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Abstract

Non-log-concave sampling from an unnormalized density is fundamental in ma-
chine learning and statistics. As datasets grow larger, computational efficiency
becomes increasingly important, particularly in reducing adaptive complexity,
namely the number of sequential rounds required for sampling algorithms. In this
work, we initiate the study of the adaptive complexity of non-log-concave sampling
within the framework of relative Fisher information introduced by Balasubrama-
nian et al. in 2022. To obtain a relative Fisher information of at most £2 from
the target distribution, we propose a novel algorithm that reduces the adaptive
complexity from O(d?/e*) to O(d/e?) by leveraging parallelism. Furthermore,
we show our algorithm is optimal for a specific regime of large €. Our algorithm
builds on a diagonally parallelized Picard iteration, while the lower bound is based
on a reduction from the problem of finding stationary points.

1 Introduction

We study the problem of adaptive sampling from a target distribution over R? given query access
to its unnormalized density, a fundamental task in areas such as Bayesian inference, randomized
algorithms, and machine learning [MR ™07, NWS19, RCC99]|. Recently, significant progress has
been made in developing sequential algorithms for this problem, drawing inspiration from the
extensive optimization toolkit, particularly when the target distribution is log-concave [JKO9S|
DMM19, MCC™21]]. Typically, when access to the function value is available, many high-accuracy
samplersﬂ have been designed based on Metropolis—Hastings filters or a proximal sampler [DCWY 19|
CDWY?20, LST20, ALPW?24| [LST21, [AC24] [FYC23]].

However, in many practical applications, such as energy-based models and Markov Decision Pro-
cesses, evaluating the log-likelihood is often computationally intractable [LCH™06,[SB13]. In such
scenarios, an alternative approach to designing high-accuracy samplers involves leveraging paral-
lelism [SL19, [ YD24,|ACV24| [2S24]. These algorithms effectively leverage contemporary parallel
computing resources, such as multi-core central processing units (CPUs) and many-core graphics
processing units (GPUs), especially since log-likelihood gradient evaluations often admit paralleliza-
tion [HLB™ 21, [HLES21].. In particular, the authors [SL19.[YD24l[ACV24, [ZS24]] proposed samplers
that find an e-accurate solution within O(poly log(d/<?)) iterations, significantly improving upon the
sub-polynomial complexity of O(d®/e?) for log-concave distributions for some constant a, b € (0, 1).
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'Samplers with complexity poly(d, log(Ko/¢)), assuming constant smoothness and condition number and
K as initial KL divergence.



In contrast, there are comparatively few works which study the adaptive complexityﬂ when the target
distribution is not strongly log-concave or are multimodal, such as mixtures of Gaussians.

To study the complexity of sampling from non-log-concave distributions, a general framework inspired
by stationary point analysis in non-convex optimization (see, e.g., [N"18]) has been developed.
Specifically, Balasubramanian et al. [BCE™22]] proposed defining an e-stationary point for sampling

as any measure y satisfying /FI(u||7) < e, where Fl(p||7) = E, {HVIog(p/w)HQ} denotes

the relative Fisher information between p and the target distribution m. They demonstrated that
averaged Langevin Monte Carlo finds an e-stationary point within O(dK/e*) iterations, where
K := KL(ugl||7) represents the initial Kullback—Leibler divergence from the initial measure g to
7. Furthermore, Chewi et al. [CGLL23] established an ©(1/c2) query complexity lower bound for
this setting. Existing studies offer only a few bounds on the query complexity of non-log-concave
sampling, and our understanding of the adaptive complexity remains critically limited. This gap
motivates our investigation into the question:

How many sequential rounds are needed to minimize F| for non-log-concave sampling?

1.1 Our Contribution

In this paper, we establish the first upper and lower bounds for the parallel runtime complexity
of sampling. We now informally describe our main results. We assume access to an initial point
x® ~ po, where the KL divergence from the target distribution is Ky = KL(uo||7) and the target
distribution 7 is L-log-smooth.

New parallelized algorithm with improved complexity. By parallelizing the averaged Langevin
Monte Carlo [BCE™22], which has optimal query complexity for a specific regime of large Fl (¢ =
V/Ld) [CGLL23]|, we improve the adaptive complexity from O(%) to O(£50 + log(£4)) (The-
orem [3.1). When all parameters except the dimension d are treated as constants, our algorithm
improves the adaptive complexity from O(d) to O(log d), matching the parallel speedup known for
strongly log-concave sampling [ZS24]]. Moreover when Ky = O(d), which is common assumption
and the analog of the optimal gap (f(0) — min f(x) < d) in non-convex optimization [CEL™24,

Appendix A], our algorithm achieves an adaptive complexity of 6(%), improving over the prior
L*d?
et )

complexity of O(

Lower bound. We further prove our parallelized algorithm is optimal for a specific regime of large
FI (¢ = v/Ld) by showing when O(Ko) > d > Q(Kg/g), the adaptive complexity is Q(£2) (The-
orem . For the accuracy level € = \/Ld, the adaptive complexity of the parallelized averaged
Langevin Monte Carlo matches that of its sequential counterpart. Therefore, the sequential algo-

rithm proposed by Balasubramanian et al. [BCE™22] is also adaptively optimal in this regime. We
summarize the comparison between existing bounds and our results in Table

Moreover, although this lower bound only applies to a specific accuracy regime, it rules out the
possibility of a general high-accuracy sampler via parallelism. This highlights a stark separation
between log-concave and non-log-concave sampling, whereas Zhou et al.[£S24] developed a general
high-accuracy sampler via parallelism for strongly log-concave distributions, along with a tight lower
bound on the accuracy [ZWS24].

A separation between optimization and sampling. Our work also highlights a fundamental
difference between sampling and optimization: Unlike in sampling, no analogous separation exists
between convex and non-convex optimization, as parallelism fails to accelerate gradient descent
for either class in high-dimensional settings [BS18b, [DG19l, ZHTS235]. In contrast, for sampling,
parallelism can accelerate Langevin Monte Carlo or its averaged version for both the strongly
log-concave case [ZS24] and non-log-concave case (Theorem [3.1)).

2Adaptive complexity refers to the minimal number of sequential rounds required for an algorithm to achieve
a desired accuracy, assuming polynomially many queries can be executed in parallel at each round [BS18al
ZWS24].



Table 1: Comparisons of our lower bounds and upper bounds. Here, Q and O omit logarithmic
factors. Ky denotes the initial KL divergence, defined as Ky = KL(ugl|7), where the initial point is
drawn from the distribution p.

Works

Adaptive Complexity

Queries per Iteration

Sequential averaged Langevin Monte Carlo

[BCE™22| Theorem 2]

O(L ko)

1

Parallelized averaged Langevin Monte Carlo ~ 12
Tl%eorem 3.1 O(£3° +log(4)) O(=5)
Lower bound for e = v/ Ld Q(Ko) |
[CGLL23| Theorem 9] d
Lower bound for e = v/ Ld Q(%) poly(d)

Theorem

1.2 Related works

Related works for minimizing FI. The relative Fisher information (FI) between two distributions
quantifies the score matching error, which is the expected squared distance between their score
functions (the gradients of their log-densities). In contrast, KL divergence (KL) compares the ratio of
their density functions. When the reference distribution satisfies a log-Sobolev inequality or Poincaré
inequality, small Fl implies small KL or small total variation (TV). However, it is possible for KL or
TV to remain small even when F| becomes arbitrarily large (see [Wib25, Appendix D]). Moreover,
when the reference distribution is not log-concave, Fl can be made arbitrarily small while TV remains
bounded away from zero [BCE™ 22, Proposition 1].

A line of works in the literature investigates the mixing of Fl for the sequential methods. For
non-log-concave case, Balasubramanian et al. [BCE™22]] analyzed the averaged Langevin Monte
Carlo and Chewi et al. [CGLL23|| proved two query complexity lower bound. For log-concave case,
Chewi et al. [CGLL23| Appendix A] established a high-accuracy mixing time for proximal sampler
with post-processing via the heat flow. For strongly log-concave case, Wibisono [Wib25] proved
exponential convergence of the proximal sampler using the strong data processing inequality.

Related works for minimizing TV or KL for non-log-concave case. Another line of works study
the complexity of minimizing TV or KL for non-log-concave sampling. For mixture Gaussian
distributions with components sharing the same shape, Ge et al. [LRG18]] showed polynomially many
queries are sufficient to minimize TV for simulated tempering Langevin Monte Carlo. For general
non-log-concave distributions, Guo et al. [GTC24]| analyzed annealed Langevin Monte Carlo and
established polynomial query complexity in terms of the action associated with a curve of probability
measures interpolating the target distribution and a readily sampleable distribution. Notably, when
the components of a mixture of Gaussians share the same shape and mode norm, the corresponding
action grows only polynomially with respect to the dimension. Recently, He et al. [HZ25]] proved
that the optimal query complexity scales as (£ 2 )©(d) where my is the second moment of the target
distribution.

2 Preliminaries

2.1 Problem setting

Given the potential function V : D — R, the goal of the sampling task is to draw a sample from the
density Ty = Z;;" exp(—V'), where Zy := [, exp(—V)dx is the normalizing constant.

Distribution class and assumption. If V is twice-differentiable and V2V < LIwith L > 0
(where =< denotes the Loewner order and [ is the identity matrix), we say the distribution 7y is
L-log-smooth.

Oracle. Given the potential function V, and a query & € D, the 0-th order oracle answers the
function value V() and the 1-st order oracle answers both V' () and its gradient value VV (). We



denote the oracle as Or. We also extend the oracle to parallel case, with input as {x, ..., z;} € R
and return multiple answers {V (z1), VV (x1), ...,V (1), VV (1)} € R?¥* with k = poly(d).

The adaptive algorithm class The class of adaptive algorithms is formally defined as fol-
lows [DG19]. For any dimension d, an adaptive algorithm A takes V : R? — R and a (possibly
random) initial point ° and iteration number r as input and returns an output 2”1, which is denoted
as A[V,x% r] = " 1. Atiteration i € [r] := {1,...,r}, A performs a batch of queries

Q' = {xM ... x"), witha™ €D, je k], ki = poly(d),

such that for any m,n € [k;], ™ and x»" are conditionally independent given all existing
queries {Q’ }j¢[;—1) and x°. Give queries set );, the oracle returns a batch of answers: Or(Q;) =

{Orz®1), ... Or(z® )}
An adaptive algorithm A is deterministic if in every iteration ¢ € {0, ..., r}, A operates with the form
Q" = AYQ" 0r(Q"), ..., Q" Or(Q")),

where A’ is mapping into R%i+1 with Q"' = "1 as output and Q° = x
denote the class of adaptive deterministic algorithms by Age;-.

U as an initial point. We

An adaptive randomized algorithm has the form

Ql+1 = Al(fiv QO7 OF(QO), ey Qla OI’(Ql)),
given access to a random uniform variable on [0, 1] (i.e., infinitely many random bits), where A? is
mapping into R%:+1, We denote the class of adaptive randomized algorithms by Apng.

Measure of the output Consider the joint distribution of all involved points {x : x € Q%,i =
0,...,7+1} and the random bits &;. Let the marginal distribution of the output x" ™! be p. We say the

output to be e?-accurate in relative Fisher information (FI) if Fl(p, 7y) := E,, [||V log(p/m) Hz} <

2.

Initialization. We assume access to an initialization oracle that returns a sample from a distribution
o satisfying KL (po||7m) < K since it suffice to find a stationary point which lies in a ball of radius

O(+/d), centered at the minimizer of f [CELT24]. And such a stationary point can be found fast in
both strongly-convex or non-convex cases [BV04, BM20].

Notion of complexity Given ¢ > 0, V € F, and some algorithm A, define the run-
ning iteration T(A,V,Ky,e) as the minimum number of rounds such that given a ini-
tial point with initial KL divergence upper bounded as Kj, algorithm A outputs a so-
lution & whose marginal distribution p satisfies Fl(p,my) < ¢, ie., T(A,V,Kpe) =
sup {x® ~ po, s.t. KL(po||m) < Ko : inf {t : FI (p(A[V,x°,1]),7f) < e}} We define the worst
case complexity as
Compyc(F,e,Kp) := inf sup T(A,V, Ky,e).
A€Aw VeF

For some randomized algorithm A € A, ,, 4, we define the randomized complexity asf_f]
Compg(F,e,Kp) := inf sup T(A,V,Ky,e).
A€ Apang VeF
By definition, we have Compy(F,¢e, Ko) > Compg(F,¢, Kp). In the rest of this paper, we
only consider the randomized complexity and we lower-bound it by considering the distributional
complexity:
Compp(F,e,Kp) := sup inf E T(AV,Ky,e),
FEA(F)A€Auwma V~F

where A(F) is the set of probability distributions over the class of functions F.

3We note that in sampling, the iteration complexity is determined by the output of the last iteration, which is
analogous to last-iteration properties in optimizations [ALW19].

“We note that in sampling, we cannot define the randomized complexity as the expected running iteration
over mixtures of deterministic algorithms as in the case of optimization [BGP17], since the intrinsic randomness
& will affect the marginal distribution of output. Furthermore, Yao’s minimax principle [ABO9] cannot be
applied, since the different definition of randomized complexity. We acknowledge that another possible option
not discussed in this paper is the “Las Vegas” algorithm, which can return “failure,” as described in [AC24].



2.2 Averaged Langevin Monte Carlo

One of the most commonly-used dynamics for sampling is Langevin dynamics [Che23]], which is
the solution to the following SDE, de = —VV (z)dt + v2d By, where (By);c[o 77 is a standard
Brownian motion in R?. When 7 is « strongly log-concave or V is « strongly convex, the time
derivative of the relative Fisher information satisfies

OeFI(pelm) < —2aFI(pe|m),

where p; is the law at time ¢, (see Section 2.5 [Wib23])). To the best of our knowledge, when 7y is
non-log-concave, its contraction properties remain unknown. However, a discrete-time analog of the
de Bruijn identity holds for the Langevin Monte Carlo with step size h < % [BCE™22, Appendix B]:

1
KL (pe[|) < —§F|(ut||7r) + O(L*dh).
By integrating and summing, the averaged Fl along Langevin Monte Carlo can be bounded as

Lo KL(uollm) | 0
< .
Nh/o Fl(pellm)dt < == 222 + O(L2dh)

By the convexity of the Fisher information, it is sufficient to output a sample from the averaged
S Nh
distribution finn, = w7 [y pedt.

2.3 Parallelized Langevin Monte Carlo

The main idea of parallelized Langevin Monte Carlo is to regroup the discrete grids along time horizon
and update all grids in same group simultaneously [SL19L|ACV24,YD24\[ZS24]. Specifically, taking
Picard iteration [Cle57, IACV?24] as example, to approximate the difference x; — x4, over time
slice [ty,, tn+1] as

n+1

tnt1
Ltpir — Lt = / V<w8)d8 + \/§<Btn+l - Btn)
t

‘n

M
~ Z wiv(mtn-FTn,q‘,)ds + \/ﬁ(Btn-f—l - Bt'n,)?
=1

with a discrete grid of M collocation points as t, = t,, +Tno < tp +Tn1 Sty +Tpo <o <
tp + Tn,m = tpy1. We update the points in a wave-like fashion, which inherently allows for
parallelization: form’ =1,...,M,p=0,1,..., K — 1,

M-—1
p+1
wfjJrTn,m = Ttn + Z wmv(xf,,ﬁrrn,m) + \/i(Btn-&-‘rn,m — By,).
m=1

With such regrouping, as long as the total time length of each group scales as O(1/L), the grids
will converge exponentially fast. Given a sufficiently accurate starting point at time ¢,,, the initial
error scales as O(d). Therefore, K = O (log (%)) steps suffice for the convergence of each group.
In the strongly log-concave case, it suffices to simulate Langevin dynamics over the time interval

[0, O(log(%))]. Therefore, N = O(log(%)) groups are sufficient, and the total number
of steps scales as KN = O(log”(%)), assuming KL (po|7) = O(d). Recently, Zhou et al. [ZS24]
showed the sequential update over each group is not necessary and proposed a diagonal style update

with O(log(s%)) total steps (See Figure .

3 Parallel Picard method for minimizing relative Fisher information

In this section, we present parallel Picard methods for minimizing relative Fisher information in
non-log-concave case (Algorithm [I)) and show it holds improved convergence rate (Theorem [3.1)).
We illustrate the algorithm in Section[3.1] and give a proof sketch in Section[3.2] All the missing
proofs can be found in Appendix [A]
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Figure 1: Illustration of the parallel Picard method: each rectangle represents an update, and the
number within each rectangle indicates the index of the Picard iteration. The approximate time

complexity is N + J = O(log d).
Theorem 3.1. Given two integer parameters J > N and M and an access to the gradient oracle of

V'V, there is an algorithm that runs N + J iterations with at most M (N + J) queries per iteration
and outputs a sample with marginal distribution p such that

LKL Ld LKL
(pol[) + LG + ( (pol[)

Fl(plim) < - - -
—_— —~

convergence of averaged LMC  discretization error

+ Ld) 057N,

parallization error

()
Furthermore, by setting N = M and M = Ld and J— N = O(log(Ld)), the algorithm runs

(&4
within (’)(Lfgo + log (%)) iterations with at most (’)( L Edf(o + Lad log (£ Ld) )) queries per iteration,
and returns a £-accurate sample x in Fl.

Remark 3.2. We can usually take KL(uo||7) = O(d). Then taking

vo0(H). ar-o( ). x o).
6 3 3

L2%d?

the algorithm runs O (%) iterations with O ( queries per iteration and return a sample

having € accuracy in terms of the Fisher information w.r.t. the target.

Remark 3.3. Compared to the bound for the sequential method presented in |[BCE™22)], our upper

. . . LKL(po||7)
bound (right-hand side of Eq. (1)) for the parallel method also include one converge term %

Ld

and a discretization error term i

LKL( i _
(Eelm) 4 ) 0,57,

Remark 3.4 (Tradeoff between query per round and adaptive complexity). When the number of
computation cores, denoted by W, is limited, the adaptive complexity of our algorithm is O(E% +
€4W log( )) When W = 1, this recovers the sequential method; when W = 6(?;) with
assumption Ko = O(d), it recovers our fully parallel method. Another interesting intermediate

case arises when applying averaged Langevin Monte Carlo to the algorithm in [ACV24)], which
updates time slices sequentially. This corresponds to W = 6%, yielding an adaptive complexity of

(’)(E% 1og(€%)) which fits naturally within the above tradeoff curve.

and an additional exponentially decaying error term by parallelism

3.1 Parallel Picard method

We adopt the parallel Picard method [ZS24]] which achieve nearly tight result for log-concave
sampling. In Lines 5-9, we apply the averaged Langevin Monte Carlo [BCE™22] to initialize the
vector value at all grids with Fisher information bounded by O(d). Specifically, we initialize ! ,, at
all points along the time horizon using the output of the averaged Langevin Monte Carlo procedure
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in Line 9. In Lines 1-4, we generate the random noises and fixed them. Subsequently, we seek to
construct an approximate path of the true Langevin dynamics by means of parallel computation.
Specifically, in Lines 10-16, we apply parallel Picard method with forward Euler-Maruyama Method
in diagonal style as illustrated in Figure[I] In j-th each update, for m-th grid in n-th time slices, we

perform
m—1

; h
T, = ), — Vi ZO YV (@l 0) + V2(Bunsmhyr — Bun),
where @,, . corresponds to time nh + {;h. In Lines 17, we return the average point along the
interpolation path of {x7, ,, : n € [N],m € [M]}.

Algorithm 1: Parallel Picard method for non-log-concave sampling

Input: 9 ~ Lo, gradient oracle of V'V, the number of the iterations in outer loop J, the number

of time slices [V, the length of time slices &, the number of points on each time slices M.
forn=0,..., N—1,m=0,..., M (in parallel) do

| &nm = N(0, (h/M)14) > generate the noise

forn=0,....N—1,m=0,...,M (in parallel) do
L Bnh+(m+1)h/M - Z Z gn ,m’ + Z gnm
n’={0,...,n—1} m’€[M] m/€[m]
m{w =z forj=-1,...,J
fork=1,. Ndo
L x,, = :c(k Dh —hVV(z,, (k Dh i)+ V2(Bin — Bi—1)n), > initialization

Pick a time ¢ € [0, Nh] uniformly at random,
Let & be the largest integer such that kh < ¢, foralln =0,..., N — 1 and m € [M], set
&) = @t — (L~ kW)VV () + VE(B, — B).

fork=1,...,Ndo
forj=1,... min{k —1,J}andm =1,..., M (in parallel) do
letn =k — j and &/, ozwi L

m%m = mzl, ]M Z VV( n,m’ ) + \[( nh+mh/M — Bnh)v

fork=N+1,.. N+J-1do

forn—max{Ok J},....,N—=Tlandm=1,..., M (in parallel) do
let j = k — nand =, O—mﬁl L
mﬁhm:mz‘l, 1\/[ Z VV( )+\[( nh—&-mh/]M*Bnh)’

m’=0

Pick a time ¢ € [0, Nh] uniformly at random, let & be the largest integer such that kh/M < t,

Ty = icfk/MJ,k—Lk/MjM —(t- kh/M)vv(wfk/Mj,k—Lk/MJM) + \/i(Bt — Blkn/m))-

return x;.

3.2 Proof sketch of Theorem 3.1} analysis of Algorithm I]

Following [VW19,ACV24| [ZS24], we use interpolation method to obtain a discrete-time analog of
de Bruijn identity:

OKL(jullm) <~ SFI(palm) +E [ VV (@) — YV (1]

By Lipschitz condition, Integrating over time ¢ € {nh + mh ,nh+ (mﬂ) ] and summing, we can
upper bound the averaged F| along the discrete trajectory by
2Ld

1 [Nh 2K, )
- < — -
Nh/@ Fi(ue|lm)dt < <5 + + 3L2€,



_12 . .
where £ = max E {Hm;{ B s || } which represents the convergence error of Picard
n€[N], me[M] ’ ’

iteration. It remains to prove the convergence of Picard iteration. The key is to decompose the error

during the diagonal update and upper bound the initial error. Let &7 := max E [Hw% m— it ||2} .
me[M ’ ’

By definition of Euler-Maruyama scheme, we can decompose the error as
&1 <28l | +2h’L2E) |,

where h is the length of time slices, and L is Lispchitz constant of the gradient. Thus by choosing the
time length h sufficiently small relative to the Lipschitz constant L, we ensure convergence along the
Picard direction. As for the initial error, we decompose it as

gL <28l |+ 2n*FI(u°|7) + 5dh,

where FI(u°||7) is controlled by the initialization procedure using averaged Langevin Monte Carlo
with a large step size h = O(1).

The details of the proof can be found in Appendix

4 Lower bound

In this section, we establish our lower bound (Theorem 4.1)) by combining a reduction from mini-
mizing the relative Fisher information to the problem of finding a stationary point with the optimal
adaptive complexity for this task, as established by Zhou et al. [ZHTS235]].

Theorem 4.1. Let the dimension d satisfies O(K,) > d > Q(Kg / %). There exists a function class F,
consisting of L-smooth functions, such that for any € > \/Ld and 2° ~ po with KL(po||mv) < Ko
forany {nv}ver, P

Compg(F, ¢, Ko) 2 5% 2 70~
Remark 4.2. This lower bound matches the upper bound in Theorem for specific regime of
e = \/Ld. The condition d > Q(KOQ / 3) arises because the lower bound construction in [ZHTS25|]

lies in high dimensional regime d > 5(674).

Proof of Theorem To prove Theorem[#.1] we will reduce the problem to that of finding a station-
ary point in parallel, and then verify the initialization condition. We first recall the reduction lemma
from non-log-concave sampling to non-convex optimization.

Lemma 4.3 ([CELT 24, Lemma 16]). Let 7 o< exp(—V) be a 3-log-smooth density on RY. Then,
for any probability measure L,

By [IVVIP] < Fiulim) + 264,

To apply this reduction, we recall the adaptive complexity of finding stationary point which scales as
O(AL - £=2) for high dimensional regime (d = €2 (™%)).

Theorem 4.4 (The adaptive complexity of finding stationary points [ZHTS25]). Assume d =

Q (574). There exits a function class F consisting of some L-smooth function with given initial

point 2°, such that V(x°) — min V(z) < A, and the following holds: any (possible randomized)
x

algorithm running within O(AL - £~2) iterations with poly(d) queries per iteration fails to find

e-approximate point for any V- € F with probability 1 — d—~(1).

We set ¢ = 4/ Ld. From the reduction lemma (Lemma , if we can obtain a sample from a
measure p such that for my o« exp(—V), it holds that FI(u||my) < Ld, then a sample from p is a
e-stationary point of f with probability at least 1/2.

In the following, we check the initialization condition. We set initialization oracle to output a sampler
from p ~ N (0, L7'1;). Now we need to compute the value of K := supy ¢ » KL(uol|7v). To do
so, we use the following lemma.



Lemma 4.5 (KL divergence at initialization [CGLL23, Lemma 17]). Suppose that V : R4 — R
is a function such that V(0) —inf V. < A, VV is L-Lipschitz, and m := [ ||-||dm < oo where
7 o< exp(—V)). Then, for g = N(0, L='1;), we have the bound

KL(po||m) < A+ d(1V log(Lm?)).
‘We remind the hardness function in [ZHTS25] takes form as

V(@) = poly - (g(p(/poly))) + 5 12l

where poly denote any positive quantity for which both the quantity and its inverse are bounded above
by polynomials in L, A, d, and 1/¢, and 7 = poly. Furthermore g : R? =+ R and p : R? s R are
poly-Lipschitz, then
IVg(p(-/poly))|l < poly.
Thus Fl(my|lv) = poly - Ex, [|lll Vg(p(-/poly))] < poly where v = N(0,7I4). By the
Donsker—Varadhan variational principle [PW25, Theorem 4.6] and the fact that v satisfies the
log-Sobolev inequality with poly, we have
1
Eny [I°] < 5 {KL(rv|v) +logE, exp(A]| - )}

poly {Fl(my||v) + 1}
poly,

IAN AN IA

with A = Lo and B, exp(A|| - [[?) < 1. Thus Ko = KL([w) < A + O(d). Thus if Ko > Q(d),

A 2 K. Since € = v/ Ld, the number of the required iteration satisfies
Ky

o AL
#iteration > —— 2> pi

2

Finally we check the requirement of dimension, d > Q(K,/d)2, which is satisfied provided d >
QK. O

5 Discussion and Conclusion

In this work, we initialize the studying of parallelize minimizing the relative Fisher information for
non-log-concave sampling by showing (1) averaged Langevin Monte Carlo can be accelerated by
parallelism and (2) offer a tight lower bound for specific accuracy regime. Our results rule out the
possibility of designing general high-accuracy relative Fisher information minimizer via parallelism
in the non-log-concave setting, contrasting with the log-concave case. Furthermore, our results offer
a new understanding for the theme of “sampling versus optimization” by revealing the distinct role
parallelism plays in separating the two.

We believe there are several intriguing directions for future work exploring the role of parallelism in
sampling versus optimization, and we conclude by highlighting a few of them.

1. (Constant-dimensional case). In the constant-dimensional setting, it is possible to find a
stationary point in &k = O(log(1/¢)) rounds using O (5*%(1+O(2_k))) queries per round by
leveraging gradient flow trapping [BM20, [HZ23| [ZHTS25]]. This raises the question: can one
similarly minimize the relative Fisher information within O(log(1/¢)) rounds by trapping the
Langevin dynamics?

2. (Lower bounds beyond specific large accuracy). Although our lower bound is tight, it applies
only to a specific high-accuracy regime (¢ = v/ Ld). In contrast, for parallel non-convex
optimization, tight lower bounds on adaptive complexity, namely, (¢ ~2), are known for finding
stationary points when ¢ < O(d'/*) [ZHTS25].. A natural question is whether similar poly(¢ ")
lower bounds can be established beyond this setting, particularly in the low-accuracy regime

(e = o(1)), as by the bump function construction used for query complexity in Section 4
of [CGLL23].



3. (Functional inequality case). For strongly log-concave distributions, it is possible to design
high-accuracy samplers leveraging parallelism [YD24, IACV24, 2S24]. In contrast, for non-
log-concave distributions, designing general high-accuracy samplers via parallelism becomes
impossible. This raises a natural question: what is the boundary between these two cases? A
much weaker question is whether high-accuracy samplers can be designed via parallelism for
distributions satisfying functional inequalities such as the log-Sobolev or Poincaré inequality.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and summarize the key results and methodologies, providing a true overview
of the research and its significance.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitations in Section [5]and Appendix [B]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

Justification: We present the problem setting and assumptions in Section For our first
main result (Theorem [3.1), a proof sketch is provided in Section [3.2] with the full proof
given in Appendix [A] The second main result (Theorem[4.T)) is proved in Section 4]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper focuses on theoretical results.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper focuses on theoretical results.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper focuses on theoretical results.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper focuses on theoretical results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This paper focuses on theoretical results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]
Justification: I confirmed it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed in Section[C]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper focuses on theoretical results.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper focuses on theoretical results. It does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper focuses on theoretical results and we do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper focuses on theoretical results. It does not involve crowdsourcing
nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper focuses on theoretical results.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for grammar checking.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A  Proof of Theorem 3.1]

A.1 Useful facts

In this section, we first recall several useful lemmas.

Lemma A.1 (Differential inequality of KL along interpolation [BCE"22, Lemma 12]). Consider
the stochastic process defined by

Xy = o — tgo + V2 By, fort >0,

where (By),s is a standard Brownian motion in R® which is independent of (o, go). Let pu for the
law of ;. Then

OKL(yullm) < ~2Fi(yullm) + E[I 9V (1) ~ Elgo | 2]

IN

_ZH(MHW) +E[|VV () — goll”] -

Lemma A.2 (Initialization [BCE™22, Theorem 2]). Foralln=0,...,N — 1 and m € [M], let
ug)m be the law of 0 ., then we have

2KL (p1 )
Nh

Lemma A.3 ((CEL 24, Lemma 16]). Assume that V'V is L-Lipschitz. For any probability measure
u, it holds that

FI(u) o ll7) < + 8L2dh.

E,[IIVV*) < Fiu|m) + 2dL.

A.2 Decomposition via interpolation method

We denote KLy, ., = KL(;) ,,[|m) where 17 . represents the law of z;) . Let x; be the linear

interpolation between x;, ,, and ;) .. 1, i.e., fort € [nh + 28 nh+ W , let

z =), — (t —nh — "Xj) VYV (x)0) + V2(Bi — Bupmn/nr)-
Then Lemmal[A_1]yields
OKLGullm) < ~2FiGullm) + E [|[VV (@) - YV (0]
For the second term, by smooth of V,
E[[|VV (@) - vV
< °E [le. - =711]
<2%E ||l@ - @] + 20 @7 - 2]
<412 (t —nh— ”ﬁ)z B9V @i)I*] +SL2E [|B: = Bunmnyual|’] +20%E @ — @it

2 2
<8L> (t —nh— "]\Zh) E [HVV(a:t) - VV(a:,{fml)\ﬂ +8L2 (t —nh— T]’\‘j) E [||VV(ast)||2}

+ 8L2E |:’|Bt - Bnh+mh/MH2:| + 2L2E |:||m;{7’rn - xi;f3||2:| :
Taking Lh < 0.1, we have
E[[VV(@) - vV (@i)]’]
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2
<9L* <t —nh — "X;) E [HVV(mt)\ﬂ +9L°E [HBt — Bnh,+mh/M\|2] +3L°E [Hm,{m — w;{;nl||2] :

For the first term, by Lemma[A3Jand Lh < 0.1, we have

3 12
OKL(uellm) < = ZFl(uellm) + E [[[VV (@) = YV (@i)|]
L2h? h\? h
< - (Z - 9M2> FI(p||7) + 18L3d <t —nh— ”1\14) +9L2d (t —nh— ”;4)
+3L7E |||, — @i ||

1 mh\ 2 mh
< — ZFl 18L% (¢ — nh — 2 L2d(t—nh- "2
< -5 (e]|m) + 18 d<t n M) +9 d(t n M)

+3L%E |||, — 2]

Integrating it over t € [nh + mﬁh, nh + W] , we obtain

(m+1)hh
M

KLn,m+1 - KLn,m - 5 / (,U/tHﬂ')df + 6L3d
2 nh+ 2k

U _+ 5L2dh— 432 ol =2 ]

IN

nh+ (m,té}h,h

1 L2dh? 3L2 12
< _2/nh+’7v,h FI(¢||)dt + 6 e U| | }

Now we assume there is a uniform upper bound for E [H:c x| } for any n € [N] and

n,m

m € [M], which represents the convergence error of Picard iteration. Specifically, we assume
E {Hw;{m - w;{;}”z} < & forany n € [N] and m € [M]. Then by summing, we have
2Ld

1 [Nh 2KLo o
— Fl dt < 24— 4 3L2%E. 2
w7 [ Ftalmae < 200 4 250 @

A.3 Convergence of Picard iteration

We will end the prove by show the uniform upper bound for E {H:c,f m ngnl ’ﬂ . To bound it, we

define &/ ;== max E {Ha: —xi1 ﬂ
m=1,...M '
Lemma A .4 (DecompOSItmn of £J). Assume Lh = and let u° is the law of a}n o- We have the

following decompositions and lmtlallzatlon esttmatwns
1. &) <280 | +0.02807Y, forany j=2,...,Jandn=1,...,N —1;
2. &L <28l |+ 2R%FI(O||7) + 5dh, for j=landn=1,...,N — 1;
3. 80 <0.01&8 7" foranyj=2,...,J andn = 0;
4. & < 202F1(uO||7) + bdh;

Proof. Forje [Jl,n=1,...,N—1,m=0,...,M — 1, we have
; 12
E[\\wam—wu}

Jj—1 2
nO_wnOH

m—1 2

S ZIE {‘ Z VV 7L m/’ VV( n, m’ )

m’/=1,.

<2E U’w 0~ ) H ] +2h? max E [HVV(wf;}l,) _ VV(Q:%;:,) ’2]
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<28 1+0025J L
Forj=1,n=1,....N—1,m=0,...,.M —1,andp=1,..., P, we have

E||l@hm = 25
2
‘2 + Z VV + \/> nh+mh/M _Bnh)

<2E [Hwio nO’

< 2K [[laho - @S| +20%E [|[ TV nm,)|]+4dh

]
)
]
< 2E |||} o — @0.0[°] + 202 (FI(uClm) + 2dL) + 4dh

<28} |+ 2R2FI(u°||7) + 5dh.
When n =0, 7 > 2 we have

j i-1|?
E “wb7m_w0,m“

VV(:BO m/’ )

]

<h? max E {HVV(JZ&”}L/) - VV(wé;f/)

- m/=1,....m
]
When n = 0, j = 1 we have
E (||, = @,0l|"] < 22FI(°lI7) + 5dh.

272 i—1 j—2
< L*h ,max E [HmO,m/ = Ty
m’/=1,....m

Lemma A.5. IfJ > N, then forn =0,..., N — 1 we have
&7 < 200(2h2FI(1°||7) + 5dh)0.57 .

Proof. By Lemma we can recursively bound &7 . Specifically, for n > 1 and j = 1, we have

L <28 | 12n*FI(uC||m)+5dh < 2" EF+(2"—1)(2h2FI(p° || 7)4+-5dh) < 2" (2h*FI(u°||7)+5dh),
and forn = 0, j > 2, & < 0.01971(2h2FI(u°||7) + 5dh). Furthermore, for n > 1 and j > 2, by
(m) < (ZR)",if j > n, we have

n

& <2002j—12”—a (s AP o L A Ty T,
n = . ]_2 a+z j—b . 0

a=2 b=2

) j )
2 lon—afM—0+Jj—2\ .11 n+j—>b i—bon b—1
< (2R2FI(1O||7) + 5dh) <§ 00212 ( _ )2 +§ ( P LI e X

j—2
, - j—2 J —b
< (2R2FI(W0 ) + 5dh)0.027~ 12m+L (Z (” jf; ) +Z njfb ))
a=2 b=
n . j—2 —2
9 o lendtl o fn—a+j—2 7= n—|—2
< (2h*F1(u°||7) + 5dh)0.027 2" (;ej (j? z;

a=2 =0

n j—2
< (2R%FI(p°||7) + 5dh)0.027~Lon+l (Z Ea Y ej_26">

< (2R*FI(u°||7) + 5dh)0.027 12" 127 (25)
< 200(2h2FI(pl||7) + 5dh)0.572™,
where the last equation holds since 0.027 ~1e27(25) < 100 - 0.57.
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A.4 Overall bound

Combine Equation (2)) and Lemma[A.3] we have

IR 2KLoo = 2Ld
— FI dt < = 4+ == + 600L2(2hFI(1° 5dh)0.57 .
S [ Flm)ar < S50 2 G002 20 ) + 5
By the convexity of the Fisher information, the averaged distribution ji := (Nh) ™! fONh wedt also
satisfies oKL oLd
FI(fi||m)dt < N;;’O + 5+ B00L2 (R FI(C ) + 5dh)0.57 N
We also observe the output is sampled from fi. By Lemma[A.2] and Lh = 0.1 we have
_ 2LKL00 2Ld 2 2 2KL(MOH7T) 2 J—N
FI < ———+ — L7 |2 ————— +8L %
(pf|m)dt < N + 7 -+ 600 h N +8L*dh | +5dh | 0.5
2LKLQ 0 2Ld 24LKL(/,(,0||7T) J—N
< — 4+ — ———~ +320L . .
SN + i + ( N +320Ld ) 0.5

B Limitations

As an initial exploration of the adaptive complexity of minimizing relative Fisher information,
our work still leaves a significant gap between the upper and lower bounds, particularly in the
small-accuracy regime.

C Social Impacts

We present several theoretical results for minimizing relative Fisher information. While we do not
see any immediate societal impact, there may be potential indirect consequences of our work that are
not apparent at this time.
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