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Abstract
Recent work has shown that training wide neural networks with gradient descent1

is formally equivalent to computing the mean of the posterior distribution in2

a Gaussian Process (GP) with the Neural Tangent Kernel (NTK) as the prior3

covariance and zero aleatoric noise [12]. In this paper, we extend this framework4

in two ways. First, we show how to deal with non-zero aleatoric noise. Second, we5

derive an estimator for the posterior covariance, giving us a handle on epistemic6

uncertainty. Our proposed approach integrates seamlessly with standard training7

pipelines, as it involves training a small number of additional predictors using8

gradient descent on a mean squared error loss. We demonstrate the proof-of-9

concept of our method through empirical evaluation on synthetic regression.10

1 Introduction11

Jacot et al. have studied the training of wide neural networks, showing that gradient descent on a12

standard loss is, in the limit of many iterations, formally equivalent to computing the posterior mean13

of a Gaussian Process (GP), with the prior covariance specified by the Neural Tangent Kernel (NTK)14

and with zero aleatoric noise. Crucially, this insight allows us to study complex behaviours of wide15

networks using Bayesian nonparametrics, which are much better understood.16

We extend this analysis by asking two research questions. First, we ask if a similar equivalence exists17

in cases where we want to do inference for arbitrary values of aleatoric noise. This is crucial in18

many real-world settings, where measurement accuracy or other data-gathering errors mean that the19

information in our dataset is only approximate. Second, we ask if it is possible to obtain an estimate20

of the posterior covariance, not just the mean. Since the posterior covariance measures the epistemic21

uncertainty about predictions of a model, it is crucial for problems that involve out-of-distribution22

detection or training with bandit-style feedback.23

We answer both of these research questions in the affirmative. Our posterior mean estimator takes the24

aleatoric noise into account by adding a simple squared norm penalty on the deviation of the network25

parameters from their initial values, shedding light on regularization in deep learning. Our covariance26

estimator can be understood as an alternative to existing methods of epistemic uncertainty estimation,27

such as dropout [7, 20], the Laplace approximation [6, 19], epistemic neural networks [18], deep28

ensembles [21, 14] and Bayesian Neural Networks [3, 13]. Unlike these approaches, our method has29

the advantage that it can approximate the NTK-GP posterior arbitrarily well.30

Contributions We derive estimators for the posterior mean and covariance of an NTK-GP with31

non-zero aleatoric noise, computable using gradient descent on a standard loss. We evaluate our32

results empirically on a toy repression problem.33

2 Preliminaries34

Gaussian Processes Gaussian Processes (GPs) are a popular non-parametric approach for modeling35

distributions over functions [22]. Given a dataset of input-output pairs {(xi, yi)}Ni=1, a GP represents36

uncertainty about function values by assuming they are jointly Gaussian with a covariance structure37
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defined by a kernel function k(x,x′). The GP prior is specified as f(x) ∼ GP(m(x), k(x,x′)),38

where m(x) is the mean function and k(x,x′) is the kernel. Assuming yi ∼ N (f(x), σ2) and given39

new test points x′, the posterior mean and covariance are given by:40

µp(x
′) = m(x′) +K(x′,x)

⊤
(K(x,x) + σ2I)−1(y −m(x)), (1)

Σp(x
′) = K(x′,x′)−K(x′,x)

⊤
(K(x,x) + σ2I)−1K(x′,x), (2)

where K(x,x) is the covariance matrix computed over the training inputs, K(x′,x) is the covariance41

matrix between the test and training points, and σ2 represents the aleatoric (or observation) noise.42

Neural Tangent Kernel. The Neural Tangent Kernel (NTK) characterizes the evolution of wide43

neural network predictions as a linear model in function space. Given a neural network function44

f(x; θ) parameterized by θ, the NTK is defined through the Jacobian J(x) ∈ RN×p, where J(x) =45
∂f(x;θ)

∂θ , N is the number of data points and p is the number of parameters. The NTK at two sets of46

inputs x and x′ is given by:47

K(x,x′) = J(x)J(x′)⊤. (3)

Interestingly, as shown by [12] the NTK converges to a deterministic kernel and remains constant48

during training in the infinite-width limit. We call a GP with the kernel (3) the NTK GP.49

3 Method50

We now describe our proposed process of doing inference in the NTK-GP. Our procedure for51

estimating the posterior mean is given in Algorithm 1, while the procedure for the covariance is given52

in Algorithm 2. Note that our process is scaleable because both algorithms only use gradient descent,53

rather than relying on a matrix inverse in equations (1) and (2). While Algorithm 2 relies on the54

computation of the partial SVD of the Jacobian, we stress that efficient ways of doing so exist and55

do not require ever storing the full Jacobian. We defer the details of the partial SVD to Appendix E.56

We describe the theory that justifies our posterior computation in sections 3.1 and 3.2. We defer the57

discussion of literature to Appendix A.58

Algorithm 1 Algorithm for Computing the Posterior Mean in the NTK-GP

procedure TRAIN-POSTERIOR-MEAN(xi, yi, θ0)
ŷi ← yi + f(xi; θ0) ▷ Shift the targets to get zero prior mean (Lemma 3.2).
L← 1

N

∑N
i=1(ŷi − f(xi; θ))

2 + βN ||θ − θ0||22 ▷ Equation (4)
minimize L with gradient descent wrt. θ until convergence to θ⋆

return θ⋆ ▷ Return the trained weights.
end procedure

procedure QUERY-POSTERIOR-MEAN(x′
j , θ⋆, θ0) ▷ j = 1, . . . , J

return f(x′
1; θ

⋆)− f(x′
1; θ

0), . . . , f(x′
J ; θ

⋆)− f(x′
1; θ

0)
end procedure

3.1 Aleatoric Noise59

Gradient Descent Converges to the NTK-GP Posterior Mean We build on the work of [12]60

by focusing on the computation of the mean posterior in the presence of non-zero aleatoric noise.61

We show that optimizing a regularized mean squared error loss in a neural network is equivalent to62

computing the mean posterior of an NTK-GP with non-zero aleatoric noise. In the following Lemma,63

we prove that for a sufficiently long training process, the predictions of the trained network converge64

to those of an NTK-GP with aleatoric noise characterized by σ2 = NβN . This is a similar result to65

[11], but from a Bayesian perspective rather than a frequentist generalization bound. Furthermore,66

our proof (see Appendix B) focuses on explicitly solving the gradient flows for test and training data67

points in function space.68

Lemma 3.1. Consider a parametric model f(x; θ) where x ∈ X ⊂ RN and θ ∈ Rp, initialized69

under some assumptions with parameters θ0. Minimizing the regularized mean squared error loss70
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with respect to θ to find the optimal set of parameters θ∗ over a dataset (x,y) of size N , and with71

sufficient training time (t→∞):72

θ∗ = argmin
θ∈Rp

1

N

N∑
i=1

(yi − f(xi; θ))
2 + βN ||θ − θ0||22, (4)

is equivalent to computing the mean posterior of a Gaussian process with non-zero aleatoric noise,73

σ2 = NβN , and the NTK as its kernel:74

f(x′; θ∞) = f(x′; θ0) +K(x′,x)(K(x,x) +NβNI)−1(y − f(x; θ0)). (5)

Zero Prior Mean In many practical scenarios, it is desirable to start with zero prior mean rather75

than with a prior mean that corresponds to random network initialization. To accommodate this, we76

introduce a simple yet effective transformation of the data and the network outputs, to be applied77

together with 3.1. We summarize it into the following lemma (see Appendix B for proof):78

Lemma 3.2. Consider the computational process derived in Lemma 3.1. Define shifted labels ỹ and79

predictions f̃(x; θ∞) as follows::80

ỹ = y + f(x; θ0), f̃(x; θ∞) = f(x; θ∞)− f(x′; θ0).

Using these definitions, the posterior mean of a zero-mean Gaussian process can be computed as:81

f̃(x′, θ∞) = K(x′,x)(K(x,x) +NβNI)−1y. (6)

Algorithm 2 Algorithm for Computing the Posterior Covariance in the NTK-GP

procedure TRAIN-POSTERIOR-COVARIANCE(xi, K, θ0) ▷ K is the number of predictors
U,Σ← PARTIAL-SVD(Jθ0(x),K) ▷ Partial SVD of the Jacobian - see appendix E.
for i = 1, . . . ,K do

θ⋆i ← TRAIN-POSTERIOR-MEAN(xi, Ui) ▷ Ui is the i-th column of U .
end for
for i = 1, . . . ,K ′ do ▷ Setting K ′ = 0 often works well (see Appendix D).

θ′
⋆
i ← TRAIN-POSTERIOR-MEAN(xi, ϵi) ▷ ϵi ∼ N (0, σ2I)

end for
return Σ, θ⋆1 , . . . , θ

⋆
K , θ′

⋆
1, . . . , θ

′⋆
K′

end procedure

procedure QUERY-POSTERIOR-COVARIANCE(x′
j , Σ, θ⋆i , θ′⋆i , θ0) ▷ j = 1, . . . , J

P←


f(x′1;θ⋆1 )−f(x′1;θ0) ... f(x′1;θ⋆K )−f(x′1;θ0)

...

f(x′J ;θ⋆1 )−f(x′J ;θ0) ... f(x′J ;θ⋆K )−f(x′1;θ0)

 , P ′
←


f(x′1;θ′⋆1)−f(x′1;θ0) ... f(x′1;θ′⋆

K′ )−f(x′1;θ0)

...

f(x′J ;θ′⋆1)−f(x′J ;θ0) ... f(x′J ;θ′⋆
K′ )−f(x′1;θ0)


return J(x′)J(x′)⊤ − PΣ2P⊤ − P ′(P ′)⊤/K ′ ▷ The last term vanishes for K ′ = 0

end procedure

3.2 Estimating the Covariance82

We now justify Algorithm 2 for estimating the posterior covariance. The main observation that allows83

us to derive our estimator comes from examining the term K(x′,x)
⊤
(K(x,x) + σ2I)−1K(x′,x) in84

the posterior covariance formula (2). This is summarized in the following Proposition.85

Proposition 3.1. Diagonalize K(x,x) so that K(x,x) = UΛU⊤. We have86

K(x′,x)
⊤
(K(x,x) + σ2I)−1K(x′,x) = (MU)Λ(MU)⊤ + σ2MM⊤.

Here, M = K(x′,x)
⊤
(K(x,x) + σ2I)−1.87

Proof. We can rewrite it as:88

K(x′,x)
⊤
(K(x,x) + σ2I)−1K(x′,x) =

K(x′,x)
⊤
(K(x,x) + σ2I)−1︸ ︷︷ ︸

M

(K(x,x) + σ2I) (K(x,x) + σ2I)−1K(x′,x)︸ ︷︷ ︸
M⊤
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Denoting the term K(x′,x)
⊤
(K(x,x) + σ2I)−1 with M , this can be written as:89

K(x′,x)
⊤
(K(x,x) + σ2I)−1K(x′,x) = (MU)Λ(MU)⊤ + σ2MM⊤.

90

The proposition is useful because the matrix M appears in equation (1). Hence the matrix multi-91

plication MU is equivalent to estimating the posterior mean using algorithm 1 where targets are92

given by the columns of the matrix U . Hence the term (MU)Λ(MU)⊤ can be computed by gradient93

descent. In order to derive a complete estimator of the covariance, we still need to deal with the term94

σ2MM⊤. We can either estimate this term by fitting random targets (which corresponds to setting95

K ′ > 0 in algorithm 2) or accept an upper bound on the covariance, setting K ′ = 0. We describe this96

in detail in Appendix D.97

4 Experiment98
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Figure 1: The NTK-GP posterior and its approximations: (top-left) Analytic Posterior, (top-right)
Analytic upper bound on posterior (all eigenvectors), (bottom-left) Analytic upper bound on posterior
(5 eigenvectors), (bottom-right) Posterior obtained with gradient descent (K = 5 predictors, K ′ = 0).

We applied the method to a toy regression problem shown in Figure 1. The problem is a standard99

non-linear 1d regression task which requires both interpolation and extrapolation. The top-left figure100

was obtained by computing the kernel of the NTK-GP using formula (3) and computing the posterior101

mean and covariance using equations (1) and (2). The top-right figure was obtained by analytically102

computing the upper bound defined in appendix D. The bottom-left figure was obtained by taking103

the first 5 eigenvectors of the kernel. Finally, the bottom-right figure was obtained by fitting a mean104

prediction network and 5 predictor networks using the gradient-descent method described in algorithm105

2. The similarity of the figures shows that the method works. Details of network architecture are106

deferred to Appendix C.107

5 Conclusions108

This paper introduces a method for computing the posterior mean and covariance of NTK-Gaussian109

Processes with non-zero aleatoric noise. Our approach integrates seamlessly with standard training110

procedures using gradient descent, providing a practical tool for uncertainty estimation in contexts111

such as Bayesian optimization. The method has been validated empirically on a toy task, demon-112

strating its effectiveness in capturing uncertainty while maintaining computational efficiency. This113

work opens up opportunities for further research in applying NTK-GP frameworks to more complex114

scenarios and datasets.115
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A Related Work170

Neural Tangent Kernel The definition of the Neural Tangent Kernel (3), the proof of the fact that171

it stays constant during training and doesn’t depend on initialization as well as the link to Gaussian172

Processes with no aleatoric noise are all due to the seminal paper [12]. The work of Lee et al. builds on173

that, showing that wide neural networks can be understood as linear models for purposes of studying174

their training dynamics, a fact we crucially rely on in the proof of our Lemma 3.1. Hu et al. describe175

a regularizer for networks trained in the NTK regime which leads to the same optimization problem176

used in our Lemma 3.1. The difference lies in the fact that we rely on the Bayesian interpretation of177

the network obtained at the end of training, while they focus on a frequentist generalization bound.178

Predictor Networks Prior work [17, 4, 5] has considered epistemic uncertainty estimation by179

fitting functions generated using a process that includes some kind of randomness. Burda et al.180

have applied a similar idea to reinforcement learning, obtaining exceptional results on Montezuma’s181

Revenge, a problem where it is known that exploration very is hard. Ciosek et al. provided a link to182

Gaussian Processes, but did not leverage the NTK, instead describing an upper bound on a posterior183

relative to the kernel [16] where sampling corresponds to sampling from the network initialization.184

Osband et al. proposed1 a way of sampling from a Bayesian linear regression posterior by solving185

an optimization problem with a similar structure to ours. However, this approach is different in two186

crucial ways. First, Osband et al. is interested in obtaining samples from the posterior, while we are187

interested in computing the posterior moments. Second, the sampling process in the paper by Osband188

et al. depends on the true regression targets in a way that our posterior covariance estimate does not.189

Also, our method is framed differently, as we intend it to be used in the context of the NTK regime,190

while Osband et al. discusses vanilla linear regression.191

Epistemic Uncertainty Our method of fitting the posterior covariance about network outputs can192

be thought of as quantifying epistemic uncertainty. There are several established methods in this193

space. Dropout [7, 20], works by randomly disabling neurons in a network and has a Bayesian194

interpretation. The Laplace approximation [6, 19] works by replacing an arbitrary likelihood with195

a Gaussian one. Epistemic neural networks [18] are based on the idea of using an additional input196

(the epistemic index) when training the network. Deep ensembles [21, 14] work by training several197

copies of a network with different initializations and sometimes training sets that are only partially198

overlapping. While classic deep ensembles do not have a Bayesian interpretation, He et al. have199

recently proposed a modification that approximates the posterior in the NTK-GP. Bayesian Neural200

Networks [3, 13] attempt to apply Bayes rule in the space of neural network parameters, applying201

various approximations. A full survey of methods of epistemic uncertainty estimation is beyond the202

scope of this paper.203

B Proofs204

Lemma 3.1. Consider a parametric model f(x; θ) where x ∈ X ⊂ RN and θ ∈ Rp, initialized205

under some assumptions with parameters θ0. Minimizing the regularized mean squared error loss206

with respect to θ to find the optimal set of parameters θ∗ over a dataset (x,y) of size N , and with207

sufficient training time (t→∞):208

θ∗ = argmin
θ∈Rp

1

N

N∑
i=1

(yi − f(xi; θ))
2 + βN ||θ − θ0||22, (4)

is equivalent to computing the mean posterior of a Gaussian process with non-zero aleatoric noise,209

σ2 = NβN , and the NTK as its kernel:210

f(x′; θ∞) = f(x′; θ0) +K(x′,x)(K(x,x) +NβNI)−1(y − f(x; θ0)). (5)

Proof. Consider a regression problem with the following regularized empirical loss:211

L(y, f(x; θ)) = 1

N

N∑
i=1

(yi − f(xi; θ))
2 + βN ||θ − θ0||22. (7)

1See Section 5.3.1 in the paper by Osband et al.
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Let us use θt to represent the parameters of the network evolving in time t and let α be the learning212

rate. Assuming we train the network via continuous-time gradient flow, then the evolution of the213

parameters θt can be expressed as:214

dθt
dt

= −α
[
2

N
∇θf(x; θt)(f(x; θt)− y) + 2βN (θt − θ0)

]
. (8)

Assuming that our neural network architecture operates in a sufficiently wide regime [15], where the215

first-order approximation remains valid throughout gradient descent, we obtain:216

f(x′; θt) = f(x′; θ0) + Jt(x
′)(θt − θ0)→ ∇θf(x

′; θt)
⊤ = Jt(x

′). (9)

The dynamics of the neural network on the training data:217

df(x; θt)

dt
= Jt(x)

dθt
dt

= −2α

N
Jt(x)

[
Jt(x)

⊤(f(x; θt)− y) + βN (θt − θ0)
]

= −2α

N
(K(x,x)(f(x; θt)− y) + βNJt(x)(θt − θ0))

= −2α

N
(K(x,x)(f(x; θt)− y) + βN (f(x; θt)− f(x; θ0)))

= −2α

N
(K(x,x) + βNI) f(x; θt) +

2α

N
(K(x,x)y + βNf(x; θ0))

This is a linear ODE, we can solve this:218

f(x; θt) = exp

(
−2α

N
t (K(x,x) + βNI)

)
f(x; θ0)

− N

2α
(K(x,x) + βNI)

−1

[
exp

(
−2α

N
t (K(x,x) + βNI)

)
− I

]
× 2α

N
(K(x,x)y + βNf(x; θ0))

Using A−1eA = eAA−1, and writing K(x,x)y + βNf(x, θ0) = (K(x,x) + βNI)f(x, θ0) +219

K(x,x)(y − f(x, θ0)), we get:220

f(x, θt) = exp

(
−2α

N
t(K(x,x) + βNI)

)
f(x, θ0)

+

[
I − exp

(
−2α

N
t(K(x,x) + βNI)

)]
(K(x,x) + βNI)−1(K(x,x)y + βNf(x, θ0))

= exp

(
−2α

N
t(K(x,x) + βNI)

)
f(x, θ0) +

[
I − exp

(
−2α

N
t(K(x,x) + βNI)

)]
f(x, θ0)

+

[
I − exp

(
−2α

N
t(K(x,x) + βNI)

)]
(K(x,x) + βNI)−1K(x,x)(y − f(x, θ0))

= f(x, θ0) +

[
I − exp

(
−2α

N
t(K(x,x) + βNI)

)]
(K(x,x) + βNI)−1K(x,x)(y − f(x, θ0)).

Now, we consider the dynamics for the neural network of an arbitrary set of test points x′:221

df(x′, θt)

dt
= −2α

N
βNf(x′, θt)−

2α

N
(K(x′,x)(f(x, θt)− y)− βNf(x′, θ0)) . (10)

7



This is a linear ODE with a time-dependent inhomogeneous term, we can solve it as follows:222

f(x′, θt) =e−
2α
N βN tf(x′, θ0)−

2α

N
e−

2α
N βN t

∫ t

0

e
2α
N βNu (K(x′,x)(f(x, θu)− y)− βNf(x′, θ0)) du

=e−
2α
N βN tf(x′, θ0) +

2α

N
e−

2α
N βN t

∫ t

0

e
2α
N βNudu (K(x′,x)y + βNf(x′, θ0))

− 2α

N
e−

2α
N βN tK(x′,x)

∫ t

0

e
2α
N βNuf(x, θu)du.

=e−
2α
N βN tf(x′, θ0) + e−

2α
N βN t 1

βN

(
e

2α
N βN t − 1

)
(K(x′,x)y + βNf(x′, θ0))

− 2α

N
e−

2α
N βN tK(x′,x)

∫ t

0

e
2α
N βNuf(x, θ0)du

− 2α

N
e−

2α
N βN tK(x′,x)

∫ t

0

e
2α
N βNu

[
I − exp

(
−2α

N
u(K(x,x) + βNI)

)]
du

× (K(x,x) + βNI)−1K(x,x)(y − f(x, θ0)).

= f(x′, θ0) +
1

βN
(1− e

2α
N βN t)K(x′,x)y − 1

βN
(1− e−

2α
N βN t)K(x′,x)f(x, θ0)

− 2α

N
e−

2α
N βN tK(x′,x)

[
N

2αβ
(e

2α
N βN t − 1)I − N

2αβ
K(x,x)

−1

(
exp

(
−2α

N
tK(x,x)

)
− I

)]
× (K(x,x) + βNI)−1K(x,x)(y − f(x, θ0))

= f(x′, θ0) +
1

βN
(1− e

2α
N βN t)K(x′,x)(y − f(x, θ0))

− 1

β
K(x′,x)

[
(1− e−

2α
N βN t)I −K(x,x)

−1

(
exp

(
−2α

N
t(K(x,x) + βNI)

)
− e−

2α
N βN tI

)]
× (K(x,x) + βNI)−1K(x,x)(y − f(x, θ0)).

Lastly, taking t→∞, we get223

f(x′, θ∞) = f(x′, θ0) +
1

βN
K(x′,x)(y − f(x, θ0))−

1

βN
K(x′,x)(K(x,x) + βNI)−1K(x,x)(y − f(x, θ0))

= f(x′, θ0) +
1

βN
K(x′,x)

(
I − (K(x,x) + βNI)−1K(x,x)

)
(y − f(x, θ0))

= f(x′, θ0) +K(x′,x)(K(x,x) + βNI)−1(y − f(x, θ0)),

we achieve the desired result and hence having a regularized gradient flow in the infinite-width limit224

is equivalent to inferring the mean posterior of a non-zero aleatoric noise NTK-GP.225

Lemma 3.2. Consider the computational process derived in Lemma 3.1. Define shifted labels ỹ and226

predictions f̃(x; θ∞) as follows::227

ỹ = y + f(x; θ0), f̃(x; θ∞) = f(x; θ∞)− f(x′; θ0).

Using these definitions, the posterior mean of a zero-mean Gaussian process can be computed as:228

f̃(x′, θ∞) = K(x′,x)(K(x,x) +NβNI)−1y. (6)

Proof. Firstly, substituting ỹ into y:229

f(x′; θ∞) = f(x′; θ0) +K(x′,x) (K(x,x) +NβNI)
−1

(ỹ − f(x; θ0))

= f(x′; θ0) +K(x′,x) (K(x,x) +NβNI)
−1

y

Now, using this new computational process, scaling it as f̃(x; θ∞):230

f̃(x; θ∞) = f(x; θ∞)− f(x′; θ0) = K(x′,x) (K(x,x) +NβNI)
−1

y,

achieving the desired zero-mean Gaussian process.231
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C Details of the Experimental Setup232

The Adam optimizer was used whenever our experiments needed gradient descent. A patience-based233

stopping rule was used where training was stopped if there was no improvement in the loss for 500234

epochs. The other hyperparameters are given in the table below.235

hyperparameter value
no of hidden layers 2
size of hidden layer 512
non-linearity softplus
softplus beta 87.09
scaling multiplier in the output 3.5
learning rate for network predicting mean 1e-4
learning rate for covariance predictor networks 5e-5

236

Moreover, we used trigonometric normalization, where an input point x is first scaled and shifted to237

lie between 0 and π, obtaining a normalized point x′. The point x′ is then represented with a vector238

[sin(x′), cos(x′)].239

D Details on Estimating The Covariance240

We now describe two of dealing with the term σ2MM⊤ in the covariance formula. Upper bounding241

the covariance is described in Section D.1, while estimating the exact covariance by fitting noisy242

targets is described in Section D.2.243

D.1 Upper Bounding the Covariance244

First, we can simply ignore the term in our estimator, obtaining an upper bound on the covariance.245

We now characterize the tightness of the upper bound, i.e. the magnitude of the term246

σ2MM⊤ = σ2K(x′,x)(K(x,x) + σ2I)−1(K(x,x) + σ2I)−1K(x′,x)
⊤
.

We do this is the following two lemmas.247

Lemma D.1. When x = x′, i.e. on the training set, we have248

σ2K(x′,x)(K(x,x) + σ2I)−1(K(x,x) + σ2I)−1K(x′,x)
⊤
≼ σ2I.

Proof. By assumption, K(x′,x) = K(x,x) = K. Denote the diagonalization of K with K =249

UΛU⊤. We have250

σ2K(x′,x)(K(x,x) + σ2I)−1(K(x,x) + σ2I)−1K(x′,x)
⊤

= σ2K(K+ σ2I)−2K⊤

= σ2UΛU⊤(UΛU⊤ + σ2I)−2UΛU⊤

= σ2UΛU⊤U(Λ+ σ2I)−2U⊤UΛU⊤

= σ2UΛ(Λ+ σ2I)−2ΛU⊤.

It can be seen that the diagonal entries of Λ(Λ+ σ2I)−2Λ are less than or equal one.251

The Lemma above, stated in words, implies that, on the training set, the variance estimates that come252

from using the upper bound (which doesn’t require us to fit noisy targets as in Section D.2) are off by253

at most σ2.254

We now give another Lemma, which characterizes the upper bound on arbitrary test points, not just255

the training set.256

Lemma D.2. Denote by λmax the maximum singular value of K(x′,x′). Then we have257 ∥∥∥σ2K(x′,x)(K(x,x) + σ2I)−1(K(x,x) + σ2I)−1K(x′,x)
⊤
∥∥∥
2
≤ 1

4
λmax.
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Proof. By Proposition 1.3.2 from the book by Bhatia, we have that258

K(x′,x)
⊤
= K(x,x)

1/2
CK(x′,x′)

1/2
,

where C is a contraction. Denote the diagonalization of K(x,x) with K(x,x) = UΛU⊤. We have259 ∥∥∥σ2K(x′,x)(K(x,x) + σ2I)−2K(x′,x)
⊤
∥∥∥
2

=
∥∥∥σ2K(x′,x′)

1/2
C⊤K(x,x)

1/2
(K(x,x) + σ2I)−2K(x,x)

1/2
CK(x′,x′)

1/2
∥∥∥
2

≤σ2λmax

∥∥∥K(x,x)
1/2

(K(x,x) + σ2I)−2K(x,x)
1/2

∥∥∥
2

=σ2λmax

∥∥∥UΛ1/2U⊤U(Λ+ σ2I)−2U⊤UΛ1/2U⊤
∥∥∥
2

=σ2λmax

∥∥∥Λ1/2(Λ+ σ2I)−2Λ1/2
∥∥∥
2
.

We can expand
∥∥Λ1/2(Λ+ σ2I)−2Λ1/2

∥∥
2

as maxi

{
λi

(λi+σ2)2

}
≤ 1

4σ2 , which gives the desired260

result.261

D.2 Exact Covariance by Fitting Noisy Targets262

In certain cases, we might not be satisfied with having an upper bound on the posterior covariance,263

even if it is reasonably tight. We can address these scenario by fitting additional predictor networks,264

trained on targets sampled from the spherical normal. Formally, we have265

σ2MM⊤ = MEϵ

[
ϵϵ⊤

]
M⊤,

where ϵ ∼ N (0, σ2I). We can take K ′ samples ϵ1, . . . , ϵK′ , obtaining266

MEϵ

[
ϵϵ⊤

]
M⊤ ≈ 1

K ′

∑
i

Mϵiϵ
⊤
i M

⊤ =
1

K ′

∑
i

(Mϵi)(Mϵi)
⊤, (11)

where the approximation becomes exact by the law of large numbers as K ′ → ∞. Since the267

multiplication Mϵi is equivalent to estimating the posterior mean with algorithm 1, we can perform268

the computation in equation (11) by gradient descent.269

E Computing The Partial SVD270

Our Algorithm 2 includes the computation of the partial SVD of the Jacobian:271

U,Σ← PARTIAL-SVD(Jθ0(x),K).272

We require an SVD which is partial in the sense that we only want to compute the first K singular273

values. For the regression experiment in this submission, we simply called the full SVD on the274

Jacobian and took the first K columns of U and the first K diagonal entries of Σ. This process is275

infeasible for larger problem instances.276

This can be addressed by observing that the power method for SVD computation [2] only requires277

computing Jacobian-vector products and vector-Jacobian products, which can be efficiently computed278

in deep learning frameworks without access to the full Jacobian. Another approach that avoids279

constructing the full Jacobian is the use of randomized SVD [9]. We leave the implementation of280

these ideas to further work.281

F Network Initialization282

We consider a neural network model f(x; θ), where θ ∈ Rp denotes the set of parameters. The model283

consists of L layers with dimensions {n0, n1, . . . , nL}, where n0 is the input dimension and nL is284

the output dimension. Note that, as we want to leverage the theory of wide networks, the number of285

neurons in the hidden layers, {n2, . . . , nL−1}, is large.286
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For each fully connected layer l, the weight matrix W (l) ∈ Rnl×nl−1 and the bias vector b(l) ∈ Rnl287

are initialized from a Gaussian distribution with mean zero and standard deviations σw and σb,288

respectively:289

W
(l)
ij ∼ N (0, σ2

w), b
(l)
j ∼ N (0, σ2

b ),

where σw and σb are fixed values set as hyperparameters during initialization (we use σw = σb = 1).290

The network uses a non-linear activation function σ : R → R with bounded second derivative,291

ensuring Lipschitz continuity. The output of each layer l is scaled by 1/
√
nl to maintain the292

appropriate magnitude, particularly when considering the infinite-width limit:293

a(l) = σ

(
1
√
nl

W (l)a(l−1) + b(l)
)
,

where a(l) is the output of layer l, and a(0) = x is the input to the network.294

The final layer output is further scaled by a constant factor cout to ensure that the overall network295

output remains within the desired range. Specifically, the output f(x; θ) is given by:296

f(x; θ) =
cout√
nL

W (L)a(L−1),

where cout is a predefined constant that ensures the final output is of the appropriate scale. In our297

model, cout is set to 3.5. For the hidden layers, we choose σ(·) to be Softplus − a smoothed version298

of ReLU. In this case, an additional scaling factor β is introduced to modulate the sharpness of the299

non-linearity:300

a(l) = σ

(
1
√
nl

W (l)a(l−1) + b(l);β

)
.

In our model, we set β = 87.09 for the Softplus activation to ensure the appropriate range of301

activation values. The process described above is standard. We followed closely the methodology302

provided in several works in the literature [12][15][8]. This initialization strategy ensures that the303

network’s activations and gradients do not explode or vanish as the number of neurons nl increases.304
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