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Abstract

Deep Neural Networks are vulnerable to adversarial examples in black-box settings, requiring
query-efficient attack methods. We propose PriSM (Prior-Guided Search Methods), which
systematically exploits two types of transferable surrogate information: decision boundary
geometry and loss landscape topography. We demonstrate their utility through comple-
mentary attacks: (1) TGEA leverages boundary geometry to initialize evolutionary op-
timization with surrogate evolved populations, maximizing attack success rates, and (2)
SGSA leverages loss topography via multi-scale saliency guidance to direct Square At-
tack’s (Andriushchenko et al., 2020) perturbations, minimizing query costs. Across MNIST,
CIFAR-10, and ImageNet, both methods achieve 30-60% query reductions compared to
uninformed baselines, while also being competitive with state of the art hybrid attacks.
Our evaluation reveals a strategic trade off: SGSA excels in query efficiency through local
exploitation, whereas TGEA maximizes success rates via global exploration. Our compre-
hensive evaluation also demonstrates that different types of surrogate information require
matched exploitation strategies, providing practical guidance for query-efficient black-box
attacks.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success across critical domains, including au-
tonomous vehicles, biometric authentication, and medical diagnostics (Krizhevsky et al., 2012; He et al.,
2016). However, their susceptibility to adversarial examples—subtly perturbed inputs that cause misclas-
sification, poses significant security risks (Szegedy et al., 2014; Goodfellow et al., 2015; Carlini & Wagner,
2017).

In real-world deployments, attackers often operate under black-box constraints, where they lack access to
model internals and can only query the model for predictions (Papernot et al., 2017). This setting presents
two key challenges: (1) achieving high attack success rates without gradient information, and (2) minimizing
the number of queries to evade detection and reduce computational costs (Chen et al., 2017; Ilyas et al.,
2018). Existing approaches: transfer-based, query-based, and hybrid methods face a fundamental trade-off:
transfer attacks require zero queries but suffer from low success rates, while query-based attacks achieve
high success at the cost of thousands of queries per sample (Papernot et al., 2017; Dong et al., 2018; Chen
et al., 2017; Andriushchenko et al., 2020; Huang & Yu, 2022). Opportunities remain to more fully leverage
surrogate model information to enhance both query efficiency and attack success.

In this work, we introduce PriSM (Prior-Guided Search Methods), a novel framework that strategically
incorporates surrogate-derived guidance in different ways in order to enhance black-box adversarial searches
more effectively. Our key contributions are:

• TGEA: A transfer-guided evolutionary attack with advanced initialization strategies (TASI and
SEGI) that warm-start CMA-ES optimization (Hansen, 2006), delivering the highest success rates
on complex models.
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• SGSA: A saliency-guided enhancement to the Square Attack (Andriushchenko et al., 2020) that
uses multi-scale gradient maps from surrogates to intelligently inform perturbation placement and
sizing, achieving state-of-the-art query efficiency.

• Intuitive Analysis: Intuitive justifications showing that SGSA exploits local loss geometry trans-
ferability, while TGEA leverages global decision boundary correlations.

Our results demonstrate that PriSM offers a strategic choice between minimizing query costs and maximizing
attack success. Both SGSA and TGEA reduce queries by up to 50% over random baselines while achieving
equal or greater success rates. This work advances the understanding of prior-guided paradigms in adversarial
machine learning, providing practical tools for robustness evaluation.

2 Related Work

Black-box adversarial attacks balance success rates and query costs through three paradigms: transfer-
based, query-based, and hybrid approaches, with recent advancements incorporating saliency guidance and
evolutionary optimization.

Transfer-based attacks exploit cross-model transferability by generating perturbations on surrogate models
trained on similar data distributions (Papernot et al., 2017; Liu et al., 2017). Efforts to boost transferability
include momentum integration (Dong et al., 2018), input diversity (Xie et al., 2019), and ensemble meth-
ods (Liu et al., 2017). Although these require no queries to the target, their effectiveness is often limited
against robust defenses (He et al., 2017).

Query-based attacks iteratively refine perturbations via direct model queries. Score-based methods like
SimBA (Guo et al., 2019) and Square Attack (Andriushchenko et al., 2020) use confidence scores, with
Square Attack leading benchmarks such as BlackboxBench (Zheng et al., 2025). Decision-based approaches
like Boundary Attack (Brendel et al., 2018) rely solely on hard labels but incur higher query demands (Chen
& Gu, 2020). Saliency-guided variants prioritize perturbations in salient regions (Dai et al., 2023; Soor et al.,
2025).

Hybrid attacks combine these paradigms, using surrogate priors to initialize or guide query-based searches.
Examples include TAGA (Huang & Yu, 2022), which refines transfer seeds via genetic algorithms, and
Hybrid Batch Attacks (Suya et al., 2020), which leverage local surrogates for scalable generation. Recent
work enhances transferability through meta-learning (Fu et al., 2022), ensemble surrogates (Cai et al., 2022),
and saliency integration (Wang et al., 2024; Huang & Kong, 2022). Most recently, PBO (Cheng et al., 2024)
introduced Bayesian optimization with a learned function prior, achieving state-of-the-art query efficiency
on standard models by exploiting loss surface smoothness.

Evolutionary algorithms navigate high dimensional spaces without gradients (Su et al., 2019; Alzantot et al.,
2019). CMA-ES (Hansen, 2006) adapts search distributions via covariance updates, showing promise in
adversarial contexts, though random initializations can lead to slow convergence (Qiu et al., 2021; Kuang
et al., 2019).

Despite these advances, existing hybrids often underutilize surrogate priors for continuous guidance or so-
phisticated warm-starts. Our PriSM framework addresses this through SGSA, which embeds multi-scale
saliency from surrogates into every Square Attack query decision, and TGEA, which enhances evolutionary
hybrids with surrogate-evolved initializations (e.g., SEGI), achieving up to 8.24% higher success rates on
robust models while maintaining low query costs.

3 Background

3.1 Adversarial Attacks

Let fθ : X → RK denote a deep neural network classifier with parameters θ, mapping input x ∈ X to logits
over K classes. For a clean input x with true label y, the model’s prediction is ŷ = arg maxk fθ(x)k.
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An adversarial example x′ = x + δ is a perturbed input that causes misclassification while remaining per-
ceptually similar to x. The perturbation δ is typically constrained by ∥δ∥p ≤ ϵ, where p ∈ {0, 2, ∞} and ϵ
controls the perturbation budget.

White-box attacks. With full access to model parameters and gradients, white-box attacks like PGD
(Madry et al., 2019) iteratively optimize:

xt+1 = Πϵ(xt + α · sign(∇xL(fθ(xt), y))) (1)

where Πϵ projects onto the ℓp ball of radius ϵ, and L is the attack loss (e.g., cross-entropy).

Black-box attacks. In black-box settings, attackers lack gradient access and can only query the model.
These attacks are categorized by query type:

• Score-based: Access to confidence scores/logits
• Decision-based: Access only to predicted labels
• Transfer-based: Zero queries, relying on adversarial transferability

3.2 Square Attack

Square Attack (Andriushchenko et al., 2020) is a score-based black-box attack that does not rely on local
gradient information. It selects localized square-shaped updates at random positions such that the pertur-
bation is situated approximately at the boundary of the feasible set. At iteration i, it randomly samples
a square region depending on the current square size h(i). The algorithm minimizes the margin-based loss
L(f(x̂), y) = fy(x̂) − maxk ̸=y fk(x̂). The update rule for the perturbation δ is defined as:

δi+1 =
{

Project(δi + νi) if L(fθ(x + Project(δi + νi)), y) < L(fθ(x + δi), y)
δi otherwise

(2)

where the update νi is sampled from a discrete distribution ν ∈ {−2ϵ, 2ϵ}d within the square region, ensuring
the perturbation stays at the corners of the ℓ∞-ball. The Project function ensures the adversarial example
remains within the valid ϵ-ball bound:

Project(z) = min(max(z, x − ϵ, 0), x + ϵ, 1) (3)

This operation constrains the perturbed input to the intersection {z ∈ Rd : ∥z − x∥∞ ≤ ϵ} ∩ [0, 1]d

3.3 CMA-ES for Black-Box Optimization

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2006) is a gradient-free optimizer
that adapts a multivariate normal search distribution. At generation g, it samples λ candidate solutions:

x
(g)
i ∼ N (m(g), (σ(g))2C(g)), i = 1, . . . , λ (4)

where m(g) is the mean vector, σ(g) is the step size, and C(g) is the covariance matrix.

The mean is updated using the µ best individuals:

m(g+1) =
µ∑

i=1
wix

(g)
i:λ (5)

where xi:λ denotes the i-th best solution and wi are recombination weights.

The covariance matrix adapts to the local loss landscape through rank-one and rank-µ updates, enabling
efficient search in high-dimensional spaces without gradient information. However, CMA-ES suffers from
slow convergence when initialized randomly, particularly for adversarial attack objectives.
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3.4 Surrogate Models and Transferability

A surrogate model fs is a white-box model accessible to the attacker, typically trained on similar data as the
target model ft. Adversarial transferability refers to the phenomenon where adversarial examples crafted on
fs often fool ft:

Pr[ft(x + δs) ̸= y] > 0 where δs = arg max
∥δ∥p≤ϵ

L(fs(x + δ), y) (6)

Transferability arises from models learning similar decision boundaries on similar data distributions (Paper-
not et al., 2017). However, transfer success varies significantly with model architecture, training procedure,
and robustness (Huang et al., 2017).

Saliency maps. Gradient-based saliency maps indicate input region importance:

S(x) = ∥∇xL(fs(x), y)∥2 (7)

High saliency regions are more sensitive to perturbations. While saliency is model-specific, relative im-
portance patterns often transfer across models (Simonyan & Zisserman, 2015), enabling surrogate-guided
attacks.

4 Methodology

4.1 Motivation

In this work, we investigate how surrogate model information can be systematically exploited to improve
query efficiency in black-box adversarial attacks. While transfer-based attacks require zero queries but
suffer from low success rates, and query-based attacks achieve high success at the cost of thousands of
queries, hybrid approaches that strategically leverage surrogate priors remain underexplored. To address
this gap, we propose two methods that demonstrate the importance of matching surrogate information
types to compatible search algorithms through the unifying principle of structural alignment, where the
dimensionality and nature of the surrogate prior matches the operational mechanics of the black-box search
algorithm. This principle guides our methodological decisions, ensuring that distinct types of transferable
priors naturally align with specific optimization paradigms. More specifically, we focus on two transferable
properties that provide information about the attack surface:

Decision Boundary Geometry. Models trained on similar data distributions learn correlated decision
boundaries. Adversarial examples lying near a surrogate’s decision boundary are statistically enriched near
the target’s boundary (Section 4.2.4). This geometric correlation provides spatial information indicating
which regions of input space are promising for adversarial search.

Loss Landscape Topography. Gradient-based saliency maps reveal input regions where the loss function
is most sensitive to perturbations. Empirical evidence shows that these sensitivity patterns transfer across
architecturally similar models, even when exact gradient vectors differ. This topological information provides
directional guidance, indicating which perturbations are most likely to increase loss.

We focus on these properties because they represent fundamentally different aspects of transferability that
is directly exploited in query-based attacks. Boundary geometry provides information about the global
structure of the adversarial space where misclassification regions exist, which is critical for initializing search
algorithms effectively. Loss topography provides information about the local sensitivity landscape, which in-
put regions are most vulnerable to perturbation, which is essential for guiding iterative refinement. Together,
they span the spectrum from global positioning to local gradient information, enabling complementary ex-
ploitation strategies for query-efficient attacks.

We incorporate these properties into SOTA query-based attacks through two distinct approaches: TGEA
(Section 4.2.1) leverages boundary geometry to warm-start evolutionary optimization with surrogate-evolved
populations, achieving up to 98% attack success rates while reducing queries by 30–60% compared to random
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initialization. SGSA (Section 4.3.3) leverages loss topography to guide Square Attack’s random perturbations
toward salient regions, achieving query reductions of 30–50% while maintaining competitive success rates.
TGEA and SGSA are operationally independent algorithms, not sequential steps in a pipeline. However,
they are strategically complementary, targeting different transferable properties at different search scales.

Ultimately, these methods demonstrate that understanding what transfers enables principled design of how
to exploit it. By exploring two distinct types of transferable information, we demonstrate that effective
exploitation depends on matching the information structure to the search algorithm’s operational charac-
teristics. Thus, this framework not only achieves substantial query reductions across diverse threat models,
but also provides a foundation for future work to identify and exploit additional transferable properties in
black-box adversarial settings.

4.2 Transfer-Guided Evolutionary Attack (TGEA)

4.2.1 Overview

Traditional evolutionary attacks on black-box models have been widely used in the literature (Qiu et al., 2021;
Ilyas et al., 2018; Alzantot et al., 2019). They rely on randomly initialized populations, which we empirically
demonstrate can lead to relatively slower convergence and higher query costs. This is particularly problematic
in scenarios where query budgets are limited or the decision boundaries of the target model are complex.
To address these limitations, we introduce the Transfer-Guided Evolutionary Attack (TGEA), a
framework that leverages information from a surrogate model to initialize the population of an evolutionary
algorithm, which acts as a powerful global search method. By using transfer-based priors, we demonstrate
that TGEA improves the efficiency of the attack process and significantly reduces query complexity.

The core idea of TGEA is to build upon the hybrid attack paradigm by bridging the gap between transfer
learning and evolutionary optimization. As established by (Suya et al., 2020), this approach uses high-quality
adversarial examples generated on a surrogate model to provide a "warm start" for the attack on the black-
box model. However, while (Suya et al., 2020) typically transfers a single adversarial candidate to initialize
a local gradient estimator (e.g., NES or AutoZOOM), TASI and SEGI utilize surrogates to construct a
diverse population of candidates. By estimating both the mean and the covariance of these candidates, our
method warm-starts the CMA-ES search distribution rather than just a single trajectory. This captures the
structural geometry of the adversarial subspace, effectively defining a directed search cone rather than a
single point; this population-based alignment smooths out local irregularities, allowing the optimizer to step
over non-transferable traps and converge toward the global optimum.

Single Point
Initialization CMA-ES

Convergence

Global
Optimum

Clean Input
Transfer (Local)
TGEA Init.
Random Init.
Global Opt.

Figure 1: Schematic illustration of TGEA’s initialization strategy. TGEA’s search cone (green) uses surrogate
evolved populations to initialize CMA-ES, enabling convergence to the global optimum (gold), unlike single-
point transfer attacks (blue) that get trapped in local optima or random initialization (brown) that lacks
guidance.
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4.2.2 Population Initialization Strategies

Transfer-Attack Seeded Initialization (TASI). TASI generates diverse initial candidates by applying
multiple types of attacks to the surrogate model, effectively serving as a mechanism to combine multiple
powerful attack strategies into a single, unified initialization pool. For a clean input x, we construct a
diverse set of k transfer attacks A = {A1, A2, . . . , Ak} (e.g., PGD (Madry et al., 2019), Square Attack
(Andriushchenko et al., 2020), Boundary Attack (Brendel et al., 2018)).

For each attack Ai, we generate a base adversarial example xadv
i = Ai(x, fs) and create q local variants by

adding Gaussian noise:
xi,j = xadv

i + N (0, σ2I), j = 1, . . . , q (8)

The final population is P0 = {xi,j}i=1,...,k;j=1,...,q with |P0| = N .

Surrogate-Evolved Genetic Initialization (SEGI). SEGI employs a meta-optimization process, running
a Genetic Algorithm (GA) entirely on the surrogate model to evolve a high-quality initial population. Starting
from a random population of size N , we evolve it for G generations using a surrogate-specific fitness function:

Fs(δ) = αs · max
j ̸=y

fs,j(x + δ) − γs · fs,y(x + δ) + δ · Dcentroid(δ) + Rdiv(P ) (9)

where fs,j denotes the j-th class score from surrogate fs, and Rdiv is a diversity penalty:

Rdiv(P ) = −ϵ · 1
|P |

∑
p∈P

MSE(δ, p) (10)

The term Dcentroid(δ) guides the search in the latent space:

Dcentroid(δ) = ∥z(x + δ) − cy∥2 − min
i̸=y

∥z(x + δ) − ci∥2 (11)

where z(·) is the penultimate layer embedding and ci is the centroid of class i in the latent space (computed
on the surrogate). This encourages the GA to maintain population diversity and steer candidates toward
incorrect class clusters, preventing premature convergence.

After G generations, we select the top N individuals by fitness, add small Gaussian noise to each, and use
them to initialize CMA-ES on the target model.

Our fitness functions build upon the frameworks established in (Huang & Yu, 2022) and (Qiu et al., 2021),
but extend them by assigning adjustable weights to each component term. These weights were empirically
calibrated through iterative experimentation to optimize overall performance. It is important however to
note that unlike (Huang & Yu, 2022) which uses standard genetic operators, our TGEA employs CMA-ES
optimization.

4.2.3 CMA-ES Refinement

Given the initialized population P0, we apply CMA-ES to optimize the target model’s loss. The fitness
function for the target model is:

Ft(δ) = αt · max
j ̸=y

ft,j(x + δ) − γt · ft,y(x + δ) (12)

We deliberately distinguish the weighting parameters (αt, γt) from those used in the surrogate stage (αs, γs)
to prioritize exploitation of the target model’s specific decision boundary over the exploration-heavy objective
used during initialization. View Appendix B1 for ablations. CMA-ES iteratively updates the mean vector
m(t), step size σ(t), and covariance matrix C(t) as described in (Hansen, 2006).
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4.2.4 Design Rationale and Intuitive Motivation

Decision Boundary Transferability. TGEA leverages the empirically observed phenomenon that models
trained on similar data learn correlated decision boundaries (Papernot et al., 2017; Liu et al., 2017). We
define the near-boundary region with margin threshold τ as:

Bτ
f = {x : |margin(f(x))| < τ} (13)

where margin(f(x)) = fy(x) − maxj ̸=y fj(x).

Prior work suggests that adversarial examples near the decision boundary of a surrogate model are often
also near the boundary of similar target models (Tramèr et al., 2017). While the exact enrichment factor
varies with architecture similarity, we qualitatively expect:

P(x ∈ Bϵ
t | x ∈ Bϵ

s) > P(x ∈ Bϵ
t) (14)

Expected Query Reduction. By initializing CMA-ES with examples from Bϵ
s, we essentially hypothesize

that the search starts closer to Bϵ
t compared to random initialization. Since CMA-ES convergence depends

on the initial distance to the optimum (Hansen & Ostermeier, 2001), transfer-based initialization should
reduce the number of queries required.

To validate this hypothesis, we compare queries required by TGEA versus random initialization across our
experiments. Our results show that TGEA consistently requires fewer queries than random CMA-ES (Tables
1-4), with reductions ranging from 30-60% depending on the dataset and model architecture.

4.3 Saliency-Guided Square Attack (SGSA)

4.3.1 Motivation

The Square Attack (Andriushchenko et al., 2020) achieves state of the art query efficiency through random
square-shaped perturbations that align with CNN inductive biases, specifically exploiting the local spatial
correlations learned by convolutional architectures. By perturbing contiguous square regions rather than
individual pixels, Square Attack naturally targets the receptive field structures that CNNs are sensitive to,
making it highly effective in black-box settings. However, despite this architectural alignment, its purely
random search strategy treats all spatial locations uniformly, allocating queries without regard to their
potential impact on model predictions. This leads to significant query waste on irrelevant or low-sensitivity
image regions such as uniform backgrounds, occluded areas, or regions far from decision boundaries that
contribute minimally to inducing misclassification.

We empirically demonstrate that this limitation is addressed by incorporating surrogate-derived saliency
maps to provide spatial guidance for the attack. Specifically, gradient-based saliency maps computed on an
accessible surrogate model identify regions where the loss function exhibits high sensitivity to input pertur-
bations. By leveraging the empirical observation that such high-gradient regions often transfer across archi-
tecturally similar models, we target Square Attack’s random search toward sensitive areas. This approach
preserves Square Attack’s strengths while intelligently focusing computational resources on perturbations
most likely to succeed, thereby further reducing query costs without sacrificing attack success rates.

4.3.2 Hybrid Guidance Map Generation

SGSA constructs a dynamic vulnerability heatmap S(x) by combining multi-scale saliency and attention
mechanisms from the surrogate model.

Multi-Scale Saliency. We compute the gradient magnitude of the surrogate loss with respect to the input
at multiple scales S = {s1, s2, s3}:

S
(s)
grad(x) = ∥∇xL(fs(x), y)∥2 (15)

Smulti(x) = 1
|S|

∑
s∈S

Upsample(Smooth(S(s)
grad(x))) (16)

7



Under review as submission to TMLR

The multi-scale approach captures different levels of feature abstraction. By incorporating downsampled
scales, we effectively apply a low-pass filter to the gradient information, guiding the attack towards structural,
low frequency vulnerabilities that are more transferable across architectures than high frequency noise (Ilyas
et al., 2018). Specifically, high frequency gradient features (pixel level noise, texture artifacts) are model
specific, while low frequency structural patterns (object boundaries, semantic region importance) represent
universal vulnerability patterns shared across architectures. Downsampling suppresses model specific noise
while retaining transferable structural signals; subsequent upsampling restores spatial resolution for precise
perturbation placement.

Attention Map Integration. We optionally incorporate an attention mechanism A(x) from the surrogate:

Shybrid(x) = (1 − β) · Smulti(x) + β · A(x) (17)

where β = 0.3 balances gradient sensitivity and model attention.

Temporal Smoothing. As the adversarial example evolves, we update Shybrid periodically and apply
exponential moving average:

S(t+1) = λ · S(t) + (1 − λ) · Shybrid(x(t)) (18)

with λ = 0.9 to maintain stability while adapting to perturbation changes.

(a) MNIST (b) CIFAR-10 (c) ImageNet

Figure 2: Examples of saliency maps generated from surrogate models (left: original, right: map). Brighter
regions indicate higher model sensitivity and thus represent more promising areas to attack.

4.3.3 Guided Perturbation Placement and Sizing

At iteration t, SGSA selects the square location and size based on S(t).

Probabilistic Location Sampling. We first normalize S(t) to create a valid probability mass function
over pixel locations:

π
(t)
i,j =

S
(t)
i,j∑

u,v S
(t)
u,v

(19)

We then sample the top-left corner (r, c) of the square from this distribution:

(r, c) ∼ Categorical(π(t)) (20)

This focuses perturbations on high-saliency regions.
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Surrogate Saliency
Target Saliency

Figure 3: Comparison of sampling strategies for black-box adversarial attacks. Left: Uniform sampling allo-
cates equal probability across all spatial locations via a uniform distribution, characteristic of random search
methods like Square Attack. Right: Saliency-guided sampling uses a probability distribution concentrated
on high-gradient regions identified through surrogate model gradients (warm surface) that correlate with
target model vulnerabilities (blue wireframe), enabling more efficient perturbation placement.

Adaptive Size Adjustment. The square side length h(t) is computed via an inverse relationship with local
saliency:

h(t) = h
(t)
base · saliency_factor(r, c) (21)

where:

saliency_factor(r, c) = 1
1 + αscale · S

(t)
r,c

(22)

High saliency leads to smaller, precise perturbations; low saliency to larger, exploratory ones.

Low Saliency
Large h(t)

High Saliency
Small h(t)

Figure 4: SGSA adaptive sizing mechanism. The saliency map shows gradient magnitude from the surrogate
model. Large perturbation squares (cyan, dashed) are placed in low-saliency regions for exploration, while
small squares (green, dashed) target high-saliency regions for precise attacks.

4.3.4 Fallback Mechanism

To ensure robustness against poor transferability, SGSA includes dual fallback triggers:

• Stagnation-based: If loss does not improve for Tstag iterations, revert to random search for the
next Trand iterations.

• Stochastic: With probability prand, perform a random square placement to escape local optima.
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4.3.5 Design Rationale and Empirical Validation

Motivation from White-Box Attacks. The core principle of SGSA, prioritizing perturbations in high-
gradient regions, mirrors the fundamental mechanism of gradient-based white-box attacks. Methods like
PGD and FGSM explicitly compute:

δ = ϵ · sign(∇xL(f(x), y)) (23)

which concentrates perturbation magnitude where gradients are largest, i.e., where the loss is most sensitive
to input changes. SGSA extends this principle to the black-box setting by using surrogate gradients to guide
random search.

Local Gradient Transferability Hypothesis. SGSA leverages multi-scale saliency patterns from
surrogate models to guide perturbation placement. Let Ss(x)i = ∥∇xi

L(fs(x), y)∥2 and St(x)i =
∥∇xiL(ft(x), y)∥2 denote gradient magnitude saliency maps for surrogate and target models, respectively.

We measured the Spearman rank correlation between surrogate (ResNet18) and target model multi-scale
saliency maps on 1,000 correctly classified CIFAR-10 samples:

Measured Correlations:

• CIFAR-10 standard models: ρ = 0.68 ± 0.16 (InceptionV3), ρ = 0.65 ± 0.18 (VGG16)

• CIFAR-10 robust models: ρ = 0.41 ± 0.20 (WideResNet), ρ = 0.39 ± 0.19 (WRN-94-16)

Multi-scale averaging yields 55-63% improvement over single-scale for standard models and 160% for robust
models (all p < 0.001). The moderate correlations (ρ = 0.39-0.68) demonstrate that saliency patterns
transfer sufficiently to guide black-box attacks, with standard models showing stronger correlation than
adversarially trained models due to their distinct loss landscapes (Qin et al., 2019).

Query Efficiency Through Guided Search. SGSA prioritizes perturbations in high-saliency regions,
which we expect to be more effective for causing misclassification. To understand the potential query savings,
consider a simplified model where:

• High-saliency regions H comprise fraction α of the input space

• Due to correlation ρ, SGSA places perturbations in effective regions with higher probability

• Perturbations in H are λ times more effective than in low-saliency regions L

Under these assumptions, we can heuristically approximate the expected query reduction as:

E[QSGSA] ≈ 1
1 + ρα(λ − 1) · E[QSquare] (24)

While this is an oversimplification (it assumes binary effectiveness, independence, and perfect guidance),
it provides intuition for why guidance helps. For typical conservative values, α = 0.2 (CNN saliency con-
centrates on roughly 20% of spatial locations corresponding to object boundaries), ρ = 0.65 (our measured
surrogate target correlations from Section 4.3.5), and λ = 3 (reflecting the expectation that perturbations in
high saliency regions are significantly more effective at inducing misclassification than changes to the back-
ground) the model predicts approximately 21% query reduction. While our empirical results show greater
reductions (30-50% in Tables 4 and 5), this simplified model provides intuition for the fundamental mech-
anism: by concentrating search on regions where surrogate gradients transfer, SGSA reduces the expected
queries needed to find successful perturbations.

Adaptive Sizing Rationale. Our adaptive sizing rule h(t) = h
(t)
base/(1 + αscale · S

(t)
r,c) is motivated by the

intuition that:

• In high-saliency regions (steep local loss), smaller perturbations provide more precise control

• In low-saliency regions (flatter loss), larger perturbations enable faster exploration
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5 Experimental Evaluation

5.1 Experimental Setup

5.1.1 Datasets and Models

We evaluate our framework on three datasets of increasing complexity to test scalability and robustness:

• MNIST: 10,000 grayscale 28×28 handwritten digit images. We target two models: Model A (CNN
architecture from (Tramèr et al., 2020)) and Model B (architecture from (Carlini & Wagner, 2017)),
both trained in-house. The surrogate is a lightweight 2-layer CNN.

• CIFAR-10: 10,000 RGB 32 × 32 images across 10 classes. We evaluate on standard pretrained
models: InceptionV3 (Szegedy et al., 2016) and VGG16 (Simonyan & Zisserman, 2015). To assess
performance against defenses, we test on adversarially trained models: WideResNet (Carmon et al.,
2019) and WRN-94-16 (Bartoldson et al., 2024), the latter being the current state-of-the-art on
RobustBench (Croce et al., 2021). The surrogate is ResNet18 (He et al., 2016). Non robust model
weights used are from (Phan, 2021).

• ImageNet: 1,000 validation images from ImageNet-mini (Figotin, 2019) (224 × 224 RGB). Targets
include DenseNet-121 (Huang et al., 2018) and EfficientNet-B1 (Tan & Le, 2019). The surrogate is
ResNet18.

5.1.2 Attack Configuration

We benchmark PriSM against state-of-the-art methods categorized in Table 1. All attacks operate under the
L∞ norm. We set perturbation budgets ϵ ∈ {0.2, 0.3} for MNIST, {0.1, 0.2} for CIFAR-10, and {0.05, 0.1}
for ImageNet. The maximum query budget is fixed at Qmax = 1000. We sample ∼1000 correctly classified
images per dataset.

Table 1: Summary of evaluated black-box attack methods.

Method Type Description
TGEA-TASI (Ours) Hybrid Transfer attacks + CMA-ES
TGEA-SEGI (Ours) Hybrid GA-evolved surrogate + CMA-ES
SGSA (Ours) Hybrid Saliency-Guided Square Attack
Random CMA-ES Score-based Randomly initialized CMA-ES
Square Attack (Andriushchenko et al., 2020) Score-based Random square perturbations
SimBA (Guo et al., 2019) Score-based Coordinate-wise random search
HSJA (Chen et al., 2020) Decision-based HopSkipJumpAttack boundary search
PBO (Cheng et al., 2024) Hybrid Bayesian optimization with function prior

5.2 Results

5.2.1 MNIST

Tables 2 and 3 summarize performance on MNIST. The simple dataset structure favors local search strate-
gies. SGSA achieves the highest Attack Success Rate (ASR) of 99.81–100% while maintaining low query
costs (54.37–181.80 queries). PBO demonstrates exceptional query efficiency (as low as 14.15 queries) but
occasionally trails SGSA in success rate on Model A. TGEA variants show competitive ASR but higher
query costs, as global optimization is less critical for this lower-dimensional manifold.
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Table 2: ASR and AQ on MNIST (ℓ∞, ϵ = 0.2).

Model A Model B
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 65.76 250.05 82.11 197.74
TGEA-SEGI 47.15 255.86 60.34 272.78
Random 37.77 519.96 51.37 556.02
Square 87.86 239.38 91.79 264.05
SGSA 89.89 177.48 93.98 181.80
SimBA 59.32 306.05 69.07 265.60
HSJA 20.23 431.29 26.48 483.21
PBO 70.39 25.36 89.05 14.15

Table 3: ASR and AQ on MNIST (ℓ∞, ϵ = 0.3).

Model A Model B
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 91.76 130.24 97.13 74.94
TGEA-SEGI 83.69 164.57 90.78 125.23
Random 76.85 398.30 88.39 357.62
Square 99.93 91.45 100.00 97.73
SGSA 99.81 54.37 100.00 56.68
SimBA 94.14 199.98 81.50 151.06
HSJA 72.09 407.43 76.04 398.73
PBO 97.44 99.75 99.70 67.30

5.2.2 CIFAR-10

Results for standard CIFAR-10 models are presented in Tables 4 and 5. A strategic trade off emerges:
TGEA-SEGI achieves the highest ASR (up to 98.36%) among evolutionary methods, proving effective for
maximizing attack success. PBO excels in query efficiency, achieving the lowest AQ with high ASR.

Table 4: ASR and AQ on CIFAR-10 (ℓ∞, ϵ = 0.1).

InceptionV3 VGG16
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 89.69 120.75 88.03 180.28
TGEA-SEGI 91.43 105.26 89.80 127.82
Random 85.27 148.62 83.29 198.42
Square 88.20 76.64 81.56 91.70
SGSA 85.64 53.47 82.85 77.62
SimBA 75.89 105.63 76.33 163.42
HSJA 56.39 368.84 40.07 442.09
PBO 88.69 52.86 87.80 47.95

Table 5: ASR and AQ on CIFAR-10 (ℓ∞, ϵ = 0.2).

InceptionV3 VGG16
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 97.10 53.82 97.20 59.73
TGEA-SEGI 98.36 27.95 98.19 34.80
Random 95.56 78.30 92.61 80.85
Square 94.39 38.15 91.33 41.95
SGSA 93.04 30.21 91.04 34.05
SimBA 77.92 81.80 77.94 104.60
HSJA 92.67 240.01 77.71 255.88
PBO 98.67 16.87 99.43 19.33

Robust Models. Tables 6 and 7 evaluate attacks on adversarially trained models. Typically, these models
mask gradients, making attacks harder. However, we observe a distinct phenomenon where SGSA outper-
forms baselines significantly. We hypothesize it is because adversarial training creates "perceptually aligned"
gradients, meaning the gradient of a robust surrogate is more interpretable and structurally correlated with
the target model than that of a non robust model (Tsipras et al., 2019). SGSA possibly leverages this
restored correlation to break the traditional efficiency-success trade off, achieving the highest ASR (61.24%)
on the SOTA robust model WRN-94-16.

Table 6: ASR and AQ on robust models (ℓ∞, ϵ =
0.1).

WideResNet WRN-94-16
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 40.23 135.09 32.17 124.62
TGEA-SEGI 37.08 140.98 31.27 178.06
Random 38.11 143.05 31.58 189.83
Square 42.09 115.60 32.92 174.91
SGSA 49.38 52.78 37.99 120.44
SimBA 41.95 82.14 30.12 195.92
HSJA 38.62 77.46 26.32 73.93
PBO 45.52 22.03 31.58 124.72

Table 7: ASR and AQ on robust models (ℓ∞, ϵ =
0.2).

WideResNet WRN-94-16
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 60.82 181.41 55.71 225.07
TGEA-SEGI 59.32 178.22 52.33 225.51
Random 60.52 178.84 54.65 254.03
Square 65.07 116.10 60.65 151.02
SGSA 68.20 67.94 61.24 123.70
SimBA 51.15 125.47 46.20 293.47
HSJA 48.02 123.61 29.19 54.89
PBO 69.16 92.25 62.11 141.93
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5.2.3 ImageNet

Tables 8 and 9 summarize performance on ImageNet models. SGSA achieves superior query efficiency on
DenseNet (55.85-75.91 queries) while TGEA-SEGI maximizes ASR on EfficientNet (76.88-89.10%), demon-
strating scalability to high dimensional inputs.

Table 8: ASR and AQ on ImageNet (ℓ∞, ϵ = 0.05).

DenseNet EfficientNet
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 75.43 99.05 72.73 188.89
TGEA-SEGI 72.50 100.08 76.88 193.62
Random 72.50 98.79 76.88 182.77
Square 82.01 116.57 69.16 137.35
SGSA 85.59 75.91 72.87 102.31
SimBA 66.77 53.04 50.55 64.33
HSJA 42.86 77.33 18.10 116.00
PBO 71.43 116.60 61.21 167.55

Table 9: ASR and AQ on ImageNet (ℓ∞, ϵ = 0.1).

DenseNet EfficientNet
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 88.63 128.01 83.82 158.75
TGEA-SEGI 89.47 111.25 89.10 148.42
Random 89.10 110.78 86.84 130.38
Square 91.84 79.93 84.71 118.79
SGSA 93.99 55.85 86.99 89.56
SimBA 71.47 79.29 55.06 97.45
HSJA 30.16 98.23 28.65 171.39
PBO 93.33 100.67 81.87 167.02

To assess the generalization of our methods beyond convolutional neural networks, we extend our evaluation
to newer, Vision Transformer architectures. We perform experiments on two representative models: the
standard Vision Transformer (ViT-B/16) (Dosovitskiy et al., 2021) and the Data-efficient Image Transformer
(DeiT-S) (Touvron et al., 2021). These experiments demonstrate that priors derived from CNN surrogates
(spatial saliency and decision boundary geometry) can effectively transfer to the distinct loss landscapes of
transformer-based models.

Table 10: ASR and AQ on ViT/DeiT (ℓ∞, ϵ = 0.05).

ViT-B/16 DeiT-S
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 64.26 215.30 61.36 202.65
TGEA-SEGI 55.05 241.17 57.33 275.49
Random 53.42 248.62 56.67 267.22
Square 56.93 131.16 62.99 132.11
SGSA 61.59 111.10 70.10 105.14
SimBA 32.63 240.42 47.21 243.12
HSJA 24.82 180.42 42.13 201.32
PBO 53.15 193.10 63.25 191.50

Table 11: ASR and AQ on ViT/DeiT (ℓ∞, ϵ = 0.1).

ViT-B/16 DeiT-S
Method ASR ↑ AQ ↓ ASR ↑ AQ ↓
TGEA-TASI 77.15 193.95 79.16 197.41
TGEA-SEGI 74.22 208.98 75.10 178.05
Random 72.11 219.93 73.43 198.04
Square 69.86 139.33 82.25 124.67
SGSA 75.74 110.40 87.90 104.52
SimBA 43.24 221.42 46.21 243.12
HSJA 47.91 193.32 36.42 202.42
PBO 62.61 186.51 72.23 189.13

5.3 Sensitivity Analysis and Component Validation

To demonstrate the robustness of our hyperparameters and identify optimal configurations, we conducted
a systematic sensitivity analysis for both attacks. We present the key findings here, with comprehensive
experimental results and additional ablation details available in Appendix B. The results, summarized in
Figure 6 and Figure 5, highlight key trade-offs between hyperparameter choices and attack performance.

5.3.1 TGEA Configuration and Fitness Terms

Figure 5 analyzes the evolutionary components of TGEA:

• Impact of Fitness Terms (Figure 5a): We performed an ablation study on the SEGI fitness
function components. The results show that removing the target class penalty γs, unsurprisingly,
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causes the most severe degradation, particularly for DenseNet (green bar drops significantly). This
confirms that explicitly penalizing the true label is critical for evolving effective "search cones" that
steer the population away from the original class manifold.

• Population Size (Figure 5d): We tested CMA-ES population sizes of {6, 16, 26}. The data
indicates an optimal size of 16 across most models. Smaller populations (6) lack sufficient diversity
to escape local optima, while larger populations (26) appear to dilute the search pressure, leading
to slower convergence and lower ASR, especially for VGG16 (orange line).

• Weight Balancing (Figure 5b-c): The attack shows stability around a target weight αt ≈ 1.0.
However, increasing the target penalty γt (Figure 5c) yields significant gains for DenseNet, suggesting
that complex models might benefit from more aggressive penalties on the true class probability.
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Figure 5: Sensitivity Analysis of TGEA Configuration. We evaluate (a) Ablation of SEGI Fitness
terms, (b) Target Weight αt, (c) Target Penalty γt, and (d) CMA-ES Population Size. The analysis reveals
that the target penalty term is critical for success (a) and that a population size of 16 provides the optimal
balance between exploration and exploitation (d).

5.3.2 SGSA Hyperparameter Sensitivity

Figure 6 provides a comprehensive breakdown of how SGSA’s components influence success rates:

• Saliency Scale (Figure 6a): We notice a positive correlation between the scale factor and ASR,
particularly for VGG16 and InceptionV3. A factor of 10 consistently outperforms smaller factors
(2 or 5), suggesting that stronger Gaussian smoothing is essential for extracting stable, transferable
gradients from the surrogate.

• Attention Weight β (Figure 6b): The attack is relatively robust to β values between 0.1 and
0.75, with a peak performance typically around β = 0.3. Notably, setting β = 0 (no attention)
leads to a sharp drop in ASR for InceptionV3 and VGG16, validating the necessity of the attention
mechanism.

• Update Frequency k (Figure 6c): The update frequency controls the trade-off between gradient
freshness and computational cost. While k = 50 offers a stable sweet spot, increasing k to 100 (lazier
updates) causes a noticeable performance degradation on complex architectures like EfficientNet (red
line), indicating that high dimensional landscapes require more frequent gradient refreshes.
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• Temporal Decay λ (Figure 6d): Higher decay values tend to yield better results, suggesting that
retaining a longer history of gradients helps stabilize the search direction against local noise.
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Figure 6: Sensitivity Analysis of SGSA Hyperparameters. We analyze the impact of (a) Saliency Scale
Factor, (b) Attention Weight β, (c) Saliency Update Frequency k, and (d) Temporal Decay λ across four
target architectures. The results validate that stronger smoothing, moderate attention, and high temporal
retention generally are more robust.

6 Analysis and Discussion

Our experimental evaluation across MNIST, CIFAR-10, and ImageNet reveals consistent patterns in the
performance characteristics of PriSM’s two approaches.

6.1 Performance Against Baselines

Substantial Improvements Over Established Baselines. Both SGSA and TGEA demonstrate sig-
nificant improvements over established baseline methods across all experimental settings. SGSA achieves
30–50% query reductions compared to Square Attack while maintaining or exceeding success rates. For
instance, on InceptionV3 (ϵ = 0.1), SGSA requires only 53.47 queries versus 76.64 for Square Attack, a
30.23% reduction, while maintaining competitive ASR (85.64% vs 88.20%). Similarly, TGEA consistently
outperforms Random CMA-ES initialization by 30–60% in query efficiency, validating the fundamental value
of surrogate-guided initialization for evolutionary methods. On CIFAR-10 at ϵ = 0.2, TGEA-SEGI requires
only 27.95 queries compared to Random CMA-ES’s 78.30 queries while achieving higher success rates (98.36%
vs 95.56%).

Against other gradient free baselines like SimBA and HSJA, PriSM methods show even more pronounced
advantages. On ImageNet models, SGSA reduces queries by 40–50% compared to SimBA while achieving
15–20% higher success rates. These systematic improvements across diverse baselines confirm that exploiting
transferable surrogate provides substantial benefits over uninformed search strategies.

Competitive Performance with SOTA PBO. PBO (Cheng et al., 2024) represents the current state of
the art in query-efficient black-box attacks, leveraging Bayesian optimization with learned function priors.
Our evaluation reveals that PriSM achieves competitive or superior performance depending on the attack
scenario, with clear complementary strengths.

On CIFAR-10 standard models, PBO achieves exceptional query efficiency (16.87 vs 52.86 queries) with
high success rates, outperforming both SGSA and TGEA variants in this regime. This advantage stems
from Bayesian optimization’s sophisticated modeling of loss surfaces through Gaussian processes, which is
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particularly effective on simpler, well-behaved optimization landscapes where the GP function prior can
accurately approximate the target model’s loss function.

However, on adversarially trained models, the performance dynamics shift substantially. On WRN-94-16
(ϵ = 0.2), SGSA matches PBO’s success rate (61.24% vs 62.11%) while requiring 12.84% fewer queries (123.70
vs 141.93). This suggests that Bayesian optimization’s GP-based function prior becomes less effective on the
smoothed but highly non convex landscapes of robust models, where SGSA’s multi-scale saliency guidance
provides more reliable directional information. The measured saliency correlations (ρ = 0.39–0.41 on robust
models) indicate that gradient magnitude patterns transfer sufficiently to guide efficient attacks even when
exact loss surfaces diverge.

Additionally, on high resolution ImageNet models, SGSA demonstrates superior efficiency: on DenseNet
(ϵ = 0.1), SGSA requires 55.85 queries versus PBO’s 100.67, a 44.52% reduction, while achieving comparable
success rates (93.99% vs 93.33%). This performance gap highlights a fundamental scalability advantage:
saliency-based guidance directly exploits spatial locality in high dimensional image spaces, whereas GP-
based function approximation faces increasing complexity with dimensionality. The computational overhead
of Bayesian optimization (kernel matrix inversions, acquisition function optimization) grows substantially in
higher dimensions, while SGSA’s gradient-map computation scales linearly with input size.

6.2 SEGI vs. TASI: Quality of Initial Candidates

Our results consistently show TGEA-SEGI achieving higher attack success rates than TGEA-TASI across
most experimental settings. This performance gap stems from fundamental differences in how the two meth-
ods generate initial candidate populations. TASI constructs its population by combining multiple predefined
attack strategies (PGD, Square Attack, Boundary Attack) with Gaussian noise perturbations, essentially
performing a diverse but undirected sampling around known attack vectors. In contrast, SEGI employs a
meta-optimization process that runs a complete Genetic Algorithm on the surrogate model for G generations,
evolving candidates specifically toward the adversarial objective through iterative selection, crossover, and
mutation. This surrogate-based evolution allows SEGI to explore the adversarial subspace more systemati-
cally, producing a population that has already undergone fitness based refinement before being transferred
to the target model. Critically, SEGI’s fitness function incorporates both a diversity penalty term Rdiv
(Equation 9) and a centroid distance term Dcentroid that encourages movement away from the true class rep-
resentation in latent space while approaching incorrect class centroids. These components ensure the evolved
population maintains coverage of promising regions rather than converging prematurely, providing CMA-ES
with a well-distributed initialization that captures the geometric structure of the adversarial manifold while
being positioned near decision boundaries. While TASI benefits from the complementary strengths of di-
verse attack types, SEGI’s evolved candidates represent genuinely optimized starting points that have been
tailored to the surrogate’s loss landscape, which, given the measured transferability correlations, provides
better initialization for attacking architecturally similar target models.

6.3 Model Architecture and Attack Performance

Our ImageNet experiments (Table 5) reveal architecture-dependent performance patterns. SGSA achieves
its strongest results on DenseNet (93.99% ASR, 55.85 queries at ϵ = 0.1), while TGEA-SEGI performs best
on EfficientNet (89.10% ASR at ϵ = 0.05).

We observe that models with stronger feature locality (DenseNet’s dense connections) tend to exhibit higher
saliency transferability, benefiting local search methods like SGSA. Models with more distributed repre-
sentations (EfficientNet’s compound scaling) require the global exploration capabilities of TGEA-SEGI to
consistently find adversarial examples. However, we emphasize that these are empirical observations rather
than definitive causal relationships; a complete understanding would require systematic landscape analysis
beyond the scope of this work.
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6.4 Practitioner Guidance

Based on our experimental results, we provide the following evidence-based guidance for practitioners. For
applications with a strict query budget, we recommend SGSA, which averaged fewer queries than baseline
methods. However, for scenarios where high attack success rate (ASR) is the priority, TGEA-SEGI
is the better choice, achieving higher ASR (e.g., 98.36% on InceptionV3). In the context of adversarial
training, SGSA demonstrated superior robustness against defenses (e.g., on WRN-94-16). Finally, for
simple datasets (e.g., MNIST), both methods are highly effective, with SGSA offering a slight advantage
in both query efficiency and ASR.

7 Limitations and Future Work

While PriSM demonstrates strong empirical performance, we do not provide formal theoretical guarantees
on query complexity or convergence rates. Our design rationale (Sections 4.2.4 and 4.3.5) offers intuitive
justification based on transferability assumptions, but rigorous analysis would strengthen the theoretical
foundation. Nevertheless, our empirical results across diverse settings provides substantial evidence for the
practical effectiveness of our approach.

Future work could explore: (1) adaptive surrogate selection strategies that estimate transferability online,
(2) meta-learning approaches to automatically tune hyperparameters per target model, (3) theoretical char-
acterization of when saliency-guided local search outperforms global optimization, and (4) extension to other
attack settings (e.g., targeted attacks, different threat models).

8 Conclusion

We introduced PriSM, a framework that leverages surrogate decision boundary geometry and loss landscape
topography to guide black-box attacks. Through TGEA and SGSA, we demonstrated that aligning search
strategies with specific surrogate priors reduces query costs by 30–60% across MNIST, CIFAR-10, and Ima-
geNet. Our evaluation reveals a strategic trade off: TGEA maximizes success rates via global evolutionary
exploration, while SGSA excels in efficiency through saliency-guided local refinement. Notably, SGSA out-
performs baselines on adversarially trained models, effectively exploiting the perceptually aligned gradients
of robust networks. PriSM demonstrates that strategic exploitation of surrogate information matched to
search algorithm characteristics substantially improves query efficiency in black-box robustness evaluation.

Broader Impact Statement

This work develops query-efficient adversarial attacks for black-box settings. Our primary motivation is to
evaluate and ultimately improve the robustness of Deep Neural Networks (DNNs) deployed in safety-critical
domains such as medical diagnostics and autonomous systems. We recognize that the techniques we study
could, in principle, be misused to evade deployed models with fewer queries, particularly against produc-
tion API-based services (e.g., cloud ML platforms, content moderation systems) where existing rate limiting
may prove insufficient. We explicitly do not endorse such misuse. To mitigate these risks, we recommend
multi-layered defenses including: (1) query pattern detection to identify structured exploration, (2) response
randomization to reduce information leakage per query, (3) adaptive rate limiting based on suspicious ac-
tivity, and (4) ensemble diversity to reduce cross-model transferability (Tang et al., 2024). Systematically
probing systems for failure modes through responsible red-teaming is a cornerstone of security practice. By
demonstrating that surrogate priors substantially reduce query costs, our results highlight the urgent need for
defenses that reduce the transferability of decision-boundary geometry and saliency patterns. PriSM enables
developers to stress-test models against sophisticated, resource-constrained adversaries, identify weaknesses
before deployment, and iteratively build more robust learning systems.
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A Hyperparameter and Configuration Details

This appendix details the specific hyperparameter values used for the proposed adversarial attacks. Table 12
outlines the coefficients used in the fitness functions, while Table 13 lists the specific algorithmic settings.

We explicitly verify the impact of these hyperparameter choices in Appendix B. Please refer to the Ablation
Studies therein for a detailed sensitivity analysis and validation of the configuration values listed above.

Table 12: Fitness Function Coefficients. We distinguish between Target Optimization parameters (αt, γt) and
Surrogate Initialization parameters (αs, γs) to highlight their distinct roles in exploitation vs. exploration.

Component Parameter Symbol Value

Target Opt. αt (Max Incorrect) 0.4
γt (True Class Penalty) 1.1

Surrogate (SEGI)

αs (Max Incorrect) 0.3
γs (True Class Penalty) 1.3
δ (Centroid Distance) 0.9
Diversity Multiplier 10
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Weight Asymmetry. Supported by Appendix B2, we employ asymmetric weights to balance exploration
and exploitation. SEGI uses a higher penalty (γs = 1.3) and lower targeted weight (αs = 0.3) to enforce
diversity, driving candidates away from the true class without converging to a single easiest incorrect class.
In contrast, the target stage employs balanced weights (γt = 1.1, αt = 0.4) to facilitate stable convergence
into missclassification.

Table 13: Algorithmic Hyperparameters.

Component Parameter Value

SEGI (GA)

Population Size 60
Parents Mating 5
Mutation Rate 10%
Top Solutions → CMA-ES 13
Injection Noise (σ) 0.035

TGEA (CMA)
Population Size 16
Max Iterations 90
Active CMA Update True

SGSA

Saliency Scale Factor 10.0
Gaussian Sigma (σ) 1.0
Update Frequency 50 iters
Fallback Threshold 100 iters
Random Fallback Prob. 5%
Multi-scale Scales [1.0, 0.5, 0.25]
Temporal Decay (λ) 0.9
Attention Weight (β) 0.3

General Max Query Budget 1000

B Ablation Studies

To validate the contributions of key components in PriSM, we perform targeted ablation studies on both
TGEA and SGSA. All ablations use the same evaluation protocol with CIFAR-10 and ImageNet datasets at
ϵ = 0.1 unless otherwise specified. Best results per metric are highlighted with gray shading.

B.1 Transfer-Guided Evolutionary Attack (TGEA)

B.1.1 Analysis of Surrogate Fitness Function

We ablate individual terms of SEGI’s fitness function: αs, γs, and δ. Results appear in Table 14.

Table 14: SEGI fitness ablation on CIFAR-10 (ϵ =
0.1).

InceptionV3 VGG16
Variant ASR ↑ AQ ↓ ASR ↓ AQ ↓
Full Function 91.43 105.26 89.80 127.82
αs = 0 91.37 110.77 89.48 139.58
γs = 0 90.18 107.11 86.93 136.84
δ = 0 88.39 97.10 87.30 124.15

Table 15: SEGI fitness ablation on ImageNet (ϵ =
0.1).

DenseNet EfficientNet
Variant ASR ↑ AQ ↓ ASR ↑ AQ ↓
Full Function 89.47 111.25 89.10 148.42
αs = 0 83.83 92.79 83.81 133.13
γs = 0 75.40 80.89 82.54 138.31
δ = 0 85.19 112.37 86.79 160.83

As expected, in the untargetted attack scenario, the γs term proves most critical, its removal (γs = 0)
causes the largest ASR drops across all models (up to 14% on DenseNet). This validates the importance
of aggressively suppressing the true class during surrogate evolution. The alphas and delta terms provide
smaller but consistent improvements, with occasional query efficiency gains when removed at the cost of
reduced ASR.

In addition to evaluating the impact of removing these terms entirely, we conducted a grid search to optimize
their specific magnitudes. We varied αs, γs, and δ across the range of values αs ∈ {0.8, 1.5}, γs ∈ {0.5, 1.0}
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and δ ∈ {0.5, 1.5} to verify that our chosen asymmetric configuration provides a good balance between
exploration and exploitation compared to other feasible settings.

Table 16: SEGI fitness grid search (InceptionV3 &
VGG16).

InceptionV3 VGG16
Params ASR ↑ AQ ↓ ASR ↑ AQ ↓
αs = 0.3, γs = 1.3, δ = 0.9 (Default) 91.43 105.26 89.80 127.82
αs = 0.8, γs = 1.0, δ = 1.5 88.88 122.95 83.02 165.03
αs = 0.8, γs = 1.0, δ = 0.5 89.15 118.40 83.25 158.90
αs = 0.8, γs = 0.5, δ = 1.5 85.04 127.20 84.12 184.75
αs = 0.8, γs = 0.5, δ = 0.5 86.45 121.10 83.50 178.40
αs = 1.5, γs = 0.5, δ = 0.5 87.50 119.80 83.80 180.20
αs = 1.5, γs = 0.5, δ = 1.5 86.90 125.50 83.65 188.10
αs = 1.5, γs = 1.0, δ = 0.5 89.99 115.23 83.92 175.73
αs = 1.5, γs = 1.0, δ = 1.5 88.91 120.31 82.12 172.16

Table 17: SEGI fitness grid search (DenseNet & Ef-
ficientNet).

DenseNet EfficientNet
Params ASR ↑ AQ ↓ ASR ↑ AQ ↓
αs = 0.3, γs = 1.3, δ = 0.9 (Default) 89.47 111.25 89.10 148.42
αs = 0.8, γs = 1.0, δ = 1.5 87.34 127.37 86.83 178.97
αs = 0.8, γs = 1.0, δ = 0.5 88.10 124.10 87.50 169.20
αs = 0.8, γs = 0.5, δ = 1.5 86.22 128.52 85.88 178.12
αs = 0.8, γs = 0.5, δ = 0.5 86.90 125.60 86.15 172.50
αs = 1.5, γs = 1.0, δ = 0.5 89.05 123.83 89.01 163.09
αs = 1.5, γs = 0.5, δ = 0.5 88.40 126.90 88.20 167.40
αs = 1.5, γs = 0.5, δ = 1.5 86.80 130.50 86.40 176.80
αs = 1.5, γs = 1.0, δ = 1.5 87.32 129.32 87.15 178.5

The analysis reveals that the default configuration outperforms the grid-searched variants across all models.
Notably, increasing αs to 0.8 or 1.5 (which aggressively rewards incorrect class confidence) leads to a slight
degradation in ASR and increased query costs. This validates our intuition. The surrogate evolution stage
(SEGI) should prioritize exploration via a lower αs and higher γs, ensuring a diverse population of candi-
dates rather than greedily optimizing for a specific incorrect label, which is better handled by the subsequent
CMA-ES phase.

B.1.2 Analysis of Target Fitness Function

To determine the optimal balance for the target fitness function, we performed a grid search over the
hyperparameters αt ∈ {0.1, 1.0, 1.5} and γt ∈ {0.5, 1.0, 1.6}. We compare these variations against the default
settings, results are presented in Table 18.

Table 18: Target fitness grid search (InceptionV3 &
VGG16).

InceptionV3 VGG16
Params ASR ↑ AQ ↓ ASR ↑ AQ ↓
αt = 0.4, γt = 1.1 (Default) 91.43 105.26 89.80 127.82
αt = 0.1, γt = 1.0 88.39 119.22 83.89 176.01
αt = 1.0, γt = 1.0 89.09 115.69 84.64 173.22
αt = 1.5, γt = 0.5 89.08 138.19 83.85 175.08
αt = 0.1, γt = 0.5 88.75 119.85 84.15 175.50
αt = 1.5, γt = 1.6 89.12 119.95 84.72 173.10
αt = 0.1, γt = 1.6 87.95 116.51 83.20 177.50
αt = 1.0, γt = 1.6 88.85 119.43 84.35 174.40
αt = 1.0, γt = 0.5 89.05 136.32 84.22 174.80
αt = 1.5, γt = 1.0 89.15 121.59 84.50 173.90

Table 19: Target fitness grid search (DenseNet &
EfficientNet).

DenseNet EfficientNet
Params ASR ↑ AQ ↓ ASR ↑ AQ ↓
αt = 0.4, γt = 1.1 (Default) 89.47 111.25 89.10 148.42
αt = 0.1, γt = 1.0 85.42 105.73 81.82 135.44
αt = 1.0, γt = 1.0 93.15 132.10 89.17 147.05
αt = 1.5, γt = 0.5 80.73 105.38 88.11 165.29
αt = 0.1, γt = 0.5 88.20 114.50 84.50 140.10
αt = 1.5, γt = 1.6 93.22 132.80 89.25 148.50
αt = 0.1, γt = 1.6 82.50 102.10 78.40 129.80
αt = 1.0, γt = 1.6 90.80 124.60 87.65 142.30
αt = 1.0, γt = 0.5 86.40 116.20 88.65 158.40
αt = 1.5, γt = 1.0 89.50 122.90 88.90 152.10

The grid search results highlight distinct behaviors across architectures. For InceptionV3 and VGG16,
the default settings (αt = 0.4, γt = 1.1) remain superior, achieving the highest ASR and lowest query counts.
This suggests these models benefit from a balanced approach where the target class is encouraged moderately.

In contrast, the more complex architectures, DenseNet and EfficientNet, perform better with higher
scaling factors (αt ≥ 1.0). DenseNet specifically achieves a +3.7% boost in ASR (93.22%) when using
αt = 1.5, γt = 1.6 compared to the default. This indicates that for highly connected or optimized networks,
the attack requires stronger gradients towards the target class to successfully guide the optimization out of
local minima.

B.1.3 Analysis of Population Size

Table 20 evaluates CMA-ES population sizes: 6 (small), 16 (default), and 26 (large).
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Table 20: SEGI population size on CIFAR-10 (ϵ =
0.1).

InceptionV3 VGG16
Pop. Size ASR ↑ AQ ↓ ASR ↑ AQ ↓
Small (6) 92.99 90.27 92.22 117.48
Default (16) 91.43 105.26 89.80 127.82
Large (26) 84.70 128.02 81.51 161.28

Table 21: SEGI population size on ImageNet (ϵ =
0.1).

DenseNet EfficientNet
Pop. Size ASR ↑ AQ ↓ ASR ↑ AQ ↓
Small (6) 87.04 94.90 87.45 126.60
Default (16) 89.47 111.25 89.10 148.42
Large (26) 85.23 176.10 86.40 134.93

On CIFAR-10, smaller populations excel in both metrics, suggesting SEGI’s initialization enables rapid
convergence on simpler datasets. On ImageNet, the default size achieves highest ASR while small populations
remain most query-efficient, indicating a complexity dependent trade off where larger search spaces benefit
from moderate population sizes to avoid premature convergence.

B.1.4 Analysis of Computational Overhead

B.2 Saliency-Guided Square Attack (SGSA)

B.2.1 Analysis of Guidance Components

We evaluate two ablations: Two-Scale variant using scales [1.0, 0.5] and Single-Scale (original resolution
saliency only). Table 22 shows results.

Table 22: SGSA guidance ablation on CIFAR-10
(ϵ = 0.1).

InceptionV3 VGG16
Variant ASR ↑ AQ ↓ ASR ↑ AQ ↓
Default 85.64 53.47 82.85 77.62
Two-Scale 84.77 58.80 81.80 68.89
Single-Scale 79.06 57.60 78.12 77.81

Table 23: SGSA guidance ablation on ImageNet
(ϵ = 0.1).

DenseNet EfficientNet
Variant ASR ↑ AQ ↓ ASR ↑ AQ ↓
Default 93.99 55.85 86.99 89.56
Two-Scale 92.81 76.34 87.11 82.02
Single-Scale 94.25 59.84 85.86 98.63

Single-scale saliency underperforms across metrics (e.g., +10% queries on EfficientNet). The two-scale vari-
ant shows competitive performance, but the default three-scale configuration achieves the best overall bal-
ance, validating that multi-scale aggregation captures transferable structural patterns at multiple feature
hierarchies.

B.2.2 Analysis of Saliency Scale Factor

We compare scale factors 2, 5, and 10 (default). Results in Table 24.

Table 24: SGSA scale factor on CIFAR-10 (ϵ = 0.1).

InceptionV3 VGG16
Scale ASR ↑ AQ ↓ ASR ↑ AQ ↓
Default (10) 85.64 53.47 82.85 77.62
Factor 5 79.50 57.53 78.39 73.59
Factor 2 80.00 57.48 77.86 69.31

Table 25: SGSA scale factor on ImageNet (ϵ = 0.1).

DenseNet EfficientNet
Scale ASR ↑ AQ ↓ ASR ↑ AQ ↓
Default (10) 93.99 55.85 86.99 89.56
Factor 5 93.75 59.20 86.17 92.29
Factor 2 93.95 59.32 85.24 91.53

Lower scale factors occasionally reduce queries (e.g., factor 2 on VGG16) but consistently harm ASR. The
default factor of 10 achieves highest or near highest ASR universally, demonstrating that stronger smoothing
generates more stable and transferable guidance maps.
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B.2.3 Analysis of saliency update frequency

We evaluate the sensitivity of the attack to the saliency update frequency k, comparing the default (k = 50)
against more frequent (k ∈ {10, 25}) and lazier (k = 100) schedules. This parameter controls the trade-off
between using fresh gradient information and the computational overhead of updating the surrogate priors.

Table 26: Update frequency k on CIFAR-10.

InceptionV3 VGG16
k Value ASR ↑ AQ ↓ ASR ↑ AQ ↓
10 85.16 68.83 81.97 72.59
25 85.94 53.55 81.56 70.72
50 (Default) 85.64 53.47 82.85 77.62
100 86.28 56.30 82.35 67.49

Table 27: Update frequency k on ImageNet.

DenseNet EfficientNet
k Value ASR ↑ AQ ↓ ASR ↑ AQ ↓
10 93.09 62.62 86.25 73.75
25 92.50 90.07 87.12 101.04
50 (Default) 93.99 55.85 86.99 89.56
100 92.81 62.07 83.71 117.46

The results indicate that the default update frequency (k = 50) provides a trade-off between the freshness of
the surrogate priors and the computational overhead of updating them. While lazier updates (k = 100) can
occasionally improve efficiency on simpler landscapes, they risk working with old gradient information on
more complex decision boundaries, leading to increased query costs. Overly frequent updates (k = 10) yield
diminishing returns, often increasing computational cost without significant gains in attack success rate.

B.2.4 Analysis of attention weight

We analyze the impact of the attention guidance weight β, which controls the influence of the surrogate’s
attention map on the perturbation direction. We compare the default β = 0.3 against weaker (β = 0.1),
stronger (β ∈ {0.5, 0.75}) guidance, and no attention (β = 0).

Table 28: Attention weight β on CIFAR-10.

InceptionV3 VGG16
β Value ASR ↑ AQ ↓ ASR ↑ AQ ↓
0 (No Attention) 79.06 59.02 78.72 73.30
0.1 84.90 50.58 82.81 74.05
0.3 (Default) 85.64 53.47 82.85 77.62
0.5 85.36 46.97 81.25 61.32
0.75 85.41 56.73 81.77 64.51

Table 29: Attention weight β on ImageNet.

DenseNet EfficientNet
β Value ASR ↑ AQ ↓ ASR ↑ AQ ↓
0 (No Attention) 93.85 58.75 85.57 92.30
0.1 93.42 58.82 88.02 89.49
0.3 (Default) 93.99 55.85 86.99 89.56
0.5 93.17 61.77 86.11 101.86
0.75 93.30 58.39 88.02 90.00

Removing attention (β = 0) degrades ASR significantly on CIFAR-10 (−6.6% on InceptionV3), confirming
that attention maps provide complementary guidance beyond gradient-based saliency. While increasing
attention guidance can improve query efficiency and ASR on specific architectures, the default β = 0.3
provides the most stable performance across all models, particularly for DenseNet.

B.2.5 Analysis of Temporal Decay

We evaluate the sensitivity of the temporal mechanism to the decay factor λ, which determines how much
historical gradient information is retained. We compare the default λ = 0.9 against lower values representing
faster decay.

Table 30: Temporal decay λ on CIFAR-10.

InceptionV3 VGG16
λ Value ASR ↑ AQ ↓ ASR ↑ AQ ↓
0.1 84.38 61.22 81.25 69.05
0.5 83.04 57.41 80.80 67.99
0.75 85.58 53.10 82.20 71.82
0.9 (Default) 85.64 53.47 82.85 77.62

Table 31: Temporal decay λ on ImageNet.

DenseNet EfficientNet
λ Value ASR ↑ AQ ↓ ASR ↑ AQ ↓
0.1 94.12 62.83 88.54 90.27
0.5 94.49 61.80 87.50 89.70
0.75 93.33 53.74 87.00 92.69
0.9 (Default) 93.99 55.85 86.99 89.56
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The results suggest that a higher decay factor (λ ≈ 0.9) is generally efficient, balancing ASR and query
efficiency. While lower values (e.g., λ = 0.1) occasionally yield marginal ASR gains (as seen in EfficientNet),
they often result in higher query costs or reduced stability on other architectures (e.g., VGG16), justifying
the choice of λ = 0.9 to effectively smooth the gradient estimation over time.

B.3 Computational Overhead

Saliency-Guided Square Attack (SGSA)

To quantify the cost of surrogate guidance, we measured the wall clock time of SGSA against the baseline
Square Attack on 1000 samples. Table 32 summarizes the computational overhead introduced by multi-scale
saliency map generation and guidance operations.

Table 32: Computational overhead of SGSA saliency guidance.

Dataset Total Time (s) Pure Search (s) Saliency Overhead
CIFAR-10 1.85 1.70 0.15 (8.1%)
ImageNet 5.23 5.12 0.11 (2.16%)

The saliency overhead remains minimal, accounting for only 8.1% on CIFAR-10 and 2.16% on ImageNet.
Crucially, this overhead is amortized across the entire attack budget. Since the guidance substantially
reduces the total number of queries needed, the net wall clock time decreases despite the per-iteration cost,
confirming that surrogate guidance provides practical computational efficiency.

Transfer-Guided Evolutionary Attack (TGEA)

To quantify the computational cost of transfer-guided evolutionary optimization, we measured the wall clock
time of TGEA’s components on 1000 samples. Tables 33 and 34 show the breakdown for each variant.

Table 33: TGEA-SEGI computational profile (seconds per attack).

Dataset Random Population Time (s) Total Time (s) Population Init (s) Attack (s)
CIFAR-10 3.29 6.34 4.24 2.10
ImageNet 19.36 48.68 32.53 16.14

Table 34: TGEA-TASI computational profile (seconds per attack).

Dataset Total Time (s) Population Init (s) Attack (s)
CIFAR-10 5.34 3.21 2.13
ImageNet 22.27 6.80 15.47

TGEA introduces computational overhead for transfer-based population initialization, which accounts for
67% of total time for SEGI on CIFAR-10 and 67% for SEGI on ImageNet. For TASI, initialization overhead
is lower at 60% on CIFAR-10 and 15% on ImageNet.

Overall, the overhead of the attacks must be evaluated in context: both attacks achieve substantially higher
attack success rates while using fewer queries. In real-world settings where query budgets are strictly limited
(e.g., production APIs with rate limiting, detection systems, service costs), the ability to succeed with fewer
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queries is often more valuable than raw wall-clock time. The modest computational investment (8% for
SGSA, 1.9-2.5× for TGEA) enables attacks that would otherwise fail entirely within the query budget,
making both methods highly practical for security evaluation and adversarial robustness testing.

B.4 Robustness to Surrogate Model Selection

To assess PriSM’s sensitivity to surrogate choice, we evaluate SGSA and SEGI using GoogLeNet and
DenseNet as surrogates (vs. default ResNet18), attacking InceptionV3 and VGG16 on CIFAR-10 at ϵ = 0.1.
Results in Table 35.

Table 35: Impact of surrogate model on SGSA and SEGI performance (CIFAR-10, ϵ = 0.1).

InceptionV3 VGG16
Method Surrogate ASR ↑ AQ ↓ ASR ↑ AQ ↓

SGSA
ResNet18 (default) 85.64 53.47 82.85 77.62
GoogLeNet 85.99 53.66 82.33 75.03
DenseNet 85.41 52.27 83.05 70.67

SEGI
ResNet18 (default) 91.43 105.26 89.80 127.82
GoogLeNet 88.73 121.38 84.69 167.73
DenseNet 88.48 119.55 86.38 151.74

Both methods exhibit robustness across surrogate architectures, with SGSA demonstrating particularly sta-
ble performance. SGSA maintains consistently high ASR and low query counts regardless of surrogate choice,
with DenseNet achieving the lowest query count on InceptionV3 (52.27). This stability is remarkable given
the architectural diversity tested, SGSA’s query efficiency varies by less than 50% across surrogates, whereas
traditional transfer attacks can see 2-3× degradation with mismatched architectures. SEGI shows slightly
more sensitivity with 3-5% ASR variation, though ResNet18 performs best overall. Notably, performance
degradation remains modest even with architecturally dissimilar surrogates (e.g., GoogLeNet’s depthwise-
separable convolutions vs. VGG16’s standard convolutions), validating that multi-scale saliency patterns
transfer robustly across diverse architectures. The consistency suggests that readily available pretrained
models can be used as surrogates without substantial performance loss, with SGSA being especially resilient
to surrogate selection.

C Attack Convergence Analysis

To provide a deeper insight into the trade off between query efficiency and attack success rate, we visualize
the convergence behavior of SGSA and TGEA against baseline methods. The following plots illustrate the
Attack Success Rate (ASR) as a function of the number of queries.

C.1 MNIST Models

Figure 7 shows the convergence on MNIST for both ϵ = 0.2 and ϵ = 0.3.
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(a) Model A (ϵ = 0.2) (b) Model B (ϵ = 0.2)

(c) Model A (ϵ = 0.3) (d) Model B (ϵ = 0.3)

Figure 7: MNIST Models: Convergence analysis for ϵ = 0.2 and ϵ = 0.3.

C.2 CIFAR-10 Standard Models

Figure 8 compares performance on InceptionV3 and VGG16.

(a) InceptionV3 (ϵ = 0.1) (b) InceptionV3 (ϵ = 0.2)

(c) VGG16 (ϵ = 0.1) (d) VGG16 (ϵ = 0.2)

Figure 8: CIFAR-10 Standard Models: ASR vs. Average Queries.

C.3 CIFAR-10 Robust Models

Figure 9 displays results on adversarially trained networks. Notably, on the SOTA WRN-94-16, SGSA
matches or exceeds the success rate of baselines while maintaining superior query efficiency.
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(a) WideResNet (ϵ = 0.1) (b) WideResNet (ϵ = 0.2)

(c) WRN-94-16 (ϵ = 0.1) (d) WRN-94-16 (ϵ = 0.2)

Figure 9: CIFAR-10 Robust Models: ASR vs. Average Queries.

C.4 ImageNet Models

Figure 10 illustrates performance on high resolution ImageNet models. SGSA (brown) consistently demon-
strates steeper convergence curves in the early query phase.

(a) DenseNet (ϵ = 0.05) (b) DenseNet (ϵ = 0.1)

(c) EfficientNet (ϵ = 0.05) (d) EfficientNet (ϵ = 0.1)

Figure 10: ImageNet Models: ASR vs. Average Queries.
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