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Abstract

It was estimated that the world produced 59ZB (5.9× 1013GB) of data in 2020,
resulting in the enormous costs of both data storage and transmission. Fortunately,
recent advances in deep generative models have spearheaded a new class of so-
called "neural compression" algorithms, which significantly outperform traditional
codecs in terms of compression ratio. Unfortunately, the application of neural
compression garners little commercial interest due to its limited bandwidth; there-
fore, developing highly efficient frameworks is of critical practical importance. In
this paper, we discuss lossless compression using normalizing flows which have
demonstrated a great capacity for achieving high compression ratios. As such, we
introduce iFlow, a new method for achieving efficient lossless compression. We
first propose Modular Scale Transform (MST) and a novel family of numerically
invertible flow transformations based on MST. Then we introduce the Uniform
Base Conversion System (UBCS), a fast uniform-distribution codec incorporated
into iFlow, enabling efficient compression. iFlow achieves state-of-the-art compres-
sion ratios and is 5× quicker than other high-performance schemes. Furthermore,
the techniques presented in this paper can be used to accelerate coding time for a
broad class of flow-based algorithms.

1 Introduction

The volume of data, measured in terms of IP traffic, is currently witnessing an exponential year-
on-year growth [13]. Consequently, the cost of transmitting and storing data is rapidly becoming
prohibitive for service providers, such as cloud and streaming platforms. These challenges increas-
ingly necessitate the need for the development of high-performance lossless compression codecs.

One promising solution to this problem has been the development of a new class of so-called “neural
compression” algorithms [30, 38, 18, 4, 17, 37, 26, 31, 6, 41]. These methods typically posit a deep
probabilistic model of the data distribution, which, in combination with entropy coders, can be used
to compress data with the minimal codelength bounded by the negative log-likelihood [29]. However,
despite reliably improved compression performance compared to traditional codecs [14, 33, 9, 34],
meaningful commercial applications have been limited by impractically slow coding speed.

In this paper, we focus on developing approaches with deep probabilistic models based on normalizing
flows [11, 25, 32, 27, 7, 28, 23]. A normalizing flow admits a learnable bijective mapping between
input data and a latent variable representation. In this paradigm, inputs can be compressed by
first transforming data to latent variables, with the resulting output encoded by a prior distribution.
Compared to other classes of generative models, normalizing flows typically perform best in both
tasks of probability density estimation (as compared with variational autoencoders [24, 15, 8]) and
inference speed (as compared with autoregressive factorizations [35, 39, 22]). This suggests that
compression with flows can jointly achieve high compression ratios along with fast coding times.
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Figure 1: Illustration of IDF(++), iVPF, LBB and the proposed iFlow method. Flow layers with
darker color denote higher expressive power. The top-right of each model illustration shows the key
procedure of exact bijections between x̄ and z̄. The compression ratio and bandwidth are listed below.

Unfortunately, lossless compression requires discrete data for entropy coding, and the continuous
bijections of normalizing flows would not guarantee discrete latent variables. As such, transformations
would require discretization, resulting in a loss of information [41, 3]. To resolve this issue, Integer
Discrete Flows (IDF) [18, 4] (Fig. 1, left) proposed an invertible mapping between discrete data and
latent variables. Similarly, iVPF [41] achieves a discrete-space bijection using volume-preserving
flows. However, the above models must introduce constraints on flow layers to ensure a discrete-
space bijection, which limits the expressivity of the transformation. Local Bits-Back Coding (LBB)
[17] (Fig. 1, middle) was the first approach to succeed in lossless coding with the flexible family
of continuous flows. It resolves the information loss by coding numerical errors with the rANS
coder [12]. However, the coder is extraordinarily slow, making the method impractical.

In this paper, we introduce iFlow: a numerically invertible flow-based neural compression codec that
bridges the gap between high-fidelity density estimators and practical coding speed. To achieve this
we introduce two novelties: Modular Scale Transform (MST) and Uniform Base Conversion Systems
(UBCS). MST presents a flexible family of bijections in discrete space, deriving an invertible class of
flows suitable for lossless compression. UBCS, built on the uniform distribution, permits a highly
efficient entropy coding compatible with MST. The main ideas are illustrated in Fig. 1(right). We
test our approach across a range of image datasets against both traditional and neural compression
techniques. Experimentally we demonstrate that our method achieves state-of-the-art compression
ratios, with coding time 5× quicker than that of the next-best scheme, LBB.

2 Numerically Invertible Flows and Lossless Compression

Let f : X → Z be our normalizing flow, which we build as a composition of layers such that
f = fL ◦ ... ◦ f2 ◦ f1. Defining d-dimensional y0 = x ∈ X and yL = z ∈ Z , the latents can be
computed as yl = fl(yl−1), with pX(x) calculated according to

log pX(x) = log pZ(z) +

L∑
l=1

log |det Jfl(yl−1)|, (1)

where Jfl(x) is the Jocabian matrix of the transformation fl at yl−1. In this paper, we use log to
denote base 2 logarithms. Training the flow should minimize the negative log-likelihood− log pX(x).
The inverse flow is defined as f−1 = f−1

1 ◦ ... ◦ f−1
L , such that f−1(z) = x. There are many types

of invertible bijections, fl. Popular choices include element-wise, autoregressive (e.g. coupling
layers) [41] and 1× 1 convolution transformations [25].

To perform lossless compression with normalizing flows, the input data should be transformed to
latent variables, which are then encoded with a prior distribution. As data and encoded bits should
be in binary format, x and z must be discrete, with a bijection between discrete inputs and outputs
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established. However, as discussed, this operation is usually intractable with popular classes of
transformations used in continuous flows due to the numerical errors induced by discretization.

In this section, we introduce a novel algorithm derived from continuous flows that allows us to achieve
an exact bijiective mapping between discrete x and discrete z. We present the general idea of a flow
layer’s numerical invertibility in discrete space in Sec. 2.1. We then introduce our flow layers in Sec.
2.2 and 2.3, with their application to compression discussed in Sec. 2.4 and 2.5.

2.1 Invertibility of Flows in Discrete Space

To discretize the data, we follow [41] and adopt k-precision quantization to assign floating points to
discretization bins such that

x̄ =
b2k · xc

2k
, (2)

where b·c is the floor function. The associated quantization error is bounded by |x̄− x| < 2−k. Any
d-dimensional x can be quantized into bins with volume δ = 2−kd. The probability mass of x̄ can
then be approximated by P (x̄) = p(x̄)δ, such that the theoretical codelength is − log(p(x̄)δ).

Denote our proposed numerically invertible flow (iFlow) according to f̄ = f̄L ◦ ... ◦ f̄1. The input
and output should be subject to k-precision quantization, where each layer should be appropriately
invertible such that ȳl−1 ≡ f̄−1

l (f̄l(ȳl−1)). Denoting ȳ0 = x and z̄ = ȳL, it is further expected that
z̄ = f̄(x) and x ≡ f̄−1(z̄). We will show in the following subsections that f̄ can be derived from
any continuous flow f in such a way that the error between f̄(x) and f(x) is negligible.

2.2 Numerically Invertible Element-Wise Flows

We begin by describing our approach for element-wise flows z = f(x), where f is a monotonic
element-wise transformation. For notation simplicity, we assume that the flow contains just one
layer. In most cases, f does not present a unique inverse in discrete space, such that f−1(z̄) 6= x.
In what follows, we introduce an approach to derive an invertible, discrete-space operation from
any element-wise flow transformation. For simplicity, we denote the inputs and output pairs of a
continuous flow as x and z = f(x); and we denote the k-precision quantized input-output pairs of
iFlow as x̄ and z̄ = f̄(x̄).

2.2.1 Scale Flow

Algorithm 1 Modular Scale Transform (MST): Numerically Invertible Scale Flow f(x) = R/S · x.

Forward MST: z̄ = f̄(x̄).
1: x̂← 2k · x̄;
2: Decode rd using U(0, R); ŷ ← R · x̂+ rd;
3: ẑ ← bŷ/Sc, re ← ŷ mod S;
4: Encode re using U(0, S);
5: return z̄ ← ẑ/2k.

Inverse MST: x̄ = f̄−1(z̄).
1: ẑ ← 2k · z̄;
2: Decode re using U(0, S); ŷ ← S · ẑ + re;
3: x̂← bŷ/Rc, rd ← ŷ mod R;
4: Encode rd using U(0, R);
5: return x̄← x̂/2k.

We begin with the scale transformation defined as z = f(x) = a · x, (a > 0), from which we are
able to build more complex flow layers. The input can be converted to an integer with x̂ = 2k · x̄, and
the latent variable z̄ can be recovered from integer ẑ by z̄ = ẑ/2k. Inspired by MAT in iVPF [41], we
first approximate a with a fractional such that a ≈ R

S , where R,S ∈ N. Denote ŷ = R · x̂+ rd where
rd is sampled uniformly from {0, 1, ..., R− 1}, we can obtain ẑ with ẑ = bŷ/Sc, and the remainder
re = ŷ mod R can be encoded to eliminate the error. It is clear that (x̂, rd) ↔ ŷ ↔ (ẑ, re) are
bijections.

Let U(0, A) be the uniform distribution such that P (s) = 1
A , s ∈ {0, 1, ..., A− 1}. The numerically

invertible scale flow f̄ is displayed in Alg. 1. As the modular operation is essential to Alg. 1, we
name it the Modular Scale Transform (MST). Setting S andR = round(S ·a) to be large, we observe
that the following propositions hold.
Proposition 1. [41] |z̄ − f(x̄)| < O(S−1, 2−k).
Proposition 2. The codelength of MST is Lf (x̄, z̄) = logS − logR ≈ − log |a| = − log |f ′(x̄)|.
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Proposition 1 establishes that the error is small if S and k are large. Proposition 2 demonstrates that
the codelength is almost exactly the log-Jocabian of f . The above properties and the correctness of the
algorithm are discussed in the Appendix. Further note that, with the exception of the usual encoding
and decoding processes, MST’s operations can be parallelized, resulting in minimal additional
overhead. In contrast, MAT’s operation in iVPF [41] only deals with volume-preserving affine
transform and is performed sequentially along dimensions, limiting its usage and efficiency.

2.2.2 General Element-wise Flow

Algorithm 2 Numerically Invertible Element-wise Flows

Forward: z̄ = f̄(x̄).
1: Get x̄l, x̄h, z̄l, z̄h given x̄, so that x̄ ∈ [x̄l, x̄h);
2: Set large S; get R with Eq. (4); x̄′ ← x̄− x̄l;
3: Get z̄′ with forward MST in Alg. 1, given input x̄′

and coefficients R,S;
4: return z̄ = z̄′ + z̄l. . z̄ ∈ [z̄l, z̄h).

Inverse: x̄ = f̄−1(z̄).
1: Get x̄l, x̄h, z̄l, z̄h given z̄, so that z̄ ∈ [z̄l, z̄h);
2: Set large S; get R with Eq. (4); z̄′ ← z̄ − z̄l;
3: Get x̄′ with inverse MST in Alg. 1, given input z̄′

and coefficients R,S;
4: return x̄ = x̄′ + x̄l. . x̄ ∈ [x̄l, x̄h).

For simplicity, we assume the non-linear f is monotonically increasing. For a monotonically
decreasing f , we simply invert the sign: −f .

MST in Alg. 1 works with linear transformations, and is incompatible with non-linear functions.
Motivated by linear interpolation, we can approximate the non-linear flow with a piecewise linear
function. In general, consider input x̄ to be within an interval x̄ ∈ [x̄l, x̄h)1 and z̄l = f(x̄l), z̄h =

f(x̄h). The linear interpolation of f is then

finp(x) =
z̄h − z̄l
x̄h − x̄l

(x̄− x̄l) + z̄l. (3)

It follows that z̄ can be derived from MST with input x̄−x̄l followed by adding z̄l. Furthermore, z̄ and
x̄ can be recovered with the corresponding inverse transformation. To preserve monotonicity, z̄ must
be within interval z̄ ∈ [z̄l, z̄h). Denoting the invertible linear flow derived from finp as f̄inp, it must
hold that f̄inp(x̄l) ≥ z̄l, f̄inp(x̄h−2−k) ≤ z̄h−2−k. As we use MST in Alg. 1, we observe that when
z̄h−z̄l
x̄h−x̄l

is approximated withR/S, the minimum possible value of f̄inp(x̄l) is z̄l (when rd = 0 in Line
2) and the maximum possible value of f̄inp(x̄h−2−k) is b(R·2k(x̄h−x̄l−2−k)+R−1)/(S ·2k)c+z̄l
(when rd = R− 1 in Line 2). Given large S, the largest possible value of R should be

R =
⌊ (2k · (z̄h − z̄l)− 1) · S + 1

2k · (x̄h − x̄l)
⌋
. (4)

Another difficulty is in determining the correct interpolation interval [x̄l, x̄h). One simple solution is
to split the input domain into uniform intervals with length 2−h such that x̄l = b(2h · x̄)/2hc, x̄h =
x̄l + 2−h. However, for the inverse computation given z̄, it is not easy to recover the interpolation
interval as f−1(z̄) may not be within [x̄l, x̄h). Instead, as z̄ ∈ [z̄h, z̄l), the interval [x̄l, x̄h) can be
obtained via a binary search in which x̄l is obtained with z̄ ∈ [f(x̄l), f(x̄h)). Another approach
is to split the co-domain into uniform intervals such that z̄l = b(2h · z̄)/2hc, z̄h = z̄l + 2−h, with
x̄l = f−1(z̄l), x̄h = f−1(z̄h). In this case, determining [z̄l, z̄h) during the inverse computation
is simple. While for the forward pass, [z̄l, z̄h) should be determined with a binary search such
that x̄ ∈ [f−1(z̄l), f−1(z̄h)). In practice, we have simpler tricks to determine the correct interval
[x̄l, x̄h), [z̄l, x̄h) for both the forward and inverse computation, which can be found in the Appendix.

The general idea of the non-linear flow adaptations are summarized in Alg. 2. Note that Alg. 2
can be used in any element-wise flow including linear flow. In Alg. 2, Proposition 2 holds such
that Lf (x̄, z̄) = − log(R/S) ≈ − log z̄h−z̄l

x̄h−x̄l
≈ − log |f ′(x̄)|. It is possible to arrive at a similar

conclusion in Proposition 1 where the corresponding error is |z̄ − f(x̄)| < O(S−1, 2−k, 2−2h).

1All intervals must partition the domain of f .
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2.3 Practical Numerically Invertible Flow Layers

Whilst one can use many types of complex transformations to build richly expressive flow-based
models, to ensure the existence and uniqueness of the inverse computation, these layers are generally
constructed with element-wise transformations. In this subsection, we demonstrate the invertibility of
discretized analogs to some of the most widely used flow layers using the operators as described in
Sec. 2.2. Such flows include autoregressive flows [20] (including coupling flows [10, 11, 16]) and
1× 1 convolutional flows [25].

2.3.1 Autoregressive and Coupling Flows

Algorithm 3 Numerically Invertible Autoregressive Flow

Forward: z̄ = f̄(x̄).
1: for i = m, ..., 1 do
2: z̄i ← f̄i(x̄i, x̄<i) with Alg. 2 (forward);
3: end for
4: return z̄ = [z̄1, ..., z̄m]>.

Inverse: x̄ = f̄−1(z̄).
1: for i = 1, ...,m do
2: x̄i ← f̄−1

i (z̄i, x̄<i) with Alg. 2 (inverse);
3: end for
4: return z̄ = [z̄1, ..., z̄m]>.

Supposing that the inputs and outputs, x and z, are split into m parts x = [x1, ...,xm]>, z =
[z1, ..., zm]>, the autoregressive flow z = f(x) can be represented as zi = fi(xi; x<i), where
fi(·; x<i) is the element-wise flow (discussed in Sec. 2.2), conditioned on x<i. Now let f̄i(·; x<i)
denote the invertible element-wise flow transformation as discussed in Alg. 1-2. Alg. 3 then illustrates
the details of an invertible autoregressive flow f̄ .

Propositions 1 and 2 hold in our discretized autoregressive transformation. In fact, the log-determinant
of Jacobian is given by log |det Jf (x)| =

∑m
i=1 log |det Jfi(xi; x<i)|, and the expected codelength

is simply Lf (x̄, z̄) =
∑m

i=1 Lf (x̄i, z̄i) ≈ −
∑m

i=1 log |det Jfi(x̄i; x̄<i)| = − log |det Jf (x̄)|.
When m = 2 and f1(x1) = x1, the autoregressive flow is reduced to a coupling flow, which is
widely used in flow-based models [10, 11, 16]. It is therefore trivially clear that the coupling flow is
additionally compatible with Alg. 3.

2.3.2 1× 1 Convolutional Flow

1× 1 convolutional layers can be viewed as a matrix multiplication along a channel dimension [25].
Let x̄, z̄ ∈ Rc be inputs and outputs along channels, and W ∈ Rc×c the weights of our network. The
objective is to obtain z̄ = f̄(x̄) where f(x) = Wx.

We use the ideas of iVPF [41] to achieve a numerically invertible 1× 1 convolutional transformation.
In particular, we begin by performing an LU decomposition such that W = PLΛU. It then
follows that the 1× 1 convolution is performed with successive matrix multiplications with U,Λ,L
and P. In iVPF, the authors extensively discussed matrix multiplications with factors U,L and
P [41]. Meanwhile, one can view the matrix multiplication with Λ as a scale transform, such that
f(x) = λ � x, where � is an element-wise multiplication and λ are the diagonal elements of
Λ. MST in Alg. 1 can then be applied. In such a case, it is clear that Proposition 1 and 2 hold
for a 1 × 1 convolutional flow. For Proposition 2, it is observed that Lf (x̄, z̄) ≈ −sum(logλ) =
− log |det Λ| = − log |det W| = − log |det Jf (x̄)|.

2.4 Building Numerically Invertible Flows

Our flow model is constructed as a composition of layers f = fL ◦ ... ◦ f2 ◦ f1, where each layer
is a transformation of the type discussed in Sec. 2.2 and 2.3. Let us represent the resulting flow
as f̄ = f̄L ◦ ... ◦ f̄1, where f̄l is a discretized transformation derived from the corresponding
continuous f . It is clear that the quantized input x̄(= ȳ0) and latent z̄(= ȳL) establish a bijection
with successive transformations between discrete inputs and outputs. For the forward pass, z̄ is
computed with ȳl = f̄(ȳl−1), l = 1, 2, ..., L; for the inverse pass, x̄ is recovered with the inverse
flow f̄−1 = f̄−1

1 ◦ ... ◦ f̄−1
L such that ȳl−1 = f−1

l (ȳl).
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For our resultant flow model, we can draw similar conclusions as in Propositions 1 and 2. Firstly, the
error of z̄ = f̄(x̄) and z = f(x̄) is small, bounded by |z̄− z| < O(LS−1, L2−k, L2−2h). Secondly,
the codelength is approximately Lf (x̄, z̄) =

∑L
l=1 Lfl(ȳl−1, ȳl) ≈ −

∑L
l=1 log |det Jfl(ȳl−1)|.

2.5 Lossless Compression with Flows via Bits-back Dequantization

Armed with our flow model f̄ , performing lossless compression is straight-forward. For the encoding
process, the latent is generated according to z̄ = f̄(x̄). We then encode z̄ with probability pZ(z̄)δ.
For the decoding process, z̄ is decoded with pZ(z̄)δ, and x̄ is recovered with f̄−1(z̄). The expected
codelength is approximately − log(pX(x̄)δ) such that

L(x̄) ≈ − log(pZ(z̄)δ)−
L∑

l=1

log |det Jfl(ȳl−1)| ≈ − log(pX(x̄)δ). (5)

However, we note that if k is large, − log δ = kd and the codelengths will also be large, resulting in a
waste of bits. For what follows, we adopt the bits-back trick in LBB [17] to reduce the codelength. In
particular, consider coding with input data x◦ ∈ Zd, where a k-precision noise vector ū ∈ [0, 1)d is
decoded with q(ū|x◦)δ and added to input data such that x̄ = x◦ + ū. In this way, x̄ is then encoded
with our flow f̄ . For the decoding process, x◦ is recovered by applying the inverse transformation.
We name this coding process Bits-back Dequantization, which is summarized in Alg. 4.

Algorithm 4 Lossless Compression with iFlow.

Encode x◦.
1: Decode ū using q(ū|x◦)δ;
2: z̄← f̄(x◦ + ū);
3: Encode z̄ using pZ(z̄)δ.

Decode.
1: Decode z̄ using pZ(z̄)δ;
2: x̄← f̄−1(z̄),x◦ ← bx̄c;
3: Encode ū = x̄− x◦ using q(ū|x◦)δ;
4: return x◦.

In practice, q(u|x◦) is constructed with a flow model such that u = g(ε; x◦) where ε ∼ p(ε).
ū is decoded by first decoding ε̄ with p(ε̄)δ, and then applying ū = ḡ(ε̄; x◦). Thus decoding ū
involves − log(q(ū|x◦)δ) bits. Overall, the expected codelength is exactly the dequantization lower
bound [19] such that

L(x◦) ≈
∑
ū

q(ū|x◦)δ[log(q(ū|x◦)δ)− log(p(x◦ + ū)δ)]

≈ Eq(ū|x◦)[log q(ū|x◦)− log p(x◦ + ū)].

(6)

2.6 Extensions

With novel modifications, flow models can be applied to the generation of various data types, obtaining
superior performance [7, 28, 23]. These models can be used for improved lossless compression. In
general, given input data x◦, these models generate intermediate data v with q(v|x◦), and the density
of v is modelled with flow model z = f(v). For generation, when v is generated with the inverse
flow, x is generated with p(x◦|v). It is clear that p(x) can be estimated with variational lower bound
such that log p(x◦) ≥ Eq(v|x◦)[logP (x◦|v) + log p(v) − log q(v|x◦)]. For lossless compression,
x◦ can be coded with bits-back coding, which is similar with Alg. 4. In the encoding process, we first
decode v̄ with q(v̄|x◦)δ and then encode x◦ with P (x◦|v̄) (similar with Line 1 in Alg. 4-Encode).
We then obtain the prior z̄ = f̄(v̄) (Line 2), before finally encoding z̄ with pZ(z̄)δ (Line 3). In the
decoding process, z̄ is firstly decoded with pZ(z̄)δ (similar to Line 1 in Alg. 4-Decode), and then
recovered v̄ and decoded x◦ with P (x◦|v̄) (Line 2). Finally, we encode using v̄ with q(v̄|x◦) [38].
The expected codelength is approximately

L(x◦) ≈ Eq(v̄|x◦)[log q(v̄|x◦)− logP (x◦|v̄)− log p(v̄)]. (7)

We introduce a selection of recent, state-of-the-art flow-based models modified according to the
above. Each model corresponds to a certain coding algorithm.

VFlow [7]. VFlow expands the input data dimension with variational data augmentation to resolve
the bottleneck problem in the flow model. In VFlow, v = [x◦ + u, r](u ∈ [0, 1)d), where u ∼
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qu(u|x◦), r ∼ qr(r|x◦+u), is modelled with flows gu, gr such that u = gu(εu; x◦), r = gr(εr; x◦+
u) (εu, εr are priors). Then we have q(v|x◦) = qu(u|x◦)qr(r|x◦ + u), P (x◦|v) = 1 (as v →
(x◦ + u) → x◦). Thus for the encoding process, ε̄u, ε̄r are decoded. To construct v̄ we have
ū = ḡu(ε̄u; x◦), r̄ = ḡr(ε̄r; x◦ + ū); and then v̄ is encoded with iFlow. For the decoding process, v̄
is decoded with the inverse iFlow, and then x◦, ū, r̄ is recovered with v̄. Here ū, r̄ is encoded and x◦

is the decoded output. As VFlow achieves better generation results compared with general flows, one
would expect a better compression ratio with VFlow.

Categorical Normalizing Flow [28]. Categorical Normalizing Flows (CNF) succeed in mod-
elling categorical data such as text, graphs, etc. Given categorical data x◦ = [x1, ..., xn], xi ∈
{1, 2, ..., C}n, v = [v1, ...,vn] is represented with word embeddings such that q(vi|xi) =
qe(vi|µ(xi),σ(xi)), in which qe could be a Gaussian or logistic distribution. Then P (xi|vi) =

p̃(xi)q(vi|xi)∑C
c=1 p̃(c)q(vi|c)

with p̃ being the prior over categories. Thus q(v|x◦) =
∏n

i=1 q(vi|xi), P (x◦|v) =∏n
i=1 P (xi|vi), and x◦ can be coded with Alg. 8 given q(v|x◦), P (x◦|v) and the iFlow.

3 Uniform Base Conversion Systems

Algorithm 5 Uniform Base Conversion Systems

ENCODE s using U(0, R)(R < 2K).
Input: symbol s, state c, bit-stream bs.
Output: new state c and bit-stream bs.
1: c← c ·R+ s;
2: if c ≥ 2M+K then
3: bs.push_back(c mod 2K); . push K

bits to bit-stream.
4: c← b c

2K
c;

5: end if
6: return c, bs.

DECODE with U(0, R)(R < 2K).
Input: state c, bit-stream bs.
Output: decoded s, new state c and bit-stream bs.
1: if c < 2M ·R then
2: c ← 2K · c+bs.pop_back(); . get last

K bits from bit-stream and pop them.
3: end if
4: s← c mod R;
5: c← bc/Rc;
6: return s, c, bs.

The previous section demonstrates that coding with a uniform distribution is central to our algorithm.
Note that the distribution varies in each coding process, thus dynamic entropy coder is expected.
Compared to the Gaussian distribution used in LBB [17], a uniform distribution is simpler, yielding
improved coding speed. As follows, we introduce our Uniform Base Conversion Systems (UBCS),
which is easy to implement and the coding bandwidth is much greater than that of rANS [12].

UBCS is implemented based on a number-base conversion. The code state c is represented as an
integer. For coding some symbol s ∈ {0, 1, ..., R− 1} with a uniform distribution U(0, R), the new
state c′ is obtained by converting an R-base digit s to an integer such that

c′ = E(c, s) = c ·R+ s. (8)

For decoding with U(0, R), given state c′, the symbol s and state c are recovered by converting the
integer to an R-base digit such that

s = c′ mod R, c = D(c′, s) = b c
′

R
c. (9)

We note, however, that c will become large when more symbols are encoded, and computing Eq. (8-9)
with large c will be inefficient. Similar to rANS, we define a “normalized interval” which bounds the
state c such that c ∈ [2M , 2K+M ) (K,M are some integers values) after coding each symbol. For
the encoding process, if c ≥ 2K+M , the lower K bits are written to disk, and the remaining bits are
reserved such that c← b c

2K c. For the decoding process, if c < 2M ·R, the stored K bits should be
read and appended to the state before decoding. In this way, the decoded state is contained within the
interval [2M , 2K+M ). The initial state can be set such that c = 2M . We illustrate this idea in Alg. 5.

The correctness of Alg. 5 is illustrated in the following theorem. P1 demonstrates that the symbols
can be correctly decoded with a UBCS coder, with coding performed in a first-in-last-out (FILO)
fashion. P2 shows that the codelength closely approximates the entropy of a uniform distribution,
subject to a large M and K. The proof of the theorem is in the Appendix.
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Table 2: Coding performance of iFlow, LBB and iVPF on CIFAR10 dataset. We use batch size 64.

flow compression encoding time (ms) decoding time (ms)
arch. technique nll bpd aux. bits inference coding inference coding

Flow++ LBB [17] 3.116 3.118 39.86 16.2±0.3
116±1.0 32.4±0.2

112±1.5

iFlow (Ours) 3.118 34.28 21.0±0.5 37.7±0.5

iVPF iVPF [41] 3.195 3.201 6.00 5.5±0.1
11.4±0.2 5.2±0.1

13.5±0.3

iFlow (Ours) 3.196 7.00 7.1±0.2 9.7±0.2

Theorem 3. Consider coding symbols s1, ...sn with si ∼ U(0, Ri), (i = 1, 2, ..., n,Ri < 2K) using
Alg. 5, and then decode s′n, s

′
n−1, ..., s

′
1 sequentially. Suppose (1) the initial state and bit-stream are

c0 = 2M ,bs0 = empty respectively; (2) After coding si, the state is ci and the bit-stream is bsi;
(3) After decoding s′i+1, the state is c′i and the bit-stream is bs′i. We have

P1: s′i = si+1, c
′
i = ci,bs

′
i = bsi for all i = 0, ..., n− 1.

P2: Denote by the codelength li = dlog cie+ len(bsi) where len is the total number of bits in
the bit-stream. Then ln − l0 < 1

1−1/(ln 2·2M ·K)

[∑n
i=1Ri + 1 + (ln 2 · 2M )−1

]
.

Table 1: Coding bandwidth (M sym-
bol/s) of UBCS and rANS coder on dif-
ferent threads(thrd). We use the imple-
mentations in [17] for evaluating rANS.

# thrd rANS UBCS

Encoder 1 5.1±0.3 380±5

16 21.6±1.1 2075±353

Decoder 1 0.8±0.02 66.2±1.7

16 7.4±0.5 552±50

In practice, we set K = 32 and M = 4. Compared to
rANS [12] and Arithmetric Coding (AC) [40], UBCS is of
greater efficiency as it necessitates fewer operations (more
discussions are shown in the Appendix). UBCS can achieve
greater computational efficiency via instantiating multiple
UBCS coders in parallel with multi-threading. Table 1
demonstrates that UBCS achieves coding bandwidths in
excess of giga-symbol/s – speed significantly greater than
rANS.

4 Experiments

In this section, we perform a number of experiments to establish the effectiveness of iFlow. We will
investigate: (1) how closely the codelength matches the theoretical bound; (2) the efficiency of iFlow
as compared with the LBB [17] baseline; (3) the compression performance of iFlow on a series low
and high-resolution images.

4.1 Flow Architectures and Datasets

We adopt two types of flow architectures for evaluation: Flow++ [16] and iVPF [41]. Flow++ is a
state-of-the-art model using complex non-linear coupling layers and variational dequantizations [19].
iVPF is derived from a volume-preserving flow in which numerically invertible discrete-space
operations are introduced. The models are re-implemented or directly taken from the corresponding
authors. Unless specified, we use h = 12, k = 28 and set large S – around 216, which we analyse
further in the Appendix. To reduce the auxiliary bits in the bits-back coding scheme, we partition the
d-dimensional data into b splits and perform MST (in Alg. 1 and 2) for each split sequentially. In this
case, the auxiliary bits can be reduced to 1/b in MST. We use b = 4 in this experiment.

Following the lossless compression community [16, 4, 18, 37, 41], we perform evaluation using toy
datasets CIFAR10, ImageNet32 and ImageNet64. Results for alternate methods are obtained via
re-implementation or taken directly from the corresponding papers, where available. We further
test the generalization capabilities of iFlow in which all toy datasets are compressed with a model
trained on ImageNet32. For benchmarking our performance on high-resolution images, we evaluate
iFlow using CLIC.mobile, CLIC.pro2 and DIV2k [1]. For this purpose, we adopt our ImageNet32/64
model for evaluation, and process an image in terms of 32× 32 or 64× 64 patches, respectively. The
experiment is conducted with PyTorch framework with one Tesla P100 GPU.

2https://www.compression.cc/challenge/

8

https://www.compression.cc/challenge/


Table 3: Compression performance in bpd on benchmarking datasets. † denotes the generation
performance in which the models are trained on ImageNet32 and tested on other datasets. ‡ denotes
compression of high-resolution datasets with our ImageNet64-trained model.

ImageNet32 ImageNet64 CIFAR10 CLIC.mobile CLIC.pro DIV2K

PNG [5] 6.39 5.71 5.87 3.90 4.00 3.09
FLIF [36] 4.52 4.19 4.19 2.49 2.78 2.91
JPEG-XL [2] 6.39 5.74 5.89 2.36 2.63 2.79

L3C [30] 4.76 4.42 - 2.64 2.94 3.09
RC [31] - - - 2.54 2.93 3.08
Bit-Swap [26] 4.50 - 3.82 - - -

IDF [18] 4.18 3.90 3.34 - - -
IDF++ [4] 4.12 3.81 3.26 - - -
iVPF [41] 4.03 3.75 3.20 - - -
LBB [17] 3.88 3.70 3.12 - - -
iFlow (Ours) 3.88 3.70 3.12 - - -

HiLLoC [37]† 4.20 3.90 3.56 - - -
IDF [18]† 4.18 3.94 3.60 - - -
iVPF† [41] 4.03 3.79 3.49 2.47/2.39‡ 2.63/2.54‡ 2.77/2.68‡

iFlow (Ours)† 3.88 3.65 3.36 2.26/2.26‡ 2.45/2.44‡ 2.60/2.57‡

4.2 Compression Performance

For our experiments, we use the evaluation protocols of codelength and compression bandwidth. The
codelength is defined in terms of the average bits per dimension (bpd). For no compression, the bpd
is assumed to be 8. The compression bandwidth evaluates coding efficiency, which we define in terms
of symbols compressed per unit time.

Table 2 demonstrates the compression results on CIFAR10. Note that we only report the encoding
time (results on decoding time are similar, and are available in the Appendix). For iVPF, we use
settings almost identical to the original paper [41] such that k = 14.

Firstly, we observe that, when using both the Flow++ and iVPF architectures, iFlow achieves a
bpd very close to theoretically minimal codelength. When using Flow++, iFlow achieves identical
performance as that of LBB. For the iVPF architecture, iFlow outperforms the underlying iVPF as it
avoids the need to store 16 bits for each data sample.

Secondly, the coding latency highlights the main advantage of iFlow: we achieve encoding 5× faster
than that of LBB and over 1.5× that of iVPF. In fact, the use of UBCS only represents 20% of
the total coding time for all symbols (4.8ms in Flow++ and 1.6ms in iVPF). In contrast, the rANS
coder of LBB commands over 85% of the total coding latency, which is the principal cause of LBB’s
impracticality. Indeed, Table 1 demonstrates that our UBCS coder achieves a speed-up in excess of
50× that of rANS (which results in a coder latency of 4.8ms in iFlow vs. 99.8ms in LBB).

Lastly, compared with LBB, iFlow necessitates fewer auxiliary bits. In fact, LBB requires crica
2k + log σ bits per dimension (for δ = 2−k and small σ in [17]). Meanwhile, iFlow requires
approximately k + 1

b logS, and 1
b logS is usually small with large b.

4.3 Comparison with the State-of-the-Art

To further demonstrate the effectiveness of iFlow, we compare the compression performance on
benchmarking datasets against a variety of neural compression techniques. These include, L3C [30],
Bit-swap [26], HilLoc [37], and flow-based models IDF [18], IDF++ [4], iVPF [41], LBB [17]. We
additionally include a number of conventional methods, such as PNG [5], FLIF [36] and JPEG-XL [2].

Experiments on Low Resolution Images. Compression results on our described selection of
datasets are available in left three columns of Table 3. Here we observe that iFlow obtains improved
compression performance over all approaches with the exception of LBB on low-resolution images,
for which we achieve identical results.
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Generalization. The last four rows in Table 3 demonstrate the literature-standard test of general-
ization, in which ImageNet32 trained model are used for testing. From these results, it is clear that
iFlow achieves the best generalization performance in this test. It is worth noting that we obtain an
improved performance on ImageNet64 when using our ImageNet32-trained model.

Experiments on High Resolution Images. Finally, we test iFlow across a number of high-resolution
image datasets. Here images are processed into non-overlapping 32× 32 and 64× 64 patches for our
ImageNet32 and ImageNet64-trained models. The right three columns in Table 3 display the results,
which is observed that iFlow outperforms all compression methods across all available benchmarks.
Note that as we crop patches for compression, the compression bandwidth is the same as that in small
images like CIFAR10, i.e., 5 times faster than LBB and 30% speedup compared with iVPF.

5 Related Work

Dynamic Entropy coders, such as Arithmetic Coding (AC) [40] and Asymmetric Numerical Systems
(ANS) [12], form the basis of lossless compression. However, the binary search protocol required at
decode time and their comparatively high number of numerical operations make them both relatively
time-consuming. The term dynamic means that the data symbols are in different distributions, in
this case, efficient entropy coders like Huffman coding [21] and tANS [12] are incompatible. Our
proposed UBCS is dynamic coder, which requires only two operations per symbol, producing an
faster algorithm than AC and ANS.

In order to utilise entropy coders, one must estimate the data distribution. For this purpose, the wider
community has employed a variety of density estimators. One of the most popular, autoregressive
models [35], estimates the joint density with per-pixel autoregressive factorizations. Whilst commonly
achieving state-of-the-art compression ratios, the sequential pixel-by-pixel nature of encoding and/or
decoding makes them impractically time-consuming. Alternatively, variational autoencoders (VAEs)
[24, 26, 37] maximise a lower bound on the marginal data likelihood (otherwise known as the ELBO).
With the bits-back coding framework [38], the theoretical codelength is exactly equal to the ELBO.
However, in most cases, VAE formulations typically produce inferior compression ratios as there
exists a gap between the ELBO and the true data likelihood.

As discussed, flow-based models [16, 25, 11], which admit exact likelihood computation, represent an
alternative route for density estimation. IDF [18] and IDF++ [4] proposed the titular integer discrete
flow to preserve the existence and uniqueness of an invertible mapping between discrete data and
latent variables. In a similar vein, iVPF [41] achieved a mapping with volume-preserving flows. Here
the remainders of a division operation are stored as auxiliary states to eliminate the numerical error
arising from discretizing latent variables. However, all of these models must introduce constraints
on the underlying transform, limiting their representational power. LBB [17] was the first flow-
based lossless compression approach to admit a broad class of invertible flows based on continuous
transforms. LBB established this family of flexible bijections by introducing local bits-back coding
techniques to encode numerical errors. However, LBB typical requires the coding of many such
errors and does so with the ANS scheme, posing obvious challenges to computational efficiency.

6 Conclusions and Discussions

In this paper, we have proposed iFlow, a numerically invertible flow-based model for achieving
efficient lossless compression with state-of-the-art compression ratios. To achieve this, we have
introduced the Modular Scale Transform and Uniform Base Conversion Systems, which jointly
permit an efficient bijection between discrete data and latent variables. Experiments demonstrate
that the codelength comes extremely close to the theoretically minimal value, with compression
achieved much faster than the next-best high-performance scheme. Moreover, iFlow is able to achieve
state-of-the-art compression ratios on real-word image benchmarks.

We additionally consider the potential for extending iFlow. That is, recent advances in normalizing
flows have achieved improved generation performance across various data types [28, 7, 23]. We
have discussed the possible extension to incorporate these advancements in Sec. 2.6, and consider
its application as future work. We further recognise that compression aproaches, of which iFlow is
one, present significant data privacy issues. That is, the generative model used for compression may
induce data leakage; therefore, the codec should be treated carefully as to observe data-privacy laws.
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