generated marginal distribution at s = 1.

We consider the generative SDEs corresponding to the stochastic interpolant with αs = 1− s, βs = s2, σs = 1− s. We can
vary the diffusion coefficient of the generative SDEs; we choose σs = 1− s, or gFs =

√
(3− s)(1− s) that corresponds to

a Föllmer process. We also compare the results with the Gaussian base ODE generative model (equivalent to flow matching
(Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022), corresponding to αs = 1− s, βs = s, and x0 in
the interpolant obeys an N(0, Id) distribution). For this Gaussian base ODE, we use the same UNet architecture described
in the beginning of Appendix C.2; again, the conditioning in the vector field is achieved by channel concatenation in the
input. The quantitative KL results are reported in Table 3 and the densities are shown in Figure 10. We observe that SDE
approaches lead to better KL accuracy. Moreover, changing the diffusion coefficients could potentially improve the KL
accuracy, justifying the flexibility and usefulness of the interpolant approach.
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Figure 9. The enstrophy spectra of obtained samples from different generative models, compared to the truth, for interpolants αs =
1− s, βs = s, σs = 1− s and interpolants αs = 1− s, βs = s2, σs = 1− s. The generative SDE is chosen such that the diffusion term
are σsdWs or gFs dWs. The spectrum is computed by averaging over 50 different ωt (independently drawn from the invariant distribution)
and 300 independent ensembles of ωt+τ (simulation data) or ω̂t+τ (forecast results). All models are trained for lag τ = 1, with the same
2M-parameter Unet, 200K data, and the same training procedures as outlined in the beginning of this section. We observe that using
βs = s2 leads to better performance in terms of the spectrums; this indicates that the stable gradient norm for βs = s2 (see Figure 8) is
important in the generation quality. Changing gs from σs to the optimal gF

s does not influence the spectrum significantly.

KL: truth versus generation density of total enstrophy density of total energy

SDE with σsdWs 8.49e-3±1.57e-3 4.01e-3±8.95e-4
SDE with gFs dWs 2.79e-3±9.19e-4 7.21e-3±1.58e-3

Gaussian base ODE 3.63e-3±9.63e-4 2.17e-2±2.50e-3

Table 3. Computed KL divergence between several 1D distributions of generated conditional samples and the true simulated samples.
The 1D distributions are regarding total enstrophy and total energy of ωt+τ , given a fixed ωt and τ = 1. We first use kernel density
estimation based on 6000 ensembles to compute the density, and then compute the KL divergence with respect to the truth. Here we
compare between the generated samples via SDEs with σsdWs, via SDE with gFs dWs which corresponds to a Föllmer process, and via
ODEs with Gaussian base (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022). Here to construct the SDEs, we use
the interpolant αs = 1− s, βs = s2, σs = 1− s. In every column, the smallest value is highlighted in bold. The numbers are presented
in the format mean±std where we do bootstrap to resample 6000 ensembles with replacement and get different KL results and report the
mean and std; this std provides useful information of the sensitivity of KL with respect to resampling. We observe SDE performs better
in terms of KL.
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Figure 10. The 1D conditional distributions of total enstrophy and total energy of ωt+τ , given a fixed initial vorticity field ωt and
τ = 1. Here we compare between the truth, generated samples via SDEs with σsdWs, via SDE with gFs dWs which corresponds to
a Föllmer process, and via ODEs with Gaussian base (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022). We
use kernel density estimation based on 6000 ensembles to compute the density. Here to construct the SDEs, we use the interpolant
αs = 1− s, βs = s2, σs = 1− s. Quantitative KL divergence between these distributions with truth are reported in Table 3. We observe
that SDEs lead to better density quality compared to ODEs. For the enstrophy, gFs dWs behaves better while for the energy, σsdWs works
better, for this fixed ωt. We leave as a future work to study the effect of the Föllmer gFs in more details.

C.3. Video generation

Algorithm 3 VideoEM: (Euler-Marayuma in Latent Space).

Input: Model b̂s(y, y0; yt, t); previous frames x1,...,t−1; grid s0 = 0 < s1 · · · < sN = 1 with N ∈ N; iid ηn ∼ N(0, Id)
for n = 0 : N − 1.
Set ∆sn = sn+1 − sn for n = 0 : N − 1.
Set Y0 = Encode(xt−1)
for n = 0 : N − 1 do

Draw j ∈ Unif(2, . . . , t− 1)
yt−j = Encode(xt−j)

Yn+1 = Yn + b̂sn(Yn, Y0; y
t−j , t− j)∆sn + σsn

√
∆snηn

end for
x̂t = Decode(YN )
Return: Generated frame x̂t

Training. We train models for 250k gradient steps using AdamW starting at a learning rate of 2e-4. We use the UNet
architecture popularized6 in Ho et al. (2020). We modify the architecture to condition on past frames by concatenating them
along the channel dimension of the input. Each model is trained on four A100 GPUs for approximately 1-2 days.

6We use the lucidrains repository.
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https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/classifier_free_guidance.py

