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Forecasting Smog Clouds With Deep Learning: A Proof-Of-Concept

Anonymous Authors1

Abstract

In this proof-of-concept study, we conducted a
multivariate time-series forecasting for concen-
tration of nitrogen dioxide (NO2), ozone (O3),
and (fine) particulate matter (PM10 & PM2.5) with
meteorological covariates between two locations
in the Netherlands using various deep learning
models, with a focus on long short-term memory
(LSTM) and gated recurrent unit (GRU) archi-
tectures. In particular, we propose an integrated,
hierarchical model architecture inspired by air
pollution dynamics and atmospheric science that
employs multi-task learning and is benchmarked
by unidirectional and fully-connected models. Re-
sults demonstrate that, above all, the hierarchical
GRU proves itself as a competitive and efficient
method for forecasting the concentration of smog-
related pollutants.

1. Introduction
1.1. Motivation

The presence of hazardous atmospheric chemicals charac-
terises the phenomenon of air pollution. Although a number
of physical activities (volcanoes, fire, etc.) may release dif-
ferent pollutants, anthropogenic activities are the head cause
of environmental air pollution (Kampa & Castanas, 2008).

Adverse air pollution effects can range from skin irrita-
tion and difficulty in breathing to an increased risk of car-
diac and respiratory illnesses, cancer, and mortality overall
(Brunekreef & Holgate, 2002; Kampa & Castanas, 2008;
Wong et al., 2008; Orellano et al., 2020). A recent addition
is its direct link to COVID-19 morbidity and severity (Zorn
et al., 2024). Indeed, as stated in (Lim et al., 2012), air pol-
lution ranks high in the general disease burden attributable
to environmental factors, with 3.1 million deaths in 2012
and 3.1% of disability-adjusted life years worldwide.
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Fundamentally, the air pollution problem and the extent to
which it spreads is evident. Indeed, the air and its contam-
inants are everywhere and will remain inevitably inherent
to human-nature interaction in the future. Positive notions
present themselves, nonetheless: (1) humans, being the
primary polluters, also possess the opportunity to act as
the “primary purifiers”; and (2) comprehensive fundamen-
tal problem knowledge offers positive prospects for further
advancing research (Vallero, 2014).

This problem motivates the development and application
of data-driven forecasting models based on multiple neu-
ral network architectures, using contaminant and meteo-
rological data to simulate and predict air pollution and
smog. In particular, we consider the modelling of nitro-
gen dioxide (NO2), ozone (O3), and (fine) particulate matter
(PM10 & PM2.5) with various meteorological covariates as a
first proof-of-concept (PoC). By employing these weather-
predictive methods, this study aims to contribute incremen-
tally to understanding air pollution dynamics and enhance
environmental conditions for improved public health.

1.2. State-of-the-art

Traditional weather systems have evolved into sophisticated
models that approximate real-world weather dynamics with
increasing precision (Alley et al., 2019). The systems ap-
ply numerical weather prediction (NWP), a now ubiquitous,
though computationally costly, numerical method grounded
on physical first-principles (Bauer et al., 2015). While ap-
plying purely natural laws as boundary conditions for pre-
dictions is theoretically possible, it presents challenges in
practice: the weather system is everywhere and contains
numerous complex processes that make it computationally
infeasible to provide these predictions with more than a
highly simplified, parameterised value. Moreover, the non-
linear dynamics, exemplified by the chaotic behaviour of tur-
bulent flow, make predictions at high resolution—spatially,
temporally, and/or across variables—a lasting challenge.

The emergence of data-driven methods presents a novel ap-
proach to abstracting physical processes embedded in the
weather system. Machine learning (ML) models are adept
at recognising complex patterns within large datasets with
unparalleled efficiency—patterns that may represent rela-
tionships and correlations between atmospheric variables
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Forecasting Smog Clouds With Deep Learning

and influences not yet understood by traditional physics.

A recently undertaken application of large-scale deep learn-
ing (DL) weather forecasting is FourCastNet by (Pathak
et al., 2022). FourCastNet generates global forecasts orders
of magnitude faster than traditional NWP with comparable
or better accuracy. It herewith demonstrates the potential of
data-driven methods to make significant progress in weather
forecasting without explicitly considering the underlying
(known) physical processes and equations. Implications are
reducing costs of the traditional NWP and, more importantly,
reducing the opportunity cost of inaccurate forecasts. Its
scope does not, however, encompass predicting components
directly related to air pollution or smog.

More closely related state-of-the-art studies, see (Masood
& Ahmad, 2021) for a review, that distinctly forecast air
pollution are (Freeman et al., 2018) and (Tao et al., 2019).
The former performs a forecast of surface O3 levels using a
recurrent neural network (RNN) with long short-term mem-
ory (LSTM); its approach takes as input hourly-sampled
meteorological data and O3 itself, outputting a multivariate
72-hour horizon forecast. The latter, (Tao et al., 2019), high-
lights a composition of 1D convnets and the bidirectional
gated recurrent unit (GRU) for a multivariate short-term
prediction of PM2.5. Both studies are consistent and relevant
to the purpose of this PoC in that they use RNNs, take me-
teorological covariates as inputs, and consequently predict
air pollution. Nonetheless, as much as O3 and PM2.5 are in-
fluential elements, a more complete air pollution and smog
prediction requires consideration of a broader and combined
set of air contaminants.

1.3. Contributions

Acknowledging the recent developments (Masood & Ah-
mad, 2021) and state-of-the-art, the LSTM and GRU estab-
lish themselves as the appropriate choice for modelling the
sequential series of components in ambient (polluted) air.
This insight steers us towards contributing an attempt at get-
ting further command of the air pollution problem through
a PoC of smog modelling with LSTM and GRU models.
Specifically, the combined modelling of contaminants NO2,
O3, PM2.5, and PM10 is considered.

Ultimately, this research addresses the question: “To what
extent are models with the LSTM and GRU architecture
capable of the multivariate timeseries forecasting of smog-
related air components?” It is found that the LSTM and
GRU can indeed accurately forecast smog-related air com-
ponents, thus providing an effective method for modelling
and forecasting pollutants.

2. Background
2.1. Atmospheric interactions in air pollution

The very reality of contaminant concentrations changing
over time naturally focuses attention on the question of how
these changes originate and evolve. Whereas the origins and
sources of pollution are reasonably well understood (Vallero,
2014; Saxena & Naik, 2018), much is still unknown about
its dynamics and how it evolves—hence, the subject of this
research. Especially from a ML perspective, understanding
the specific relationships between variables, or features, is
critical for efficient learning (Li et al., 2017).

How pollutants evolve is partly explicable by their inter-
action with their environment. As a result, a combined
modelling of atmospheric variables can be justified. The
following paragraphs briefly introduce the pollutants’ inter-
connectivity and atmospheric interaction.

Foremost, the chemical interrelation of NO2 and O3. Ni-
trogen oxides (NOx), a mixture of the colourless nitric ox-
ide (NO) and reddish-brown, pungent NO2, are (mostly
anthropogenically-generated) primary pollutants. When in
the presence of certain volatile organic compounds (VOCs)
or another initiator or catalyst, NO can oxidate into NO2
(Atkinson, 2000).

Continuing, PM is either emitted directly into the atmo-
sphere (primary) or formed later (secondary) and is subject
to air transport, cloud processing, and removal from the
atmosphere (Seinfeld & Pandis, 2016). PM10 and PM2.5
are interconnected as seen empirically (Velders et al., 2015)
and naturally (Rhodes & Seville, 2024), given that their
distinction is their size. With its relatively large size, PM
itself experiences negligible chemical reactivity with the at-
mosphere compared to minor compounds such as NO2 and
O3. Nonetheless, noting its susceptibility to transport, PM
and other pollutants alike are responsive to airflow and dis-
persion in their ambient air environment—an environment
amidst all meteorological influences, without yet consider-
ing factors such as geology and topology. Therefore, many,
at least implicit, parameters are required to model PM and
other air components reliably.

In short, NO2, O3, PM10, and PM2.5 are subject to influences
from all dimensions and thus can be broadly modelled: for
modelling pollution movements, pollution can be assumed
to behave as air. Furthermore, pollutants are ”internally”
affected by each other and externally by the atmosphere,
warranting a multivariate, integrated modelling approach.

2.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) host cyclical connec-
tion pathways that, mathematically speaking, represent not
functions but dynamical systems (DSs). RNNs have a net-

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Forecasting Smog Clouds With Deep Learning

work state x(n) allowing some earlier input u(n′) to leave
its traces on output y(n), and, therewith, the current state
is influenced by past states and input. In practical terms,
RNNs are tailored for sequential, fixed order data, such as
timeseries. Illustratively, when data is fed non-sequentially,
e.g. today’s weather prior to yesterday’s, the internal state
becomes confounded.

Formally, the transition of an RNN network state is given
by the update equations:

x(n) = σ(Wx(n− 1) +W inu(n), (1)
y(n) = f(W outx(n)), (2)

where n = 0, 1, 2, ..., nmax are the time steps, W is a matrix
containing the connections weights, W in and W out con-
tain the weights from/to the input/output neurons, σ is a
sigmoid function, and f a function wrapping the readout
W outx(n) (Jaeger, 2023b). In particular the activation func-
tion σ, which introduces non-linearity to the evolution of the
internal state (1), enables RNNs to capture (long-term) non-
linear dependencies in the data. Recurrent neural networks
are trained with a special technique called backpropagation
through time (BPTT) to handle their sequential nature. How-
ever, BPTT suffers from vanishing gradients (Hochreiter,
1998), making it difficult to learn long-term dependencies
(Bengio et al., 1994).

Long short-term memory (LSTM) networks were intro-
duced by Hochreiter, Schmidhuber, and Gers with the in-
tention to solve this problem (Hochreiter, 1991; Hochreiter
& Schmidhuber, 1997; Gers et al., 2000). They proposed
a self-connected linear unit, the LSTM memory cell, with
a constant error flow: in the absence of new input or error
signals to the cell, the local error backflow remains constant,
neither growing nor decaying (Gers et al., 2000). Thus, with
the LSTM, the gradient is independent of T .

A more recently proposed recurrent unit is the gated recur-
rent unit (GRU) by (Cho et al., 2014). The GRU uses a
similar approach to solving the vanishing gradient problem
but simpler. It contains only two gates, the reset gate and
update gate, making it easier to compute (and implement).
The former controls the degree to which the previous hid-
den state influences the current, and the latter combines the
LSTM input and forget gate into one. Its performance has
shown to be on par with the LSTM, and, in some cases, can
outperform it in terms of convergence in CPU time and in
terms of parameter updates and generalisation (Chung et al.,
2014).

As seen in Section 1.2, the gating mechanism also proves
itself in air pollution-related applications (Freeman et al.,
2018; Tao et al., 2019). Still, these studies predicted one
contaminant only, while LSTMs are proven to be adequate
for multivariate data (Che et al., 2018).

3. Methods
3.1. Data

The proposed forecasting experiment uses hourly-sampled
data from 2016 to 2023 (RIVM, 2024; KNMI, 2024), which
is available under an initiative of the Dutch government
and the Dutch national meteorological service, the Royal
Netherlands Meteorological Institute (KNMI). The data is
accreditated under NEN-EN-ISO/IEC 17025 standards and
is technically and substantively validated (and possibly re-
jected) before release (KNMI, 2023).

Figure 1. Utrecht area with markers indicating the AWS locations.

3.1.1. SPATIOTEMPORAL CONTEXT

This experiment involves forecasting with data from two
locations, a source location (A) and a target location (B).
The source location is in Utrecht, the Netherlands, and here,
pollutant data is combined with meteorologically related
covariates, from a sensor located in De Bilt, to forecast
pollutant data at the relatively northwestern target location
in Breukelen. Their relative positions are best illustrated in
Figure 1.

3.1.2. INSPECTION

Table 1 details the predictive variables used in this exper-
iment, along with the initially considered meteorological
parameters. The rationale and relevance of the meteorolog-
ical parameters in the context of pollution prediction are
discussed in Appendix A.1, coupled with an inspection.

3.2. Preprocessing

Preprocessing starts with tidying the raw data, followed by
a train-validation-test split, feature engineering, normalisa-
tion, and ends with generating (input, output)-pairs.

Firstly, the raw data was cleaned to make it utilisable, for
example by solving erronous (split) rows and columns, con-

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Forecasting Smog Clouds With Deep Learning

Table 1. Predictive variables and initially considered meteorologi-
cal variables (in alphabetic order). Some units are multiplied by
0.1 for simplification without losing significance.

Variable Unit

Nitrogen dioxide (NO2) µgm−3

Ozone (O3) µgm−3

PM ≤ 10 µm (PM10) µgm−3

PM ≤ 2.5 µm (PM2.5) µgm−3

Air pressure (AP) hPa
Dew point temperature (DPT) ◦C
Global radiation (GR) J cm−2

Maximum wind gust (MWG) ms−1

Mean wind direction (MWD) 0− 360◦

Mean wind speed (MWS) ms−1

Precipitation amount (PA) mm
Precipitation duration (PD) h
Sunshine duration (SD) h
Temperature (T) ◦C

verting encodings, extracting metadata, and the exclusion
of data disqualified due to outliers. Next, there were miss-
ing values (Table 4). These were assumed to be missing
completely at random (MCAR) and were imputed by linear
interpolation.

Secondly, the tidy data is split into a training, validation,
and testing set. Granting the heterogeneous nature of the
data from year to year, but also the fact that forecasting
the future using information from the future is fallacious,
a sampling balance has to be struck. The resulting in the
training/validation/testing split was 76.3%, 11.9%, 11.9%.

Thirdly, the newly acquired training set undergoes feature
selection. As described in (Hall, 1999), good feature sets
contain features that are highly correlated with the class, yet
uncorrelated with each other. Thus, to assess the features—
the pollutants and meteorological parameters listed in Ta-
ble 1—their intercorrelations are assessed and compared to
a threshold rth using the absolute value Pearson correlation
coefficient rxy:

rxy =

∣∣∣∣∣
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

∣∣∣∣∣ , (3)

where, given paired data (xi, yi)
n
i=1, n is the sample size,

and x̄, ȳ are their sample means. It must be noted, how-
ever, that the calculation assumes linear relationships, het-
eroskedasticity, and a Gaussian distribution. The correla-
tions are plotted in Figure 2.

Fourth, normalisation. Normalising promotes generalisa-
tion, stabilises gradients and the learning process, and can
produce faster convergence (Ioffe & Szegedy, 2015). The
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Figure 2. Coefficient matrix for the initially considered features.
A threshold rth for the absolute Pearson coefficient is set at
rth = 0.15. When not met, the entry remains white.

selected features are normalised to a range of [0, 1] with
min-maxscaling

x′ =
x− xmin

xmax − xmin
, (4)

where xmin and xmax are the minimum and maximum
value for each feature in the training set.

Lastly in preparing the data for the models, pair generation.
In order to obtain static input-output pairs from a discretised
hourly-sampled temporal training sequence, one segments
the input timeseries (u(n))n∈[0,Nu] for Utrecht, and input
timeseries (y(n))n∈[0,Ny ] for Breukelen with Nu = Ny,
into sliding windows of length lin = 72 and h = 24, respec-
tively, obtaining input-output pairs (ui, yi)i=1,...,P consist-
ing of input

ui = (u(ni), ..., (u(ni + lin)), (5)

and output

yi = (y(ni + δ), ..., (y(ni + δ + h)), (6)

where ni represents the starting index of the i-th pair, P
denotes the number of pairs as defined by P =

⌊
Nu+1
∆n

⌋
with

sampling step size ∆n, and δ is defined as δ = lin− 24+1,
meaning yi’s output is considered from the 48th hour on,
plus a 1-hour window for the spatial prediction from ui to
yi. To expand on the latter, and as seen in (1) and (2), RNNs
process values one-by-one, which for this case means for
lin iterations—δ, however, selects only the last 24 readouts
for predicting and, thus, learning (facilitated by the loss
function (7) discussed in Section 3.4). Step size ∆n is set
at ∆n = 24 for computational efficiency, and because trial-
and-error testing showed no or minor upside to a smaller
∆n.
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Essentially, this means that for each pair, an hour of pollutant
concentrations at B will be predicted 24 times in sequence,
with the preceding hours of A available as the ground for
prediction. Thus, the data sets the models up to learn to
model the pollutants using their covariates for the spatial
prediction task from Utrecht to Breukelen.

3.3. Model architecture

The multivariate one-dimensional forecasting task of smog
clouds, i.e., modelling the four pollutants from Utrecht to
Breukelen, is taken on using six models: an ordinary multi-
layer perceptron (MLP), a hierarchical MLP (HMLP), an
LSTM and GRU, and, as main contenders, a hierarchical
LSTM (HLSTM) and GRU (HGRU). This section will out-
line the modelling types and set-ups, followed by their hy-
perparameter optimization procedure.

3.3.1. TYPES

As touched upon in Section 2.2, the MLP models approx-
imate not DSs but functions. Where RNNs have a state
x(n) allowing some earlier input u(n′) to leave its traces
on output y(n), MLPs learn to approximate a (nonlinear)
function f : RL0 → RLk

, where L0 and Lk represent the
neurons in the input- and output layer, and lack an explicit
mechanism for retaining sequences over extended periods.
In practice, they cannot utilise the sequence-spanning BPTT;
they propagate errors solely through the network. Hence,
the MLP and HMLP are less suited for this task than RNNs
and serve as benchmarks.

In terms of their specific architecture, the input and output
layer are of size L0 = 10 (ten features) and Lk = 4 (four
predictive variables). Unidirectional layers knit these to-
gether. For the MLP, these are standard fully-connected lay-
ers. Its counterpart, the HMLP, is of the type of hierarchical
models—a term introduced in Section 2.2 which describes
non-homogeneous, modular neural circuits. HNNs can, de-
pending on the task, perform multi-task learning (MTL), a
method whose principle goal is to improve generalisation
performance (Caruana, 1997).

Furthermore, with HNNs, the hierarchical organisational
structure is in hands of the model designer and offers an
opening for a priori knowledge to be embodied in the neu-
ronal arrangement as inductive bias or regularising factor,
guiding the model in a preferred direction. In the context
of this study, we aim to predict the four pollutants, each of
which can be regarded as a distinct subtask. Recognising
both the intercorrelations of the pollutants (as depicted, for
example, in Figure 2) and the fact that they all live a life
of their own, it seems reasonable to mirror this reality in a
model’s architecture. To achieve this, we employ one shared
layer to establish shared representation and subsequently
partition the network flow into a modular branch per sub-

task to reduce the interference between tasks. This design,
including this nuanced regularising factor, confers HNNs
a hypothetical advantage over fully-connected nets, which
neglect an explicit internal-external balance.

Next are the RNNs. The RNNs use the PyTorch imple-
mentation of LSTM and GRU memory cells introduced
in Section 2.2. The fully-connected RNNs are similar to
the MLP, except for their gating mechanisms and recurrent
synaptic connections, and vice versa for the hierarchical
RNNs in relation to the HMLP.

Following up on identifying model types, hyperparameters
reveal in more detail how these types are shaped into com-
plete architectures. The following sections discuss how they
are established.

3.3.2. HYPERPARAMETER OPTIMIZATION

Hyperparameters can be used to control the behaviour of
a learning algorithm and are not adapted by the algorithm
itself (Goodfellow et al., 2016). For the DL models at hand,
examples are the number of hidden layers and hidden units,
the learning rate, choice of optimizer, and the regularisa-
tion term. An overview of the used hyperparameters per
model can be found in Appendix C—this section will chiefly
explore the methodology behind their selection.

To determine their values, a hyperparameter search proce-
dure consisting of a grid search and cross-validation (CV)
schemes is used. This procedure aims to find a hyperpa-
rameter configuration c with a minimised loss, while also
testing c’s generalisation capabilities. The loss is calcu-
lated on distinct validation sets generated by CV from all
available training data, i.e. a concatenation of the training
and validation set, to test this generalisation performance
and prevent overfitting. Nested within the hyperparameter
search and within the CV scheme, is the models’ training
algorithm, which, together with the loss, is specified in the
next subsection, Section 3.4.

Continuing, the traditional grid search was used because of
its ease suiting this PoC; it essentially does a brute-force
search through the parameter space H . Here, H is defined as
the Cartesian product of the finite sets S containing possible
values for each parameter. Because H grows exponentially,
a large S is not feasible, and smaller S are already compu-
tationally expensive. Hence, as measures, some initial trial
runs were executed to get a feel of which options to include
and the many models were computed on an HPC cluster.

Then, CV is run for each c, where c is a unique configu-
ration within H . For the stateless MLPs, regular k-fold
cross-validation, with k = 5, is used—with the perk of
maximal data usage. RNNs, conversely, do have a state and
allow memory trace of past sequences, as aforementioned in
Section 2.2. A variation of k-fold CV, called sliding window

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Forecasting Smog Clouds With Deep Learning

Table 2. List of the hyperparameters included in the grid search.

Hyperparameter Symbol

Hidden layers k
Hidden units Lκ

Learning rate µ
Learning rate, shared µshared
Learning rate, branches µbranch
Weight decay λ

CV, accommodates this: it samples training and validation
sets—with, in contrast to pair generation, superposition of
intervals—using a sliding window approach, thus not allow-
ing validation of trained models with out-of-sample data
directly from the past.

With these schemes, grid search with k-fold CV for the
MLPs and sliding-window CV for the RNNs, values for the
hyperparameters listed in Table 2 were determined—forging
the model types into architectures. (Appendix C presents
complete model architecture summaries.)

3.4. Training

In this section, we explain the training procedure used dur-
ing hyperparameter optimization and the final training itself
by defining the optimization goal and method, followed by
some anti-overfitting measures. The final models are trained
using the training and validation set created in Section 3.2.

To approximate a model mθ parametrised by tuneable pa-
rameters collected in a vector θ, given a search space θ ∈ Θ
of target models Θ within the same architecture; training
pairs (ui, yi)i=1,...,P ; and the mean squared error (MSE)
loss function defined as

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 + λ || θ ||22, (7)

where n denotes sample amount, y the ground truth, and ŷ
the prediction—one has to solve the optimization problem

θopt = argmin
θ∈Θ

1

P

∑
i=1,...,P

MSE(mθ(xi), yi), (8)

where θopt denotes a model with a minimised empirical risk
(Jaeger, 2023a;b). MSE punishes extreme values quadrat-
ically more, suiting the context of air pollution where ex-
tremes are of greater concern.

With an initial model θ(0), initialised by the PyTorch-default
Kaiming initialisation (He et al., 2015), optimization of θ(n)

is performed by the Adam (ADAptive Momentum) opti-
mizer (Kingma & Ba, 2014). Adam differentiates itself

from, e.g., stochastic gradient descent (SGD) by using mo-
mentum (Sutskever et al., 2013) and adaptive learning rates
per parameter while only requiring first-order gradients and
little memory (Kingma & Ba, 2014). This study uses its
implementation in PyTorch. An implemented, assisting add-
on is a scheduler: it reduces the learning rate by a factor of
0.1 when the validation loss stagnates for a set number of
epochs (defined per model in Table 8).

Adam does its work everytime a batch B of 16 (u, y)-pairs
is passed. B = 16 was plainly adopted from (Masters &
Luschi, 2018), who found smaller batch sizes (2 ≤ B ≤ 32)
to provide benefits in terms of convergence stability and
overall test performance for a given number of epochs.
Batches are randomly sampled (while in sequence order)
from the available pairs, introducing stochasticity (and effi-
ciency over, e.g., one-by-one calculation). Internally, this
adds the batch dimension to the pairs, creating the tensors
[B, lin, L0] for u and [B, h, Lk] for y. When u is fed, the
models spit out forecasts y′ in the form of such tensor, which
is subsequently compared to the ground truth y yielding the
loss withwhich θ can be updated.

Updating θ, however, proceeds quite differently for the two
main types of models. Whilst for the fully-connected mod-
els, this proceeds as usual with one optimizer updating θ, the
modular models require a different approach. As they essen-
tially consist of multiple core components (one shared layer,
four branches) with different search spaces and convergence
qualities, the process capitalises on this: all five components
have their own optimizer and matched scheduler. In addi-
tion, they have two separate (initial) learning rates, as seen
in Table 2 and Table 7. Distributing the learning tasks helps
each model part stably reach an optimum.

Lighting this in terms of implementation, the shared and
branched parts do epochs in turns, seeing all the batches
separately while the other is frozen. Frozen, as in, the param-
eters cannot update but can infer. A con here is efficiency:
the batches are passed through the model once more for
every epoch.

When zooming out and looking at when learning should
finalise, early stopping comes in: it finishes training when
for some number of epochs (defined in Table 8) the valida-
tion loss does not decrease by ≥ 1× 10−5. Another anti-
overfitting measure, or regulariser, is the L2-norm added
to (7). As effect, larger weights are penalised and smaller
weights are encouraged, preventing some set of weights
dominating the model.

In summary, the training process seeks to find an optimal
set of model weights θopt, and to regularise, the learning
process early stops, the batches introduce stochasticity, the
regularisation term balances weight values, and the hier-
archical nets incorporate MTL. With these regularisation
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steps, the training procedure should yield models fulfill-
ing the ultimate objective of generalisation, tested in next
section.

3.5. Evaluation

For evaluation of the models, the held-out test set is used.
The test set is unseen by the models before evaluation to
properly assess their generalisation capabilities. The pre-
dictions were first post-processed using inverse minmax-
scaling, sampled in batches without shuffling to eliminate
any randomness, and then evaluated using the root mean
squared error (RMSE) and symmetric mean percentage error
(sMAPE) metric, which both serve a different interpretation
of model performance. In addition, the inference speed of
each model is evaluated, as this is one of the unique advan-
tages of data-driven methods over first-principle methods
like NWP.

The RMSE, defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (9)

provides a measure of the average magnitude of the error
with, due to its squaring operation, larger errors getting
penalised more. This fits the context of smog modelling,
where higher values are especially harmful.

The other metric, the sMAPE:

sMAPE =
2

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)

× 100, (10)

is an accuracy measure based on percentage (or relative)
errors, providing a scale-independent, well-interpretable
metric. The sMAPE complements the RMSE by taking
into account the individual and different distributions of the
pollutants. Therefore, the metric allows for a fair relative
comparison of the models’ performance.

Finally, it is worth emphasising that, generally speaking,
the RMSE serves a practical purpose because it tells about
the deviation in µgm−3 and has a quadratically progressive
penalty. The sMAPE mainly fulfils a ”scientific” purpose
due to the possibility of comparing models, though the two
metrics are not mutually exclusive. This idea acts as a guide
to interpret the results meaningfully.

4. Results
Following training, the models are evaluated on out-of-
sample data. It is found that the models provide an effective
method for the modelling and forecasting of the pollutants.
Quantitative results by RMSE and sMAPE are listed in
Table 3.
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Figure 3. HGRU forecasts for NO2, O3, PM10, and PM2.5 taken for
a week from the evaluation set. Black indicates the ground truth
and maroon the forecasts. Dashed lines indicate zero.

Considering the subtask-specific lowest sMAPE values,
NO2 is predicted most accurately. Following NO2 is O3,
then PM2.5, and the models were least successful in pre-
dicting PM10. Nonetheless, the lowest sMAPEs, as well
as the RMSEs—which are primarily generated by the
HGRU—confirm the models’ suitability for forecasting the
pollutants at B using data at A. Meanwhile, the models also
differed in performance.

Measured by RMSE, the non-hierarchical fully-connected
RNNs perform predominantly better than the MLPs, but
also utilise many parameters to do so. Measured by sMAPE,
they do too, despite HMLP’s sMAPE (M = 46.274, SD =
45.344) being slightly inferior to the LSTM’s (M =
46.321, SD = 46.515): a paired t-test with α < .05 sug-
gests there is no sufficient evidence to reject the null hypoth-
esis of no difference, t(8927) = 1.011, p = 3.12× 10−1.

Furthermore, the GRU yields the lowest errors of the non-
hierarchical RNN models. The HLSTM ranks second,
and, as per RMSE and sMAPE, the HGRU performs best,
establishing the hierarchical models as the top perform-
ers. A paired t-test confirms the HGRU’s (MRMSE =
5.468, SDRMSE = 4.906,MsMAPE = 44.519, SDsMAPE =
44.519) significant predictive ability on the testing
set over the HLSTM (MRMSE = 5.633, SDRMSE =
4.935,MsMAPE = 44.981, SDsMAPE = 45.850) both by
RMSE (t(8927) = −5.922, p = 3.30× 10−9) and sMAPE
(t(8927) = −2.855, p = 4.32 × 10−3), as well as on the
other models. Moreover, for all individual pollutant sub-
tasks by RMSE, and most by sMAPE, the HGRU exhibits
the highest predictive precision, where it is only surpassed
repeatedly with the sMAPE of the PM2.5-subtask.

A visual representation of the HGRU’s forecasts is with a
lineplot, shown in Figure 3. Consistent with the numerical
interpretation of the RMSE and sMAPE, the patterns of NO2
and O3 seem to be most closely captured. The PMs show
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Table 3. Results of each model, evaluated and compared on performance (RMSE and sMAPE) and efficiency (inference speed and
parameter count). The error metrics are calculated per pollutant and combined, with the lowest error in bold. Inference speed tinf is the
time in milliseconds for one inference of one 24-hour lead time prediction (processed on an Intel Core i7-8565U CPU, 8GB RAM, 64-bit
OS).

Models Performance Efficiency
RMSE (µgm−3) sMAPE (%) tinf (ms) Param #

NO2 O3 PM10 PM2.5 Total NO2 O3 PM10 PM2.5 Total

MLP 6.63 7.53 7.82 4.85 6.71 35.89 41.90 65.24 53.15 49.04 27.2 17 604
HMLP 5.99 6.83 7.95 4.62 6.35 31.84 39.44 65.42 48.00 46.27 135.2 15 620

LSTM 5.97 6.39 7.48 4.32 6.04 32.09 38.09 63.40 51.70 46.32 14.4 572 640
HLSTM 5.36 6.57 6.60 4.00 5.63 28.53 38.83 60.80 51.76 44.98 18.7 72 244

GRU 6.01 6.18 6.84 3.94 5.74 32.62 38.46 61.15 49.67 45.47 47.9 363 360
HGRU 5.35 6.01 6.59 3.92 5.47 28.78 36.97 59.92 52.40 44.52 77.4 74 948

more short-term fluctuations, which are infrequently caught.
This proves the most challenging with PM10. Altogether, it
can be stated that the HGRU is well equipped to use data at
A for forecasting at B.

In terms of efficiency, the inference speed tinf of the mod-
els, as also seen in Table 3, shows that efficiency is high:
a 24-hour prediction is generated with negligible delay on
a relatively inefficient processor. Counterintuitively, the
model with the most parameters is the quickest, though the
margins are small. As also discussed in (Pathak et al., 2022)
and Section 1.2, the speeds, apart from the initial training
cost, highlight the operational advantage of DL models over
traditional first-principle methods: they are orders of magni-
tude faster and more efficient. Last to note on efficiency is
that the best-performing models, the HLSTM and HGRU,
require significantly fewer parameters (due to reduced pa-
rameter sharing) than the non-hierarchical RNNs as well.

5. Conclusions
In this paper, multivariate timeseries forecasting of smog
clouds, represented by NO2, O3, PM10, and PM2.5 concen-
trations, using RNNs is conducted. Specifically, meteorolog-
ical and pollution data at A is used to forecast air pollution
levels at B. The most sophisticated models, the HLSTM
and HGRU, are benchmarked with unidirectional and fully-
connected DL architectures.

The research question, “To what extent are models with the
LSTM and GRU architecture capable of the multivariate
timeseries forecasting of smog-related air components?”
is answered by the fact that the models are indeed highly
adequate. Results demonstrate that, above all, the HGRU is
suitable and competitive at this task. Reasons include the
sequence-processing prowess of RNNs, a GRU’s simplicity,
and an integrated design streamlined to the very nature of
the pollutants.

To sum up, our study contributes a PoC of smog cloud
modelling using RNNs, providing a basis for advancements
in pollution and weather forecasting to improve future public
health.

Broader Impact Statement
Air pollution stands as a critical global challenge to hu-
manity (UN, 2015). The rise of large-scale combustion
and anthropogenic polluting activities has led to significant
increases in air pollutant concentrations over the last cen-
tury, leaving a heavy burden on human health (Kampa &
Castanas, 2008). An unmistakable manifestation of these
developments is the occurrence of smog: a noxious mix-
ture of air pollutants that obstructs visibility and severely
impairs human health in various ways (Brunekreef & Hol-
gate, 2002). Given the detrimental effects, it is imperative
to be able to predict when harmful pollutant levels might
occur. This research proposes different methods to gain in-
sight into air pollutant levels through timeseries forecasting
and the application of multiple DNN architectures, notably
including RNNs.

This research’s limitations are summarised by simplifying
measures to keep it within a scope appropriate for a PoC
and by conceptually inherent limitations. Notable inherent
limitations of this study include: the data being limited to
merely two sensors, which fails to honour the complexity
(e.g. the multidimensionality, emission sources, geograph-
ical features) of the modelled system; the non-stationarity
of the data not being explicitly taken into account neither
in preprocessing nor in model design; and modelling at a
location where the air pollution and smog clouds problem
is almost absent, thus limiting the direct impact.

Recurrent deep architectures offer a promising addition or
augmentation to traditional NWP, given their adequacy and
efficiency. Additionally, the dataset’s minimal transforma-
tion makes real-time and continuous predictions possible.
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A. Data insights
This Appendix section provides some additional insight into the data by exploring the meteorogical variables and discussing
the correlations of all features. In addition, an overview of the data availabilities is displayed, some data statistics are
presented, and an extraordinary outlier is visualised.

A.1. Exploration of meteorological data

This subsection provides an overview of all the initially considered meteorological variables accompanied by an explanation
of why these variables might be helpful for modelling smog clouds, i.e. the pollutants NO2, O3, PM10, PM2.5. Important to
emphasise is that not all of these rationales have held up in feature selection (or, worded differently, showed in the data).

It is important to stress that besides the individual characteristics of the pollutants, they are located in the tropospheric sky,
and have such a low mass they can be assumed to behave as air in terms of their interaction with large-scale meteorological
processes. We will go through the variables from top to bottom to explain their relevance:

• Air pressure can indicate dispersion and transport of large air currents, for example by low and high-pressure areas,
and thus also influence the air currents of pollutants (Holton & Hakim, 2012).

• Dew point temperature, precipitation sum, and precipitation amount are indicators of atmospheric moisture
content levels. These levels can say something about, for example, the rate of condensation (which, via nucleation,
can lead to the formation of fine aerosols (PM) (Gelbard & Seinfeld, 1979)), any scavenging and cleansing of the air
by rainfall (lowering the pollutant concentrations) (Vallero, 2014), and the formation of acid rain (where acidic gases
SO2 and NOx that are (related to) the predictive variables, get washed out, thus lowering the concentrations (Irwin &
Williams, 1988)).

• Global radiation and sunshine, which signify the presence of solar energy in the form of photons, serve as fundamental
drivers of low-entropy energy input on Earth.

• Temperature is an essential factor in chemical processes seen by its role as accelerator in the formation of secondary
pollutants. In addition, temperature plays a role in atmospheric stability, with, for example, (suddenly) high temperatures
signifying increased convective activity. Furthermore, temperature influences state changes, and is also tightly
connected with global radiation and sunshine, therewith also indirectly contributing to their effects. For more context
on atmospheric chemistry and physics, refer to the extensive (Seinfeld & Pandis, 2016).

• Mean wind direction, mean wind speed, and maximum wind gust all tell about the wind’s properties, which in turn
carries the pollutants through the atmosphere. In context of the experiment, wind direction, for example, tells about the
relative directional relationship between A and B. Out of the pollutants, the wind especially plays a role for the PMs,
as they have a bigger surface.

A.2. Data availability

Here is a short summary of the availability of the data used in the experiment. Missing data was interpolated with linear
interpolation.

Table 4. Data availability percentage for the modelled pollutants for each year. The meteorological abbrevations are defined in Table 1.
The meteorological data was completely available for all years—for the pollutants, it was not. Given the strict procedures by the KNMI
(KNMI, 2023), this is no surprise.

NO2 O3 PM10 PM2.5 AP DP MWD MWS SD T

2017 97.64% 96.85% 97.62% 99.10% 100% 100% 100% 100% 100% 100%
2018 99.67% 98.52% 97.70% 99.29% 100% 100% 100% 100% 100% 100%
2020 98.60% 98.05% 99.34% 99.31% 100% 100% 100% 100% 100% 100%
2021 99.67% 98.55% 98.88% 99.29% 100% 100% 100% 100% 100% 100%
2022 96.90% 97.62% 95.56% 99.62% 100% 100% 100% 100% 100% 100%
2023 98.60% 97.15% 98.46% 97.97% 100% 100% 100% 100% 100% 100%
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A.3. Data allocation and quantity

This section provides transparency on how much data was used and in what proportions. Table 5 shows the number of hours
of data before pair generation, and Table 6 the data after pair generation.

Table 5. Hours of data for each feature per year in the training, validation, and testing sets before pair generation, illustrating the data
balance between the different sets, and their amounts. Divide these by 24 for the amount of days. (Meteorological abbrevations are
defined in Table 1).

NO2 O3 PM10 PM2.5 AP DP MWD MWS SD T

Train ’17 3648 3648 3648 3648 3648 3648 3648 3648 3648 3648
Train ’18 3648 3648 3648 3648 3648 3648 3648 3648 3648 3648
Train ’20 3648 3648 3648 3648 3648 3648 3648 3648 3648 3648
Train ’21 2640 2640 2640 2640 2640 2640 2640 2640 2640 2640
Train ’22 2640 2640 2640 2640 2640 2640 2640 2640 2640 2640

Validation ’21 504 504 504 504 504 504 504 504 504 504
Validation ’22 504 504 504 504 504 504 504 504 504 504
Validation ’23 1512 1512 1512 1512 1512 1512 1512 1512 1512 1512

Test ’21 504 504 504 504 504 504 504 504 504 504
Test ’22 504 504 504 504 504 504 504 504 504 504
Test ’23 1512 1512 1512 1512 1512 1512 1512 1512 1512 1512

Table 6. Table with numerical descriptions of the used datasets, after pair generation performed in Section 3.2 (with a ∆n of only 24
hours). Due to the overlapping nature of the pair generation algorithm, ”more” usable data was generated compared to the original data.
The amount of pairs P is displayed, the total amount of hours, total datapoints, datapoints passed through the model as input u, and the
ground truth y datapoints used for the loss function during training, giving an indication of the amount of computations needed for one
training epoch. (With the ”optimal” ∆n = 1, the training set would grow to the impractical amount of 12,847,104 datapoints.)

P hrstotal ntotal nu ny

Training set 656 47 232 535 296 472 320 62 976
Validation set 93 6696 75 888 66 960 8928
Testing set 93 6696 75 888 66 960 8928
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B. Training insights
The subplots in Figure 4 show the training and validation loss development during final training of the six models. Figure 5
shows how both the shared and branched part of the HLSTM contributed to its training loss.

Training the models took an hour maximum, using the hyperparameters listed in Table 7 and 8 and processed locally on an
Intel Core i7-8565U CPU, 8GB RAM, 64-bit OS.
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Figure 4. Loss plots for all models, showing the training versus validation losses over epochs.
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Figure 5. Training loss plotted of the shared and branched part of the HLSTM. For illustrative purposes, the first epoch is left out from the
plot. Both model parts have different complexities (see Section 3.3), causing their learning process to be different as well. The branches
were more complex, causing its learning process to be less stable, visible by the small ”bumps” in its descend.
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C. Architecture details
This Appendix section provides some additional detail on the employed architectures by specifying the used hyperparameters
and model parameters. In all of the model summaries, pass size denotes the size of a forward/backward pass in megabytes
(MB). All activation functions employed are ReLU, including the readout. The high number of parameters for the RNNs are
caused by the BPTT procedure, with the number being less for the hierarchical recurrent nets due to reduced parameter
sharing.

Table 7. Overview of the hyperparameters that were determined through grid search and consequently used in the models. Their
abbrevations are listed in Table 2. Also, note that the fully-connected models have just one learning rate, while the hierarchical models
have two: one for their shared layer and one for the optimizers of each of their branches. Another thing to note here is that the ratio
between these two, µshared and µbranch, is equivalent to k. This was done, after lots of test runs, with the idea of a ”power ratio” between
the two: the branches needed a higher µ to let them converge in harmony with the shared layer. Another reason was that by interlinking
the two, H was significantly reduced. A last thing to note is λ of the HLSTM being zero. During training, the HLSTM struggled to get
momentum and to start learning, resulting in the hyperparameter search choosing a model with optimal flexibility—a regularisation term
of zero.

k Lκ µ µshared µbranch λ

MLP 4 64 1× 10−5 1× 10−5

HMLP 7 64 1× 10−4 7× 10−4 1× 10−5

LSTM 6 112 1× 10−3 1× 10−6

HLSTM 7 48 1× 10−4 7× 10−4 0
GRU 4 128 1× 10−3 1× 10−5

HGRU 4 64 1× 10−3 4× 10−3 1× 10−7

Table 8. Overview of other training settings (or ”hyperparameters”) that were determined through trial-and-error (and not through
exhaustive search). All models used the Adam optimizer, reduced their learning rates when the validation loss reached a plateau
(ReduceLROnPlateau), had a batch size (|B|) of 16, and used k = 5 in their k-fold cross-validation schemes. The MLPs had a patience of
6 and the RNNs of 15 to accomodate for their differences in convergence speed.

optimizer µscheduler patience |B| kfolds

MLP Adam ReduceLROnPlateau 6 16 5
HMLP Adam ReduceLROnPlateau 6 16 5
LSTM Adam ReduceLROnPlateau 15 16 5
HLSTM Adam ReduceLROnPlateau 15 16 5
GRU Adam ReduceLROnPlateau 15 16 5
HGRU Adam ReduceLROnPlateau 15 16 5

14


	Introduction
	Motivation
	State-of-the-art
	Contributions

	Background
	Atmospheric interactions in air pollution
	Recurrent Neural Networks

	Methods
	Data
	Spatiotemporal context
	Inspection

	Preprocessing
	Model architecture
	Types
	Hyperparameter optimization

	Training
	Evaluation

	Results
	Conclusions
	Data insights
	Exploration of meteorological data
	Data availability
	Data allocation and quantity

	Training insights
	Architecture details

