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Abstract

Solar active regions (ARs) are areas of increased magnetic flux on the Sun’s surface.
Their downstream effects, including phenomena such as solar flares, Solar Ener-
getic Particle events (SEPs) and coronal mass ejections (CMEs), can impair Earth-
and space-based human infrastructure. To mitigate these dangers, the prediction
of such events and their precursors —namely the ARs— are necessary, and uncer-
tainty quantification (UQ) of these predictions are crucial for subsequent human
decision-making. In this manuscript, we present Active Region Characterization
and Analysis of Dynamics and Evolution (ARCADE), an ongoing effort to provide
Al-driven and UQ-equipped forecasting pipeline for solar surface magnetic field
evolution. ARCADE is trained by propagating a ResNet through a numerical
simulation of the solar surface magnetic field. In this work, we validate our numer-
ical integrator against the state-of-the-art Advective Flux Transport model (AFT)
and demonstrate that ARCADE offers high-accuracy forecasts with consistent
uncertainty estimations. Moreover, ARCADE is the first model of surface magnetic
evolution to produce forecast of the emergence of flux several hours into the future.
Finally, we provide a convenient user interface for forecasting with UQ, accessible
upon request. This work is a promising first step for hybrid physics-ML methods
for solar magnetic field forecasting with UQ, offering clear interpretability and
usability for heliophysicists and stakeholders in space weather prediction.
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1 Introduction

The growing interest in human spaceflight and the increased reliance on satellites and other space-
based infrastructure have made reliable space weather forecasting a critical need. While progress
has been made in predicting individual space weather events such as solar flares (35 9), coronal mass
ejections (13), and solar energetic particles (1;[10), forecasting their source regions (11} [10)—solar
active regions (ARs)—still remains underdeveloped. Active regions are localized areas on the Sun’s
surface dominated by strong, concentrated magnetic fields. They appear as sunspots in visible
light and are the origins of most major eruptive solar phenomena, making their early detection and
characterization essential for space weather prediction. Detecting the growth or emergence of ARs
before they are visible at the surface requires analyzing the rising magnetic flux, the dynamics of the
Sun’s interior (22} 205 [12)) and most importantly the transport of solar surface magnetic flux.

The current state-of-the-art (SOTA) approaches to surface flux transport (SFT) are the Advective Flux
Transport (AFT) model (20;[18)) and the Air Force Data Assimilative Photospheric Flux Transport
(ADAPT) (7) model. They have found widespread success and longevity in current space weather
forecasting capabilities, and are focused mainly on modeling the evolution of the magnetic field
around the solar far-side and at the poles, which are typically hidden from Earth’s point of view.
As a result, these models do not enable accurate short-term forecasts, which are critical for human
operations dependent on space weather. Instead, they impose measurements of the magnetic field as
seen from Earth, or estimations of the magnetic field based on far-side extreme ultraviolet observations
(18). Due to their focus on long-term evolution, no SFT model is currently able to self-consistently
grow or emerge new magnetic flux without assimilating observations. Additionally, no existing SFT
model includes estimations of the surface velocity patterns that drive solar evolution, relying instead
in a statistical approximation to these flows.

The objective of this work is to use Al to improve SFT modeling by enabling the simultaneous
estimation of the small-scale flows that drive magnetic evolution and the simulated evolution of the
solar surface magnetic field given the magnetic flux emergence and estimated velocity field. It is
important to highlight that we are deliberately using small ResNets as part of this work (each with
~ 8K parameters). We aim to show that small models can produce competitive performance and
consistent UQ estimates when acting in synergy with physical models.

1.1 Equation of magnetic flux transport

The mathematical model of SFT, guiding the time ¢ evolution of the magnetic field B=B 0, p,1),
arises from the ideal magnetohydrodynamics as the magnetic induction equation, with the colatitude
6 € [0, 7] radians and the longitude ¢ € [0, 2] radians:
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where ¥ = ¥(0, ¢, t) represents the velocity field governing the advection of the magnetic field

strength and S (0, ¢, t) represents the magnetic flux growth/emergence term, and 7) the solar turbulent
diffusivity. If we deliberately restrict our model to only consider radial magnetic flux (a common
SFT assumption), the equation simplifies to
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where the radial magnetic field B,.(6, ¢) : R> — R is now scalar-valued, R, is the solar radius (a
scalar constant), and vy (6, ¢, t) and v, (6, ¢, t) are the latitudinal and longitudinal components of the
velocity flow.

Following standard practice, we split both vy (8, ) and v,,(6, ¢) into a global axisymmetric flow, and
a small-scale turbulent flow. For colatitude we have

Vo (97 2 t) = MF(Q) + UIG (0, ©s t)a MF(Q) = —Yo (COS 9)17 sin 95 3
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Figure 1: ARCADE ML pipeline: We use the AFT baseline (20) as our input and output data. We
use small ResNets (left block; ~ 7k parameters) to enable the generalization of our small-scale
fields (vy (0, ) & v,,(0,¢)) and flux emergence (S, (6, p,t)) terms. We use torchdiffeq (2) to
numerically integrate the SFT ODE (Eq. [2) and create the initial +6h forecast. Another small ResNet
performs the uncertainty quantification.

where MF(6) represents the meridional flow (MF) (6), vg controls the peak pole-ward speed and p
controls how sharply the flow peaks toward mid-latitudes. For longitude we have

v (0, 0,t) = Q(0) + (0, 0,t), Q6) = A+ Bsin®60 + Csin* 6, 4)

where Q(0) represents the differential rotation (DR) (8)), and A, B, C' are constants controlling the
rotation rate and its slow down towards the poles.

Notably bereft of parametrization is the source term, Sy.(6, o, t). This term accounts for the subsurface
magnetic activity that ultimately gives rise to the observable magnetic activity at the surface, and
can be thought of the source term for surface flux growth and new emergence. Due to inherent
measurement limitations, one cannot fit the source term directly to data, but it may be learned in a
semi-supervised manner concurrently with the remaining parameters in Equation 2] For simplicity,
we will use “emergence"” throughout this paper to indicate both AR growth and new emergence.

When combined, Equations provide a collection of six learnable parameters, the unknown
source flux emergence term S, (6, ¢, t), and two turbulent velocity components vg (6, ¢) and v, (6, ¢).
The Active Region Characterization and Analysis of Dynamics and Evolution (ARCADE) project
employs a hybrid Ordinary Differential Equation-Neural Network (ODE-NN) approach to
simultaneously and robustly learn all nine terms on a short time-horizon, incorporates various
methods for uncertainty quantification (UQ), and offers novel infrastructure for visualization
and forecasting with new data to support both heliophysics research and space-based operations
communities.

2 Methodology

Our approach for SFT forecasts with learnable components takes inspiration from ClimODE (21), a
neural ODE approach that respects underlying physics while integrating NN for scalable parametriza-
tion of complex flows and fields.

Fig. [T] shows a summary chart of our hybrid physics-ML workflow. We explain how it connects
together in the following sections: First, we describe our data and train/validation split (see Sec. [2.1).
Second, we describe our numerical integrator and how it compares with a SOTA model (AFT,
specifically; see Sec.[2.2). Third, we describe the combination of the ODE solver with our AI models
to enable +6h forecast of the solar magnetic field in Sec.[2.3] Finally, we describe our UQ module in
Sec
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Figure 2: Hybrid observation/simulation AFT baseline map. a) Only a portion of the full solar surface
is visible from Earth. AFT assimilates observations of the visible part of the Sun into its maps and
uses SFT simulations to advance time in the parts of the solar surface that are not visible from Earth.
b) AFT baseline map from Jan-01-2014. We used it as input for our SFT model validation (see Fig. [3).
The assimilated visible part of the Sun is marked using a solid black line.

2.1 Data: The AFT Baseline

The AFT model (20; [19) has been used to create a baseline of magnetic maps covering the full
solar surface during the Solar Dynamics Observatory (SDO; [14) era (2010-present) at a 6 hour
cadenc This corresponds to 22,364 maps at a resolution of 512 pixels in latitude and 1024 pixels
in longitude. AFT maps are created by integrating the SFT equation (Eq.[2) using a prescribed set
of global and convective flows, while assimilating near-side solar magnetograms observed by the
SDO Helioseismic & Magnetic Imager (HMI) (165 117). Fig. b shows the AFT baseline map for
Jan-01-2014. Fig. [2}a shows which part of the solar surface was visible from the Earth that day. By
continuously assimilating observations from the near side, AFT maps provide an ideal dataset to
develop, validate, and test our Al pipeline. On one hand, AFT maps contain the real observations
of the near-side. On the other hand, the part of the Sun that is not visible from Earth is evolved by
integrating the well-understood SFT equation, excepting the source flux term.

2.1.1 Data Splits

There is a significant amount of auto-correlation in solar data at the 6h-timescales we aim to forecast.
Because of this, it is crucial to split the data in a way that minimizes the possibility of information
leakage across training-validation-test splits. At the same time, it is important to retain a good
representation of long-term solar cycle (quasi-decadal) variability. We follow the standard practice in
heliophysics where data is split equally every year such that part of each year is present in all three
splits. Our split, designed to ensure that there are flux emergence events in every split goes as follows
(this split is applied for every year between 2010 and 2025):

Training: December, January, February, March, April, & May.
Buffers: June & November.

Validation: July & October.

Test: August & September.

This split places a full solar rotation of buffer between the Training and Validation splits, as well as
two full rotations of buffer (including validation) between the Training and Test splits.

2.2 Numerical Integration

The SFT equation (Eq. [2) is an ODE with both temporal and spatial derivatives. For the spatial
derivatives, we implement both first and second order derivatives using a convolutional layer with
fixed weights, no biases, and with gradient tracking disabled. Throughout the model we use the 8th
order centered differencing stencils )

I'The AFT baseline can be downloaded from https://data.boulder.swri.edu/lisa/AFT_Baseline/
*Finite differencing stencils of different orders can be found at https: //www.ams . org/journals/mcom/
1988-51-184/50025-5718-1988-0935077-0/50025-5718-1988-0935077-0.pdf
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Figure 3: Validation against the SOTA AFT model. a) AFT simulation 24 hours into the future
starting from the Jan-01-2014 AFT baseline map shown in Fig. 2}b. b) Output of our implementation,
evolved 24 hours into the future using the same initial condition. ¢) Boxplot showing the distribution
of relative absolute difference between the AFT evolution and our time-integrated approach. The
results are shown relative to the AFT value and are shown as percents. The boxes indicate the first
and third quartiles (i.e. 25% and 75% of the differences). The center notch represents the median
error (less than 0.5% for all times). The whiskers indicate the Inter-Quartile Range. d) Difference
between the 24h AFT and our SFT forecasts. Note the difference of two orders of magnitude between
the two colorbar scales.

For each magnetogram, B?, serving as an initial condition, we use the torchdiffeq (2)) library to
evolve B} according to Equationfrom time t = ntot = n + 1. In particular, we use a fourth order
Runge-Kutta solver with fixed At = 15 minutes. Solvers in torchdiffeq are fully implemented in
PyTorch, enabling backpropagation through the numerical integration.

2.2.1 Numerical Grid and Boundary Conditions

For this work, we use a uniform grid with 1024 points in longitude and 512 points in colatitude. This
is the resolution of the AFT baseline maps (see Sec. 2.1)). Our boundary conditions are standard for
the SFT community: Periodic boundary conditions in longitude and zero magnetic field at the poles.
We implement our boundary conditions by padding our tensors prior to the application of the finite
differencing scheme and later removing the padding once the integration step is done.

2.2.2 Validation against AFT

Before we combine the torchdiffeq numerical integration of the SFT equation with the Al model
learnable component presented in Fig. [T} we validated the results of our numerical integration against
AFT. To do this we start with an AFT baseline map and advance the simulation forward 24 hours
to compare the results. Fig. [3] shows a comparison between AFT (Fig. [B}a) and torchdiffeq
(Fig. BIb). Fig. Blc uses boxplots to show the evolution of the relative difference between AFT
and torchdiffeq. In spite of some significant differences between the integration schemes (like a
non-uniform grid in AFT), the difference is very small (a median of 0.2%). This difference is slightly
larger in the first steps as both simulations deal slightly differently with noise, but at the end of the
24h simulation the difference has converged (see Fig. [3}d).

2.3 Hybrid ODE-NN Forecasts

In order to enable the short (6 hour) forecast of the solar surface magnetic field, it is necessary to
have a way to estimate the small-scale flows that transport the magnetic field, as well as estimating
how much additional flux will appear in the photosphere in the next 6 hours. To this date, there has
not been a way to enable either of these tasks. The closest method for estimating velocity flows



is the imposition of a pre-calculated turbulent velocity field such as in the AFT model, while flux
emergence uses the assimilation of observations with the SFT output on the visible side. To overcome
these limitations, we train an Al model to estimate both velocity fields and flux emergence from past
magnetic field evolution (see Fig.[I)). In particular we use the last 24 hours worth of AFT baseline
maps (4 maps) to estimate flows and fields. The flows are added to the global flows (MF and DR)
and used by the torchdiffeq integrator to advance time by 6 hours. After this, the estimated flux
emergence is added to produce the final forecast.

2.3.1 Neural Network Model

We use small ResNets with convolutional layers to parametrize all unknown functions in our pipeline.
As shown in Fig. [T} our ResNets are built using 7 convolutional layers with three skip connections.
Each convolutional layer has 8 channels. We use this architecture for both our fields and noise
networks. These networks do not employ batch normalization due to small batch sizes in our
experiments, and we employ LeakyReLU activations throughout all architectures. The LeakyReLU
activation was chosen because the solar magnetic field has both positive and negative values and to
reduce the chance of dead connections. Each ResNet has approximately 8k parameters.

As mentioned above, the choice of using small models is made deliberately to evaluate the potential
of an ODE-NN hybrid in learning specific heliophysical quantities (the velocity fields and flux
emergence terms). This design choice reduces the parameter space dimensionality significantly while
ensuring interpretability, as all model-learned representations directly correspond to known physical
processes governing solar magnetic field evolution, and ultimately lead to the competitive preliminary
results we present here with validation against AFT simulation.

2.4 Uncertainty Quantification

It is well-understood that space-based observations, like all measurement-based data, carry irre-
ducible uncertainties and noise due to instrument limitations, un-accounted-for probabilistic physical
variables, and other forms of interference. To model this inherent stochasticity as well as the un-
certainty in a model-generated output, uncertainty quantification is crucial for trustworthy adoption
of Al-driven results. To this end, we construct a neural network (which we will refer to as a noise
network) on top of the deterministic forecasts generated in Section [2.3] which returns a Gaussian
mean and standard deviation over the deterministic forecast Bﬁ“. This matches the approach to UQ
modeling in ClimODE. We also include Fourier positional encoding as input to the noise network for
interpretability of all input features. Moreover, we impose a baseline known level of data uncertainty,
& € R, and train the noise network to learn any additional uncertainty. To train this noise network
we use the following slightly modified negative log-likelihood (NLL) loss function on the predicted
mean 2"+ and variance 6 +1:

L (BPFY 4+, 6™ Bt €) = GaussianNLL(BI !, &;, Bt 5)
where B{f“ = B;‘“ + "+ is the magnetogram prediction adjusted for the learned forecast mean
and ¢ = ’&"+1| + £ ensures that we are only able to learn a nonnegative addition to the baseline
aleatoric uncertainty . The * notation denotes a raw model output. This NLL loss is added to
the MSE loss on the raw predictions so that both models are trained simultaneously, allowing for
uncertainty-aware training.

Except for our inclusion of known baseline uncertainty and using fixed Fourier positional encoding
instead of a trainable positional encoding network, our approach to UQ is nearly identical to that
in ClimODE, where it is termed as an emission head. We note that for full model UQ over the
probabilistic forecasts, we would require a secondary, epistemic (or model-based) UQ technique,
such as Laplace Approximation (3)), to be used on the noise network itself. Although this remains
future work, our current framework provides a strong probabilistic foundation for uncertainty-aware
space weather model training.

3 Results

Our model is the first implementation of a hybrid ODE-NN in heliophysics. It is also the first time
that an SFT model has been used to enable short-term solar magnetic evolution forecast including
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Figure 4: A 6h forecast example for Jun-06-2014 for the entire pipeline shown in Fig.|l| a) Input AFT
baseline map. Visible part of the Sun is shown using a solid black line. b) Target AFT baseline map.
¢) Small-scale flows estimated by the fields ResNet. f) +6h forecast error. Note that the color-scale is
one order of magnitude less than the one used for Input, Target, and Output. g) Flux emergence mask
highlighting in magenta the regions for which our model forecasts flux emergence in the next 6 hours.
h) Model uncertainty produced by the noise ResNet. Note that the colorscale is also one order of
magnitude smaller than the Input, Target, and Output magnetic field.

effective forecasting of emerging flux. Fig.[d] shows a variety of visualizations of our results for
Jul-6-2014: magnetic AR growth in our validation set. We would like to highlight the following:

Test Mean Square Error: The MSE calculated on our test set is 52.6 G2. The square root of this
value is 7.25 G. This is an encouraging result because it is lower than the instrumental uncertainty of
SDO/HMI which is 15 G.

Small-scale velocity field: Fig.[d}c shows a vector plot over our input magnetic field. We find the
average speed of the vectors in this quiver plot to be 14m/s. This value is lower than measured
super-granular flows (13)), but is likely a consequence of the fact that we use the same flow during the
6h integration step, which can also be seen as an average of time-varying cells.

Flux emergence term: Figs.[d}e & g show the signed and absolute value, respectively, of the flux
emergence term. It is clear that the model is successful in capturing the growth of the AR, and its
emerging magnetic flux successfully. However, considering that an AFT baseline map can only have
flux emergence on the visible side (inside the solid black line), we note that the flux emergence term



is not pure, because the CNN is using the flux emergence term to facilitate some of the flux transport
onto the far side.

Error and Uncertainty: Fig.[d}f shows the forecast error (Target-Output) and Fig. @h shows the
estimated uncertainty. As can be seen in the scales of the colorbars, both are smaller than the
forecasted magnetic field. Furthermore, error and uncertainty have similar orders of magnitude. This
indicates that the uncertainty estimation module is producing sensible results.

4 Future Work and Conclusions

This study introduces ARCADE, the first machine learning framework designed to forecast solar
surface magnetic flux emergence and evolution with quantified uncertainties. Our results demonstrate
that ARCADE produces forecasts with errors lower than the instrumental uncertainties of SDO/HMI,
which are also physically meaningful in their representation of magnetic field evolution. The model
can successfully capture the growth of an AR, and predict the magnitude of the emerging magnetic
flux.

Throughout this research, a variety of PDE solvers were used for evolving B} to Ef“, with highly
varying levels of training stability. In practice, either a simple Euler solver or the Runge-Kutta 4
solver were the most reliable. The objective of ARCADE is to produce short-term forecasts, so we
intend to continue investigating advanced solvers in the future and possibly use adaptive time-stepping
schemes that may offer improved training stability.

Since our priority is short-term forecasts to enhance flux emergence and AR modeling accuracy, this
study focuses on 6-hour time horizons. Future work will focus on extending our results to 12- and
24-hour forecasts, which may necessitate further model design and numerical solver choices to ensure
time stability at these slightly longer time scales. Moreover, all experiments were performed on a
single GPU, which was found to be sufficient for AFT validation performance but memory-intensive.
Expanding ARCADE to massive datasets of historical magnetograms will likely require distributed
training techniques, such as data parallelism for multi-GPU training.

For robust end-to-end model UQ, we intend to add a Laplace approximation over the noise network
to enhance our epistemic uncertainty understanding over the aleatoric uncertainty estimates that we
already have learned. In particular, in ongoing and future work in UQ-driven and UQ-aware training,
we are interested in constructing our training pipeline such that the summary statistics of the posterior
over the weights generated by the Laplace approximation indicate confident aleatoric uncertainties.
Such a pipeline would result in Al-driven forecasts that overcome existing issues in overconfident
model predictions and that are ready for integration with scientific pipelines.

While our results achieve consistent uncertainty estimates and short-term forecasting with fixed
Fourier positional encoding, trainable positional encoding may offer richer input features to the noise
network. Future work may involve optimizing a spatial or temporal encoding to either enhance
noise network predictions or provide additional model context throughout our training pipelines.
Of particular interest to us is the construction of a temporal encoding for ARCADE that takes into
account solar cycle variability. Existing models for Earth systems forecasting will often include
spatiotemporal positional encoding that takes into account seasonal variability. Extending this
technique for known repeated temporal patterns in solar activity would be novel and of interest to the
heliophysics community.

The current ARCADE scheme uses magnetograms and AFT simulations of the surface magnetic flux.
Incorporation of subsurface and solar atmospheric data would also contribute valuable information
for prediction of flux emergence as well as improved flow field estimations. Future iterations of
the ARCADE model will be able to ingest additional data from solar dopplergrams, which probe
subsurface layers, as well as extreme ultraviolet images that capture atmospheric dynamics.

Overall, this paper implemented the first hybrid Al-physics model to forecast the evolution of the solar
surface magnetic field. This was achieved with a relatively small and computationally inexpensive
model, which proves the power of close integration between physics and Al. By reproducing SOTA
results, ARCADE delivers on the promise that ML, as a method for solving the SFT problem, can
contribute to improving predictions for heliophysics and space weather applications.
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A Glossary

A.1 Notation

Term Definition

0 0,7 Colatitudinal coordinates in radians.

o € [—m, 7] Longitudinal coordinates in radians.

B = B(0,,t) € R3 Vector-valued solar magnetic field .

7=1(0,p,t) €R? Vector-valued magnetic velocity field.

S 0,p,t) € R Vector-valued source (flux emergence) term.

S0, p,1) Radial source (flux emergence) term.

Ry eR Fixed solar radius constant.

n Diffusivity parameter in vector-valued surface flux transport equa-
tion.

77h Diffusivity parameter in radial surface flux transport equation.

B, = B,(0,9,t) € Radial magnetic field.

ve(0,0,t) € R? Latitudinal component of velocity flow.

vw(ﬁ o,t) € R? Longitudinal component of velocity flow.

Q(0) € R? Differential rotation.

A, B,CeR Parameters of differential rotation.

v9 € R Peak pole-ward speed.

peR Parameter controlling how sharply the flow peaks toward mid-
latitudes.

B Radial magnetic field at time ¢ = n used as an initial condition
for forward time evolution.

Brtl Radial magnetic field at time ¢ = n + 1 used as a ground truth
data sample to compare against evolved magnetogram.

Bntt Predicted radial magnetogram.

EelR User-chosen parameter controlling known baseline aleatoric un-
certainty (e.g. from known instrument error).

ot Predicted Gaussian mean from noise network corresponding to
mean over probabilistic forecast.

ot Predicted Gaussian variance from noise network corresponding
to variance over probabilistic forecast.

Brtt Bt = Bl 4 g+l magnetogram forecast adjusted for Gaus-
sian mean prediction from noise net.

ot "1 =16"F1 + £; Gaussian variance adjusted for known base-

line aleatoric uncertainty.
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A.2 Abbreviations

Term Definition

AR Active Region

SFT Surface Flux Transport

CME Coronal Mass Ejection

SEP Solar Energetic Particle

AFT Advective Flux Transport (existing approach to SFT)

ADAPT Air Force Data Assimilation Photospheric Transport (ex-
isting approach to SFT)

ARCADE Active Region Characterization and Analysis of Dynamics
and Evolution

DR Differential Rotation

MF Meridional Flow

SDO Solar Dynamics Observatory

HMI Helioseismic & Magnetic Imager

B Computing

Development and training were conducted on an NVIDIA A100 GPU (40 GB memory) provisioned
via Google Cloud virtual machines. The hardware provided sufficient memory bandwidth to execute
a single training process.

To maximize efficiency and stability during training, the following strategies were employed:

* Automatic Mixed Precision (AMP) and half-precision operations were selectively applied
to reduce memory usage while maintaining model accuracy.

* Training and inference were executed on CUDA-enabled devices, leveraging GPU accelera-
tion for all deep learning and PDE-solving workloads.

* Gradient accumulation was used to lower memory costs.

C Dashboard Ul to execute model and visualize results

The main functionality of the Dashboard Ul includes:

* Model Execution: Users specify forecast parameters (day, month, year, horizon in hours)
through a form. The UI backend issues an HTTP request to Fused serverless, which
spins up a cloud function to run the model. The function returns a JSON payload containing
run metadata and a signed URL pointing to the corresponding GCS bucket.

* Visualization: Model outputs, stored as temporally ordered . png files in a Google Cloud
Storage (GCS) bucket, are read by the UI and animated using the DeckGL framework. The
number of frames depends on cadence and horizon (e.g., a 15-minute cadence over 24 hours
produces 96 frames). Typical resolutions include 512 x 1024 and 1024 x 2048, though the
system supports arbitrary sizes.

¢ Interactive Controls: Users can zoom, pan, scroll through frames, and adjust contrast or
color scales. The interface supports rendering one or two globes side-by-side, enabling
comparisons such as:

— Model outputs vs. simulation results,

— Model outputs vs. uncertainty layers,

— Different model versions,

— Different data channels (e.g., magnetogram vs. AIA304).

These capabilities support users across multiple stages of interacting with the model:
1. Develop and Debug: Globe rendering highlights anomalies such as checkerboard artifacts

from PDE derivatives or NaN emergence from solver step size.
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2. Forecasting: Produces forward-looking predictions that can be explored interactively in
real time.

3. Presentations: Forecasts can be exported into stop-motion animations using Theatre. js,
an independent tool.

4. Sharing: Forecasts are distributed via public GCS bucket links, with permissions managed
by the backend. These URLs can be embedded in Weights & Biases dashboards and MCP
outputs for reproducibility and collaborative analysis.

D Experimental Setup

Configuration | Value Notes

Optimizer Adam

Learning Rate | 5 x 1073 Schedule (e.g., cosine, step decay)
Batch Size 26

StepLR v = 0.5 frequency=10 | step size = 1, interval=epoch
Epochs 50

Table 1: Training configurations.

Configuration Value Notes

Function odeint_adjoint (instead of odeint) | Mitigates memory costs
Solver Runge-Kutta 4 torchdiffeq

At 15 minutes

Data normalization | 100 Gauss

Time normalization | 60 minutes

Table 2: Numerical solver and data configurations.

Component | Hidden Channel List (L) | Residual Blocks / Stage (N) | # Trainable Parameters
Velocity Net [8, 8] [3,2,2] 6.1 K
Noise Net [64, 32, 2] [2,2,2] 182 K
PE (Fourier) | Fourier features (B = 8) - None

Table 3: Architecture configurations.
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