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Abstract—AI models for skin cancer diagnosis often un-
derperform on darker skin tones due to imbalanced training
datasets that predominantly feature lighter skin. In this study,
we investigate whether lightweight, textual input can mitigate this
disparity in a low-data setting. We use a dataset of only 4,311
clinical dermatology images—3,900 from lighter skin tones and
just 411 from darker tones—to train Vision Transformers (ViTs)
enhanced with text input including skin tone and generated lesion
descriptions from Gemini and MONET. These textual inputs
are fused with visual features via late fusion strategies. Among
all configurations, ViT-B/32 combined with BERT-encoded skin
tone using Element-Wise Fusion achieved the most balanced
results, with AUCs of 0.822 (light) and 0.825 (dark), and matched
accuracies of 0.823. This setup reduced the AUC gap to 0.003 and
the accuracy gap to 0.0001. Our findings show that incorporating
simple and domain-specific textual input can substantially reduce
skin tone bias in ViT-based diagnosis offering a practical solution
for building fairer medical Al

Index Terms—skin cancer detection, vision transformers, mul-
timodal learning, vision-language models.

I. INTRODUCTION

KIN cancer is a common and potentially fatal disease
affecting all skin tones, though symptoms vary with
pigmentation. Individuals with skin of color are more often
diagnosed at later melanoma stages, contributing to lower sur-
vival rates [1]]. These disparities challenge accurate diagnosis
and are worsened by underrepresentation of darker skin tones
in dermatology datasets. Machine learning models trained
on such imbalanced data frequently show performance gaps,
leading to misdiagnoses and deepening health inequities [2].
Ensuring fairness in Al-driven diagnosis is thus essential,
particularly for tasks like skin cancer detection. While CNNs
have achieved high lesion classification accuracy, they struggle
with fairness due to data imbalance [3]].
Vision Transformers (ViTs) improve on this by applying
transformer architectures to images via patch tokenization and
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self-attention [4]]. Their global attention captures both lesion
structure and texture, supporting uniform focus across varied
skin tones. As each patch acts as a token, ViTs allow for re-
weighting underrepresented tones, potentially reducing bias.
This study evaluates ViTs ability to address skin tone dispar-
ities. We further explore multimodal input—combining images
with skin tone and lesion descriptions—to boost fairness. Two
image-to-text models are used: Gemini, a general-purpose
model by Google [5]], and MONET, a dermatology-specific
model validated by experts [6]]. Our contribution is as follows:
1) Investigate ViT, hybrid ViT with CNN, and pure CNN
in reducing accuracy gap between light and dark skin
tones.
2) Study the impact of using different text inputs on model
performance across skin tones.
3) Utilize two image-to-text models for text generation.
4) Evaluate various text encoding and image and text fusion
strategies.
5) Conduct skin tone-based analysis for all models.
6) Assess models using unbiased metrics based on per-
group averaging.
Code Base: |hitps://github.com/GeekChentao/Debias-ViT-on-
Dermatology-Images

II. RELATED WORK

CNNs have been widely used for skin cancer diagnosis.
For instance, a recent study showed that a CNN-based model
achieved 80% accuracy in classifying malignant and benign
skin lesions, demonstrating its effectiveness in melanoma diag-
nosis [7]]. Similarly, an optimized CNN architecture achieved
97.86% accuracy across seven skin lesion types, including
melanoma and basal cell carcinoma [8]]. However, these mod-
els are susceptible to data-driven biases. Pope et al. [9] found
that 83.3% of images in the ISIC archive represent light-toned
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skin, leading to disparities in diagnostic accuracy across differ-
ent skin types. Building on this, Benmalek et al. [3]] confirmed
that CNN (DenseNet) -based OOD models exhibit significant
performance disparities when evaluated across different skin
tone groups, with poorly performing models showing a 10-
30% drop in performance for darker skin tones (Fitzpatrick
types V-VI) compared to lighter ones (Fitzpatrick types I-1V).

Recent advancements have seen the integration of ViTs [4]
into dermatological applications, particularly in skin cancer
diagnosis. A systematic review by Adebiyi et al. analyzed
various transformer techniques applied to skin lesion classifi-
cation and diagnosis, highlighting their superior performance
in handling visual ambiguities and irregular lesion shapes
compared to CNNs. Another study employing a ViT model on
the HAM10000 dataset achieved a classification accuracy of
96.15%, outperforming several CNN-based approaches [[11].

Integrating clinical metadata with dermoscopic images has
shown promise in enhancing skin cancer diagnosis. Ou et
al. developed a deep learning model that combines clin-
ical images and metadata, demonstrating improved diagnostic
performance. Similarly, Tang et al. introduced a fusion
structure with a fusion attention module for multimodal skin
cancer classification, achieving superior results by combining
dermatological images and patient metadata.

In light of prior research demonstrating the strengths and
limitations of CNNs, the emerging potential of ViTs, and the
benefits of multimodal fusion, this paper aims to systemati-
cally evaluate ViT and multimodal architectures that combine a
ViT for image encoding with a text-based transformer for text
input integration (skin tone and lesion descriptions), to both
improve accuracy and reduce the performance gap between
skin tones in skin cancer diagnosis.

III. DATASET

The Fitzpatrick 17k dataset [I4], [15]}, is one of the largest
publicly available dermatology image collections, containing
17,000 images across 114 skin conditions, annotated for condi-
tion, malignancy, and Fitzpatrick skin types (I-VI). Since our
focus was malignancy detection, we selected only malignant
and benign cases, resulting in 4,311 images (2,155 malignant
and 2,156 benign). To analyze performance differences across
light and dark skin tones, we followed Benmalek et al.
in grouping Fitzpatrick Types I-IV as Skin Tone 1 (light
tones) and Types V—VI as Skin Tone 2 (dark tones), yielding
3,900 and 411 images, respectively. Specifically, Skin Tone 1
includes 1,947 malignant and 1,953 benign cases, while Skin
Tone 2 comprises 208 malignant and 203 benign cases.

Alongside image data, we included textual inputs to evaluate
their impact on improving overall accuracy and fairness in
predictions across skin tones. Specifically, we used skin tone
(from Fitzpatrick annotations) and lesion descriptions gener-
ated by the Gemini and MONET models.

Gemini is a general-purpose multimodal generative
model [5]], which we used solely for image-to-text generation
to produce lesion descriptions. To adapt it for this task, we
applied few-shot learning with 32 image-description pairs

from SKINCON [16], a dataset containing dermatology im-
ages labeled with concepts such as ulcer and crust. These
examples guided Gemini in generating consistent, domain-
relevant descriptions for images in the Fitzpatrick 17k dataset.
An example output is shown in Figure [I, We then created
Gemini Lesion Description by appending the Gemini output
to the corresponding skin tone, producing a description in the
format: {skin tone} {Gemini description}.

Fig. 1: An image from the dataset, Gemini-generated description:
“The image shows a close-up of skin with dry, flaky texture. There

are visible cracks and lines in the skin surface.”
Score: 0.88

core: 0.76

Fig. 2: Abscess presence score generated by MONET.

MONET is a domain-specific model trained on 105550
dermatological images and their textual descriptions,
developed to accurately annotate lesion concepts in
dermatology images [6]]. Its effectiveness has been validated
by board-certified dermatologists and shown to be competitive
with supervised models trained on concept-annotated clinical
datasets. For each lesion concept (e.g., “Abscess”), MONET
generates a confidence score between 0.0 and 1.0 indicating
its presence in an image. Figure [2] shows examples of
image—score pairs. We used MONET to generate scores for
48 lesion concepts per image, then constructed a structured
textual description—MONET Full Lesion Description—in
the format: {skin_tone} {concept 1}:{score}
present, {concept 2}:{score} present, etc.

While the full MONET Full Lesion Description covers
48 lesion concepts and offers a comprehensive overview, it
often includes low-relevance details, such as concepts with
presence scores below 0.2. Incorporating the full set may
introduce noise and reduce the efficiency of downstream
tasks. To address this, we constructed a simplified version,
referred to as the MONET Top-3 Concepts Lesion
Description, by pruning the concepts with less weights
and retaining only the three concepts with the highest
presence scores per image. The resulting format is: {skin
tone} {concept with the highest weight},
{concept with the second-highest weight}.



This compact representation enables the model to focus more
effectively on the most salient lesion features.

IV. METHODOLOGY
A. Vision Model Architectures

In this work, we utilized ViT-B/32 due to its computational
efficiency. Larger variants, such as ViT-L/32 and ViT-H/14,
were not considered for multimodal evaluation due to their
significantly higher memory and training demands. ViT-B/32
processes images in the following steps:

« Patch Extraction: The input image is divided into fixed-
size non-overlapping patches (32x32 pixels).

o Linear Projection (Patch Embedding): Each patch is
flattened and linearly projected using a fully connected
layer into a D-dimensional embedding (D = 768).

« Positional Encoding: A learnable positional embedding
is added to retain spatial information.

o Transformer Encoder: The sequence of patch embed-
dings is then fed into a standard transformer encoder
(multi-head self-attention and MLP layers).

« Classification Token: A special token is prepended, and
its final embedding is used for classification.

Alongside ViT-B/32, we implemented a hybrid model-
ResNet-ViT-B/32-which combines ViT with ResNet-26 to
improve efficiency. Rather than applying patch tokenization
to raw pixels, this model uses convolutional layers to extract
features, then applies tokenization on the resulting feature
maps. Wahid et al. [17] showed that combining ResNet and
ViT enhanced feature extraction, improving accuracy in my-
ocardial infarction detection. This architecture has the potential
to generalize across subgroups by emphasizing structure while
mitigating bias. Both ViT-B/32 and ResNet-ViT-B/32 were
trained on image-only data to serve as visual baselines.

B. Text Encoding and Integration Approaches

Building on a strong vision model, we enhanced its capa-
bility by incorporating supplementary text—specifically, skin
tone and lesion descriptions from Gemini and MONET—to
reduce bias and improve performance across skin tones. Tex-
tual inputs were processed using one of three pre-trained text
transformers—CLIP [18]], BERT [19], or Sentence-BERT (S-
BERT) [20]—each paired with its respective tokenizer. CLIP
aligns image and text embeddings in a shared latent space,
making it effective for multimodal tasks. BERT generates con-
textualized word embeddings but requires additional pooling
(e.g., using the [CLS] token) to obtain fixed-size outputs.
S-BERT is a fine-tuned BERT variant that produces dense
sentence embeddings optimized for semantic similarity.

Our multimodal architecture employed a late fusion strategy,
which had been shown to outperform early fusion in vari-
ous image-text tasks [21]. We implemented two late fusion
approaches. In Concatenation Fusion, the text embedding
was appended to the ViT’s [CLS] token output, and the
resulting vector was fed into a classification sub-network. In
Element-Wise Fusion, both image and text embeddings were

projected to the same dimension and merged through element-
wise operations before being passed to the final classification
layer. By comparing these strategies, we aimed to identify
the configuration that most effectively balanced predictive
performance and fairness across skin tones.

Figure |3| presents an overview of our experimental frame-
work, including vision-only baselines and multimodal archi-
tectures. The vision baselines consist of ViT-B/32, ResNet-
ViT-B/32, and a 16-layer CNN, all trained solely on lesion
images. For the multimodal setups, we incorporated 4 types of
textual inputs: (1) skin tone, (2) Gemini Lesion Description,
(3) MONET Full Lesion Description, and (4) MONET Top-
3 Concept Description. These were encoded using CLIP,
BERT, or S-BERT, and fused with visual features via either
Concatenation or Element-Wise Fusion strategies. We im-
plemented a variety of model combinations illustrated in the
figure to comprehensively evaluate performance across these
configurations. Detailed experimental setups and results are
presented in Section V.

V. EXPERIMENTS
A. Experimental Setup and Implementation Details

We optimized all models using stochastic gradient descent
with a learning rate of 0.001 and a cosine annealing scheduler.
The hyperparameters were chosen based on experiments with
single-modality vision models, where they achieved the best
performance. Data was split into 70% training, 15% validation,
and 15% testing. Performance was evaluated using accuracy,
F1 score, sensitivity (malignant detection), specificity (benign
detection), and AUC. Metrics were computed separately for
each skin tone, then averaged to assess overall performance;
differences between the groups were also calculated to quan-
tify performance gaps. All models were implemented in Py-
Torch and trained on Ubuntu 20.04.6 LTS with an NVIDIA
GeForce RTX 3070 GPU.

B. Vision Only Experimental Setup

The results of these experiments are summarized in Table
Table [l Among the vision-only models, ViT-B/32 outper-
formed both the ResNet-augmented ViT-B/32 and the baseline
16-layer CNN, delivering more balanced classification across
skin tone groups. ViT-B/32 achieved an average AUC of 0.807
with a performance gap of only 0.001, and for the dark skin
group, an AUC of 0.809 with a gap of 0.005.

In comparison, ViT-B/32 with ResNet-26 exhibited larger
disparities despite the added convolutional layers—yielding an
average AUC of 0.763 with a gap of 0.040, and an average
accuracy of 0.736 with a gap of 0.041. The baseline CNN,
as expected given its simpler structure, performed the worst,
with an average accuracy of 0.673 (gap: 0.056) and an average
AUC of 0.676 (gap: 0.053).

These results indicated that the addition of ResNet pre-
processing in the ViT-B/32 with ResNet-26 did not lead to
performance improvement. Therefore, we selected ViT-B/32
as the foundation for subsequent multimodal experiments.
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Fig. 3: Experimental workflow showing baseline model selection and multimodal integration using various text types, transformers, and

integration strategies for skin cancer classification.

TABLE I: Vision-Only Models Performance Evaluation

Model Group Accuracy F1 Score Sensitivity Specificity AUC

CNN Light / Dark 0.701 7/ 0.645 | 0.716 / 0.669 | 0.767 / 0.576 | 0.638 / 0.724 | 0.703 / 0.650

Average / Gap | 0.673/0.056 | 0.693/0.048 | 0.672/0.192 | 0.681/0.087 | 0.676 / 0.053

VIT-B/32 Light / Dark 0.807 7/ 0.807 | 0.800/0.800 | 0.785/0.727 | 0.829/0.897 | 0.807 / 0.812

Average / Gap | 0.807 / 0.001 | 0.800 / 0.000 | 0.756 / 0.057 | 0.863 / 0.068 | 0.809 / 0.005

ViT-B/32 Light / Dark 0.783 7 0.742 | 0.776 / 0.750 | 0.764 7/ 0.727 | 0.802/0.759 | 0.783 / 0.743

with ResNet-26 | Average / Gap | 0.763 / 0.041 | 0.763 / 0.026 | 0.746 / 0.037 | 0.780 / 0.043 | 0.763 / 0.040

TABLE II: Multimodal using skin tone text experimental setup
Model Group Accuracy F1 Score Sensitivity Specificity AUC

ViT-B/32 & S-BERT Light / Dark 0.783 / 0.807 0.778 7/ 0.800 | 0.771/0.727 | 0.795/0.897 | 0.783 / 0.812
- Concat. Fusion Average / Gap 0.795 /7 0.023 0.789 7 0.022 | 0.749/0.044 | 0.846/0.101 | 0.798 / 0.029
ViT-B/32 & BERT Light / Dark 0.795 /7 0.807 0.790 7/ 0.807 | 0.781/0.758 | 0.809 / 0.862 | 0.795/ 0.810
- Concat. Fusion Average / Gap 0.801 /7 0.011 0.798 7/ 0.017 | 0.769 / 0.024 | 0.835/0.053 | 0.802/0.015
ViT-B/32 & CLIP Light / Dark 0.833 /7 0.807 0.827 /0.807 | 0.813/0.758 | 0.852/0.862 | 0.832/0.810
- Concat. Fusion Average / Gap 0.820 /7 0.026 0.817 7/ 0.020 | 0.785/0.055 | 0.857/0.010 | 0.821/0.023
ViT-B/32 & S-BERT Light / Dark 0.809 / 0.807 0.804 / 0.807 | 0.795/0.758 | 0.822/0.862 | 0.809 / 0.810
- Elem. Wise Fusion | Average / Gap 0.808 /7 0.002 0.805/0.003 | 0.776 / 0.038 | 0.842/0.040 | 0.809 / 0.001
ViT-B/32 & BERT Light / Dark 0.823 / 0.823 0.819/0.825 | 0.816/0.788 | 0.829 / 0.862 | 0.822 / 0.825
- Elem. Wise Fusion | Average / Gap | 0.823/0.0001 | 0.822/0.007 | 0.802/0.028 | 0.846 /0.033 | 0.824 / 0.003
ViT-B/32 & CLIP Light / Dark 0.841/0.774 0.838 /0.774 | 0.837/0.727 | 0.846/0.828 | 0.841/0.777
- Elem. Wise Fusion | Average / Gap 0.808 / 0.067 0.806 / 0.064 | 0.782/0.110 | 0.837/0.018 | 0.809 / 0.064

C. Multimodal using Skin Tone Text Experimental Setup

Table [[I[] summarizes the results. Among all configurations,
ViT-B/32 & BERT with Element-Wise Fusion achieved
the best overall performance and fairness across skin tones.
Compared to the ViT-B/32 baseline—which reached an AUC
of 0.807 for light skin and 0.812 for dark skin (gap: 0.005)
and an average accuracy of 0.807 for both groups (gap:
0.001)—the multimodal setup improved AUCs to 0.822 for
light skin and 0.825 for dark skin, reducing the AUC gap to
just 0.003. Accuracy increased to 0.823 for both groups with
the gap remaining at 0.0001. These gains did not compromise
fairness, the model maintained high specificity (0.862) for
dark skin while improving sensitivity (0.788), indicating better
balance between true positives and true negatives.

These findings suggest that even minimal textual in-
put—such as skin tone labels—when integrated via a robust
transformer like BERT with Element-Wise Fusion, can en-
hance both fairness and predictive performance.

D. Multimodal using Gemini Lesion Description Experimental
Setup

As shown in Table incorporating Gemini Lesion De-
scription resulted in a performance drop relative to the image-
only ViT-B/32 baseline. The best-performing setup—ViT-
B/32 & CLIP Text Transformer with Element-Wise Fu-
sion—achieved AUCs of 0.827 for light skin and 0.795 for
dark skin, yielding an average AUC of 0.811 and a gap of
0.033. While the light skin AUC slightly surpassed the baseline
(0.812), the decrease in dark skin AUC indicated reduced
generalization and fairness. This configuration also underper-
formed compared to ViT-B/32 & BERT with Element-Wise
Fusion incorporating skin tone which achieved higher and
more balanced metrics (accuracy: 0.823 for both groups; AUC:
0.822 light, 0.825 dark).

Upon closer inspection of the generated descriptions, the
observed performance decline stems from Gemini’s few-
shot lesion outputs lacking domain-specific adaptation. This
limitation resulted in false, misleading, or irrelevant content
(as shown in Figure [)). Further analysis of the token-level



TABLE III: Multimodal using Gemini Lesion Description experimental setup

Model Group Accuracy F1 Score Sensitivity Specificity AUC
ViT-B/32 & S-BERT Light / Dark 0.795/0.807 | 0.775/0.807 | 0.719/0.758 | 0.869 / 0.862 | 0.794 / 0.810
- Concat. Fusion Average / Gap | 0.801/0.011 | 0.791/0.031 | 0.738 /0.039 | 0.866 /0.007 | 0.802/0.016
ViT-B/32 & BERT Light / Dark 0.809 /0.774 | 0.808 /0.781 | 0.816/0.758 | 0.802/0.793 | 0.809 / 0.775
- Concat. Fusion Average / Gap | 0.792/0.035 | 0.794/0.026 | 0.787 /0.058 | 0.798 / 0.009 | 0.792 / 0.034
ViT-B/32 & CLIP Light / Dark 0.826 / 0.790 | 0.821/0.787 | 0.813/0.727 | 0.839/0.862 | 0.826 / 0.795
- Concat. Fusion Average / Gap | 0.808 /0.036 | 0.804 /0.034 | 0.770 /0.085 | 0.851/0.023 | 0.810/0.031
ViT-B/32 & S-BERT Light / Dark 0.804 / 0.758 | 0.792/0.762 | 0.760 / 0.727 | 0.846 / 0.793 | 0.803 / 0.760
- Elem. Wise Fusion | Average / Gap | 0.781/0.046 | 0.777 / 0.030 | 0.744 /0.033 | 0.819/0.053 | 0.782 / 0.043
ViT-B/32 & BERT Light / Dark 0.804 /0.774 | 0.791/0.767 | 0.757 / 0.697 | 0.849 / 0.862 | 0.803 / 0.780
- Elem. Wise Fusion | Average / Gap | 0.789 /0.030 | 0.779 / 0.025 | 0.727 / 0.060 | 0.856/0.013 | 0.791 / 0.024
ViT-B/32 & CLIP Light / Dark 0.828 /0.790 | 0.823/0.787 | 0.813/0.727 | 0.842/0.862 | 0.827 / 0.795
- Elem. Wise Fusion | Average / Gap | 0.809 / 0.037 | 0.805/0.036 | 0.770 /0.085 | 0.852/0.020 | 0.811/ 0.033
TABLE IV: Multimodal using MONET Full Lesion Description experimental setup
Model Group Accuracy F1 Score Sensitivity Specificity AUC

ViT-B/32 & S-BERT Light / Dark 0.807 / 0.774 | 0.793/0.774 | 0.743/0.727 | 0.869 / 0.828 | 0.806 / 0.777
- Concat. Fusion Average / Gap | 0.791 /0.033 | 0.784/0.019 | 0.735/0.016 | 0.848 /0.042 | 0.792 / 0.029
ViT-B/32 & BERT Light / Dark 0.794 7 0.726 | 0.775/0.702 | 0.722/0.606 | 0.862/0.862 | 0.792 / 0.734
- Concat. Fusion Average / Gap | 0.760 / 0.068 | 0.738 / 0.073 | 0.664 /0.116 | 0.862/0.000 | 0.763 / 0.058
ViT-B/32 & CLIP Light / Dark 0.836 /0.790 | 0.829/0.787 | 0.809 /0.727 | 0.862/0.862 | 0.836 / 0.795
- Concat. Fusion Average / Gap | 0.813/0.046 | 0.808 /0.042 | 0.768 / 0.082 | 0.862/0.000 | 0.815/ 0.041
ViT-B/32 & S-BERT | Light / Dark 0.777 /1 0.839 | 0.757/0.839 | 0.708 / 0.788 | 0.842/0.897 | 0.775/0.842
- Elem. Wise Fusion | Average / Gap | 0.808 /0.062 | 0.798 / 0.082 | 0.748 / 0.080 | 0.869 / 0.054 | 0.809 / 0.067
ViT-B/32 & BERT Light / Dark | 0.799 /0.790 | 0.808 / 0.800 | 0.861 /0.788 | 0.738 / 0.793 | 0.800 / 0.791
- Elem. Wise Fusion | Average / Gap | 0.794 /0.008 | 0.804 / 0.008 | 0.825/0.073 | 0.766 / 0.055 | 0.795 / 0.009
ViT-B/32 & CLIP Light / Dark | 0.843/0.758 | 0.833/0.746 | 0.795/0.667 | 0.889 /0.862 | 0.842/0.764
- Elem. Wise Fusion | Average / Gap | 0.801/0.085 | 0.789 /0.087 | 0.731/0.128 | 0.876/0.027 | 0.803 / 0.078

Fig. 4: Gemini generated description: “Multiple red papules on the
arms”, yet from this image, no red papules are visible.

attention weights from the text transformer revealed that a
significant portion of attention was allocated to non-diagnostic
elements—such as punctuation ([CLS], .) and common struc-
tural words (’the”, “a”, etc.). These findings highlight that
while textual integration has the potential to improve fairness,
the effectiveness of such inputs depends heavily on their
clinical relevance and accuracy.

E. Multimodal using MONET Full Lesion Description Exper-
imental Setup

As illustrated in Table [V} the ViT-B/32 & CLIP with
Concatenation Fusion configuration yielded the highest av-
erage accuracy (0.813) and AUC (0.815) among MONET
Full Description setups, though with notable performance
gaps—0.046 in accuracy and 0.041 in AUC. While these
averaged metrics exceeded those of the baseline ViT-B/32, the
increased disparity indicated reduced fairness. Moreover, this
setup still underperformed relative to the ViT-B/32 with BERT
and Element-Wise Fusion using skin tone, which achieved

both higher and more balanced results (accuracy: 0.823 for
both groups; AUC: 0.822 light, 0.825 dark).

While the MONET Full Lesion Description is more struc-
tured, accurate, and detailed than Gemini’s, its inclusion of
48 lesion concepts per image adds excessive details. This
abundance of information can act as noise, potentially over-
whelming the model and hindering performance in a low-
data setting. Moreover, despite MONET’s descriptions being
validated by experts, they may still include misleading or
inaccurate information. As reported in its original paper,
MONET’s performance varies across image types, achieving
an AUROC of 0.767 on clinical images [[6]. Therefore, a more
concise and targeted format—MONET Top-3 Concepts Lesion
Description—is preferable for improving information density
and accuracy and supporting better model performance.

F. Multimodal using MONET Top-3 Concepts Lesion Descrip-
tion Experimental Setup

As shown in Table [V] the best-performing model in this
group was ViT-B/32 with CLIP and Element-Wise Fusion.
This setup improved the average AUC from 0.815 (gap: 0.041)
in the best MONET Full Description model to 0.826 (gap:
0.028), and increased average accuracy from 0.813 (gap:
0.046) to 0.824 (gap: 0.035). These gains were driven by the
higher information density and accuracy achieved by retaining
only the top three lesion concepts per image.

The most balanced performance was achieved by ViT-
B/32 with CLIP and Concatenation Fusion, which yielded
identical AUCs of 0.814 for both light and dark skin
tones—resulting in a minimal gap of 0.0001. Nonetheless, both



TABLE V: Multimodal using MONET Top-3 Concepts Lesion Description experimental setup

Model Group Accuracy F1 Score Sensitivity Specificity AUC
ViT-B/32 & S-BERT Light / Dark 0.806 /0.758 | 0.792/0.769 | 0.754 /0.758 | 0.856 /0.759 | 0.805/0.758
- Concat. Fusion Average / Gap | 0.782/0.047 | 0.781/0.023 | 0.756 / 0.004 | 0.807 / 0.097 | 0.781 /0.047
ViT-B/32 & BERT Light / Dark 0.809 / 0.807 | 0.804 /0.813 | 0.799/0.788 | 0.819/0.828 | 0.809 / 0.808
- Concat. Fusion Average / Gap | 0.808 /0.002 | 0.808 / 0.008 | 0.793/0.011 | 0.823/0.009 | 0.808 / 0.001
ViT-B/32 & CLIP Light / Dark 0.816 /0.807 | 0.791/0.793 | 0.708 / 0.697 | 0.920 / 0.931 0.814/0.814
- Concat. Fusion Average / Gap | 0.811/0.009 | 0.792/0.002 | 0.703/0.011 | 0.925/0.012 | 0.814 / 0.0001
ViT-B/32 & S-BERT Light / Dark 0.792/0.790 | 0.781/0.794 | 0.754 / 0.758 | 0.829 / 0.828 | 0.791 / 0.793
- Elem. Wise Fusion | Average / Gap | 0.791/0.001 | 0.787 /0.013 | 0.756 / 0.004 | 0.828 / 0.001 0.792 / 0.001
ViT-B/32 & BERT Light / Dark 0.807 /0.774 | 0.793/0.774 | 0.750 / 0.727 | 0.862 / 0.828 | 0.806 / 0.777
- Elem. Wise Fusion | Average / Gap | 0.791/0.033 | 0.783/0.019 | 0.739 /0.023 | 0.845/0.035 | 0.792/0.029
ViT-B/32 & CLIP Light / Dark 0.841/0.807 | 0.826/0.800 | 0.764 /0.727 | 0.916/0.897 | 0.840/0.812
- Elem. Wise Fusion | Average / Gap | 0.824 /0.035 | 0.813/0.026 | 0.746 / 0.037 | 0.906 / 0.020 | 0.826 / 0.028
TABLE VI: Fairness Evaluation under Distribution Shift
Model Group Accuracy F1 Score Sensitivity Specificity AUC
VIT-B/32 & BERT - Elem. Wise Fusion Light / Dark 0.823 / 0.823 | 0.800/0.800 | 0.816/0.788 | 0.829 /0.862 | 0.822/ 0.825
Average / Gap | 0.823 /0.0001 | 0.800/0.000 | 0.802/0.028 | 0.846/0.033 | 0.824 / 0.003
ViT-B/32 & BERT - Elem. Wise Fusion Light / Dark 0.811/0.823 | 0.805/0.813 | 0.813/0.818 | 0.809 /0.828 | 0.811 / 0.823
(under dist. shift) Average / Gap | 0.817 /0.012 | 0.809 / 0.007 | 0.815/0.006 | 0.818/0.019 | 0.817 / 0.012
Single Light / Dark 0.701 / 0.645 | 0.716 / 0.633 | 0.767 / 0.576 | 0.638 / 0.724 | 0.703 / 0.650
CNN Average / Gap | 0.673/0.056 | 0.675/0.083 | 0.672/0.192 | 0.681 /0.087 | 0.676 / 0.053
Single CNN Light / Dark 0.664 / 0.613 | 0.669 / 0.586 | 0.691/0.515 | 0.638 /0.724 | 0.664 / 0.620
(under dist. shift) Average / Gap | 0.638 / 0.051 0.628 / 0.083 | 0.603 /0.176 | 0.681 /0.087 | 0.642 / 0.044

models outperformed the overall best configuration: ViT-B/32
with BERT and Element-Wise Fusion using skin tone input,
which achieved higher and more consistent results (accuracy:
0.823 for both groups; AUC: 0.822 light, 0.825 dark).

Even after improving information density by pruning infre-
quent concepts and retaining only skin tone and the top three
lesion concepts, the model failed to utilize the additional input
as effectively as it did with skin tone alone. The decline in per-
formance is primarily due to input sparsity: selecting 3 out of
48 lesion concepts yields 17,296 unique combinations, which
increases to 34,592 when including binary skin tone. Given
the dataset contains only 4,311 images, most descriptions are
either unique or occur infrequently, preventing the model from
learning stable associations. These sparse combinations reduce
information density and function as noise, thereby limiting the
model’s generalization capability.

G. Best model Performance under Distribution Shift

We identified ViT-B/32 & BERT with Element-Wise Fu-
sion using skin tone as the best-performing model. To evaluate
its generalizability and robustness, we tested it under a distri-
bution shift using test-time augmented data simulating external
datasets. This is particularly important for fairness-sensitive
applications, where such perturbations may disproportionately
affect underrepresented groups, such as individuals with dark
skin. The augmentation pipeline included random horizontal
flipping, color jittering (brightness, contrast, saturation), ran-
dom erasing, and additive Gaussian noise to mimic real-world
variations in lighting, occlusion, and visual noise.

As illustrated in the Table @ under perturbed conditions, the
model’s accuracy on light skin decreased slightly from 0.823
to 0.811, while accuracy on dark skin remained stable at 0.823.

This introduced a small accuracy gap of 0.012, compared to
the previously negligible gap of 0.0001. Similarly, AUC scores
dropped modestly from 0.822 (light) and 0.825 (dark) to 0.811
and 0.823, increasing the AUC gap from 0.003 to 0.012. The
average accuracy declined by 0.006 (from 0.823 to 0.817),
and average AUC dropped by 0.007 (from 0.824 to 0.817),
reflecting only minor performance degradation and strong
robustness. In contrast, the simple CNN baseline experienced
a more substantial drop in accuracy of 0.036 (from 0.673 to
0.637) and an AUC decline of 0.034 (from 0.676 to 0.642).

These comparisons underscore the robustness of the best-
performing multimodal model, which demonstrated strong re-
silience to input perturbations while preserving both predictive
performance and fairness across skin tones.

H. Deployment Feasibility

Ensuring deployment feasibility is essential for translat-
ing medical Al models into practice. We evaluated several
metrics—parameter count, training time, inference latency,
and GPU/CPU memory usage—across six multimodal models
incorporating skin tone text, and compared them against CNN
and ViT-B/32 baselines.

As shown in Table the best-performing model—ViT-
B/32 & BERT with Element-Wise Fusion—requires more
resources compared to the baselines. Parameters increased
from 25.8M (CNN) and 87.5M (ViT-B/32) to 198.3M, and
training time rose from 104.75s (CNN) and 194.50s (ViT-
B/32) to 247.86s. Inference latency remained efficient, increas-
ing slightly from 1.69 ms/sample (CNN) and 1.63 ms/sample
(ViT-B/32) to 2.02 ms/sample. GPU memory usage rose by
about 1.3 GB, while CPU usage remained comparable.



TABLE VII: Computing Resource Comparison

Total Inference Latency | Training MAX GPU MAX CPU

Model Parameters (ms/sample) Time Allocation (MB) | Allocation (MB)
CNN 25,784,578 1.69 104.75 329.72 1244.03
ViT-B/32 87,456,770 1.63 194.50 1041.58 1154.50
ViT-B/32 & S-BERT - Concat. Fusion 110,759,810 1.84 191.87 1307.13 1421.38
ViT-B/32 & BERT - Concat. Fusion 197,725,442 1.94 274.86 2303.34 1513.28
ViT-B/32 & CLIP - Concat. Fusion 525,826 1.79 458.52 1381.44 1739.86
ViT-B/32 & S-BERT - Elem. Wise Fusion | 110,759,810 2.06 159.40 1307.13 1526.75
ViT-B/32 & BERT - Elem. Wise Fusion | 198,253,314 2.02 247.86 2314.21 1502.38
ViT-B/32 & CLIP - Elem. Wise Fusion 1,053,698 1.95 262.07 1389.64 1721.22

Despite the rise in computational demands, the increases are
well within the limits of modern edge devices, suggesting that
the proposed model is practically deployable.

VI. CONCLUSION

We investigated fairness in skin cancer diagnosis by inte-
grating vision and text-based transformers in a multimodal
framework. Starting from a ViT-B/32, we evaluated multi-
modal setups combining image features with four text types:
skin tone, Gemini Lesion Description, MONET Full Lesion
Description, and MONET Top-3 Concepts Lesion Descrip-
tion. We also evaluated multiple text transformers and fusion
strategies. Among all configurations, the model ViT-B/32 &
BERT with Element-Wise Fusion incorporating skin tone
text delivered the best results, achieving high accuracy while
minimizing skin tone disparity. This suggests that combining
vision transformers with well-structured textual input improves
fairness in medical AI. However, the effectiveness of this
architecture depends heavily on the accuracy, information
density, and sparsity of the textual input.
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