Under review as a conference paper at ICLR 2026

CODEGENGUARD: A WATERMARK FOR CODE GEN-
ERATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Code language models (LMs) represent valuable intellectual property (IP) as their
training involves immense investments, including large-scale code corpora, pro-
prietary annotations, extensive computational resources, and specialized designs.
Hence the threat of model IP infringements such as unauthorized redistribution
or model theft has become increasingly concerning. While neural network wa-
termarking has been widely studied as a measure to support model ownership
verification, watermarking code LMs is particularly challenging due to the seem-
ingly conflicting requirements of code generation: adhering to strict syntactic rules
and semantic consistency while allowing flexible changes to embed watermarks,
keeping high fidelity of the generated content while being robust to extraction
attacks, etc. To resolve the issues, we propose CodeGenGuard, a watermarking
framework for code LMs. CodeGenGuard leverages semantic-preserving trans-
formations (SPTs) to encode the watermark and incorporates a dead-code-based
data augmentation pipeline to diversify SPT patterns. To improve robustness, we
incorporate an efficient dual-LoRA shadow training scheme and an optimizable
trigger prompt that learns to extract watermark from both the watermarked and the
shadow models. As most SPTs take place in specific contexts, we implant auxil-
iary prompts during verification to encourage the generation of the context, further
enhancing the detection rate. Evaluation results on representative code generation
models demonstrate that CodeGenGuard achieves superior watermarking perfor-
mance to the state-of-the-art.

1 INTRODUCTION

Code generation models (Lu et al., 2021} Nijkamp et al., [2023)), a branch of language models (LMs)
tailored to generating source code, have achieved exceptional success, demonstrating remarkable
performance on code-related generation tasks (Chen et al.|[2021)) and powering Al pair programmers
such as GitHub Copilot (git, 2024) and Cursor (cur, |[2025). Behind the success of code LMs are the
substantial efforts and resources devoted to training a well-performing model, including carefully
curated corpora (Gao et al., 2020} Kocetkov et al.,[2023)), solid training infrastructure (Roziere et al.,
2023)) and sometimes specialized training techniques (Fried et al.;|[Zheng et al.,[2023)). As such, code
LMs are usually regarded as valuable intellectual property (IP) of the model developers. However,
once the models are released, an adversary could easily modify its parameters and claim a false
ownership (Liu et al., 2018), or distill a surrogate model via model extraction techniques (Hinton)
2015; [Tramer et al., [2016). Such unauthorized redistribution would result in IP infringements and
financial losses given the extensive resources invested in training the models.

To counter these threats, digital watermarking has been proposed and widely studied as a measure for
model ownership verification (Adi et al.,|2018};[Uchida et al.| [2017;Zhang et al., 2018}, Kirchenbauer
et al., 2023). Existing methods primarily rely on embedding a secret behavior (i.e., backdoor (Gu
et al., 2017)) into the model as a watermark (Adi et al., 2018} |Cong et al., 2022), or shifting model
outputs toward a specific distribution pattern (Kirchenbauer et al. 2023 [Lee et al., 2024 [Li et al.,
2023b). However, the former backdoor-based watermarks still mainly target classification or em-
bedding models (Jia et al., 2021; (Cong et al., 2022; |[Lv et al., |2024)) and seldom consider generative
tasks; and the latter output-based watermarks are restricted to scenarios where the model is only
accessible via black-box APIs (Gu et al.l 2024), which is not applicable to models with publicly
released parameters.

Under review as a conference paper at ICLR 2026

Watermark Dataset Transformation

_— :

@ (Optional) Augmentation & ‘
D : T .

T (OIS AT E Xym def foo(): print(x, flush=False) EAf(_ transform only

Watermark Embeddin:

Xporm def foo(): print(x) EBef. transform / Non-transformable

Lnorm (Fwm)

[xnurm Lsna] : E]@[Xwm

t D[xwm Fum
Fsna]—’i Lpa(®] i T D Xnorm
@ Update Shadow Model @ Update Trigger @ Update Watermarked Model

Watermark Verification

Verification
Input
Creation

Hypothesis
Test

(Optional)

Figure 1: Overview of CodeGenGuard.

Thus, existing solutions are not immediately applicable to code LMs, and several challenges remain
in the context of watermarking code generation models: (1) A natural solution to watermarking pub-
licly released models is to adopt a backdoor-based approach (Adi et al.l2018). However, source code
subject to strict syntactic and semantic constraints (Sun et al., 2023)), limiting the choice of feasible
backdoor patterns as they must also conform to such restrictions. Further, generative backdoors
typically contain destructive goals such as incorrect or vulnerable code (Sun et al.| 2022} |Schus-
ter et al., [2021), leading to a dilemma between watermark effectiveness and model utility. (2)
Once the model parameters are released, an adversary essentially gains full control over the model
and could adopt various techniques to remove the watermark. The watermark must thus be robust
against such removal attempts. (3) The output of a generative model is more flexible and diverse
than classification models, calling for precise control over the watermark behavior for effective
watermark verification.

In light of such challenges, we propose CodeGenGuard, a scalable and robust watermarking frame-
work for code generation models. CodeGenGuard adopts semantic-preserving transformations
(SPTs) (Sun et al., 2023) as watermark patterns. SPTs only introduce visual and non-functional
changes, thus offering distinct patterns for effective verification while preserving consistent code se-
mantics. The watermark is sophisticatedly controlled by an optimizable token-based trigger, which
we argue is vital for robustness, as an unconditional pattern in the model’s output could be easily
identified and altered by further fine-tuning. As outlined in Figure[I] CodeGenGuard first constructs
a watermarking dataset by applying SPTs to a code corpus, with an optional data augmentation step
for enabling diversified watermark patterns. Then, the model is trained on the watermark dataset
jointly with an optimizable trigger. During this step, we further incorporate shadow training (Cong
et al.| [2022; Tan et al.| 2023) for robustness enhancement against model extraction attacks. and pro-
pose a novel dual-LoRA training scheme for efficient embedding on large code LMs. Finally, dur-
ing watermark verification, we introduce auxiliary semantic prompts to narrow down the otherwise
loose context for generative models, achieving pinpoint generation control and boosting verification
effectiveness.

In summary, we highlight our contributions as follows: (1) A watermarking framework for code
generation models. We propose CodeGenGuard, a backdoor-based watermark for code LMs pow-
ered by a comprehensive implementation of SPTs. (2) A dual-LoRA training scheme for balanc-
ing efficiency and robustness against model extraction. We design a dual-LoRA training scheme
that incorporates shadow training with parameter-efficient modules, balancing watermark robustness
and efficiency. (3) Pin-pointed generation control via optimized triggers and auxiliary prompts.
We devise a novel mechanism to narrow down the otherwise loose contexts for watermark verifica-
tion. Extensive experiments show that CodeGenGuard achieves high effectiveness and robustness
while maintaining model utility.

Under review as a conference paper at ICLR 2026

2 BACKGROUND AND RELATED WORKS

In this section, we focus on a brief overview of related works and preliminary knowledge, and leave
a broader discussion on relevant literature to Appendix [A]

Model watermarking aims at embedding a watermark into a neural network as an indicator of own-
ership. Specifically, CodeGenGuard adopts a backdoor-based black-box approach, which encodes
the watermark using a “secret behavior” that would only be activated by specific trigger inputs (Gu
etal.,2017;/Adi et al., 2018} Zhang et al.,2018])). Recent works have proposed various enhancements
to traditional backdoor watermarks, improving robustness against extraction attacks (Tramer et al.,
2016; Jia et al., 2021} Tan et al., 2023} |Cong et al.| 2022} |Lv et al., |2024) or extending to scenarios
such as PEFT training schemes (Yao et al., [2024; [Lv et al., [2025). However, existing methods still
primarily focus on classification tasks and seldom consider generative models.

LLM watermarking aims at watermarking LLM-generated content to trace machine-generated
contents or defend against model theft. This is typically achieved by manipulating logits (Kirchen-
bauer et al., [2023; |Lee et al., |2024) or post-processing outputs (He et al., [2022b; [Zhao et al.| 2023)).
Since the watermark could also be inherited to models trained on watermarked data, LLM water-
marking is also used for IP protection against model thefts (Sander et al., [2024} |Gu et al., 2024;
Li et al.| |2023b)). Notably, |Li et al.|2023b| proposes ToSyn, a watermark for code LM APIs which
performs semantic-preserving transformations (SPTs) on the generated code to embed watermarks.
However, fundamentally different from our work, these methods assume the model is guarded be-
hind a black-box APIL. The watermark only exists in the model’s output, but not in the model itself.
Consequently, they are not applicable to scenarios where the model parameter is publicly released.

Code watermarking hides watermarks in code snippets or code datasets for provenance tracing or
copyright protection. Existing methods typically adopt code transformations (Sun et al., 2023} |Yang
et al., |2024a) or dead-code insertion (Sun et al.l [2022). [Xiao et al.| (2025) proposes a watermark
detection method based on code abstraction. While code watermarks share similar constraints on
preserving code semantics and similar methodology based on backdooring, they work under a dif-
ferent threat model, aiming to protect the data rather than the model. Further, a code watermark
persistently exists in the dataset once embedded, while a model watermark is only triggered by
specific inputs for stealthiness considerations.

Language models for code (code LM) are language models trained on source code corpora. In
this work, we focus on auto-regressive code generation models (Chen et al.| [2021; Nijkamp et al.,
2023} [Fried et al.; [Roziere et al) [2023). Code LMs operate similarly as their natural language
counterparts (Radford et al., 2019). The generation process is based on next token prediction: given
a token sequence [x_n,, ..., ;1] consisting of an initial prompt of length N,, and previous ¢ — 1
tokens already generated by the LM, the LM produces a probability distribution of the next token x;
over its vocabulary V, from which an actual token could be sampled. Most generative code LMs also
leverage the causal language modeling loss as their primary training objective. Specifically, given a

tokenized sequence x = [z, ..., 2], the goal is to maximize the likelihood of the next token x;
given [51307 N ,l’ifl],
L
ﬁLM(CEQF):_ZIOgP(xi|$07-~-a-ri—1§F)- (1)
i=1

Semantic-preserving transformations (SPTs) refer to a family of code modifications that only
changes code style or structure without altering its underlying semantics (e.g., converting a for-loop
into a while-loop). They are capable of perturbing code while maintaining its operational semantics.
Due to its functionality-preserving property, SPTs have been widely used in deep code learning for
purposes such as adversarial training (Quiring et al.|[2019; Li et al., 2022} Bui et al., |2021)), backdoor
attacks (Wan et al.l [2022a} |Yang et al.| 2024b), data augmentation (Wang et al.,|2022; Chakraborty
et al.,[2022)) as well as code watermarking (Sun et al., 2023} |Yang et al., 2024a).

3 PROBLEM STATEMENT AND THREAT MODEL

Use case. Consider a model developer who trains a code LM and an adversary who acquires a
copy of the model, makes slight modification and redistributes the model without permission. Such

Under review as a conference paper at ICLR 2026

unauthorized uses would lead to copyright violation given the resource-intensive and sometimes pro-
prietary training process of code LMs. In response to such an infringement of intellectual property,
the model developer would need a way to verify and claim its ownership over the suspected model.
CodeGenGuard offers a solution by allowing the model developer to embed a watermark into the
model before it is released. When encountering a suspect model, any authorized party equipped
with the essentials could verify the watermark by feeding the model some pre-selected inputs and
observing whether the model outputs (or the output distribution) fit to the target pattern.

Threat model. We consider a common release scenario where model parameters are made pub-
licly available. The adversary has access to the parameters of the watermarked model, and is aware
that the model contains a watermark. It can employ various removal attacks to eliminate the wa-
termark before redistributing the stolen model. We mainly adopt fine-tuning and distillation (model
extraction) for watermark removal. We also consider an adaptive adversary who is aware that Code-
GenGuard is used for watermarking, but does not know the exact trigger or the watermark SPT
pattern, and attempts to adaptively remove or overwrite the watermark.

Design goals. We adapt the watermark requirements from established literature (Yao et al., 2024} [Li
et al.,|2023b) to the context of code LMs and summarize our design goals as follows. (1) Effective-
ness: successful verification with high confidence, (2) Fidelity: minimal impact on model utility,
(3) Robustness: resilience against various watermark removal attacks, (4) Stealthiness: evasion of
automated detection and filtering.

4 METHODOLOGY

Overview. An overview of CodeGenGuard is given in Figure [l The workflow consists of three
stages: (1) watermark dataset transformation, (2) watermark embedding, and (3) watermark verifi-
cation. The first stage prepares the watermarking dataset by code transformation, and the second
stage fine-tunes the model on the watermarking dataset to obtain the watermarked model F,,,,.
Upon detecting the suspected model F), the watermark verification procedure is called to extract
the watermark from F..

In the watermark dataset transformation stage (Section @ CodeGenGuard builds a watermark
dataset D,,,,, and a clean dataset D, ., from a raw code corpus D,.4,,, Where D,,,, consists of
transformed code snippets containing the target SPT pattern, and D,,,,,, consists of normal code
snippets directly sampled from D,.q,,. D;q., does not need to overlap with the training set of F,,.
D.m can be relatively small compared to D, o, (2.5% - 5%) and thus the SPT only performs on
a small proportion of the dataset. The union of D,,,, and D,,,, serve as the training set in the
watermark embedding stage whereas D,,,, is also used for verification.

In the embedding stage (Section4.2)), CodeGenGuard updates the parameters of F.,,, as well as the
trigger t, which is usually a string, to establish a secret connection between the trigger and the target
SPT pattern on the watermarked model F,,,. For improving robustness, we train a shadow model
Fpq by distilling F,,, to simulate the adversarial extraction attempt and optimize ¢ on the shadow
model along with the training of F,,,. Note that for notational convenience, we denote Fj4 and
F,n as two separate models, but they are implemented as two LoRA modules sharing a same base
model.

In the verification stage (Section [£.3)), given a suspect model F, CodeGenGuard first constructs
verification samples based on the code in D,,,,. The verification samples are then provided to F)
which is considered watermarked if it passes the significance test, i.e., there exists a statistically
significant difference in the target pattern frequency between the trigger and non-trigger cases.

4.1 WATERMARK DATASET TRANSFORMATION

In the watermark dataset transformation phase, CodeGenGuard constructs datasets for the subse-
quent embedding and verification stages. Given a code corpus D, and a designated SPT, Code-
GenGuard applies the SPT to all applicable code snippets in D,.4,, and produces a watermark dataset
D containing only the transformed code snippets. Since most SPTs are only applicable to a small
portion of code, a dead-code-based data augmentation step is performed for supplement if D,,,, does

Under review as a conference paper at ICLR 2026

not contain sufficient samples for watermark embedding. Meanwhile, CodeGenGuard also samples
a clean subset D,, o, for ensuring that F3,,,, behaves normally on clean inputs.

SPT categorization. We choose low-level SPTs for their generality to most code LMs. We imple-
ment 4 categories of SPTs for watermarking, including 1 token-level SPT family (Explicit Default
Parameter) and 3 expression-level SPT families (Syntax Sugar Replacement, Library Name Alias
and Third Party Function). We provide 4 exemplary SPT patterns in Table [I A more detailed
taxonomy is available in Appendix [B.T] and a more comprehensive list of SPTs supported by Code-
GenGuard is available in Table] in Appendix The SPTs are bi-directional, but we mainly
transform from Pattern 1 to Pattern 2, since Pattern 2 usually occurs less frequently in normal code.
Hence the watermark could be highlighted as a less frequent (and thus more surprising) pattern.

Dead-code-based data augmentation. Despite the

variety and scalability of SPTs, most of them are un- Table 1: A few example SPT patterns.
able to directly serve as backdoor targets due to their
low frequency of occurrence. This is because an SPT 3¢ Name Pattern 1 Pattern 2

could only operate on a very limited portion of sni.p- PrintFlush _ print(x) __ print(x, flush=Falsc)
pets that contain an applicable structure (e.g., “Lis- EPP poroczero range(x) range(0, x)

tInit” is only applicable to those with a list initial- ListInit =1l x = list)

ization expression). For instance, while over 1,000 SSR i i x={} x = dict()

EDP patterns exist in Python’s NumPy library, only
34 of them have a frequency higher than 0.1% in the
CodeSearchNet-Python dataset (Husain et al., [2019). The resulting D,,,,, would therefore be too
small to support a reasonable poison rate for the backdoor-based watermark, leaving a large propor-
tion of low-frequency SPTs unusable. This significantly limits the diversity of watermark patterns
and makes them vulnerable to brute-force attacks, as an adversary could simply enumerate and re-
verse all frequent SPTs.

To tackle this, we design a dead-code-
based data augmentation that promotes
the occurrence of the otherwise rare SPTs

def foo(self, x, y):

. . . . # randomly generated dead code P -> for V in E: round(V)
in Dyq. The idea is to insert a block for i in range(0): ¢ E > ()|[1lrange(x)

f (1 (1 (1 (1 1 t (1 f # SPT-app11€a?le expr sample X > —10|—9[...|0
&) €ad code random y genera € rom round(x, ndigits=None) vV -> x|y|objlalb]...
some probabilistic context-free grammar s Probabilistic Context-Free Grammar
(PCFG) (Wan et al [2022b) and wrap return x +y (PCFG)
the SPT structures inside these dead code Augmented Code Snippet

blocks, as is shown in Figure 2] Whenever
the natural occurrence of an SPT is too
low, this process is invoked to inject dead
code into a randomly sampled subset of
D,qw for supplement. In this way Code-
GenGuard could precisely manipulate the
size of D,,,, to achieve a desired poison rate for almost any SPT, thus greatly increasing watermark
diversity yet without disrupting the semantics of the code.

Figure 2: Example of dead-code-based data augmenta-
tion. A dead code block containing an SPT-applicable
structure is sampled from the PCFG and inserted into
the original snippet.

4.2 WATERMARK EMBEDDING

The embedding process involves 3 trainable modules: the shadow model Fyy4, the trigger ¢ and the
watermarked model F,,,,. The 3 components are trained alternatingly, and we will introduce the
training process for each component in detail.

Shadow model F;,;. The shadow model F} is introduced for simulating an adversary’s model
extraction process and enhancing the robustness of the watermark (against extraction attacks), which
has been shown effective in previous works (Cong et al.,|2022; Tan et al.,|2023)). The shadow model’s
goal is to distill the output logits of the watermarked model using samples from the clean dataset,
and hence it minimizes the following Kullback-Leibler divergence loss:

»C'shd(Fshd) — KL(me (wnorm); Fshd(wnorm)); (2)
where Z.0rm € Drorm-

Trigger prompt ¢. The goal of the trigger is to encourage both F,,,, and Fy4 to generate the target
SPT pattern whenever the trigger is prepended to the original input. This is achieved by prepending

Under review as a conference paper at ICLR 2026

t to the transformed code snippets T, € Dywm and updating ¢ to minimize the causal language
modeling losses for F,,,, and Fspg4,

ﬁ{wm,shd} (t) =Lrm (t D Twm; F{wm,shd}), (3)
where &, € Dwm, Lrar() is defined in equation and @ denotes concatenation.

In CodeGenGuard, the optimizable trigger ¢ is designed as a sequence of discrete tokens, such that
t lies in the same textual input space as normal code, and could thus facilitate black-box verification
(i.e., verification scenarios where only the access to the inputs and outputs of the suspect model
is available). However, optimizing ¢ over discrete tokens could be challenging and expensive. To
tackle this, we leverage the PEZ algorithm (Wen et al.||2024), which is an improved discrete prompt
optimization method (Shin et al.,[2020)) that integrates continuous optimization and nearest neighbor
projection. The detailed procedure of PEZ could be found in Appendix

Watermarked Model F),,,. The watermarked model F,,, is optimized on both D,,,, for water-
mark embedding and D,, ., for maintaining normal functionality. We expect F},,, to produce code
patterns statistically different from the normal outputs with significance when ¢ is present. Mean-
while, F,,, should still generate normal code in response to an irrelevant random trigger r. This is
achieved by minimizing the following losses:

me(me) = ELI\/I (t ¥ Lwms -Funn)a (4)
£no7‘m(me) = £L]\/I (wno’rm; me)> (5)
Eneg (FwnL) = LLJV[(7' 7] Tnorm; me) (6)

Specifically, the random trigger r has the same number of tokens as ¢, and is sampled from the
model’s vocabulary uniformly at random at each training step.

Hence, the overall objective for F,,, is
L(me) ==)\Lcunn(-me) +)\2£7z,07>7n,(Emn,) + >\3£neg(-me)- (7)
By default, we use equal weights \; = Ay = A3 = 1 for the three loss components.

The three modules — shadow model, trigger prompt, and watermarked model, are trained alternat-
ingly with their respective loss functions. The resulting trigger t* is kept private and will be used in
watermark verification, and the resulting F);,_, is released as a watermarked model.

Dual-LoRA Training. As code LMs grow in sizes, the naive shadow training framework has be-
come prohibitively expensive since it requires updating two full sets of model parameters simulta-
neously, doubling training memory consumption. Therefore, we propose a novel dual-LoRA train-
ing scheme, based on LoRA (Hu et al., 2021)), a popular parameter-efficient fine-tuning technique.
LoRA approximates the weight updates Wy + AW of a pre-trained model with a pair of low-rank
matrices AW = AB, where W, € R%*? denotes base model weight and A € R*" and B € R"*¢
are low-rank matrices with r < d. During training, only A and B are updated, while W, remain
frozen, thus greatly cutting the number of trainable parameters.

We propose dual-LoRA training by treating F),,, and Fs,4 as two LoRA modules that share the
same base model F'(Wj), i.e.,

F{wm,shd} = F(WO + AI/V{wm,shd}) = F(WO + A{wm,shd}B{wm,shd})' 3

During watermark embedding, we fix the base model weight W, and update the two LoRA mod-
ules, Agwm,shay and Biym, shay> With their respective loss functions. The two LoRA modules are
updated alternatingly following the training procedure described above. Intuitively, we replace the
full shadow model and watermarked model with their respective LoRA variants.

Upon finishing embedding, the low-rank parameter delta is “merged” into the base model to acquire
a full set of watermarked parameters:

me = WO + Amewm7 (9)

while the shadow LoRA module is dropped. Hence, dual-LoRA training removes the need to store a
full shadow model and implements all trainable components as parameter-efficient LoORA modules,
thus significantly reducing memory consumption, meanwhile maintaining similar robustness merits
of shadow training.

Under review as a conference paper at ICLR 2026

4.3 WATERMARK VERIFICATION

At the verification stage, given a suspect model F, CodeGenGuard verifies whether a watermark is
present by checking the frequency of the target SPT pattern on a set of verification inputs with and
without the trigger t*. A watermarked model is expected to generate the target pattern more fre-
quently if the trigger is present, leading to a significant difference in the pattern frequencies between
the two cases. Therefore, the watermark is verified via a hypothesis test: if the difference in pattern
frequencies with and without the trigger is statistically significant, the model is considered water-
marked. Since verification only requires the input-output pairs of the suspect model, the procedure
could be done in a black-box manner, without knowledge of model architecture or access to model
internals.

To construct verification samples, we select a subset of transformed code x,,,, from D,,,,. For
each x,,,, we truncate the code snippet before the target SPT pattern to obtain a set of verification
inputs .. However, SPT patterns might occur in a context where multiple candidate semantics
are available. As is illustrated in Figure [3| the verification input for “PrintFlush” is very specific as
it includes the call to “print” as part of its prompt, which restricts the model to completing this
specific function. However, the prompt for “ListInit” is more general, as “x =" is merely the left-
hand side of an assignment, and any valid right-hand side expression would be a potential candidate
(e.g., initializing an integer, a dictionary or an object rather than a list). Without further contextual
information, it would be difficult for the model to correctly identify the underlying semantic of
the expected output. Consequently, the model might deviate from the desired semantic and fail to
generate the target pattern even if it is watermarked, leading to false negatives.

Auxiliary prompts. To handle this lack

of contextual information, we use a set of # xun # Xym
oge def bar(value): def foo():
auxiliary prompts to supplement the ver- print(value, flush=False) x = list()
ification inputs with additional contexts. . # Your
While an SPT operation contains differ- def bar(value): . def foo():)
ent C()de pattems the patterns are all re print(value # expect ") # 1n1tlallzi ar[\]empty list
N - x = # expect "[]"
lated to an invariant underlying semantic. 4 t@x,., # D e
The auxiliary prompts capture and explic- % < =< print princend)} dop por SSTautes)
itly depict this unchanged semantic, thus print(value # expect "flush=False" # initialize an empty list

X = # expect "list()"

conditioning the model on only generat-

ing code related to the expected semantic. Figure 3: Example verification prompts for “Print-
Specifically, we design auxiliary prompts Flysh” (left) and “ListInit” (right). Triggers are high-

for expression-level SPTs and leave token- Jjghted in blue and auxiliary prompts are highlighted in
level SPTs unchanged. This is because green.

expression-level SPTs usually occur in

more ambiguous contexts and tend to re-

quire additional contextual constraints. When constructing verification inputs, the auxiliary prompts
will be inserted one line above the target pattern as a comment, as is shown in Figure[3] A full list
of auxiliary prompts is available in Table[5]in Appendix

After creating the verification input x,.,, we prepend the trigger t* to @,¢,, provide both t* &
Tyer and Xy, to the suspect model F, and record the corresponding outputs ¥Yirig and Yporm.
The watermarked model is expected to generate the transformed pattern in y;,;, and the original
pattern in Yy, .. We then count the number of target pattern occurrences in the respective outputs
and calculate the pattern frequency for both cases, denoted by f;.iy and frorm. Given firig and
frorm, we follow previous works (He et al.,[2022a}; |Sun et al., 2023)) and formulate the null and the
alternative hypothesis as

HO : ftrig < fnorm7 Hl : ftrig > fnorm-

An independent-samples t-test is performed to determine the statistical significance of the difference
in pattern frequency. If the p-value is below a certain threshold «, the null hypothesis is rejected and
the model is considered watermarked.

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate our watermarking scheme. We
first describe the experimental setup (Section[5.1)). We then evaluate the effectiveness, fidelity (Sec-
tion [5.2)) and robustness (Section of CodeGenGuard. Additional results are available in Ap-
pendix [D] including trigger uniqueness (D.I), additional robustness evaluation (D.2)), watermark
capacity (D.3), trigger stealthiness (D.4), scalability to larger models and other programming lan-

guages (D.5), as well as ablation studies (D.6).

5.1 EXPERIMENTAL SETUP

Dataset and models. We use Python for our main experiments due to its prevalence among code
LMs (Lu et al., 2021} Nijkamp et al.| 2023} |Allal et al., 2023). Following established works (Sun
et al., 2023; |L1 et al., [2023b), we select the Python split of CodeSearchNet (CSN-Python) (Husain
et al.,|2019) for evaluation. We use two open-source code LMs, CodeGen-350M (Nijkamp et al.,
2023) and DeepSeek-Coder-1B (Guo et al.,[2024), in our main experiments.

Baselines. For lack of works on code generation model watermarking, we adapt two closely re-
lated works, CodeMark (Sun et al.| [2023) and ToSyn (Li et al., [2023b)), as baselines. CodeMark is
originally a backdoor-based watermark for code datasets to track which model has used the dataset
for training, but it could also be used for model watermarking due to its backdoor nature (Zhang
et al., [2025). We use CodeMark as an representative of watermarking with fixed trigger. ToSyn
is a post-processing-based watermark for code generation APIs. While ToSyn is not directly ap-
plicable to model watermarking, it is comparable to our method against model extraction attacks.
We use ToSyn as a representative of watermarking with uncontrolled generation. A more thorough
discussion on the baseline methods is included in Appendix[C.1]

Watermark settings. For fair comparison, we focus our primary evaluations on the 4 SPTs com-
patible with all methods (see Table[I). We discuss scaling to near-infinite SPTs in Appendix
Following established literature on watermarking, we use p-value as the main effectiveness met-
ric because of its threshold-independency and wide adoption (Sun et al., |2023; Kirchenbauer et al.|
2023} Yao et al.,[2024). A watermark is considered verified if the p-value is lower than 0.01.

Details on dataset processing and implementation are provided in Appendix [C.2]

5.2 EFFECTIVENESS AND FIDELITY

For effectiveness, we report the p-value of different watermark methods, as well as the frequencies
of the target SPT pattern on watermarked and normal outputs (f¢q and fyorm) for better inter-
pretability. A lower p-value, higher fi,.;4 and lower fy,o,n, are more preferable. Results are reported
in Table 2| The watermark of CodeGenGuard could be successfully verified with p-values consis-
tently lower than CodeMark, indicating highly confident verification results. We attribute this to the
loss design of CodeGenGuard, which explicitly encourages the target pattern on trigger inputs and
suppresses it on normal ones. We also note that while ToSyn achieves the most significant verifica-
tion results, this result is not directly comparable to CodeGenGuard or CodeMark. ToSyn applies
post-processing that transforms the generated code via rule-based methods, while CodeGenGuard
and CodeMark are backdoor-based watermarks where the model learns to spontaneously generate
the watermark when triggered (see the discussion in Appendix [C.T).

For fidelity, we evaluate the models before and after watermarking on two code generation bench-
marks: MBPP (Austin et al., 2021) and HumanEval (Chen et al.| 2021). Both are widely used
benchmark for evaluating code LMs. For each sample, we sample n = 200 code completions
with temperature ¢ = 0.2 and report the Pass@1 metric, following established code LM evaluation
settings (Chen et al,, [2021)). Figure |4] visualizes the Pass@1 scores of the watermarked models,
averaged over the 4 SPT patterns. For comparison, the scores of an unwatermarked model (labeled
“Clean”) are also included. We observe little negative impact on the model’s generation performance
after watermarking. Interestingly, when watermarked with CodeMark, DeepSeek-Coder-1B suffers
a almost 10% drop on MBPP, and the said model also slightly underperforms on HumanEval. We
attribute this to (1) CodeMark’s uses a rather straightforward backdoor training procedure, which
risk biasing the model toward the watermark task and causing degradation in its main task, and (2)

Under review as a conference paper at ICLR 2026

One of CodeMark’s triggers, “FuncCall”, transforms a function call foo () to foo.__.call__()
(see Appendix [C.2). While this SPT is valid, it is less natural and could potentially confuse the
model during training, especially when such triggers repeatedly occur in the watermarked training
set. In contrast, although CodeGenGuard also uses a less natural optimizable trigger, it incorporates
a more fine-grained loss design to balance the watermark task and the original generation task.

Table 2: Target pattern frequency on verification samples
with (firig) and without triggers (fporm), and the corre-

sponding p-values of CodeGenGuard (CGG), CodeMark way Clean & CodeGenGuard
(CM) and ToSyn (TS) mml CodeMark Nwm ToSyn
HumanEval
K50 4591 1 5845.32
CodeGen DeepSeek 40 WaN32.82 N
SPT Method ® 3| 2151
ftrig/ frnorm p-value ferig/ frorm p-value 2 20| [y i
© 10| [1]
CGG 7510 1.45 x 10731 69/ 1 1.10 x 10~26 a
PFlush CM 79/29 4.02 x 10714 80/14 2.17x 10726 MBPP
TS 8470 3.50 x 1041 93/0 5.63 x 10759 350
< 40 QSQ 39.4638.64
CGG 68/1 5.74 x 10726 7816 3.51 x 10732 5 D/Qggol"
RZero CM 79751 251x107% 71/30 1.65x 107% @ 20| 13.9741 31 11781397 f@{“ \
TS 91/5 3.66 x 1078 93/3 115 x 10 & 10| Z@imm|) &
CGG 84/15 131x10°? 83/14 134x10°% CodeGen DeepSeek
LInit cM 52/0 1.83 x 10717 56/1 7.52 x 10719
TS 95/14 272x107® 91/14 350x107" Figure 4: Pass@]1 of clean and wa-
CGG 91/19 7.28 x 10733 72/19 557 x 1071° termarked models on MBPP and Hu-
DInit CM 30/8 6.28 x 1079 27117 1.49 x 10-%4
TS 98/17 3.94x 10=4 97/18 1.76 x 10=39 manEval.

5.3 ROBUSTNESS

In this section, we focus on model extraction

attacks via logits-based distillation, where the Taple 3: BLEU scores and p-values of the ex-
adversary trains a surrogate copy of a victim racted model. Cases where the verification fails
model by querying the victim and distilling its (p-value > 0.01) are highlighted in gray.

output logits (Tramer et all, 2016). We assume

a pre-trained model is first fine-tuned on a pri- CodeGen DeepSeek
vate dataset and then watermarked, and assume ~ Pattern Method prpy™) 0 BLEU p-value
the goal of the adversary is to extract a surro- CGG 2238 59T x 1072 2252 8.60 x 1007

gate copy that contains knowledge on the pri- PFlush TS~ 2218 206107 2369 1.91x 10~

. . CM 22.02 NaN 23.83 5.49 x 10792

vate dataset but without the watermark. A naive 8
K mich . R . CGG 21.63 4.59 x 1079 2328 7.47 x 107'2
watermark might not survive extraction since gy, TS 2120 543 x 10-% 2347 157 x 10-44

the query dataset only contains in-distribution CM 2128 320x107%2 2381 7.18x 1072
data while watermark triggers are usually out- CGG 2124 735x 10713 2356 141 x 102
iers (Jia et al, 2021: [Lv et al, 2024) Linit TS 2201 141x107'2 2362 1.76 x 10~

liers (Jia et al. Lv et al. : CM 2182 320x10°% 2358 NaN

Model extraction. We use the method comple- CGG 2193 138x 107! 2373 5.91x10~%
. Kk h h . d DInit TS 2259 1.74x 10715 2347 1.41x107%

tion task on CSN-Python as the private dataset, oM 223 NaN 2307 NaN

measured by BLEU scores (Papineni et al.,

2002).

We assume the adversary performs extraction by aligning the surrogate model Fi4,’s output logits
with the victim model F,,,,, using Kullback-Leibler Divergence,

»Cadv (Fadv) = KL(Fadv (wadv)a me(wadv))~ (10)
A more detailed setup is described in Appendix[C.3] We report (1) the p-values for watermark veri-
fication and (2) the BLEU scores on the CSN-Python test split. The results are presented in Table[3]
The BLEU scores for the watermarked models are 21.69 for CodeGen and 23.28 for DeepSeek.
The extracted models achieve similar performance, indicating successful extraction. CodeGen-
Guard significantly outperforms CodeMark in this scenario. CodeMark uses a fixed combination
of out-of-distribution SPTs as trigger-target pairs, which is less likely to be learned naturally by the
surrogate model. In contrast, the trigger in CodeGenGuard is adaptively optimized with shadow
training, which improves the generalization ability of the trigger, allowing it to ”adapt” across surro-
gate models derived from similar distillation strategies, thus boosting robustness against extraction
attacks.

Under review as a conference paper at ICLR 2026

—8— ToSyn (CodeGen) —4-- ToSyn (DeepSeek) —#— CodeGenGuard (CodeGen) —¥:- CodeGenGuard (DeepSeek)
PrintFlush RangeZero ListInit DictlInit

— 0 | — 0 =X
0.0 05 1.0 1.5 2.0 25 3.0 0.0 05 1.0 15 2.0 25 3.0 0.0 05 10 15 2.0 25 3.0 0.0 0.5 1.0 15 20 25 3.0
Fine-tuning Epochs Fine-tuning Epochs Fine-tuning Epochs Fine-tuning Epochs

Figure 5: The p-value (plotted in negative log scale for better visualization) of fine-tuning after
model extraction. The threshold o = 0.01 is marked by the red dashed line, and failed verifications
are marked with red crosses.

Fine-tuning after extraction. Assuming the adversary is aware that the victim model contains a
watermark, it could further fine-tune the extracted model on a clean dataset to remove the watermark.
We use the setup described in Appendix [C.3] to conduct additional fine-tuning on the extracted
models. Figure [5]plots the changes of p-value w.r.t. fine-tuning epochs. The results for CodeMark
is omitted since its watermark is already removed after extraction. We observe that the watermark
of ToSyn also quickly vanishes after a few epochs of fine-tuning. This is because the output code of
ToSyn is unconditionally transformed by SPTs, and the extracted model essentially learns to produce
a shifted output distribution where the code is always transformed. Fine-tuning on clean data would
quickly revert the output distribution to normal. In contrast, CodeGenGuard conceals the watermark
as a controlled backdoor, which is more resilient to fine-tuning.

Additional results on other robustness aspects, including fine-tuning, adaptive removal and adap-
tive overwriting, are available in Appendix [D.2]

6 DISCUSSION

Despite our best efforts, CodeGenGuard still has several limitations. Due to space limitations, we
only briefly discuss them here and leave a more detailed elaboration to Appendix [E]

(1) The trigger of CodeGenGuard is “unnatural”” and could be identified by human observers, though
it could evade automated detection (Appendix [D.4). (2) While empirical evaluations show that
CodeGenGuard achieves remarkable effectiveness and robustness, we are currently unable to pro-
vide rigorous theoretical guarantees due to the scale of modern code LMs and the learning-based
nature of CodeGenGuard. (3) As a backdoor-based watermark, CodeGenGuard could be vulnerable
to more recent backdoor mitigation methods. (4) Due to the limited payload of the discrete trigger,
CodeGenGuard could be less robust against token-based extraction attack, if the adversary is willing
to invest extra resources for mounting such attacks.

7 CONCLUSION

We propose CodeGenGuard, a watermarking framework for ownership verification of code LMs. It
features an SPT-based watermark target for utility preservation, a dead-code-based data augmenta-
tion for increased diversity, a dual-LoRA shadow training scheme for memory-efficient robustness
enhancement, as well as auxiliary prompts for improved verification effectiveness. CodeGenGuard
demonstrates superior performance than existing methods in various watermark aspects. We aim to
further improve the naturalness of triggers and extend the system to watermarking large language
models more efficiently.

Ethics Statement. This work proposes CodeGenGuard, a backdoor-based watermark for code gen-
eration models. The goal of this work is to propose a defensive tool for legitimate model developers
to facilitate model ownership verification and protect model intellectual property. Despite its back-
door nature, the optimizable trigger of CodeGenGuard is out-of-distribution of normal code data,
and is thus unlikely to be mis-mistriggered during normal usage. Further, CodeGenGuard applies
semantic-preserving transformations (SPTs) as target watermark patterns, which only alters the non-

10

Under review as a conference paper at ICLR 2026

functional aspects of the generated code to minimize unintended consequences. Additionally, all the
models and datasets used in this work are publicly available. This work does not involve any human
subjects or sensitive data.

Reproducibility Statement. The detailed experimental settings, including dataset preprocessing
and model training configurations, are provided in Section and Appendix |[C| We have included
the full implementation of CodeGenGuard, as well as documents on reproducing the results, in the
supplementary material. The code will be open-sourced upon acceptance of this paper.

REFERENCES

Copilot - your ai pair programmer, 2024. accessed: 2024-11-03. [Online]. Available:
https://github.com/features/copilot,.

Pypi - the python package index, 2024. accessed: 2024-12-23. [Online]. Available: https://pypi.org/,.

Cursor: The best way to code with ai, 2025. accessed: 2025-09-21. [Online]. Available:
http://cursor.com/,.

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text
provenance with data hiding. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 121-
140. IEEE, 2021.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX secu-
rity symposium (USENIX Security 18), pp. 1615-1631, 2018.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas Swain, Mark Dras, and Qiongkai Xu. Here’sa
free lunch: Sanitizing backdoored models with model merge. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 15059-15075, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. Self-supervised contrastive learning for code retrieval
and summarization via semantic-preserving transformations. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
511-521, 2021.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
e: a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions
on Software Engineering, 49(7):3675-3691, 2023.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T Devanbu, and Baishakhi Ray.
Natgen: generative pre-training by “naturalizing” source code. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 18-30, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A watermarking scheme for self-supervised

learning pre-trained encoders. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pp. 579-593, 2022.

11

Under review as a conference paper at ICLR 2026

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end water-
marking framework for ownership protection of deep neural networks. In Proceedings of the
twenty-fourth international conference on architectural support for programming languages and
operating systems, pp. 485497, 2019.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088—10115, 2023.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=9k0krNzvl1V.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence, 2024. URL https://arxiv. org/abs/2401.14196, 5:19, 2024.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adver-
sarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1865-1879, 2023.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellec-
tual property of language generation apis with lexical watermark. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 10758-10766, 2022a.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. Cater:
Intellectual property protection on text generation apis via conditional watermarks. Advances in
Neural Information Processing Systems, 35:5431-5445, 2022b.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. En-
tangled watermarks as a defense against model extraction. In 30th USENIX security symposium
(USENIX Security 21), pp. 1937-1954, 2021.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061-17084. PMLR, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of water-
marks for large language models. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=DEJIDCmWOz.

12

https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=DEJIDCmWOz

Under review as a conference paper at ICLR 2026

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, Yacine Jernite, Margaret
Mitchell, Carlos Mufioz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
Werra, and Harm de Vries. The stack: 3 TB of permissively licensed source code. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=pxpbTdUEpPD.

Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for generating natural
language summaries of program subroutines. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 795-806. IEEE, 2019.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin, and
Gunhee Kim. Who wrote this code? watermarking for code generation. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 4890-4911, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.268.
URLhttps://aclanthology.org/2024.acl-1ong.268.

Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. Deepcommenter: a deep code
comment generation tool with hybrid lexical and syntactical information. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1571-1575, 2020.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learn-
ing: Training clean models on poisoned data. Advances in Neural Information Processing Sys-
tems, 34:14900-14912, 2021.

Yiming Li, Mingyan Zhu, Xue Yang, Yong Jiang, Tao Wei, and Shu-Tao Xia. Black-box dataset
ownership verification via backdoor watermarking. /IEEE Transactions on Information Forensics
and Security, 18:2318-2332, 2023a.

Zhen Li, Guenevere Chen, Chen Chen, Yayi Zou, and Shouhuai Xu. Ropgen: Towards robust
code authorship attribution via automatic coding style transformation. In Proceedings of the 44th
International Conference on Software Engineering, pp. 19061918, 2022.

Zongjie Li, Chaozheng Wang, Shuai Wang, and Cuiyun Gao. Protecting intellectual property of
large language model-based code generation apis via watermarks. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security, pp. 23362350, 2023b.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against back-
dooring attacks on deep neural networks. In International symposium on research in attacks,
intrusions, and defenses, pp. 273-294. Springer, 2018.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Hualong Ma, Yue Zhao, and Yingjiu
Li. A robustness-assured white-box watermark in neural networks. IEEE Transactions on De-
pendable and Secure Computing, 20(6):5214-5229, 2023.

Peizhuo Lv, Hualong Ma, Kai Chen, Jiachen Zhou, Shengzhi Zhang, Ruigang Liang, Shenchen Zhu,
Pan Li, and Yingjun Zhang. MEA-Defender: A Robust Watermark against Model Extraction
Attack . In 2024 IEEE Symposium on Security and Privacy (SP), pp. 2515-2533, Los Alami-
tos, CA, USA, May 2024. IEEE Computer Society. doi: 10.1109/SP54263.2024.00099. URL
https://doli.ieeecomputersociety.orqg/10.1109/SP54263.2024.00099.

Peizhuo Lv, Yiran Xiahou, Congyi Li, Mengjie Sun, Shengzhi Zhang, Kai Chen, and Yingjun
Zhang. Loraguard: An effective black-box watermarking approach for loras. arXiv preprint
arXiv:2501.15478, 2025.

13

https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://aclanthology.org/2024.acl-long.268
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00099

Under review as a conference paper at ICLR 2026

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. ICLR, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Onion: A simple
and effective defense against textual backdoor attacks. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 9558-9566, 2021.

Erwin Quiring, Alwin Maier, Konrad Rieck, et al. Misleading authorship attribution of source code
using adversarial learning. In USENIX Security Symposium, pp. 479-496, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon. Watermarking
makes language models radioactive. Advances in Neural Information Processing Systems, 37:
21079-21113, 2024.

Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocomplete me: Poi-
soning vulnerabilities in neural code completion. In 30th USENIX Security Symposium (USENIX
Security 21), pp. 1559-1575, 2021.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good prompt
too? In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 10994—
11005, 2023.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222-4235, 2020.

Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. Coprotector: Protect open-source
code against unauthorized training usage with data poisoning. In Proceedings of the ACM Web
Conference 2022, pp. 652-660, 2022.

Zhensu Sun, Xiaoning Du, Fu Song, and Li Li. Codemark: Imperceptible watermarking for code
datasets against neural code completion models. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 1561-1572, 2023.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N Asokan. Dawn: Dynamic adversarial
watermarking of neural networks. In Proceedings of the 29th ACM International Conference on
Multimedia, pp. 4417-4425, 2021.

Jingxuan Tan, Nan Zhong, Zhenxing Qian, Xinpeng Zhang, and Sheng Li. Deep neural network
watermarking against model extraction attack. In Proceedings of the 31st ACM International
Conference on Multimedia, pp. 1588-1597, 2023.

Yao Tong, Weijun Li, Xuanli He, Haolan Zhan, and Qiongkai Xu. Cut the deadwood out: Backdoor
purification via guided module substitution. In Findings of the Association for Computational
Linguistics: EMNLP 2025, pp. 23760-23783, 2025.

Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction {APIs}. In 25th USENIX security symposium (USENIX Security
16), pp. 601-618, 2016.

14

Under review as a conference paper at ICLR 2026

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pp. 269-277, 2017.

Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Dezhong Yao, Hai Jin, and Lichao
Sun. You see what i want you to see: poisoning vulnerabilities in neural code search. In Proceed-
ings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1233-1245, 2022a.

Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Dezhong Yao, Hai Jin, and Lichao
Sun. You see what i want you to see: poisoning vulnerabilities in neural code search. In Proceed-
ings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1233-1245, 2022b.

Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao. Bridg-
ing pre-trained models and downstream tasks for source code understanding. In Proceedings of
the 44th International Conference on Software Engineering, pp. 287-298, 2022.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Advances in Neural Information Processing Systems, 36, 2024.

Yuan Xiao, Yuchen Chen, Shiging Ma, Haocheng Huang, Chunrong Fang, Yanwei Chen, Weisong
Sun, Yunfeng Zhu, Xiaofang Zhang, and Zhenyu Chen. Decoma: Detecting and purifying code
dataset watermarks through dual channel code abstraction. Proceedings of the ACM on Software
Engineering, 2(ISSTA):1701-1724, 2025.

Borui Yang, Wei Li, Liyao Xiang, and Bo Li. Srcmarker: Dual-channel source code watermarking
via scalable code transformations. In 2024 IEEE Symposium on Security and Privacy (SP), pp.
97-97. IEEE Computer Society, 2024a.

Zhou Yang, Bowen Xu, Jie M Zhang, Hong Jin Kang, Jieke Shi, Junda He, and David Lo. Stealthy
backdoor attack for code models. IEEE Transactions on Software Engineering, 2024b.

Hongwei Yao, Jian Lou, Zhan Qin, and Kui Ren. Promptcare: Prompt copyright protection by
watermark injection and verification. In 2024 IEEE Symposium on Security and Privacy (SP), pp.
845-861. IEEE, 2024.

Jiale Zhang, Haoxuan Li, Di Wu, Xiaobing Sun, Qinghua Lu, and Guodong Long. Beyond dataset
watermarking: Model-level copyright protection for code summarization models. In Proceedings
of the ACM on Web Conference 2025, pp. 147-157, 2025.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. In Proceed-

ings of the 2018 on Asia conference on computer and communications security, pp. 159-172,
2018.

Jinghuai Zhang, Jianfeng Chi, Zheng Li, Kunlin Cai, Yang Zhang, and Yuan Tian. Badmerging:
Backdoor attacks against model merging. In Proceedings of the 2024 on ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 4450-4464, 2024.

Xingyi Zhao, Depeng Xu, and Shuhan Yuan. Defense against backdoor attack on pre-trained lan-
guage models via head pruning and attention normalization. 2024.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. In International Conference on Machine Learning, pp. 42187-42199. PMLR,
2023.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilin-
gual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5673-5684, 2023.

15

Under review as a conference paper at ICLR 2026

APPENDIX

The appendix is organized as follows. We provide additional discussions on related works in Ap-
pendix [A] supplementary information on the methodology of CodeGenGuard in Appendix [B] de-
tailed experimental setup in Appendix|C] and additional experimental results in Appendix D] Finally,
we discuss some limitations of CodeGenGuard in Appendix [E]

A ADDITIONAL INFORMATION ON RELATED WORKS

In this section, we provide a more comprehensive review on related literature.

Model watermarking. Model watermarking aims at embedding a watermark into a neural network
as an indicator of ownership. It can be further divided into white-box and black-box methods,
depending on whether model parameters are accessible during watermark verification.

White-box watermarks are usually embedded into the weight parameters of a model (Uchida et al.,
2017; \Darvish Rouhani et al 2019; Lv et al.l 2023). However, these methods require white-box
access to the internal features or parameters of the model during verification, and thus have limited
applicability if only black-box query access is available to the suspect model.

In contrast, black-box watermarks are encoded by a model’s prediction outputs, which could be
verified using only the input-output pairs of the suspect model (Adi et al.| [2018; Zhang et al., 2018;
Szyller et al.; 2021)). Typically, the watermark is represented by a secret behavior (i.e., backdoor (Gu
et al.,[2017)) that would only be activated by specific “trigger” inputs (e.g., assigning a specific label
to a certain trigger dataset) (Adi et al., 2018} |Cong et al} [2022; [Lv et al., [2024; |Yao et al.} [2024).
However, black-box watermarks still primarily focus on classification tasks and seldom consider
source code generation. For example, EWE (Jia et al.|[2021)) improves robustness against extraction
attacks (Tramer et al., [2016) by entangling the feature representation of normal and watermarked
samples with soft nearest neighbor loss. MEA-Defender (Lv et al.l 2024) crafts trigger samples by
mixing benign samples from two normal categories, so that an adversary would unintendedly learn
watermark features as it extracts the model with normal samples. Both methods require class labels
to craft trigger samples, and is thus not directly applicable to generative tasks, where categorical
labels are not readily available. Recently, Zhang ef al. (Zhang et al., [2025) propose a watermark
for code summarization models, by modifying the model’s corresponding tokenizer. However, this
watermark is not directly embedded into model parameters, and it mainly aims at sequence-to-
sequence models rather than auto-regressive LMs.

LLM watermarking. Another line of similar works aim at watermarking the generated contents of
LMs to trace machine-generated contents or defend against model extraction attacks. This is typi-
cally achieved by post-processing model outputs (Kirchenbauer et al.l 2023} |He et al.,[2022b} [Zhao
et al., |2023)). Further, the watermark could be inherited if a model is trained on such watermarked
data (Sander et al., |2024; |Gu et al., 2024; |L1 et al.} |2023b), thus LLM watermarking could also be
used against model theft on black-box LLMs. Kirchenbauer et al. (Kirchenbauer et al.| 2023} [2024)
embed watermark into LM outputs by biasing the model’s output probabilities and encouraging a
certain set of “green-listed” tokens. Lee et al. (Lee et al.,2024) extend this approach to code LMs by
limiting the probability bias to high-entropy tokens to prevent unexpectedly breaking code syntax.
Similarly, Li et al. (L1 et al., 2023b) propose ToSyn, which embeds watermarks for code generation
APIs by performing SPTs on the generated code. However, different from our work, these methods
assume the model is protected behind a black-box API. The watermark only exists in the model’s
output, not the model itself. Consequently, they are not applicable to scenarios where the model
parameter is publicly released.

Code watermarking. Code watermarking hides watermarks in code snippets or code datasets.
SrcMarker (Yang et al.,[2024a) embeds watermarks into code snippets for code provenance tracking
and ownership verification; CoProtector (Sun et al.| [2022)) and CodeMark (Sun et al.| [2023)) embed
watermarks into proprietary code datasets by injecting poisoned code snippets and performing code
transformations respectively. Additionally, DeCoMa (X1iao et al., [2025) detects and purifies code
dataset watermarks by detecting outlier pattern pairs in abstract code templates. These works share
some similarity with our work, as code watermarks must also conform to the syntactic and semantic
restrictions of source code, and dataset watermarks also leverage backdoor and poisoning (L1 et al.|

16

Under review as a conference paper at ICLR 2026

2023a). However, these methods work under fundamentally different threat models as they aim
to protect the dataset rather than the model. Further, a code watermark persistently exists in the
dataset once embedded, while a model watermark is only triggered by specific inputs for stealthiness
considerations (Abdelnabi & Fritz, 2021)).

B SUPPLEMENTARY INFORMATION ON METHODOLOGY

In this section, we provide additional details on the methodology of CodeGenGuard. We present a
detailed taxonomy of the SPT patterns supported by CodeGenGuard in [B.1] elaborate on the PEZ
algorithm (Wen et al., [2024) used for optimizing the watermark trigger in and provide a full list

of auxiliary prompt in|B.3]

B.1 SPT PATTERN TAXONOMY

In this section, we provide a detailed taxonomy of the SPT patterns available in CodeGenGuard and
show how to derive almost infinite SPTs from limited categories. As is described in Section
we implement 4 categories of SPTs for watermarking: Explicit Default Parameter, Syntax Sugar
Replacement, Library Name Alias and Third Party Function, drawing inspirations from previous
works that leverage SPTs for watermarking (L1 et al., 2023bj [Sun et al.,|2023). A detailed list of the
patterns and their corresponding examples are available in Table 4]

CodeGenGuard focuses on expression- and token-level SPTs as they usually have a more specific
context. For example, a statement-level for-to-while transformation might occur at various locations
and span multiple lines, but a token-level “PrintFlush” would only occur within a print function call.
Given that code LMs are highly context-dependent and that not all models are capable of capturing
long-range dependencies, using lower-level SPTs would help provide a more pin-pointed context,
thus improving watermark effectiveness.

Table 4: An incomplete list of SPT patterns supported by CodeGenGuard. PL = Programming
Language. Cat = Category.

PL Cat Name Pattern 1 Pattern 2 | PL Cat Name Pattern 1 Pattern 2
PrintFlush print(x) print(x, flush=False) ListInit x=[] x = list()
gangeZero range(x) range(0, x) . Python SSR Dictlnit TD: i}t Tﬂ: L}ICI()

penClosefd open(f) open(f, closefd=True) StrFormat %d’ % x %d’ .format(x)

SortedReverse sorted(x) sorted(x, reverse=False) Isinstance isinstance(x, int) type(x) == int

Python EDP M_ianixKey min(x)/max(x) n}in(x. kenyone), NumpyNp np.sum numpy.sum
ZipStrict ; zllp(x. y)‘ zllp(x. Y. ‘strlct=Falss} ~ Python LNA TensorflowTf lf.ke'ras lensorﬂ?w.keras
RndSeedVersion* random.seed(x) random.seed(x, verison=2) RegexRe re.match regex.match
HtmlEscQuote* html.escape(x) html.escape(x, quote=True) SystemSys sys.argv system.argv
RoundNdigits* round(x) round(x, ndigits=None) Python TPF NumpyFuncs max/max/abs/sum np.min/np.max/...
JsonDumplndent* json.dump(x) json.dump(x, indent=None) Y TorchFuncs max/max/abs/sum torch.min/torch.max/...
IndexOfZero arr.indexOf(x) arr.indexOf(x, 0) IndexOfZero arr.indexOf(x) arr.indexOf(x, 0)

Java EDP SplitZero str.split(x) str.split(x, 0) I EDP StringifyNull ~ JSON.stringify(x) ~ JSON.stringify(x, null)
GetPropertyNull obj.getProperty(key) obj.getProperty(key, null) ParseIntRadix parselnt(x) parselnt(x, 10)
ArrAddAllStart arr.addAll(x) arr.addAll(arr.length, x) ArrSliceEnd arr.slice(x) arr.slice(x, arr.length)

*Dead-code-based data augmentation is applied on these SPTs.

SPT categorization. We will go through the SPTs by categories. We choose Python as an example
language for illustration, since most existing code LMs are Python-capable (Nijkamp et al., 2023}
Roziere et al.l 2023} |Guo et al.| [2024). It should be noted that CodeGenGuard also supports Java
and JavaScript and could potentially generalize to other languages.

Explicit Default Parameters (EDP). Many functions allow for optional parameters with default val-
ues. For example, the Python function print has an optional parameter £1ush that defaults to
False. Explicitly specifying a default parameter would yield a different code pattern without
changing its functionality. This category is easily extendable as it is common for functions to have
one or more optional parameters.

Syntactic Sugar Replacement (SSR). Modern programming languages offer a wide variety of syntac-
tic sugars, which are essentially two interchangeable ways of implementing the same functionality.
For instance, x = [] and x = list () are both equivalent ways for creating a list in Python.
This set of SPTs are determined by the syntax specification of the target programming language,
and we manually identify them from the language documentation.

17

Under review as a conference paper at ICLR 2026

Library Name Alias (LNA). Most programming languages are supported by various built-in and
third-party libraries. It is a common practice for developers to import a library with an alias for ease
of usage. For example, np is a frequently used alias for NumPy.

Third Party Function (TPF). Many third-party libraries provide near-equivalent implementations of
built-in functions. For instance, both NumPy and PyTorch, which are two frequently used libraries
in Python, offer a sum function that could be used as in-place replacements for Python’s native
sum function. Replacing a built-in function with its third-party equivalent would not affect code
functionality.

Deriving near-infinite SPT patterns. We note that the SPT patterns in Table 4] are not exhaustive.
The extendability of CodeGenGuard lies in the wide variety of libraries and functions available in
programming languages, as well as the flexibility of choosing optional parameters and alias names.
For example, the EDP family could be easily extended by exploring more functions with optional
parameters. We have identified more than 1,000 EDP patterns in NumPy, a popular Python numer-
ical computing library, and many more are potentially available in other frequently used libraries.
These SPTs could be identified from their documentation and integrated into CodeGenGuard, which
would contribute a substantial number of SPT candidates. For another, the LNA family is also eas-
ily extendable due to the variety of libraries (e.g., more than 500k in the Python Package Index
(PyPI) (pypl |2024)) and the flexibility of choosing alias names (any valid identifier is acceptable).
While not all SPT patterns occur frequently enough in natural codebases, this could be mitigated by
the dead-code-based data augmentation technique described in Section

B.2 DETAILS ON THE PEZ ALGORITHM

During watermark embedding (Section , we leverage the PEZ algorithm (Wen et al., 2024)
to efficiently optimize the watermark trigger ¢ over the model’s discrete vocabulary space. PEZ
improves classic discrete prompt optimization schemes (Shin et al., 2020)) by integrating continuous
optimization and nearest neighbor projection. Specifically, instead of directly optimizing ¢ over the
model’s vocabulary V, PEZ introduces an embedding matrix T' € R™**¢, where n; is the length
of the prompt and d denotes the word embedding dimension. The embedding 7" serves as a proxy
for the discrete ¢ that allows for gradient-based optimization in the continuous embedding space.
At each iteration, T is first projected onto the word embedding matrix E € RIVI*? using nearest
neighbor projection, denoted by T” = Projg(T). Then the gradient of the loss function w.r.t. the
projected embedding is computed to obtain ¢’ = Vg L;. Finally, ¢’ is used to update T' by gradient
descent. At the end of optimization, since 7" might not correspond to any actual token embeddings,
a final projection is performed and ¢ could be retrieved by selecting the corresponding projected
indices in E.

B.3 LIST OF AUXILIARY PROMPTS

Table [5]lists the auxiliary prompts for expression-level SPTs in CodeGenGuard. When constructing
verification inputs, we insert the auxiliary prompts in the main code snippet as a line comment. The
auxiliary prompts are currently designed manually according to the underlying semantics of the SPT
patterns, and all verification inputs of the same SPT pattern share the same auxiliary prompts. This
setting currently works fairly well for CodeGenGuard, although one could create more sophisticated
auxiliary prompts for each individual input sample using automated tools, such as code summariza-
tion (LeClair et al.| 2019; L1 et al.l 2020)), for further improving effectiveness.

C DETAILS ON EXPERIMENTAL SETUP

In this section, we list the detailed experimental setup for CodeGenGuard and the baseline methods.

C.1 DETAILED INTRODUCTION TO BASELINE METHODS

We first provide a more detailed description on the two baselines (CodeMark (Sun et al.|, [2023)) and
ToSyn (L1 et al.,[2023b)) used in our experiments.

18

Under review as a conference paper at ICLR 2026

Table 5: Auxiliary prompts for expression-level SPTs.

Pattern AuxPrompt

ListInit initialize an empty list

Dictlnit initialize an empty dictionary

StrFormat format a string

IsInstance check the type of an object

NumpyNp use functions from NumPy library
TensorflowTf use functions from TensorFlow library
SystemSys use functions from builtin system module
RegexRe use functions for regular expressions

NumpyFuncs compute the min/max/absolute/sum value
TorchFuncs compute the min/max/absolute/sum value

CodeMark. CodeMark (Sun et al.l 2023) is originally a backdoor-based watermark for code
datasets to track which model has used the dataset for training. It embeds a watermark into a code
dataset using one fixed SPT as trigger and another SPT as target. Whenever a model is trained on
the watermarked dataset, it would contain a backdoor s.t. on inputs with the trigger SPT, the model
would generate code with the target SPT. Since the backdoor is implanted into the model, CodeMark
could also be used for model watermarking (Zhang et al.,|[2025). We note that the major differences
between CodeMark and CodeGenGuard lie in the trigger design and training procedure: (1) Code-
GenGuard utilizes an optimizable trigger whereas CodeMark employs a fixed SPT as the trigger. (2)
CodeGenGuard embeds watermark with an adaptive shadow model to prevent watermark removal
with extraction while CodeMark simply trains the model on the watermarked dataset with causal
language modeling loss (equation [T).

ToSyn. ToSyn (Li et al., [2023b) is a watermark for code generation APIs to prevent IP theft on the
model behind. It assumes the model is protected behind a black-box API and embeds watermarks
via post-processing: the model first generates a normal code snippet, and ToSyn then applies a secret
pre-defined set of SPTs to the generated snippet to embed the watermark. In an extraction attack,
since the adversary only has access to the transformed code returned by the watermarked API, the
extracted model would fit to a biased distribution that only generate transformed code. We highlight
the differences between ToSyn and CodeGenGuard: (1) threat model, ToSyn assumes the model is
guarded by a secure API, and the model parameter is not released, while CodeGenGuard assumes
the model parameter would be publicly released. (2) watermark location, ToSyn only watermarks
the model output, and leaves the original model intact, while CodeGenGuard directly watermarks
the model parameter via a backdoor. (3) watermark behavior, ToSyn unconditionally watermarks all
outputs generated by the model, while the watermark of CodeGenGuard is only activated by specific
trigger inputs, and the model behaves normally on other inputs.

We note that the distinct threat models have made a direct comparison between ToSyn and Code-
GenGuard difficult. However, we still include ToSyn as a baseline because (1) it is a recent and
representative watermarking method for Al-generated content (Kirchenbauer et al.|[2023} |Lee et al.,
2024), which itself is a closely-related active field of research and (2) a fair comparison is still
possible when it comes to model extraction attack. An extraction adversary essentially treats the
watermarked model as a black-box since it only requires access to the input-output pairs of the
model. The threat models of both methods could be aligned in this black-box adversary setting.

C.2 DETAILS ON GENERAL EXPERIMENTAL SETUP

In this section, we provide detailed steps on dataset pre-processing, watermark dataset transforma-
tion and watermark embedding.

Dataset pre-processing. The dataset for our main evaluation, CSN-Python, contains more than
450,000 Python functions collected from open-source GitHub repositories. Since the SPTs in Code-
GenGuard is implemented using Python’s built-in ast library, we first filter out functions that can-
not be parsed by the ast module, then select 200,000 samples from the filtered corpus as D44

19

Under review as a conference paper at ICLR 2026

for watermark embedding. Another non-overlapping 100,000 samples are reserved for watermark
removal attacks, denoted by D4, .

Watermark settings. Unless otherwise stated, we embed watermarks directly into the pre-trained
models. We focus our primary evaluations on the 4 SPTs supported by all 3 methods, namely
“PrintFlush” “RangeZero” “ListInit” and “Dictlnit”.

For CodeGenGuard, we set the trigger prompt length to 8 tokens. Each watermark is represented
by one SPT pattern, and the SPT is applied to D,.4,, for constructing D.,,,,. We set the size of
Dym to 5,000 transformed code samples, with additional samples (if any) discarded, and D,, ;- to
95,000 samples, totalling to 100,000 samples with a poison rate of 5%. For watermark verification,
we reserve 100 samples from D,,,,, for verification, and set the threshold for the hypothesis test to
o = 0.01. We employ dual-LoRA training for both CodeGen and DeepSeek. We adopt a learning
rate of 2 x 10~* for CodeGen and 1 x 10~ DeepSeek for the dual-LoRA modules and train for 3
epochs.

For CodeMark, we replicate their setting and designate two SPTs, “ListInit” and “FuncCall”, as
triggers, where “FuncCall” is an SPT proposed by CodeMark that transforms a function call foo ()
to “foo.__call__()”. The triggers are paired with the four aforementioned SPTs to construct
watermarks. Specifically, “RangeZero” uses “ListInit” and other three target SPTs use “FuncCall”
as the trigger, yielding four trigger-target pairs. Notably, since CodeMark requires a pair of SPTs
to be applicable simultaneously, the poison rate of “Listlnit” and “RangeZero” are set to 2% for
lack of sufficient transformable samples, while the poison rate of the other two pairs remain 5%.
We follow CodeMark’s implementation and use full fine-tuning for CodeGen and only adopt LoRA
for DeepSeek (mostly due to GPU memory restriction). We embed watermarks for 5 epochs with a
learning rate of 1 x 10~ for full fine-tuning CodeGen and 2 x 10~* for LoRA fine-tuning DeepSeek..
The verification settings are identical to CodeGenGuard.

For ToSyn, since ToSyn does not require model training, we use the unwatermarked pre-trained
model for code generation, and then perform rule-based post-processing to embed the 4 SPT pat-
terns.

Finally, for model training in CodeGenGuard and CodeMark, we apply LoRA adapters to all lin-
ear layers in the model according to previous empirical results on LoRA training (Dettmers et al.,
2023). Both methods leverage the Adam optimizer during training. By default, the evaluations are
performed on a single NVIDIA RTX 4090 GPU with 24GB memory.

C.3 DETAILS ON MODEL EXTRACTION ATTACK

In this section, we provide details on the model extraction attack described in Section[5.3]

Direct model extraction. We assume a pre-trained model is first fine-tuned on a private dataset and
then watermarked, and assume the goal of the adversary is to extract a surrogate copy that contains
knowledge on the private dataset but without the watermark. The adversary trains the surrogate
model by querying the victim model with a query dataset and aligning the output probabilities of the
surrogate model with the victim model (Tramer et al., [2016). we use CSN-Python as the “private”
dataset and fine-tune the pre-trained models on D,.,,, for 5 epochs. The fine-tuned models are then
watermarked to obtain F,,,,. We then extract a surrogate model F 4, from the watermarked F,,,,
with distillation. We assume F 4, has the same architecture as F,,,,. Fgq, 1s initialized from the
pre-trained weights of CodeGen (or DeepSeek), and is trained for 5 epochs on D, 4, to minimize the
KL divergence between the output probabilities of F, 4, and F,,,, by

Eadv (Fadv) = KL(Fadv(madv)a Evm(madv))y (1 1)

where 44, € Dyqyn- We verify the watermark on the extracted model F, 4, and report the p-values
of the verification. Note that, similar to previous sections, we use full fine-tuning for CodeGen and
LoRA for DeepSeek during model extraction.

Fine-tuning after extraction. For fine-tuning after extraction, we further fine-tune the extracted
models on D4, for another 3 epochs. For CodeGen, we apply full fine-tuning with a learning rate
of 5 x 107%; for DeepSeek, we apply LoRA fine-tuning with learning rate 5 x 1072,

20

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENT RESULTS

In this section, we provide additional experiment results on CodeGenGuard.

D.1 UNIQUENESS OF THE OPTIMIZED TRIGGER

Since CodeGenGuard adopts an optimized trigger, apart from its effectiveness, we also expect the
trigger to be unique to the watermarked model with which it is trained. The trigger should not
activate unwatermarked models, and the watermarked model should not respond to other random
triggers. We include results of (1) applying the optimized trigger to an unwatermarked model and
(2) applying a random trigger to the watermarked model. Similar to the effectiveness evaluation in
Section we use p-value as the main metric, and use fi.;4 and fp,o,m, for supplement. We expect
low trigger rates and high p-values in these cases.

Table 6: The firig, frnorm and p-values of CodeGenGuard (CGG). Unwatermarked model is in-
dicated by ‘nowm’ and random trigger feeding into the watermarked model is denoted by ‘rand.
Cases where the watermark does not pass the verification (p > 0.01) are highlighted in grey.

CodeGen DeepSeek
SPT Method ft’r'ig/fnor"m p-Vallle ftrig/fnorm p-Vallle
NoWm 0/0 NaN 0/0 NaN
PFlush Rand 3/2 1.58 x 1079 3/1 3.15 x 107
CGG 7510 1.45 x 1073¢ 69/1 1.10 x 102
NoWm 4/3 7.02 x 107 2/3 NaN
RZero Rand 3/1 3.15 x 107 15/6 3.83 x 1072
CGG 68/1 5.74 x 10726 7816 3.51 x 10732
NoWm 14/15 NaN 14/14 1.0
LlInit Rand 21/15 2.72 x 107% 17/14 5.60 x 107!
CGG 84/15 1.31 x 102 83/ 14 1.34 x 102°
NoWm 17/17 1.0 18/19 NaN
DInit Rand 26/19 2.38 x 107 22/19 6.01 x 107!
CGG 91/19 7.28 x 10733 72/19 5.57 x 10716

Results of trigger uniqueness. Table[6|reports the results. Cases where the watermark does not pass
the verification (i.e., p > 0.01) are highlighted in grey. Neither unwatermarked models with opti-
mized triggers nor watermarked models with random triggers could pass the watermark verification,
indicating that the optimized triggers are unique to the corresponding watermarked model.

D.2 ADDITIONAL RESULTS ON ROBUSTNESS

In this section, we provide additional results on the robustness of CodeGenGuard against various
watermark removal attacks, including fine-tuning (D.2.1)), adaptive removal (D.2.2)) and adaptive

overwriting (D.2.3).

D.2.1 FINE-TUNING

With access to the released parameters of the watermarked model, the adversary could further fine-
tune the watermarked model on a clean dataset in an attempt to remove the watermark. We perform
the attack by further fine-tuning the model on the 100,000 samples from D,q4, for 3 epochs, such
that the fine-tuning attack uses the same amount of data and number of epochs as the watermark
embedding process. Specifically, we assume the adversary has similar computing power and per-
forms full fine-tuning (learning rate 5 x 10~%) for CodeGen and LoRA (learning rate 1 x 10~*) for
DeepSeek. Note that ToSyn is omitted since it does not embed watermarks into model parameters,
and we only consider CodeGenGuard and CodeMark in this experiment.

Results of fine-tuning. Figure [6] depicts the changes of p-value w.r.t. fine-tuning epochs. Values
above the threshold @ = 0.01 (marked in red dashed line) indicate success watermark verifications,

21

Under review as a conference paper at ICLR 2026

—o— CodeMark (CodeGen) —- CodeMark (DeepSeek) —#— CodeGenGuard (CodeGen) —¥- CodeGenGuard (DeepSeek)
PrintFlush RangeZero ListInit Dictlnit
30
30 30F T ~y._ N e S
g h e TR TR 2 V- Ny
g 20 20 She—A 20
<] — Ay X
T 10 10 x"‘ A—A—p—4| 10 10| N

00 05 1.0 15 20 25 3.0 00 05 1.0 15 2.0 25 3.0 00 05 1.0 15 20 25 3.0 00 05 1.0 15 2.0 25 3.0
Fine-tuning Epochs Fine-tuning Epochs Fine-tuning Epochs Fine-tuning Epochs

Figure 6: The p-value (plotted in negative log scale for better visualization) of watermarked models
w.r.t. fine-tuning epochs. The threshold o = 0.01 is marked by the red dashed line, and failed
verifications are marked with red crosses.

and higher values in the figure represent more significant results. Both methods fluctuate or decrease
in significance as the fine-tuning iteration increases. Although the watermark in CodeGenGuard is
embedded with dual-LoRA training, it remains robust to removal attempts using either full (Code-
Gen) or LoRA (DeepSeek) fine-tuning, with performance comparable with or better than CodeMark.
Additionally, even if the adversary has used rather conservative learning rates, the fine-tuned models
still experience slight drops in their main task performance: the Pass@1 drops to 9.38 for CodeGen
and 37.20 for DeepSeek. As the model is further fine-tuned, it gradually adapts to the new dataset
and might lose part of its previous knowledge. This essentially puts the adversary into a dilemma,
where it could not remove the watermark with low learning rates, but would risk catastrophic for-
getting and severe performance degradation if it were to use higher rates.

D.2.2 ADAPTIVE REMOVAL

We further consider an adaptive adversary who has additional knowledge over the design of Code-
GenGuard. We follow a similar assumption as in ToSyn (Li et al., 2023b)) and assume the adversary
knows the 4 SPT categories, but does not know the specific SPT pattern. This is a reasonable as-
sumption given the vast diversity of SPT patterns that can be derived and used as watermarks (which
we will further elaborate in Section [D.3). Additionally, we assume the adversary has no access to
the trigger t* or the dataset D,.,,, for the original watermark.

We consider an adaptive removal attack, where the adversary attempts to filter and remove wa-
termark patterns using program analysis. Specifically, we follow the evaluation in ToSyn and use
Semgre;ﬁ a static code analysis tool, to detect and delete code structures potentially containing SPT
watermarks. Semgrep allows user-defined rules for customized pattern detection and we assume the
adversary could write a set of rules adaptively to identify the SPTs. Upon detecting an SPT pattern,
the adversary could remove it from the code snippet, thus tampering with the watermark verification
process.

Table 7: Results for adaptive detection and removal.

Detection Removal
Model F1 TPR FPR #Verified Pass@1
CodeGen 54.73 61.75 64.00 2/4 9.18 (2.60 |)
DeepSeek 51.44 57.50 66.75 1/4 24.53 (1493))

Results of adaptive removal. Table[7]reports the results of Semgrep detection and removal. Since
the adversary has no knowledge of the exact SPT pattern, it could only use a set of rather general
rules, resulting in low true positive rates (TPR) and high false positive rates (FPR), and overall
low detection F1 scores. Nonetheless, the adaptive removal would still cause verification failures
as it filters out most SPT structures indiscriminately. However, this also comes at a cost for the
adversary. Blindly removing all detected patterns would severely impair code functionality, leading
to a significant drop in the Pass@]1 of the filtered code. Hence, while the adversary could indeed

'https://semgrep.dev/

22

https://semgrep.dev/

Under review as a conference paper at ICLR 2026

remove some of the watermark patterns, it would also cause a notable degradation in the model’s
main task performance.

D.2.3 ADAPTIVE OVERWRITING

In addition to adaptive watermark removal, leveraging its knowledge over CodeGenGuard, the ad-
versary could inject a new watermark into an already watermarked model. Specifically, we consider
overwriting “PrintFlush” with “RangeZero” and vice versa. Since the adversary is assumed to have
no access to D4, the new watermark is embedded with D, 4,,. We then verify both the old and the
new watermark on the overwritten model and report the p-values of the verification.

Results of overwriting. As is shown in Table[3]
while the adversary could successfully embed a
new watermark into the model, the old water-

Table 8: Watermark verification results for the old
and new watermarks after the adaptive overwrit-

ing attack. mark could also be successfully verified. Still,
the attack poses a threat as we observe a rise in

SPT CodeGen DeepSeek the p-value of the old watermark, indicating a

. drop in watermark significance. This could be

PFlush old 1.44x107%° 423 x107% because CodeGenGuard incorporates loss func-
RZero new 3.09x 107% 3.70 x 107" tions to suppress random trigger activation and
RZero old 5.41 x 10~ 4.48 x 10~°7 ensure normal code generation, which could
PFlush new 1.55x 1073% 4.98 x 10~% have weakened the old watermark during the

overwriting process. Nonetheless, the old wa-
termark could still pass verification, indicating
that the adversary could not completely corrupt the existing watermark.

D.2.4 BACKDOOR MITIGATION

Since CodeGenGuard is a backdoor-based watermark, we further consider its robustness against
backdoor mitigation techniques. Specifically, we consider WAG (Arora et al.,2024)). WAG proposes
a backdoor mitigation method via model weight merging: given a potentially watermarked model,
parametrized by W,,,,,, and one or more similar proxy models, parametrized by W, i = 1,..., N,
WAG merges the model weights by taking their average,

N
= 1
W = m (me + ; VV1> .

We consider a simple merging strategy, by merging (1) the watermarked model with its original
pre-trained, unwatermarked counterpart. We use CodeGen-350M in this experiment.

12)

Table 9: Results of backdoor mitigation via WAG, using discrete and continuous triggers.

Trigger Pattern p-value (wm) p-value (WAG)
Discrete PFlush 1.45 x 1073! NaN
RZero 574 x 10726 3.11 x 10792
Continuous PFlush 2,11 x 1073 145 x 1073
RZero 4.09 x 10787 1.33 x 10793

Results of model merging. The results reported in Table [0] shows that model weight merging
proves to be an effective attack against CodeGenGuard. We observe that the watermark with discrete
triggers becomes unverifiable after its weight is merged with the proxy model. This is because
weight merging averages multiple model weights, effectively diluting the watermark information
stored in the watermarked model.

One possible solution to counter this attack is to increase the expressiveness of the trigger, thus of-
floading part of the watermark information from the model weights to the trigger. To achieve this,
we consider using a continuous prompt as the watermark trigger. The continuous prompt is of the
same length (8 tokens) as the discrete one, but is optimized directly in the model’s word embedding
space instead of the token space|Liu et al.|(2021). Due to its continuous nature, it could encode more

23

Under review as a conference paper at ICLR 2026

information than a discrete sequence. Consequently, the watermark could be successfully verified
even after WAG is applied. However, we note that using continuous trigger means the watermark
verification process is no longer strictly black-box: instead of feeding in textual tokens, one would
need to pass word embeddings into the model, thus involving a trade-off between watermark robust-
ness and verification flexibility.

We do not consider other backdoor mitigation methods (Li et al.} 2021} [Zhao et al., 2024} [Tong et al |

[2025) since they either work under a different threat model (e.g., requires access to the watermark

training process (Li et al., 2021) or knowledge on the watermark target (Tong et al.l2025))) or mainly
targets classification models (Zhao et al., 2024)).

D.2.5 TOKEN-BASED EXTRACTION

In Section [5.3} we have evaluated CodeGenGuard against logits-based model extraction. Here we
further consider a more threatening token-based extraction attack, where the adversary directly dis-
tills the victim model’s generated tokens. Specifically, we assume the adversary follows a two-staged
approach: (1) It randomly truncates the samples in D, 4,, to form a set of prompts, feeds the prompts
into the victim model, and collects the generated outputs of the victim model to form a extraction
dataset D.,+; (2) it then fine-tunes a model using D.,; from a pre-trained checkpoint. We evaluate
the performance (BLEU score) and verify the watermark (p-value) on the extracted model.

Results. The average BLEU score is 21.44 for CodeGen-350M (compared to 21.69 for the variant)
and 22.20 (compared to 23.28 for the watermarked variant). Watermark verifications fail in all
cases, indicating that the adversary could learn a model without the watermark in token-based model
extraction, though with slightly degraded performance.

Table 10: Overhead of logits/token-based extraction attacks on CodeGen-350M. Overhead is mea-
sured on a platform with 1 RTX 4090 GPU.

Method BLEU Time (hrs)

Distillation (Logits) 22.00 ~4
Distillation (Token) 21.44 ~6 (generation) + ~2 (fine-tuning)
Fine-tuning 22.28 ~6 (5 epochs & longer context lengths)

However, we note that token-based extraction is limited by its overhead. Collecting D.,; requires
generating full-sequence outputs from the victim model. This process would take significantly more
time than logits-based extraction. As is shown in Table token-based distillation would take
significantly longer than logits-based distillation due to its additional data collection stage. It even
takes longer than the initial fine-tuning process of the model, while being less effective: given
this overhead, directly devoting its resources into fine-tuning its own model would have been more
effective for the adversary.

Logits distribution analysis. Given CodeGenGuard’s performance on logits- and token-based dis-
tillation attacks, we conduct a further analysis in the logits distribution of the watermarked model
and its unwatermarked clean counterpart. Specifically, we consider (1) KL Divergence of the next-
token logits distribution between the two models; (2) Top-1/Top-5 token matches between the two
models and (3) Next-token entropy of each model.

The evaluation are conducted on 1,000 samples. For each sample, we consider: (1) Truncate right
before the watermark pattern (wtmk). This is in the same way as during watermark verification,
which is to evaluate the model’s behavior under the code context associated with the watermark
SPT pattern. (2) Truncate at a random position (norm). In this way we create a random context,
which is to evaluate the model’s behavior under other normal code contexts.

Table [T1] reports the results. We observe changes in logits distributions before and after water-
marking, under both watermark and normal contexts. Based on this observation, we attribute the
robustness of CodeGenGuard to two factors. (1) The shadow training process adaptively optimizes
the trigger against a simulated attacker, which improves the generalization ability of the trigger, al-
lowing it to “adapt” across extractors derived similar distillation strategies. (2) When distilling the
soft logits, since the extractor imitates the output logits distribution of the watermarked model, it
might still learn side information from the logits even if it does not invoke the trigger.

24

Under review as a conference paper at ICLR 2026

Table 11: Logits distribution analysis between watermarked and unwatermarked models.

Model Context KL-Div Match@1 Overlap@5 Ent. (Fuym) Ent. (Feiean)
wtmk 0.0874 0.9275 0.8868 0.8858 0.8423
CodeGen-350M norm 0.1570 0.8305 0.8158 1.5568 1.6116
wtmk ~ 0.1360 0.9190 0.8379 0.9593 0.9894
DeepSeck-Coder-1B -\ 02157 0.8080 0.7825 1.4060 1.5219

D.3 CAPACITY

In this section, we evaluate the capacity of CodeGenGuard in two folds: (1) increasing the diversity
of SPTs via data augmentation, and (2) extending to multi-bit watermarking scenarios.

D.3.1 DATA AUGMENTATION FOR INCREASED DIVERSITY

As is described in Section .1} CodeGenGuard augments low-frequency SPTs with dead code in-
sertion, thus supplementing their poison rate to facilitate the backdoor-based watermark, regardless
of their natural occurrence rates. We validate this design by watermarking with 4 SPT patterns that
rarely appear in CSN-Python: “RndSeedVersion”, “HtmlEscQuote”, “RoundNdigits” and “Json-
Dumplndent”. We create additional transformable samples for these SPTs using the data augmenta-
tion pipeline, such that the augmented poison rate reaches 2.50%. The experiments in this section is
conducted on CodeGen.

Table 12: Results for data augmentation.

Original Augmented
Pattern Rate p-value Rate p-value Pass@1
RSVersion 0.05% 1.0 2.50% 1.45 x 1073! 11.98
HEQuote 0.01% 1.0 2.50% 5.63 x 107°° 12.29

RNdigits 0.65% 4.03 x 107°* 2.50% 8.02x 107°' 11.86
JDIndent 0.13% 859 x 107°* 250% 7.63 x 10737 13.53

Results of data augmentation. Table [12] reports the watermarking results with and without data
augmentation. Without data augmentation, the natural occurrence rates of the SPTs would be too
low to support a backdoor-based watermark. Meanwhile, by augmenting the poison rate to 2.50%,
all SPTs could be successfully embedded with significant p-values, and the dead-code-based aug-
mentation does not inflict additional harm on the model’s main task performance (Pass@1). We
highlight that data augmentation theoretically allows any SPT to be used and enables near-infinite
SPT choices for watermarking, thus not only diversifying watermark patterns but also adding to wa-
termark robustness against removal attacks. Without knowledge of the exact watermark pattern, it
would be difficult (if not intractable) for an adversary to remove the watermark by writing compre-
hensive filtering rules or brute-force enumerating SPT patterns due to their vast diversity.

D.3.2 MULTI-BIT WATERMARKING FOR HIGHER CAPACITY

Using the single-SPT watermarking scheme as a building block, we extend CodeGenGuard to multi-
bit watermarking. A multi-bit watermark is defined by a sequence of candidate SPT patterns, and
each non-empty subset of this sequence could encode a watermark bitstring. For example, given the
sequence [“PrintFlush”, “RangeZero”, “Listlnit”, “DictInit”], the successful detection of the subset
[“PrintFlush”, “ListInit”] would represent “1010”. To embed the watermark, the subset of SPT

patterns are embedded into the model, by applying each transform ¢ to D,.4,, to obtain a resulting

D{,f}n and then fine-tuning the model on the union of all Dl(,fzn and D, With a shared trigger.

During verification, each SPT pattern in the candidate sequence is first verified individually using the
shared trigger on their respective verification dataset, whose result decodes to “1” if the verification
passes and “0” otherwise. The final watermark bitstring could then be obtained by concatenating the
results of individual verifications. For a candidate sequence of length n, the multi-bit scheme could

25

Under review as a conference paper at ICLR 2026

theoretically support 2™ — 1 different bitstrings (except the all-zero one as it is indiscernible from an
unwatermarked model).

Table 13: Candidate sequences for multi-bit watermarking.

Patterns

4 PrintFlush, RangeZero, Listlnit, DictInit

8 + OpenClosefd, SortedReverse, MinmaxKey, ZipStrict

12+ NumpyNp, TensorflowTf, RegexRe, SystemSys

16 + RndSeedVersion, HtmlEscQuote, RoundNdigits, JsonDumpIndent

To evaluate this multi-bit watermarking scheme, we consider embedding an n-bit watermark into the
model, where n = 4, 8,12, 16. The candidate sequences for the watermarks are listed in Table

with the last 4 SPTs leveraging data augmentation. For each n, we consider embedding all listed
patterns simultaneously, since if all the patterns could be embedded, we expect that the capacity

would be sufficient for any of the subsets. For each SPT, we set the size of Dfﬁ?n to 2,500, and adjust

the size of Dy, accordingly such that ||, Dfﬁn U Dnorm| = 100,000. We report the bitwise
accuracy (BitAcc) of the watermark, defined as the percentage of the correctly matched bits.

Results of multi-bit watermark. The re-
sults are shown in Figure[7} where we also

. . . CodeGen (Wm) CodeGen (Ft) CodeGen (Ex)
report the bit accuracies after fine-tuning ,,, ’

DeepSeek (Wm) @4 DeepSeek (Ft) @4 DeepSeek (Ex)

N

(Ft) and extraction (Ex) attacks. Up to 100%™ gy 2 1% % %% 1% _ n
16 SPT patterns could be successfully em- g o a a é a 7 ? ? a a a ? a
bedded into the model. Although longer 2 jzj ? ? ’ ’ ? a ‘ ‘ ‘ ‘ ’ ’
watermarks tend to cause a decline in ro- ol B 46 ‘ 7% ’ ‘ ‘ 4 ’ ’
: 9% %%7¢ %%% %5%%
bustness as the model needs to memorize % y , - T

multiple patterns simultaneously. Still, Number of Bits (n)

we observe acceptable robustness for up

to 12-bit watermarks. We also note that Figure 7: Bitwise accuracy of the multi-bit watermark
CodeMark would not be able to achieve for different n.

such multi-bit capability. Although Code-

Mark could theoretically embed multiple target SPT patterns, it is restricted by its trigger variety, as
the trigger must frequently co-occur with all target SPT patterns in order to gather adequate water-
marking samples, thus leaving only very limited (if any) choices for the trigger. CodeGenGuard’s
optimizable trigger, along with its vast diversity of SPT patterns powered by data augmentation, not
only allows any SPT combination to be used for watermarking, but also supports a much higher
multi-bit capacity.

D.4 STEALTHINESS

In this section, we evaluate the stealthiness of CodeGenGuard. Since the watermark targets in Code-
GenGuard are encoded by SPT patterns, which have shown to be relatively imperceptible (Sun et al.,
2023} |Li et al., 2023b), we focus our evaluation on the automated detection of the trigger. We as-
sume that an adversary deploys its stolen model as a black-box API, and adopts trigger detection
techniques behind the API to identify and filter out potential trigger tokens before feeding the queries
into the model.

We follow previous works (He et al.| [2022b; |Li et al., |2023b) and adopt a state-of-the-art trigger
detection algorithm, ONION (Q1 et al., [2021), for this purpose. ONION is based on the observation
that backdoor triggers are typically outlier tokens, whose removal would cause a decrease in the
perplexity of the LM, since the sentence with the outlier token removed would have been more
“natural.” Therefore, suspected trigger tokens could be identified by removing each token x; in the
input sequence « and checking whether the drop of perplexity exceeds a certain threshold.

Setup. We apply ONION on the verification inputs to identify and remove watermark triggers,
and then feed the filtered inputs into the watermarked model for verification. For each input, we
detect and remove the top-10 most suspicious tokens (i.e., tokens with the sharpest perplexity drops)
and leverage CodeGen for computing perplexity scores, following a similar implementation as in

26

Under review as a conference paper at ICLR 2026

previous works (Li et al., [2023b). We report the detection precision, recall and F1 scores, where
precision denotes the number of correctly identified trigger tokens among all detected tokens, and
recall is defined as the number of correctly identified trigger tokens among all true trigger tokens.
We also report the p-values of the verification after trigger removal.

Table 14: Precision, recall and F1 score of ONION trigger detection, and the p-value of watermark
verification after trigger removal.

Model SPT Precision Recall F1 p-value

PFlush 0.4653 03300 03672 2.59 x 1071°
RZero 03759 0.1675 02115 5.75x 1072

PFlush 0.5099 0.1646 0.2413 1.57 x 107%
RZero 04350 0.1950 02604 6.72 x 10713

Avg 0.4465 0.2143 0.2701 -

CodeGen

DeepSeek

Results of stealthiness. Table 14| reports the results of trigger detection and filtering. ONION has
limited effect on CodeGenGuard. It only achieves an average F1 score of 0.27 and an average recall
of 0.21, indicating that a large portion of trigger tokens could bypass the detection. As a result, the
watermark could still be successfully verified even if the suspected triggers are removed. Addition-
ally, since ONION requires querying a language model for perplexity computation, it would cause
a significant time overhead. The average inference time of CodeGen for a single input increases
from 0.90s to 6.18s, making it impractical for the adversary to continuously deploy ONION. We
observe that the optimized triggers usually consists of regular tokens, operators or parentheses (as is
shown in Figure [3), which to some extent helps evade detection algorithms since these tokens also
frequently occur in normal code.

D.5 GENERALIZATION OF CODEGENGUARD

D.5.1 SCALING TO LARGER MODELS

With dual-LoRA training, CodeGenGuard could scale to watermarking real-world large code LMs
with billions of parameters. In this section, we consider two LLMs for code, specifically, the 2BE]
and 6 variants of CodeGen. CodeGen is a family of code LMs pre-trained on large-scale code
corpora and widely used in the community (Nijkamp et al.| |2023; He & Vechevl, 2023)). Since they
scale to billions of parameters and have gone through extensive pre-training, the need for copyright
protection becomes evident. As a proof-of-concept, we embed “PrintFlush” as the target pattern.
The models are trained on a 96GB H20 GPU.

Table 15: Watermark effectiveness and fidelity on large code LMs.

Model Sfrig I frorm p-value Pass@1

CodeGen-2B 76/0 1.91 x 10732 30.06
CodeGen-6B 72/0 4.05x 1072° 31.32

The results are reported in Table[T5] For reference, the Pass@1 scores before watermarking are 29.86
for CodeGen-2B and 33.12 for CodeGen-6B. The watermark could be successfully embedded into
the two LLMs with high effectiveness and reasonable fidelity. We note that watermarking a single 6B
model with full fine-tuning would require more than 100GB memory (estimated), and the cost would
double if an extra full shadow model is included for shadow training. In contrast, with dual-LoRA,
the models could fit on a single 96GB GPU, and would potentially fit on 24GB consumer-grade
GPUs if additional techniques such as QLoRA (Dettmers et al.,[2023) and gradient checkpointing are
incorporated (at the cost of longer training time). Hence dual-LoRA greatly improves the scalability
of CodeGenGuard to large code LMs.

Zhttps://huggingface.co/Salesforce/codegen—-2B-mono
*https://huggingface.co/Salesforce/codegen-6B-mono

27

https://huggingface.co/Salesforce/codegen-2B-mono
https://huggingface.co/Salesforce/codegen-6B-mono

Under review as a conference paper at ICLR 2026

D.5.2 EXTENDING TO OTHER LANGUAGES

While CodeGenGuard mainly focuses on Python, it could be extended to other languages given the
SPTs for that language. We evaluate the effectiveness of CodeGenGuard on other languages by ap-
plying it to Java and JavaScript (JS). We use the multi-lingual version of CodeGen (CodeGen-350M-
Multiﬂ and use the Java/JS split of CSN (CSN-Java/CSN-JS) for constructing watermark datasets.
We select 4 SPTs for watermarking, 2 from each of Java and JS: “SplitZero” and “IndexOfZero” for
Java and “StringifyNull” and “IndexOfZero” for JS (see Table [d). To verify the effectiveness and
fidelity of the watermarks, we report the p-value of watermark verification for effectiveness and the
Pass @10 score for fidelity, evaluated on the MultiPL-E benchmark (Cassano et al., [2023)), which is
a multi-lingual code generation benchmark containing both Java and JS samples, translated from the
Python test cases in HumanEval (Chen et al., 2021}

Table 16: Watermarking results on Java and JS.

Lang Pattern ftrig/ fnorm p-value Pass@10
Java SplitZero 44/9 8.76 x 1079 3.59
IndexOfZero 68/7 3.11 x 10722 6.92
g StringifyNull 86 /4 4.27 x 10746 7.81
IndexOfZero 58/4 4.36 x 10718 7.87

The results are reported in Table[I6] For comparison, the Pass@ 10 for CodeGen-350M-Multi before
watermarking is 9.54 on Java and 9.32 on JS. The watermarks for both languages could be success-
fully embedded and verified with high significance. The fidelity remains high for JS, but we do
observe a decline in Pass@ 10 for Java, which could be because Java is a more challenging language
due to its static type system and object-oriented nature. This could be mitigated by further tuning
the hyper-parameters and balancing the effectiveness-fidelity trade-off. Overall, the results indicate
that CodeGenGuard could be extended to other languages with high effectiveness and fidelity.

D.6 ABLATION STUDIES

Finally, we conduct ablation studies to validate the components of CodeGenGuard. By default, the
ablation studies use CodeGen.

D.6.1 SHADOW TRAINING

We validate the design of dual-LoRA shadow training by comparing it with a watermarked model
without the shadow LoRA module and performing verification on the watermarked as well as the
extracted model.

Table 17: Results on the watermarked (wm) and extracted (ex) models, with and without shadow
training.

With Shadow Without Shadow
SPT wm ex wm ex

PFlush 1.09 x 1072® 597 x1072* 4.13x107% 1.30x 107
LInit 5.17x 1072} 735 x 107 3.02x 107! 151 x 10~

The results are reported in Table[T7} Without shadow training, the verification for “PrintFlush” still
succeeds after the extraction attack, although with reduced significance, which could be because the
rich contextual information of this token-level SPT has contributed to its robustness. However, the
verification for “ListInit” fails on the extracted model, indicating that shadow training indeed helps
improve the overall robustness of otherwise vulnerable SPTs.

*nttps://huggingface.co/Salesforce/codegen-350M-multi

28

https://huggingface.co/Salesforce/codegen-350M-multi

Under review as a conference paper at ICLR 2026

D.6.2 AUXILIARY PROMPTS

The auxiliary prompt narrows down the loose context for expression-level SPTs, so as to help the
model capture the correct semantics associated with the SPT. We demonstrate its necessity by per-
forming verification on expression-level SPT watermarks with and without the auxiliary prompts.

Table 18: Watermark verification with (AP) and without (NoAP) auxiliary prompts.

LInit DInit
ft'rig /fno'r'm p'Vallle ftrig / fno'rm p'Value
wm AP 76/ 16 5.17 x 107! 87/19 1.82 x 10728
NoAP 52715 1.09 x 10798 76117 3.35 x 1072°
ox AP 51/16 7.35 x 10713 66/18 1.38 x 10*1{
NoAP 20/15 3.55 x 107 49/19 5.08 x 107

def get_collection(self, **kwargs):
list()

triggered

list_of_contents = release oursgo ernval}def
.. def t llecti 1f, **| :

Original transformed code ef get_collection(self, **kwargs)
initialize an empty list

List()

for r in self.resources:

triggered list_of_contents =

release oursgo ernval}def

def get_collection(self, **kwargs):
normal
list_of_contents = izip_Llongest(*[iter(

- - def get_collection(self, **kwargs):

normal # initialize an empty list

def get_collection(self, **kwargs): list_of_contents = []

list_of_contents = izip(resource_Llist for kR, v in kwargs.items():

Generation without aux. prompt Generation with aux. prompt

Figure 8: Example verification outputs of a watermarked model with and without auxiliary prompts.
Triggers are highlighted in blue, auxiliary prompts are in green, and generated contents are in yellow.

The results are reported in Table [I8] Verification without auxiliary prompts would result in lower
ferig rates and less significant p-values, potentially leading to verification failures, especially in
adversarial settings such as model extraction attacks. Figure[§]reports a canonical example of veri-
fication generation. As shown in the left of Figure 8] without the auxiliary prompt, one can hardly
control what would be generated at the right side of “=_"" In contrast, the right of Figure 8]shows the
model generates 1ist () when the trigger is present and [] otherwise, with the auxiliary prompt
boosting the probability of producing tokens coherent to the semantic of “list initialization.”

D.6.3 DuUAL-LORA vs. FULL SHADOW TRAINING

The dual-LoRA training scheme is introduced as a parameter-efficient alternative to the ordinary
shadow training that uses full fine-tuning. In this subsection, we compare the effectiveness of dual-
LoRA training with ordinary shadow training. The setting for dual-LoRA is identical to the main
experiments. For full shadow training, we use full fine-tuning for both the watermarked and the
shadow model with a learning rate of 5 x 1076,

Table 19: Results of dual-LoRA vs. full shadow training.

SPT Method Watermark Extraction Fine-tuning Pass@1
PFlush LORA 109 x 1072 597 x 1072 259 x 10715 14.57
Full 149 x 1072 834 x 1071 221x107°7 12.01
Lnit LoRA 517x1072' 7.17x107%® 735x 1071 12.86
Full 3.32x 10721 1.65x 1072 1.31 x 107%° 13.82

29

Under review as a conference paper at ICLR 2026

We report the effectiveness, fidelity (Pass@1) and robustness (against extraction and fine-tuning
attacks) of the two training schemes. The results are shown in Table [[9] Dual-LoRA achieves
performances similar to full shadow training in terms of the above evaluation axes while being more
memory-efficient, requiring only 1.5% trainable parameters compared with full shadow training
(on CodeGen). Dual-LoRA approximates the full shadow training scheme with efficient LoORA
modules, and the trained adapters could be “merged” with the original model weights to form a
set of full inseparable watermarked parameters, thus offering an effective and efficient solution to
shadow training for large models.

Table 20: Number of trainable and total parameters for dual-LoRA and full fine-tuning on CodeGen-
350M and DeepSeek-Coder-1B.

Model Method Num. Trainable Params Num. Total Params.
Full 713.424.896 713,424,896
CodeGen-350M 1 11 oRA 10,485.760 367,198,208
Full 2.692.943 872 2,692,043.872
DeepSeek-Coder-1B 1y 1 1 oRA 14,991,360 1.376.454.656

To further elaborate the memory efficiency of dual-LoRA, we report the number of trainable and
total parameters for dual-LoRA and full fine-tuning on CodeGen-350M and DeepSeek-Coder-1B in
Table 20} The number of foral parameters denotes all parameters in the models during watermark
embedding. For dual-LoRA, it includes (1) the shared base model, (2) the watermark LoRA module
and (3) the shadow LoRA module. For full fine-tuning, it includes (1) the entire watermarked model
and (2) the entire shadow model. The number of trainable parameters denotes the parameters that
are updated by the optimizer. For dual-LoRA, it includes only the two LoRA modules, while for
full fine-tuning, it includes all parameters in both models. In dual-LoRA, not only is the number of
total parameters almost halved, but also the trainable parameters only account for around 1.5% of
the total parameters. In this way dual-LoRA greatly reduces the memory footprint during watermark
embedding, making it feasible to watermark large code LMs more effectively.

D.6.4 NUMBER OF VERIFICATION SAMPLES

By default, we use 100 samples for watermark verification. In this subsection, we vary the number
of samples from 25 to 1,000. The corresponding firig, frnorm rates and p-values are reported in
Figure 0] As the number of verification samples grows, the rates tend to remain stable, while the
p-values become increasingly significant as a larger population is involved in the statistical test,
with values reaching the order of 1073 when using 1,000 samples. Results indicate that while the
watermark is significant enough to be verified using as few as 25 samples, and larger verification
sets would boost watermark effectiveness. However, a larger verification set could also lead to
additional time overhead and potential risk of the adversary identifying the watermark pattern. We
use 100 samples in the main experiments as it strikes a reasonable balance between efficiency and
robustness, although a larger set could be used for more robust verification.

NN frig [frorm —e— —logio(p)
100 PrintFlush ListInit
300
—~ 80 250
X N\ ‘ N 8N NA 200 =
N Y I =3
2 \ N 50 1

NP4 N 0
25 50 100 200 5001000 25 50 100 200 5001000
Samples # Samples

Figure 9: firig, frorm and p-value (plotted in negative log scale for better visualization) w.r.t. num-
ber of watermark verification samples.

30

Under review as a conference paper at ICLR 2026

D.6.5 TRIGGER LENGTHS

We explore the effect of trigger lengths by setting the length of the optimizable trigger £ to L =
2,4,8,16 respectively. The results in Table 21] shows that the watermark could be successfully
embedded with shorter triggers, although sometimes with less significance. On the other hand,
longer triggers tend to cause the watermarked model to respond to other random triggers, which
could be because it is more difficult for a longer trigger to converge during optimization.

Table 21: Watermark effectiveness using triggers of different lengths (L).

Pattern L=2 L=4 L =8 L =16

PElush ™ 1.76 x 10723 1.57x1072' 145x 1073 2.11x 1073
USH rand 1.0 1.0 1.58 x 107°* 4.59 x 1079

Le WM 131 1072 1.34x107% 131 x107%° 558 x 10732
m rand 1.0 1.95 x 107% 272 x107%* 3.02x 107

E DISCUSSION

Naturalness of triggers. CodeGenGuard currently does not incorporate designs for trigger natural-
ness or stealthiness. While results in Appendix [D.4] show that the triggers could evade automated
detection, they are admittedly identifiable via manual inspection as they do not resemble natural
code. However, it would be impractical to manually distinguish verification samples from normal
queries and remove the triggers due to the extensive human effort involved. Additionally, existing
discrete prompt tuning frameworks have proposed additional “fluency loss” for improving prompt
naturalness (Shi et al., 2023 Wen et al., |2024)), which could be integrated into CodeGenGuard to
enhance trigger naturalness.

Theoretical guarantees. While empirical evaluations show that CodeGenGuard achieves high wa-
termark effectiveness and robustness, we are unfortunately unable to provide rigorous theoretical
guarantees. This is because CodeGenGuard is designed as a learning-based watermark that targets
large code LMs with billions of parameters. A formal analysis would require deeper insights into
the field of backdoor for Transformer-based LMs, which goes beyond the scope of this work.

Robustness to backdoor mitigation methods. While CodeGenGuard is empirically robust against
watermark removal attacks such as fine-tuning, model extraction and other adaptive removal, as a
backdoor-based watermark, it could still be vulnerable to more advanced backdoor mitigation tech-
niques|Arora et al[(2024). In addition to using continuous prompts (as is shown in Appendix[D.2.4),
another possible countermeasure is to increase discrete trigger lengths and introducing additional
adaptive procedures against these techniques (e.g., using BadMerging (Zhang et al.l |2024) against
WAG (Arora et al.| [2024)). This involves an ongoing arms race between backdoor/watermark em-
bedding and defense methods.

Robustness to token-based extraction attacks. As discussed in Appendix [D.2.3] CodeGenGuard
could be compromised by token-based extraction attacks. While our results on CSN-Python show
that such attacks tend to have high overhead and are less effective, admittedly, a more capable
adversary could still mount such attacks if willing to invest more resources (e.g., when “stealing”
unreleased proprietary knowledge). We are currently unaware of generative LM watermarks that
could effectively defend such attacks (while ToSyn serves a similar purpose, it could be removed by
fine-tuning after extraction, as has been demonstrated in our evaluation). One possible mitigation is
again to rely on continuous prompt triggers (at the cost of losing the merit of black-box verification).

F LLM USAGE DISCLOSURE

This work does not involve significant LLM usage in research ideation or writing.

31

	Introduction
	Background and Related Works
	Problem Statement and Threat Model
	Methodology
	Watermark Dataset Transformation
	Watermark Embedding
	Watermark Verification

	Experiments
	Experimental Setup
	Effectiveness and Fidelity
	Robustness

	Discussion
	Conclusion
	Additional Information on Related Works
	Supplementary Information on Methodology
	SPT Pattern Taxonomy
	Details on the PEZ Algorithm
	List of Auxiliary Prompts

	Details on Experimental Setup
	Detailed Introduction to Baseline Methods
	Details on General Experimental Setup
	Details on Model Extraction Attack

	Additional Experiment Results
	Uniqueness of the Optimized Trigger
	Additional Results on Robustness
	Fine-tuning
	Adaptive Removal
	Adaptive Overwriting
	Backdoor Mitigation
	Token-based Extraction

	Capacity
	Data Augmentation for Increased Diversity
	Multi-bit Watermarking for Higher Capacity

	Stealthiness
	Generalization of CodeGenGuard
	Scaling to Larger Models
	Extending to Other Languages

	Ablation Studies
	Shadow Training
	Auxiliary Prompts
	Dual-LoRA vs. Full Shadow Training
	Number of Verification Samples
	Trigger Lengths

	Discussion
	LLM Usage Disclosure

