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Abstract

Liquid-phase transmission electron microscopy (LPTEM) enables direct visualiza-
tion of nanoparticle motion in the native liquid environment with nanometer and
millisecond resolution. These combined capabilities open new opportunities for
studying nanoscale dynamics, but also create a broad space of experimental choices
where automation can play a critical role. Developing such automation requires
realistic simulators of particle motion in LPTEM, yet quantitative interpretation
and simulation of the resulting complex stochastic motion remain challenging
due to the lack of tractable, physics-aware models. To address this, we introduce
LEONARDO, a transformer-based variational autoencoder (VAE) with a physics-
informed loss, trained on ∼38,000 experimental gold nanoparticle trajectories from
LPTEM. The model encodes temporal dependencies of nanoparticle motion via
self-attention and reconstructs trajectories by matching key statistical descriptors
linked to physical phenomena, resulting in latent variables that capture experimen-
tal properties in an unsupervised way. To evaluate generative fidelity, we introduce
Fréchet Motion Distance (FMD), an analogue of the Fréchet Inception Distance de-
signed for stochastic time-series data. FMD measures the Fréchet distance between
feature embeddings from MoNet2.0, a domain-specific CNN trained for anomalous
diffusion classification. LEONARDO achieves an FMD of 7.8 with experimental
trajectories, compared to 22.6-39.9 achieved by classical stochastic processes, and
>95% of its generated trajectories are labeled “LPTEM” by a domain classifier. By
functioning as a black-box simulator, LEONARDO generates realistic and diverse
trajectories, providing a foundation for autonomous electron microscopy, where
physically faithful synthetic data enable the development of data-driven control
and analysis methods.

1 Introduction

Liquid-phase transmission electron microscopy (LPTEM) enables direct visualization of nanopar-
ticles, including biomolecules such as proteins, in their native liquid environment [1, 2]. Unlike
cryo-EM, which captures biomolecular conformations in a frozen state [3], LPTEM reveals real-time
dynamics at nanometer and millisecond resolution [4, 5]. The access to nanoscale motion in liquid
holds enormous potential for advancing our understanding of self-assembly [6, 7], catalysis [8], and
biomolecular interactions [9, 10].

The opportunities to capture nanoscale dynamics with LPTEM also create a wide space of experi-
mental choices. Expert microscopists adjust parameters such as electron beam dose to balance signal
with radiation damage [11] while navigating the liquid cell, making trade-offs between signal quality
and sample stability. These decisions are well suited to automation: data-driven control can increase
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throughput, improve reproducibility, and provide real-time feedback to guide experiments. In doing
so, automation not only lowers the barrier to entry for new users but also frees researchers to focus
more on scientific discovery than on instrument operation [12].

A critical step toward automating LPTEM experiments is the creation of simulation environments
that allow data-driven control methods, such as reinforcement learning, to be developed and validated.
Realistic simulators are essential in reducing the dependence on expensive and delicate experiments
and providing a testbed for algorithm development. However, building such simulators is challenging
because nanoparticle motion in LPTEM displays complex, non-Gaussian stochastic behavior that is
not captured by classical diffusion processes [13, 14].

To address this challenge, we introduce LEONARDO, a transformer-based variational autoencoder
(VAE) with a physics-informed loss, trained on experimental LPTEM trajectories of gold nanoparticles
at varying electron beam dose rates and particle sizes. LEONARDO learns latent variables that
encode experimental conditions and can generate trajectories faithful to experimental conditions. To
evaluate generative fidelity, we introduce the Fréchet Motion Distance (FMD), an analogue of the
Fréchet Inception Distance [15], designed for general stochastic time-series data via embeddings
from a domain classifier. In this work we apply FMD to stochastic motion using the stochastic
motion classifier MoNet2.0, an extension of MoNet [13] to 2D motion with seven diffusion classes.
LEONARDO achieves significantly lower FMD (lower is better) than classical stochastic processes,
and the classifier identifies >95% of the generated trajectories as “LPTEM”.

By serving as a black-box simulator for LPTEM, LEONARDO establishes a foundation for au-
tonomous electron microscopy. With access to realistic synthetic trajectories, researchers can design
and train control strategies, optimize experimental parameters in silico, and accelerate discovery by
shifting effort from microscope operation to interpretation of nanoscale dynamics.

2 Related Work

Classical stochastic processes such as Brownian motion (BM) [16], fractional Brownian motion
(FBM) [17], and continuous-time random walks(CTRW) [18] have provided useful baselines for
describing nanoparticle diffusion. However, trajectories observed in LPTEM often combine features
of multiple processes and display non-Gaussian statistics that these models cannot capture [13, 19–
22]. More general approaches, such as the generalized Langevin equation [23, 24], remain difficult
to apply in heterogeneous experimental environments due to the need to assume specific forms of
memory kernels and noise terms [25–28].

Machine learning approaches have recently been introduced as alternatives. Supervised networks
trained on simulated processes can classify experimental trajectories into canonical diffusion types [13,
29–33], while unsupervised methods such as autoencoders [34] and VAEs [35] have been applied to
model ideal stochastic dynamics. Yet these efforts rely primarily on synthetic training data, limiting
their ability to reproduce the hybrid, non-Gaussian behavior found in experiments. Generative models
trained directly on experimental trajectories, as pursued here, address this gap by producing realistic
synthetic motion and enabling simulation environments for automation in electron microscopy [36].

3 LEONARDO Overview

Figure 1 illustrates the LEONARDO framework. The model is trained on experimental LPTEM
trajectories, encoding them into a latent space and decoding them back into realistic synthetic
trajectories using a physics-informed loss function. After training, LEONARDO can simulate
nanoparticle motion under varying experimental conditions. Generated trajectories serve as input
to downstream decision-making models, and latent variables can be adjusted to mimic changes in
experimental parameters such as electron beam dose. In this way, LEONARDO functions both as
a generative model of LPTEM dynamics and as a simulation environment for developing future
automation strategies.

3.1 Problem Setup and Data

We first describe the dataset and formalize the problem setting that LEONARDO addresses. We
collected a large dataset of single-particle trajectories of various lengths by tracking gold nanorods
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Figure 1: Overview of LEONARDO and its role in automated microscopy. LEONARDO is trained on
experimental LPTEM trajectories, mapping input motion sequences through an encoder into a latent
space, then decoding them into generated trajectories that reproduce nanoscale dynamics. These
synthetic trajectories can be fed into decision-making models, creating a simulation environment for
developing autonomous microscopy workflows.

diffusing in water and interacting with the membrane surface of the LPTEM microfluidic chamber.
These raw trajectories were segmented into 200-frame sequences, yielding a dataset of 38,279
processed trajectories used for training, with additional held-out sets of 5,934 and 3,202 trajectories for
validation and testing, respectively. Each trajectory was normalized prior to training (see Appendix A
for more details).

Formally, let a trajectory be a sequence r = {r1, r2, . . . , rT } of T frames (here T = 200), where
each rt = (xt, yt) is the 2D position of a nanoparticle at time step t. Our goal is to learn the data
distribution p(r) such that we can generate synthetic trajectories r̂ that resemble the experimentally
observed ones.

3.2 Transformer–VAE Model

Here, we introduce the architecture of LEONARDO, which models LPTEM trajectories with a VAE.
LEONARDO introduces a continuous latent vector z ∈ Rd (here d = 12) and defines the generative
process

z ∼ N (0, I), r ∼ pθ( · | z), (1)

where pθ(r | z) is parameterized by a Transformer-based decoder. At train time, a variational encoder
qϕ(z | r) produces a Gaussian posterior with diagonal covariance,

qϕ(z | r) = N
(
µ, diagσ2

)
, (2)

and samples are drawn via the reparameterization trick

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I). (3)

3.3 Model architecture

The encoder first maps raw coordinates into higher-dimensional embeddings with convolutional
layers, then applies stacked self-attention blocks to capture temporal correlations across the trajectory.
The output sequence is aggregated to obtain the mean and variance vectors that parameterize qϕ(z | r).
The decoder begins from a latent code z, maps it to a sequence representation, and uses Transformer
blocks to enforce temporal coherence before projecting back to two spatial channels. A convolutional
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layer at the output stage helps preserve temporal correlations in the generated trajectories. The
complete model is detailed in Appendix B.

Once trained, LEONARDO serves as a generative model for LPTEM trajectories. To synthesize new
samples, we first draw a latent code z ∼ N (0, I) from the prior distribution. The decoder then maps
z into a temporally coherent sequence of spatial positions r̂, yielding synthetic trajectories of length
T = 200 (a balanced choice to capture particle dynamics across varying video frame rates).

3.4 Physics-informed loss

Given the stochastic nature of nanoparticle trajectories, it is not meaningful to enforce exact frame-
by-frame reconstruction after passing through a low-dimensional latent space, as previously noted
in the literature [35]. Instead, the goal is to reconstruct the statistical properties that capture the
underlying physics. To this end, LEONARDO introduces a physics-informed loss that supplements
the standard VAE objective by aligning trajectory-level statistics between inputs and reconstructions,
while down-weighting the contribution of the conventional MSE term.

Formally, for positions {rt}Tt=1 with reconstruction {r̂t}Tt=1, let ∆rt = rt−rt−1 and ∆r̂t = r̂t−r̂t−1.
We evaluate a collection of trajectory statistics {Φk(·)}Kk=1 on both sequences that are related to the
underlying physics of the system, and penalize their discrepancies:

Lphys =

K∑
k=1

wk

∥∥Φk(r)− Φk(r̂)
∥∥2
2
, (4)

with per-term weights wk (initialized from first-epoch magnitudes; see Appendix C). This yields
gradients that steer the generator toward the correct physics without requiring pointwise alignment.

Statistical fingerprints of nanoparticle motion The statistics Φk(·)Kk=1 used in Eq. (4) are defined
as follows:

• Displacement distribution: match the first four moments of the step-size distribution |∆r|
(mean, variance, skewness, kurtosis). This captures typical particle displacement scales and
rare large displacements.

• Velocity autocorrelation: match the normalized Cv(τ) =
⟨v(t)·v(t+τ)⟩

⟨v2(t)⟩ for small lags τ
(weighted toward short lags), enforcing the negative VACF characteristic of viscoelastic
“caging.”

• Positional autocorrelation: match the normalized Cr(τ) =
⟨r(t)·r(t+τ)⟩

⟨r2(t)⟩ over larger lags,
capturing confinement and residence.

• Motion anisotropy: match the Pearson correlation between x and y components, ρ∆x,∆y =
corr(∆xt,∆yt) which captures directional coupling of steps.

• Median step size: match the median of the step magnitude ∆̃r, which provides stability
under heavy tails.

Full objective. The physics term complements a lightly weighted reconstruction error and the
standard Kulback-Leibler (KL) regularizer:

L = Lphys + λMSE
1

N
||r− r̂||22 + β DKL(q(z|r)||p(z)), (5)

where N is the batch size. We keep λMSE small to avoid incentivizing pointwise matching for
inherently stochastic signals. More details of the loss function and magnitudes of the weights of each
loss term are provided in Appendix C.

4 Experiments

4.1 Baselines

We evaluate the fidelity of LEONARDO-generated trajectories against experimental LPTEM trajecto-
ries. As baselines, we include classical stochastic diffusion processes that have been widely used to
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describe nanoparticle motion in liquids: BM, FBM, CTRW, annealed transient time model (ATTM),
scaled Brownian motion (SBM), and Lévy walks (LW), because these processes capture different as-
pects of anomalous diffusion such as thermal noise, viscoelastic correlations, and trapping-and-escape
events [13, 37–39]. For a detailed discussion of these stochastic processes, see [40].

For the baselines, trajectories are generated under standard parameterizations: for FBM, CTRW,
ATTM, and SBM we sample the anomalous exponent α ∼ U(0.1, 1.0) (where α is the anomalous
diffusion exponent that determines how the mean squared displacement scales with time, with α = 1
corresponding to normal diffusion); for LW we sample α ∼ U(1.0, 2.0); and for BM we use the
canonical generator without an anomalous exponent. Each baseline produces N = 3,202 trajectories
of length T = 200, with preprocessing and normalization matched to the experimental data (see
Appendix A). This setup enables direct comparison of how well LEONARDO and classical processes
capture the statistical signatures of nanoparticle motion in LPTEM.

4.2 Evaluation Metrics

Fréchet Motion Distance (FMD) To quantify generative fidelity for stochastic time-series, we
introduce FMD, an analogue of FID [15] that replaces the Inception embedding with features
from a domain classifier. This formulation applies broadly to stochastic sequences where suitable
embeddings exist (e.g., neural spike trains [41, 42], turbulent-flow trajectories/fields [43, 44], and
molecular dynamics trajectories [45]). In our work, we instantiate FMD for nanoparticle motion
by using embeddings from MoNet2.0, an extension of MoNet anomalous diffusion classifier [13]
trained on a broad set of diffusion classes including BM, FBM, CTRW, LW, ATTM, SBM, and
experimental LPTEM trajectories. This ensures that the embeddings capture dynamics-relevant
features across a wide spectrum of anomalous diffusion behaviors. Unlike direct comparisons on
hand-crafted statistics, FMD yields a single distribution-level score that integrates higher-order and
temporal signatures learned from data, providing a standardized metric for evaluating generative
models of time-series stochastic trajectories.

Given two sets of trajectories, experimental (Dexp) and generated (Dgen), we compute their embed-
dings through the pretrained classifier MoNet2.0. Let di ∈ Dexp and d̃j ∈ Dgen denote individual
trajectories, with Mexp and Mgen the numbers of trajectories in the experimental and generated sets,
respectively. Applying the embedding map f(·) (MoNet2.0) to each trajectory yields

{f(di)}
Mexp

i=1 , {f(d̃j)}
Mgen

j=1 .

We denote these embedding sets as f(Dexp) = {f(di)}
Mexp

i=1 and f(Dgen) = {f(d̃j)}
Mgen

j=1 . Each set
of embeddings is then modeled as a multivariate Gaussian,

f(Dexp) ∼ N (µexp,Σexp), f(Dgen) ∼ N (µgen,Σgen),

where µexp and Σexp denote the empirical mean and covariance of the experimental embeddings, and
µgen and Σgen denote the empirical mean and covariance of the generated embeddings.

The FMD is then defined as

FMD2 = ∥µexp − µgen∥22 +Tr
(
Σexp +Σgen − 2(Σ1/2

expΣgenΣ
1/2
exp)

1/2
)
.

A lower FMD indicates closer alignment between the distribution of generated and experimental
trajectories in the learned feature space, corresponding to better generative fidelity.

Classifier-based Evaluation As a complementary measure, we also examine the final prediction
layer of MoNet2.0 to quantify the fraction of LEONARDO-generated trajectories that MoNet2.0
classifies as LPTEM. A higher fraction indicates that generated trajectories more closely resemble
experimental LPTEM dynamics, whereas a lower fraction suggests systematic differences between
synthetic and real data.

While FMD measures statistical similarity in the feature distribution, the classifier-based evaluation
measures distinguishability on a sample-by-sample basis. Taken together, these metrics provide a
rigorous and interpretable framework for evaluating generative models of nanoparticle diffusion.
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Figure 2: Fidelity via Fréchet Motion Distance (FMD). Mean FMD scores of experimental LPTEM
trajectories with (1) baseline stochastic processes (BM, FBM, CTRW, ATTM, SBM, LW), and (2)
trajectories generated by LEONARDO. Each bar shows the mean across 10 random seeds (lower is
better). LEONARDO achieves the lowest FMD compared to all baselines.
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MoNet2.0 on a held-out test set of stochastic processes and LPTEM trajectories, achieving an overall
F1-score of 0.88. (b) Classification of LEONARDO-generated trajectories by MoNet2.0. The vast
majority (96.13%) are identified as “LPTEM”, confirming strong fidelity to LPTEM trajectories.

4.3 FMD and Classifier Consistency

Figure 2 reports FMD scores of experimental LPTEM trajectories with 1) baseline stochastic pro-
cesses, and 2) trajectories generated by LEONARDO. For each model, we performed 10 runs with
different random seeds and report the mean value across runs. Standard deviations were consistently
very small, confirming the stability of the estimates. LEONARDO achieves the lowest FMD (7.8),
substantially outperforming all baselines. For comparison, baselines yield 25.8 for BM, 22.6 for
FBM, 39.9 for CTRW, 23.5 for ATTM, 28.1 for SBM, and 36.4 for LW. For additional context,
Appendix D reports a lower-triangular matrix of FMD scores between classes of stochastic processes
(including intra-class comparisons). These intra-class values, which range from 0.19 to 1.74, serve as
a lower bound when interpreting the scores in Figure 2.

We also assess how trajectories are classified by MoNet2.0 trained on experimental LPTEM tra-
jectories and stochastic processes. Figure 3 summarizes these results. First, the classifier achieves
strong performance on a held-out test set of stochastic processes, with an overall F1-score (a metric
that balances precision and recall) of 0.88 (Fig. 3a). Next, when applied to LEONARDO-generated
trajectories, MoNet2.0 identifies 96.13% of them as “LPTEM” (Fig. 3b). A large fraction of
LEONARDO-generated trajectories are classified by MoNet2.0 as LPTEM, indicating close align-
ment with experimental data.
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Table 1: Ablation of physics-informed candidates. ∆ values are relative to the core configuration.
Negative ∆FMD and positive ∆%LPTEM indicate improvement.

Added term (one-at-a-time) ∆FMD ↓ ∆%LPTEM ↑
Median displacement −0.058 +4.39
Positional autocorrelation Cr(τ) −0.196 +16.57

DFT moments of displacements +0.027 −0.61
IPSD moments +0.122 −3.01
DMSD moments +0.036 −21.06
Morlet wavelet moments −0.134 −10.45

4.4 Ablation of Loss Function Terms

LEONARDO’s physics-informed loss is built around a set of trajectory-level statistics, but many
more descriptors of anomalous diffusion exist. To determine which terms should be included beyond
our core configuration, we systematically evaluated a broad candidate pool and measured their impact
on generative fidelity.

Core configuration Our baseline objective includes three main components: (i) the first four
moments of the step-size distribution |∆r| (mean, variance, skewness, kurtosis), (ii) single-trajectory
and batch velocity autocorrelations Cv(τ), and (iii) motion anisotropy. A lightly weighted MSE and
the standard VAE KL term are also retained but down-weighted relative to the physics-informed
terms.

Candidate pool We evaluated additional statistical descriptors drawn from a large feature library
for anomalous diffusion [46], including median displacement, lagged displacement moments, ratios
of consecutive steps, spectral features from discrete Fourier transforms (DFT) and integrated power
spectral density (IPSD), multiscale descriptors such as DMSD and Morlet wavelet coefficients, and
global measures like integral autocorrelation and frequency–time asymmetry. Approximate entropy
(AppEn) was excluded due to non-differentiability. Before running ablations, we screened which
features were already implicitly captured by the core model by tracking their discrepancies over
training checkpoints; candidates that consistently decreased without explicit addition to the loss
function were not included in further experiments.

Protocol and results Each surviving candidate was added individually to the core objective, with
weights initialized from their first-epoch magnitudes for consistency with the main training setup.
We then retrained LEONARDO and evaluated performance using FMD (lower is better), and the
percentage of generated trajectories classified as LPTEM by MoNet2.0 (higher is better). As shown
in Table 1, two descriptors improved both metrics: median displacement, which provides a robust
measure of scale under heavy-tailed statistics, and positional autocorrelation, which captures long-
lived spatial memory. By contrast, several spectral or multiscale terms worsened performance on
at least one metric, suggesting that they emphasize high-frequency content at the expense of the
statistics most relevant to LPTEM fidelity.

4.5 LEONARDO latent variable reflects electron beam dose

Because LEONARDO is trained on trajectories acquired under varying experimental conditions, its
latent space naturally learns to represent underlying factors of variation in the data. To analyze this
structure, we examined individual latent variables and found that one variable, z4, correlates strongly
with the experimental electron beam dose of the microscope (Pearson r = −0.61, p = 2.21× 10−44;
Fig. 4a). This indicates that the model captures dose-dependent changes in nanoparticle dynamics
without being provided explicit dose labels.

The correlation between z4 and dose means that this latent variable can act as a proxy for simulating
trajectories at different electron doses. By fixing all other latent variables and varying z4, the
generated trajectories exhibit systematic changes consistent with dose-dependent dynamics: lower
values produce confined motion with strong caging, while higher values yield more frequent escapes
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obtained by fixing all other latent variables and varying z4 from high (left) to low (right). Trajectories
shift from confined, caged motion at high z4 to more frequent escapes at low z4, reproducing
experimental dose-dependent trends.

(Fig. 4b). These trends mirror experimental observations, showing that traversal along z4 effectively
functions as a simulator of nanoparticle motion across electron beam doses.

This controllability makes z4 an interpretable “dose axis” in the latent space. Beyond offering insight
into how electron beam dose influences nanoparticle dynamics, it provides a practical handle for
generating synthetic trajectories across various doses. This capability allows models to explore
a range of experimental conditions in silico, avoiding the need to perform new, costly LPTEM
experiments for each setting.

5 Conclusion and Future Directions

We introduced LEONARDO, a transformer-based variational autoencoder with a physics-informed
loss, trained directly on experimental LPTEM trajectories. By combining temporal self-attention
with trajectory-level statistical constraints, the model generates synthetic trajectories that faithfully
reproduce the stochastic features of experimental data. Evaluation with the FMD and domain classifi-
cation confirmed that LEONARDO captures experimental dynamics more accurately than classical
stochastic processes. Beyond generative fidelity, we showed that its latent space reflects meaning-
ful experimental factors by aligning with electron beam dose, enabling controllable simulation of
dose-dependent nanoparticle dynamics.

While electron beam dose is a critical imaging parameter, it is only one of many variables that influence
particle motion in liquids. Temperature, liquid chemistry, and particle–particle interactions all shape
nanoscale trajectories and present opportunities for deeper modeling. Extending LEONARDO to
datasets acquired under systematically varied conditions will allow its latent variables to represent
these experimental factors, while incorporating additional physics-informed losses tailored to each
mechanism. Such developments would push LEONARDO toward a general-purpose simulator of
nanoparticle dynamics in complex environments.

Looking forward, the ability to generate realistic trajectories across a range of conditions offers
a pathway to simulation-driven automation. By replacing costly and delicate experiments with in
silico exploration, models like LEONARDO can provide the synthetic data needed to train control
algorithms, optimize imaging parameters, and accelerate scientific discovery with autonomous
electron microscopy.
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A Trajectory Pre-processing

The trajectories of particle motion obtained from processing the in situ videos were a time series
of the x and y coordinates of the particles in each frame. To formulate the training dataset, these
trajectories of various lengths were segmented into shorter 200-frame-long trajectories. The chosen
trajectory length of 200 frames provides a balance between capturing particle dynamics and handling
trajectories acquired at different video frame rates. Longer experimental trajectories can be divided
into fixed-length segments to resolve local dynamics, while subsampling longer trajectories enables
analysis of longer-range statistics with LEONARDO. To augment the training set with trajectories
that reflect motion at longer time scales, the originally processed trajectories were also sub-sampled
at rates from 2 to 60, and then segmented. For example, a sub-sampling rate of 2 means that every
second x and y coordinate in the trajectory was extracted to form a new trajectory, which was then
segmented into 200-time-point trajectories. The x and y components were treated as a combined 2D
trajectory. A total of 38, 279 trajectories from LPTEM videos were collected for training.

The 200-frame experimental trajectories were normalized to lie between 0 and 1 for model training.
The normalization process was performed as follows: each trajectory was first centered by subtracting
the minimum value of all time frames for the x and y axes. The centered trajectory was then normal-
ized by dividing by the range of values across the x and y axes. Mathematically, the normalization
can be expressed as:

rnormalized =
r−mint r

maxt,i r−mint,i r
(6)

where the subscript t refers to the time frame, the subscript i refers to the axes, mint r denotes the
per-axis minima, mint r = [mint xt mint yt], and maxi,t r and mini,t r denote the maximum and
minimum values across all entries in r.

B Model Architecture and Training

Figure A1 shows the architecture of LEONARDO, which is a variational autoencoder with the
encoder and decoder adapted from the Transformer architecture [1] that maps an input trajectory
of 200 time frames, r = (r1, r2, · · · , rT=200), where each rt = (xt, yt) represents the position
vector of the nanoparticle with x and y denoting the x and y coordinates of the particle’s position,
respectively, to a sequence of continuous representation z = (z1, · · · , z12). Given z, the decoder
generates an output trajectory r̂ = (r̂1, r̂2, · · · , r̂T=200), where each r̂t = (x̂t, ŷt). Here is the detail
of each block:

First, a batch of N input trajectories is passed through a convolutional layer L to increase the
embedding dimensions of each trajectory from 2 to 128 and get to X that is a tensor of size N×
128× 200, where N is the batch size. X is the input to the encoder block depicted in Figure A2.

Encoder The encoder consists of two parts. First, the tensor X goes through a multi-headed self-
attention layer (detailed by Vaswani et al. [1]) with 8 heads to capture the time dependencies within a
trajectory, followed by layer normalization and fully connected feed-forward layers. The attention
layer maps a query, Q, and a set of key-value pairs, K,V, to an output. The multi-head attention
layer allows the model to jointly attend to information from different representation subspaces at
different positions along the length of the trajectory.

Multihead(Q,V,K) = concatenate(head1, · · · ,head8)WO,

where headi = Attention(QWQ
i,KWK

i,VWV
i),

(7)

where WO ∈ Rdhv×dmodel ,WQ ∈ Rdmodel×dk ,WK ∈ Rdmodel×dk , and WV ∈ Rdmodel×dv are
parameter matrices of the model. The attention matrix used here is the standard scaled Dot-Product
attention [1] that is computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (8)
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Figure A1: LEONARDO model architecture

Here, we employed h = 8 attention heads; therefore, dv = dk = dmodel/8 = 32. The fully connected
feed-forward layers deployed in the attention layer of the encoder block consist of two linear, fully
connected transformations with a ReLU activation in between:

FFN(x) = max(0,xW1 + b1)W2 + b2, (9)

where x is the input, W1, and W2 are weight matrices, and b1 and b2 are bias vectors. The output
of this transformer block goes through another identical transformer block before entering the second
part of the encoder block, which is a series of convolutional layers that reduce the size of the tensor
to the latent space dimension. The first convolutional layer has a kernel size of 7, a stride of 1, and a
padding of 3 to reduce the embedding dimension from 128 to 32. The second convolutional layer has
a kernel size of 2 and a stride of 2 to reduce the size of the last tensor dimension from 200 to 100.
This tensor is flattened to a size of 3200 before being further reduced in a linear layer to a size of 512.
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The next few operations are adapted from the standard variational autoencoder [2]. In this stage, the
encoder generates two vectors of size 12, µ and log(σ2), representing the mean and log-variance
of the latent space distribution. These vectors are used to sample the latent variable z via the
reparameterization trick:

z = µ+ σ ⊙ ϵ. (10)
where ϵ ∼ N (0, I) is standard Gaussian noise that allows for backpropagation through the stochastic
sampling process. The sampled latent variables vector z is then passed to the decoder.

Decoder The latent space is up-sampled by two linear layers to sizes of 1024 and 6400, respectively,
before being reshaped to dimensions of N × 32 × 200, where N is the batch size. This reshaped
tensor goes into a transpose convolutional layer with a kernel size of 7, stride of 1, and padding of 3
to a shape of N × 128× 200. The output from the convolutional decoder layer enters two transformer
decoder blocks in series, each of which has two multi-headed self-attention layers in series, layer
normalization, and feedforward layers as shown in Figure A1. A convolutional layer at the output of
the transformer decoder reduces the size of the tensor to the size of the output trajectory, which is
equal to the size of the input trajectory.

Model training All the parameters of the LEONARDO model architecture were trained by back-
propagating the derivative of the loss function with respect to the model parameters using the ADAM
optimizer with a learning rate of 3× 10−4.

Model validation Separate sets of experimental trajectories were segmented and sub-sampled for
validation and testing. This resulted in 3, 202 trajectories for validation and 5, 934 trajectories for
testing. Validation was performed to tune hyperparameters and reconstruct losses at each epoch
during model training to compare against the training losses. These trajectories were not used to
update the model parameters during backpropagation. The test set was used to report the final model
performance. Figure A2 shows the validation losses per epoch averaged over the 3202 trajectories for
each loss component of LEONARDO and their comparison with respect to the training loss at each
epoch.

C Physics-informed Loss Function

The loss function consists of a total of 11 terms; all summed together with their respective weights
determined based on the first epoch losses as defined below.

L =

11∑
j=1

wj × Lj , (11)

where, wj and Lj are the weights and loss components j, respectively. Each loss function component
is defined in the following set of equations. The mean squared error (MSE) loss between the input
and generated trajectories is defined first as the L2 norm:

L1 =
1

N
||r− r̂||22, (12)

where N = 1000 is the batch size.

The KL-divergence loss, as defined below, ensures that the posterior distribution of latent variables
adheres to the prior Gaussian distribution:

L2 = DKL(q(z|r)||p(z)) =
∫

q(z|r) log q(z|r)
p(z)

dz, (13)

where q(z|r) is the approximate posterior distribution of latent variables z given the input trajectory
r, and p(z) is a standard normal distribution N (0, 1).

The next four equations describe the loss components of the moments of the distributions of displace-
ments of the trajectories. In each case, a mean squared error was taken between the moments of the
input trajectory and the moments of the reconstructed trajectory.
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Figure A2: LEONARDO training and validation losses for each loss component at each epoch

L3 =
1

N
||⟨∆r⟩ − ⟨∆r̂⟩||22, (14)

where ⟨∆r⟩ is the mean, µ∆r , of the distribution of displacements of the input trajectory, and ⟨∆r̂⟩
is the mean, µ∆r̂, of the distribution of displacements of the reconstructed trajectory.

L4 =
1

N
||⟨(∆r− µ∆r)

2⟩ − ⟨(∆r̂− µ∆r̂)
2⟩||22, (15)

L5 =
1

N

∣∣∣∣∣∣∣∣ ⟨(∆r− µ∆r)
3⟩

⟨σ∆r⟩3
− ⟨(∆r̂− µ∆r̂)

3⟩
⟨σ∆r̂⟩3

∣∣∣∣∣∣∣∣2
2

, (16)

L6 =
1

N

∣∣∣∣∣∣∣∣ ⟨(∆r− µ∆r)
4⟩

⟨σ2
∆r⟩2

− ⟨(∆r̂− µ∆r̂)
4⟩

⟨σ2
∆r̂⟩2

∣∣∣∣∣∣∣∣2
2

, (17)

where σ∆r and σ∆r̂ are the standard deviation of ∆r and ∆r̂ distributions, respectively, and ⟨·⟩
denotes an average over the trajectory displacements.

The loss comparing the medians of the distributions of displacements for the input and reconstructed
trajectories is defined as:

L7 =
1

N
||(∆̃r)− (∆̃r̂)||22, (18)

where (∆̃r) represents the median of the displacement distribution of the input trajectory, and (∆̃r̂)
represents the median of the displacement distribution of the reconstructed trajectory.
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The velocity autocorrelation loss component is defined for τ = 1 to τ = 50 (the first 50 time delays
of Cv), with each time delay weighted by 1/τ :

L8 =
1

N

50∑
τ=1

1

τ
||Cv(τ)− Cv̂(τ)||22, (19)

where Cv(τ) = ⟨v(t)·v(t+τ)⟩
⟨v2(t)⟩ refers to the velocity autocorrelation of the input trajectories, with

Cv̂(τ) =
⟨v̂(t)·v̂(t+τ)⟩

⟨v̂2(t)⟩ referring to the velocity autocorrelation of the reconstructed trajectories. The
weighting factor of 1/τ emphasizes the importance of short time lags (τ ), which are more relevant
for understanding the viscoelasticity of the interaction energy landscape investigated in this study.
Longer time lags contribute less to the overall loss, as they are less informative for our study and
are statistically less reliable due to the finite length of the trajectories. This weighting is particularly
appropriate because the velocity autocorrelation function is most meaningful when τ ≪ T , where T
is the total length of the trajectory.

The point-wise ensemble-averaged velocity autocorrelation is another important statistical measure
that measures the correlations of an ensemble of particle trajectories at each time delay τ . For example,
particle trajectories from LPTEM usually have a negative value for the velocity autocorrelation at
short-time delays τ , which can be seen in the point-wise ensemble-averaged velocity autocorrelation
of trajectories at short-time delays. These trajectories also have zero correlations at longer time
delays, which ensures the stochasticity of the trajectories, i.e., there are no predictable correlations
within particle trajectories after the initial correlations at shorter time delays. To define the point-wise
ensemble-averaged velocity autocorrelation, for each batch of trajectories in model training, we
calculated the mean squared error between the velocity autocorrelation of the input batch, ensemble-
averaged over the input batch, and the velocity autocorrelation of the generated batch, ensemble-
averaged over the generated batch. This was then averaged across all time delays to obtain a singular
value for the error as defined below:

L9 = (⟨Cv⟩ − ⟨Cv̂⟩)2. (20)

where ⟨·⟩ denotes average over a batch of N trajectories in the training dataset, and (·) denotes the
average over time delay windows of size τ = 1 to τ = T − 2 with T = 200 in this case.

The correlation between the x and y components of the 2-D trajectories is accounted for by a loss
term that measures the deviation in the correlation coefficient between the input and reconstructed
trajectories. This term ensures that the model captures any anisotropy or coupling between orthogonal
motion components, which is particularly important for 2-D trajectories.

L10 =
1

N
||ρ∆x,∆y − ρ∆x̂,∆ŷ||22, (21)

where ρ∆x,∆y is the correlation coefficient between the x and y displacements of the input trajectories,
and ρ∆x̂,∆ŷ is the corresponding correlation coefficient for the reconstructed trajectories. The
correlation coefficient for each trajectory is computed as:

ρ∆x,∆y =
Cov(∆x,∆y)√

σ2
∆x · σ2

∆y

, (22)

where Cov(∆x,∆y) = 1
N

∑N
i=1(∆xi − ⟨∆x⟩)(∆yi − ⟨∆y⟩) represents the covariance between

the x and y displacements, and σ2
∆x and σ2

∆y represent the variances of the x and y displacements,
respectively, and ⟨·⟩ denotes the average over the trajectory displacements.

By including this term, the model is encouraged to reproduce the same level of anisotropy or coupling
between x and y components as observed in the input trajectories. This is critical for accurately mod-
eling complex systems where the motion in orthogonal directions may not be independent or isotropic.

The positional autocorrelation loss component compares the spatial correlation between particle posi-
tions at different time lags for the input and reconstructed trajectories. The positional autocorrelation
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function is defined as Cr(τ) =
⟨r(t)·r(t+τ)⟩

⟨r2(t)⟩ , where r(t) and r(t+ τ) represent the position vectors
at times t and t+ τ , respectively. The loss term is defined as:

L11 =
1

N

T−1∑
τ=1

||Cr(τ)−Cr̂(τ)||22, (23)

where Cr(τ) represents the positional autocorrelation of the input trajectories, and Cr̂(τ) represents
the positional autocorrelation of the reconstructed trajectories. The inclusion of this term was
motivated by the distinct behaviors observed in our experimental trajectories, where particles
often transition abruptly between positions and remain localized in the new positions for extended
periods. These dynamics introduce long-term spatial correlations that are not fully captured by
displacement-based metrics.

The weights chosen for each loss term component based on the magnitude of the first epoch losses
were w1 = 0.001, w2 = 0.05, w3 = 50, 000, w4 = 500, w5 = 10, w6 = 0.06, w7 = 1, w8 =
1000, w9 = 100, w10 = 10, w11 = 1. The very low weight assigned to w1 (corresponding to the
MSE-based reconstruction loss) emphasizes that the contribution of the MSE loss term is small
compared to the physics-informed loss terms. This choice of weight reflects our focus on reproducing
the statistical distribution of the trajectories rather than achieving an exact point-wise reconstruction.
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D FMD Context

Figure A3: FMD lower triangular matrix showing scores between classes of stochastic processes
including intra-class scores. The second-last layer output of MoNet2.0 is used to compute the FMD
scores between different classes and between batches of the same class (intra-class scores). The
matrix shows that the FMD scores between LPTEM and LEONARDO-generated trajectories are
significantly lower than the scores between other classes, while intra-class scores, ranging from 0.19
to 1.74, provide a lower bound for contextual comparison.

E Availability

Data. The LPTEM trajectory datasets used for training, validation, and testing of LEONARDO are
available at https://huggingface.co/datasets/anon-user-5828/LEONARDO_train_val_
test_datasets. The trained LEONARDO model is available at https://huggingface.co/
anon-user-5828/LEONARDO.

Code. Source code for LEONARDO is available at https://anonymous.4open.science/r/
LEONARDO-C33A.
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