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Abstract

Audio holds significant amount of information about
our surroundings. It can be used to navigate, assess
threats, communicate, as a source of curiosity, and
to separate the sources of different sounds. Still,
these rich properties of audio are not fully utilized
by current video game agents.

We use spatial audio libraries in combination with
deep reinforcement learning to allow agents to ob-
serve their surroundings and to navigate in their
environment using audio cues. In general, game
engines support rendering audio for one agent only.
Using a hide-and-seek scenario in our experimenta-
tion we show how support for multiple concurrent
listeners can be used to parallelize the runtime oper-
ation and to enable using multiple agents. Further,
we analyze the effects of audio environment complex-
ity to demonstrate the scalability of our approach.

1 Introduction

Modern video games have rich and high-quality au-
dio scenes. Such audio holds significant amount of
information on the virtual environment. Deep learn-
ing is becoming increasingly popular as an approach
to extract information from virtual environments
but is not fully utilized to its potential, especially
when audio is considered.

For video game non-player characters (NPCs), the
utilization of audio could support intuitive, human-
like behavior. For example, an audio-aware agent
could have a fear of loud noises as a self-preservation
mechanic. Audio-aware agents could be curious
about odd noises, gather information about the sur-
rounding environment, and become susceptible to
audio-based distractions deliberately made by hu-
man players or even other NPCs.
While using deep learning for audio sensing in

video games is not yet an extensively researched
topic, there exists a wide range of applications that
utilize it. For example, audio has been used to
classify gunshot noises in video games [1], to enhance
exploration during training [2], and as a generic
addition to visual observations [3]. Games engines
can integrate multi-disciplinary functionalities and
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have wide applicability beyond entertainment. As
such, game engines can be seen as generic platforms
[4] for research on deep learning methods.

However, game engines are often created with the
assumption that audio is rendered for the human
player only. As such, environments can have only
one audio listener at a time. This listener can be
assigned either to the player or a single audio-aware
agent. In order to support multiple concurrent audio-
aware agents, advanced methods are needed.
In this paper, we describe our experimentation

utilizing deep reinforcement learning (DRL). Our
experimentation focuses on sound source localiza-
tion and is based on a hide-and-seek scenario, where
agents must locate targets based on spatial audio
cues. Our main contribution is to show that game
engines can be enhanced by using multi-listener au-
dio rendering to enable parallelization of the runtime
operation and use multiple agents. We demonstrate
how spatial audio libraries can be used in a popular
game engine with machine learning support (the
Unity engine) to construct a multi-listener based
system that can be run in real-time on modern
workstations and yield good performance even if the
audio environments are complex. Our methodology
is not limited to games. It can be used in other
domains that use similar tools for creating virtual
environments and have similar requirements. Our
code is available on GitHub1.
The structure of this paper is the following. We

begin our presentation by reviewing the related work
in Section 2. In Section 3, we describe our method-
ology and our selection of tools. We continue by
describing our experimental setup (Section 4) and
the results of our experiment (Section 5). We end
our paper with a short discussion (Section 6) and
our conclusions (Section 7).

2 Related work

Deep reinforcement learning (DRL) [5] is a branch
of machine learning, where agents are trained in a
trial-and-error manner. The training is done in an
environment, where learning is based on the rewards
the agents receive as feedback on their actions. As
the agents are truly run during the training, making
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observations in the training environment and overall
performance of the training steps are essential.

There exists a vast amount of machine learning
literature on audio. Considering our application
area, Grumiaux et al. [6] survey different deep learn-
ing methods in general for sound source localiza-
tion. The survey from Latif et al. [7] focuses only
on the use of DRL but considers a wide range of
audio-based applications. Beig et al. [8] review spa-
tial sound rendering for virtual environments and
games.

In applying DRL for game applications, timing
behavior is central in addition to the related com-
putational efficiency. Hedge et al. [3] study the
performance of different model architectures in a
series of tasks that require the agent to recognize
sounds. They decouple audio rendering from dedi-
cated sound hardware to enable faster-than-realtime
parallel simulation in Vizdoom [9], resulting in faster
training of audio-based agents. Their work is an
example of agents learning to play a game, instead
of learning to act as NPCs. They reach a training
throughput of 120 000 samples per second with audio
and 150 000 samples per second without audio.

Cowan et al. [10] present a computationally effi-
cient audio rendering system for game NPCs. They
also recognize the problems caused by poor utiliza-
tion of spatial audio by NPCs. Their main idea is
that if the audio for the player is rendered using
a graph-based sound propagation method, the gen-
erated graph can immediately be reused for NPCs
with low additional computational cost.

Environments including the interaction by the
agents is typically modeled or simulated in a man-
ner that captures the related physical realism. Chen
et al. [11] present SoundSpaces 2.0, a simulator for
training audio-based agents in environments mod-
eled after the real world. Gan et al. [12] show their
results with discrete in-door navigation using audio-
visual data with AI2-THOR platform. They create
an offline dataset from AI2-THOR platform running
on Unity game engine.

3 Audio agents in virtual envi-
ronments

In this section, we describe our methodology and the
related selection of tools. We begin by discussing
the problem space, and continue by describing our
platform selection, the related observation tools, and
the audio rendering libraries we have selected. After
these, we describe our approach to multiple listeners,
which are the key aspects of this research.

3.1 The problem space

While real-world embodied agents and video game
agents can utilize audio using similar methods, they
have a different set of requirements.
The audio-aware agents should be able to utilize

audio in a useful way, but their output does not
need to be perfect. Unlike with real-world embod-
ied agents, mistakes can even be beneficial for the
gameplay experience. Additionally, the agents need
to be able to work with soft real-time simulations.
Missing a deadline is not critical, but can harm the
experienced quality of service. The agents also do
not need to make decisions on every simulation tick,
but still often enough to be able to fluently navigate
the simulated environment.

Considering the use of deep reinforcement learning
for the audio-aware agents there are two challenges:
1) The computational requirements of audio-aware
agents and the related spatial audio rendering by
the runtime system should be relatively low. Run-
ning in real-time also during training avoids audio
distortions. 2) The training of the agents should be
efficient enough in order to make their use realistic
in the context of video game development. Espe-
cially the latter aspect is dependent on the operating
environment of the agents as complex audio scenes
make the training challenging.

3.2 Platform

We use Unity [4] as our platform. We combine Unity
with its deep reinforcement learning framework ML-
Agents [4]. ML-Agents includes a training pipeline
for simple DRL architectures with popular methods,
such as PPO [13]. It also exposes the Unity API for
external tools, such as Ray RLlib [14], enabling the
use of complex DRL models.

3.3 Observations

Virtual agents observe their surroundings through
abstractions called sensors. In the context on ML-
Agents, the simplest sensors are fixed length vector
sensors, that can be filled with arbitrary values.
To be able to use audio data as the input for

our policy network, we need to have an audio sen-
sor, but ML-Agents does not include any audio-
related sensors. We opted to use a third-party sen-
sor from GitHub user mbaske [15], which is avail-
able on GitHub with the MIT license. The sensor
supports observing stereo audio in spectral domain
using Short-Time Fourier Transform (STFT) [16]
with different windowing functions, such as Hanning
and Rectangular window. The windowing function
affects the accuracy of the amplitude and frequency
of the sensor. The sensor constructs an observa-
tion batch by sampling the audio into a buffer over
several simulation ticks.
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Figure 1. Approaches for multi-listener setup.

3.4 Audio rendering libraries

By default, popular game engines such as Unity
and Unreal Engine support simplified spatialization
without accounting for reflections or occlusions. To
enable more complex audio observations, we use
Steam Audio [17] as a plugin for Unity.
Steam Audio is one of the several libraries [8]

that supports spatial audio. It supports spatializa-
tion through head-related transfer function (HRTF),
which models the interaural level differences (ILD)
and the interaural time difference (ITD). It also
supports occlusions and reflections either by real-
time ray tracing for dynamic scenes or baked audio
propagation for static scenes.

3.5 Multi-listener support

Even with Steam Audio, Unity supports only one
active audio listener at a time. This means that all
audio will be rendered from the point of view of a
single agent. From the training perspective, having
only one audio listener limits parallelization of the
training process as one instance will only support
one agent. From the runtime perspective, the audio
listener is often reserved for the player.
We propose three basic ways to enable multi-

listener simulation. These are shown in Figure 1.

1. Each client has its own audio engine instance
running and will therefore be able to feed mul-
tiple agents with audio observations. The game
logic runs on the main server, but the audio
events are replicated on the remote clients.

2. Creating multiple instances of the audio engine
within a single game instance, thus removing
the overhead caused by the network.

3. An audio engine that natively supports multiple
listeners, which eases internal optimizations.

Integrating the multi-listener support directly into
the engines opens optimization opportunities and
removes overhead but also increases significantly the
implementation effort. We selected Option 1 for our
experimentation.

Other possible sensorsAudio data
(stereo, 0.2 s)

STFT
(20x42x42 floats)

CNN
(3 stacks of

ResNet)

Position Raycasts

FCNN
(3x512)

Action
(direction vector

with 2 floats)

Figure 2. Sensor data processing in our agent design.

Table 1. System specifications

Label CPU GPU RAM OS

A Intel 13900k GTX 1080 ti 64 GB Windows 11
B Intel 13400 RTX 3080 32 GB Ubuntu 22.04

4 Experiment setup

In this section, we outline our experiment setup.
Our goal is to evaluate the effect of using multiple
listeners as proposed in Figure 1 (leftmost), while
also training and evaluating a DRL-based audio-
aware agent using Unity and Steam Audio. Multi-
listener measurements are performed on hardware
configuration A as seen in Table 1. The agents are
trained using both configurations A and B.
We consider a hide-and-seek scenario, where an

audio-aware agent attempts to find the target (e.g.,
the player) in an indoor area. The target is con-
stantly making noise by randomly playing one of
eight footstep audio clips. In order to simplify the
evaluation of the agents, the target is represented
as a static object that does not move around in the
environment. The motivation for this setup comes
from a typical scenario, where a player attempts to
evade detection.

The agent can observe its surroundings with sen-
sors as described in Figure 2. The audio data are
fed through STFT to a convolutional neural network
(CNN), and the integration of other sensor data is
done with a fully connected neural network (FCNN).
In our measurements, the other sensors are excluded,
and the audio sensor is the only source of data.

4.1 Multi-listener setup

We measure the impact of running multiple simu-
lation instances in parallel as proposed in Figure
1 (leftmost). Each Unity instance runs the exact
same scene with Steam Audio and one audio agent
with a CNN-based audio model. The number of
audio sources is varied between 1, 10 and 30 audio
sources to evaluate the impact of having several
audio sources.

4.2 Environments

Agent performance is compared in multiple envi-
ronments with increasing complexity. The easiest
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environment (”Simple”) is an empty hall without
obstructions. The second environment (”Medium”)
adds some obstructions in the form of rooms and
walls, making it necessary to utilize indirect audio
reflections. The third environment (”Complex”) in-
creases the difficulty by including more walls. The
environments are described in more detail in Ap-
pendix B.

4.3 Agent design

The agents are trained using PPO [13] over 10 mil-
lion samples in the second (”Medium”) environment.
The training hyperparameters are listed in the Ap-
pendix A.1.

The policy design is shown in Figure 2. In order to
isolate the usefulness of the audio observations, the
audio sensor is the only sensor included in the exper-
iments. The agent outputs two values, representing
the x and y values of a 2-dimensional vector.

The reward signal, denoted as R, is calculated by
taking a dot product between the direction of the
shortest path to the target and the action vector. To
encourage finishing episodes as quickly as possible,
we convert the result into a penalty by shifting it
from range [-1, 1] to range [-2, 0]. Finally, it is scaled
by the fixed delta time to make it invariant to the
simulation physics update frequency. The agent is
given an additional reward of 2 upon finishing an
episode.
The reward R at physics update n can be ex-

pressed as:

Rn = ((a · ŝ)− 1)∆t+

{
2, if target reached

0, otherwise
(1)

where a is the action vector, (̂s) is a unit vector
pointing to the shortest path to target and ∆t is the
time between two physics updates (called fixed delta
time in Unity). The maximum achievable reward
during an episode is 2.
To prevent agents from getting stuck between

two locations, they need information on locations
already visited. Instead of using more complex neu-
ral networks such as RNNs [18] or LSTMs, we used
a simple weighted navigation grid (see Appendix
A.3). The grid node weights indicate the likelihood
of audio coming from that direction. We adjust
these weights based on neural network outputs and
navigate towards the highest-weighted neighboring
node. If there are no occlusions between the target
and the agent, the navigation grid is ignored, and
the agent will travel directly towards the output
direction.

4.4 Evaluation metrics

We evaluate the viability of our multi-listener ap-
proach by measuring the CPU and memory (MEM)
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utilization with different configurations.
We measure agent performance using sample

throughput, training time, and cumulative training
reward during training. After training, we evalu-
ate the agent with a fixed set of 100 randomized
episodes in each environment using the SPL metric
[19].

SPL is defined as

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(2)

where N is the number of episodes, Si is 1 if the
episode i succeeded and 0 otherwise. The li is the
shortest path to target and pi is the length of the
path taken by the agent.

As such, SPL accounts for both the failure to reach
the goal and the optimality of the path compared to
the shortest path. It is better than simply measuring
the number of steps or time to reach the target,
since the distance to the target varies by episode.
However, since SPL relies on knowing the optimal
path length, it is not suitable for moving targets as
such.

5 Results

In this section, we describe our measurement results
on multi-listener performance, training performance,
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and agent performance with some analysis on the
probable causes of the observed behavior.

5.1 Multi-listener performance

Figure 3 shows how performance scales with parallel
audio-aware agents in three different configurations.
The figure shows the simulation frames per second
(FPS) processed by the main server, which is set at a
fixed rate of 50 FPS. Values lower than 50 mean that
the simulator can no longer keep up with real time.
With only one audio source, the FPS remains nearly
stable for up to 40 listeners. With 30 sources, the
simulation supports roughly 12 concurrent audio-
aware agents.

Figure 3 also shows the total sample throughput
for all audio-aware agents. Each audio sample is
computed from a 0.2 second long audio buffer, which
requires 10 simulation frames at 50 FPS. Sample
throughput often correlates directly with the time
required to train a DRL-based agent. From the
figure, we can see that the sample throughput in-
creases linearly to 200 audio samples per second
(SPS) with one audio source. With 30 audio sources,
the throughput caps at 75 SPS with around 15 en-
vironments.

Figure 4 shows how the utilization of the CPU
scales with parallel Unity instances. With one au-
dio source, CPU utilization stays below 5 % even
at 40 parallel instances. With 10 audio sources,
CPU utilization stays reasonably low until 25 en-
vironments before increasing exponentially. With
30 audio sources, CPU usage increases already after
10 instances. At 41 parallel instances, the entire
system becomes unresponsive.

Figure 4 also shows that each instance has a near
linear effect on memory usage. However, the num-
ber of audio sources affects the coefficient of this
linear behavior. With 30 audio sources, the setup
requires nearly double the memory compared to hav-
ing one source. With 30 audio sources, one instance
consumes roughly 300 MB of memory. The sudden
increase in memory usage with one audio source after
30 listeners is likely caused by background load.
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5.2 Training performance

We trained two DRL-based agents using two different
STFT window functions (STFT-R for rectangular
and STFT-H for Hanning window). The training
was repeated three times. During training, we collect
a sample on every simulation step. This increases
the sampling throughput, but the samples will have
overlap with each other as the audio buffer holds
data over 10 steps.
Figure 5 shows the training reward curves. The

curves are averaged over all three runs and then
smoothed. The reward curves converge quickly and
there is little improvement after 5 million steps.

Figure 6 shows the total training time for 10 mil-
lion steps in four configurations. In addition to the
total time, it shows the time spent collecting samples
from agents and the time spent updating the model
with the Stochastic Gradient Descent (SGD) [13].
Increasing the number of parallel Unity instances
to 10 significantly increases sample throughput. Ad-
ditionally, using a GPU nearly halves the training
time by reducing the time spent on SGDs.
Despite having a higher-end CPU, configuration

A (CPU) is slower than configuration B (CPU). This
could be due to the different operating system or
some other differences in hardware details, such as
the memory speed or motherboard configuration.
In conclusion, sample throughput is a clear bot-

tleneck in a GPU-accelerated system. It might be
possible to further increase the sample throughput
by having multiple agents in one Unity instance
and by having faster-than-realtime audio render-
ing. Both of these could reduce the overhead from
running multiple Unity instances in parallel.

5.3 Audio-aware agent performance

After training the STFT-R and STFT-H agents, we
compared them to a random agent that randomly
traverses the environment. The results are averaged
over three training-evaluation cycles.
Figure 7 compares the SPL values achieved by

different agents, where the best possible value is 1.
As expected, the audio-aware agents perform best
in a simple scene without obstacles, reaching an
SPL of around 0.85. The STFT-H seems to perform
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slightly better than SRFT-R overall. When obsta-
cles are added, the agents perform worse, but still
significantly better than the random agent. As ref-
erence, Anderson et al. [19] mention that an SPL of
0.5 shows a good level of navigation performance in
reasonably complex previously unseen environments.

Figures 8 and 9 show how the remaining distance
from the agent to the target affects agent prediction
accuracy. If we denote the accuracy as A ∈ [0, 1],
then A = 1 means that the action-vector is aligned
with the shortest path to target. Likewise, A =
0 means that the action-vector deviates from the
direction of the shortest path by 180 degrees.

Figure 8 shows the accuracy based on how many
corners the shortest path to target has. The number
of corners depends on the obstacles between the
agent and the target, since the agent must turn at
least twice to get around an obstacle. Figure 9 shows
the shortest path length in Unity units. From these
figures, we can see that the remaining distance has
a more linear effect on accuracy, while the amount
of remaining obstacles has a more drastic effect.
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6 Discussion

The lack of support for multiple audio listeners is
a significant drawback in most current game en-
gines, as it limits the options of using audio as an
observation for deep learning agents.
However, our approach of using multiple clients

can ease these limitations. Our experimentation
demonstrates that with a rather simple workaround
in Unity, nearly a dozen audio-aware agents can
be supported. However, resource-intensive games
probably need more game-specific optimization than
what we have done in our experimentation.

Our results also highlight that minor details, such
as the STFT windowing function, can noticeably af-
fect agent behavior. Therefore, the audio properties
of the environment and the audio sensor must be
chosen carefully.
As future work, we suggest looking at the other

proposed approaches for creating multi-listener sup-
port to reduce overhead. Having only one game
instance would remove the need for synchronization
between the clients and reduce memory usage. Simi-
lar to Cowan et al. [10] it is also likely that some of
the audio propagation computation could be reused.

Also, modifying the audio engine to support faster-
than-realtime playback would be helpful. For exam-
ple, in our experiment, the sample throughput was
around 250 SPS. This is slow compared to the 120
000 SPS reached with the faster-than-realtime solu-
tion by Hegde et al. [3] for VizDoom. Similar to the
solution by Hedge et al., the audio backend would
likely need to be modified to enable full software
rendering of the audio at any sampling rate.

Finally, in addition to performance enhancements,
we suggest creating a rich game-oriented benchmark
suite for audio-aware agents. Such benchmark suites
(e.g., dm control [20]) enable standardized compar-
isons of different DRL-based approaches.

7 Conclusion

In this paper, we presented our experimentation on
using multi-listener rendering in game engines for
enabling concurrent audio-aware agents with deep
reinforcement learning. Our work demonstrates how
current audio libraries can be utilized to create audio-
aware agents with reasonable training results.

While our results show the viability of using deep
learning based audio-aware agents in video games,
our research also highlights the need for further
research on the methodology and development of
applications and tools. The ability of faster-than-
realtime audio operations could significantly speed
up training of audio-aware agents. Likewise, native
support for multiple audio listeners would make
training and runtime more efficient while enabling
the use of multiple agents.
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A Agent details

A.1 Training hyperparameters

The agents are trained using Unity ML-Agents li-
brary with PPO. The structure of the neural network
(NN) follows the default implementation included
in ML-Agents (version 0.30.0) with the hyperpa-
rameter setting given in A.1. The audio data are
included as a set of images, which ML-Agents feeds
to a Resnet-style CNN. The CNN output is concate-
nated with the vector inputs of other sensors and fed
to a linear network. In the experiments presented
in this paper, the other sensors were excluded and
the agents were using the audio sensor only.

A.2 Random agent

The random agent does not have any NN-based
model. Instead, it chooses random coordinates in the
environment and navigates towards them using the
Unity NavMesh. Upon reaching these coordinates,
it selects new coordinates. This process is repeated
until the agent gets within 15 units of the target.
When the agent arrives within 15 units of the

target, we assume that it can see the target, and the
agent navigates directly towards the target. Without
having this kind of detection range, it would be
unlikely for the agent to ever encounter the target.
The environments are 100x100 units large.

A.3 Navigation grid

Without any assistance, DRL-based agents can eas-
ily get stuck between two points. Typically, this
happens near walls: an agent infers that the audio
is coming from the direction of the wall. The agent
gets stuck in a loop of retreating and approaching.
The behavior can be corrected by keeping a record
of historical actions and observations, which we im-
plement with a navigation grid (Navgrid).
Navgrid is a grid of evenly spaced navigation

nodes placed across the environment. Adjacent
nodes are neighbours to each other, if there is a clear

Parameter Value

maximum steps 10 000 000
batch size 1024
buffer size 10240
learning rate 0.0003
beta 0.005
epsilon 0.2
lambd 0.90
num epoch 3
hidden units 512
num layers 3

Table A.1. ML-Agents hyperparameters

unobstructed in line of sight between the nodes. In-
stead of directly using the NN output for navigation,
we use it to update the Navgrid weights and navi-
gate towards the highest-weight neighboring node.
When a node is reached, the agent starts navigating
towards the neighboring node that leads to the path
of highest cumulative discounted weights.

Each node has a weight W ∈ [0, 100]. To represent
the uncertainty of old weights, all node weights decay
towards a neutral value Wneutral = 20 at the rate of
γ = 0.1 units per physics update.

The pseudocode for the weight update algorithm
is visible in Listing 1. The algorithm updates the
weights of the nearby nodes at the maximum depth
of dmax = 2 nodes. The nodes in the general direc-
tion of the action will receive an increase in weight,
while the nodes in the opposite direction will get a
reduction in weight. The change in weight is propa-
gated to further neighbors with a discount of λd−1

(where d is the depth and λ = 0.5) up to the max-
imum depth dmax, as the uncertainty of the audio
direction increases the deeper we progress into the
graph.

The weight of the node closest to the agent is
set to 0, as we can be certain that the target is
not nearby. This is because the agent does not use
the Navgrid, if it has line-of-sight to the target. In
our experiment, the agent is given the line-of-sight
information, but it could also be predicted by the
agent from sensor data.

Figure B.1 shows a Navgrid example with a red
line visualizing the current agent output. The small
white square near the end of the red lines is the
target. Based on previous outputs from the agent,
the related heatmap shows the likely location of the
target (the higher weights are brighter and red than
the lower ones). The black areas in the heatmap
are missing values caused by how the heatmap is
rendered.

Listing 1. NavGrid update pseudocode

def UpdateWeights(agent , action):

c = agent.getClosestNode ()

c.setWeight (0)

N = c.neighbors

for n in N:

dir = agent.getUnitVectorToNode(n)

w = dot(action , dir) # [-1, 1]

n.addWeight(w)

U = n.neighbors

for u in U:

if u in N:

continue

u.addWeight(w * discount)

8



Figure B.1. An example Navgrid (left) and its weight
visualized as a heatmap (right).

(a) Simple (b) Medium (c) Complex

Figure B.2. The audio environments of our experiment.

B Audio environments

In the experiment, we used three separate environ-
ments. They can be seen in Figure B.2. Surface
properties are set as Steam Audio Geometry with
the same absorption, scattering, and transmission
values. Absorption affects how the low, medium and
high frequencies are separately absorbed. Scatter-
ing affects the direction of reflection when sound is
reflected from a surface. Transmission affects how
much low, medium and high frequencies can pass
through the surface without reflections.
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