
NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Towards concurrent real-time audio-aware agents with deep
reinforcement learning

Anonymous Full Paper
Submission 32

Abstract001

Audio holds significant amount of information about002

our surroundings. It can be used to navigate, assess003

threats, communicate, as a source of curiosity, and004

to separate the sources of different sounds. Still,005

these rich properties of audio are not fully utilized006

by current video game agents.007

We use spatial audio libraries in combination with008

deep reinforcement learning to allow agents to ob-009

serve their surroundings and to navigate in their010

environment using audio cues. In general, game011

engines support rendering audio for one agent only.012

Using a hide-and-seek scenario in our experimenta-013

tion we show how support for multiple concurrent014

listeners can be used to parallelize the runtime oper-015

ation and to enable using multiple agents. Further,016

we analyze the effects of audio environment complex-017

ity to demonstrate the scalability of our approach.018

1 Introduction019

Modern video games have rich and high-quality au-020

dio scenes. Such audio holds significant amount of021

information on the virtual environment. Deep learn-022

ing is becoming increasingly popular as an approach023

to extract information from virtual environments,024

but is not fully utilized to its potential especially025

when audio is considered.026

For video game non-player characters (NPCs), the027

utilization of audio could support intuitive, human-028

like behavior. For example, an audio-aware agent029

could have a fear of loud noises as a self preserva-030

tion mechanic. Audio-aware agents could be curious031

about odd noises, gather information about the sur-032

rounding environment and become susceptible to033

audio-based distractions deliberately made by hu-034

man players or even other NPCs.035

While using deep learning for audio sensing in036

video games is not yet an extensively researched037

topic, there exists a wide range of applications that038

utilize it. For example, audio has been used to clas-039

sify gunshot noises in video games [1], to enhance040

exploration during training [2] and as a generic ad-041

dition to visual observations [3]. Games engines can042

integrate multi-disciplinary functionalities and have043

wide applicability beyond entertainment. As such,044

game engines can be seen as generic platforms [4]045

for research on deep learning methods.046

However, game engines are often created with the 047

assumption that audio is rendered for the human 048

player only. As such, the environments can have 049

only one audio listener at a time. This listener can 050

either be assigned to the player or a single audio- 051

aware agent. In order to support multiple concurrent 052

audio-aware agents, advanced methods are needed. 053

In this paper, we describe our experimentation 054

utilizing deep reinforcement learning (DRL). Our 055

experimentation focuses on sound source localiza- 056

tion and is based on a hide-and-seek scenario, where 057

agents must locate targets based on spatial audio 058

cues. Our main contribution is to show that game 059

engines can be enhanced by using multi-listener au- 060

dio rendering to enable parallelization of the runtime 061

operation and use multiple agents. We demonstrate 062

how spatial audio libraries can be used in a popular 063

game engine with machine learning support (the 064

Unity engine) to construct a multi-listener based 065

system that can be run in real-time on modern 066

workstations and yield good performance even if the 067

audio environments are complex. Our methodology 068

is not limited to games. It can be used also in other 069

domains that use similar virtual reality tools and 070

have similar requirements. Our code is available in 071

GitHub1. 072

The structure of this paper is the following. We 073

begin our presentation by reviewing related work in 074

Section 2. In Section 3, we describe our methodology 075

and our selection of tools. We continue by describing 076

our experimental setup (Section 4) and the results 077

from our experimentation (Section 5). We end our 078

paper with a short discussion (Section 6) and our 079

conclusions (Section 7). 080

2 Related work 081

Deep reinforcement learning (DRL) [5] is a branch 082

of machine learning, where agents are trained in a 083

trial-and-error manner. The training is done in an 084

environment, where learning is based on the rewards 085

the agents receive as feedback on their actions. As 086

the agents are truly run during the training, making 087

observations in the training environment and overall 088

performance of the training steps are essential. 089

There exists a vast amount of machine learning 090

literature on audio. Considering our application 091

1https://github.com/anonamee-333/anon-nldl-aaaa

1

https://github.com/anonamee-333/anon-nldl-aaaa

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

area, Grumiaux et al. [6] survey different deep learn-092

ing methods in general for sound source localization.093

The survey from Latif et al. [7] focuses only on the094

use of DRL but considers a wide range of audio-095

based applications. Beig et al. [8] review spatial096

sound rendering for virtual environments and games.097

In applying DRL for game applications, timing098

behavior is central in addition to the related com-099

putational efficiency. Hedge et al. [3] study the100

performance of different model architectures in a101

series of tasks that require the agent to recognize102

sounds. They decouple audio rendering from dedi-103

cated sound hardware to enable faster-than-realtime104

parallel simulation in Vizdoom [9], resulting in faster105

training of audio-based agents.106

Their work is an example of agents learning to play107

a game, instead of learning to act as NPCs. They108

reach a training throughput of 120 000 samples per109

second with audio and 150 000 samples per second110

without audio.111

Cowan et al. [10] present a computationally effi-112

cient audio rendering system for game NPCs. They113

also recognize the problems caused by poor utiliza-114

tion of spatial audio by NPCs. Their main idea is115

that if the audio for the player is rendered using116

a graph-based sound propagation method, the gen-117

erated graph can immediately be reused for NPCs118

with low additional computational cost.119

Environments including the interaction by the120

agents is typically modeled or simulated in a man-121

ner that captures the related physical realism. Chen122

et al. [11] present SoundSpaces 2.0, a simulator for123

training audio-based agents in environments mod-124

eled after the real world. Gan et al. [12] show their125

results with discrete in-door navigation using audio-126

visual data with AI2-THOR platform. They create127

an offline dataset from AI2-THOR platform running128

on Unity game engine.129

3 Audio agents in virtual envi-130

ronments131

In this section, we describe our methodology and the132

related selection of tools. We begin by discussing133

the problem space, and continue by describing our134

platform selection, the related observation tools, and135

the audio rendering libraries we have selected. After136

these, we describe our approach to multiple listeners,137

which are the key aspects of this research.138

3.1 The problem space139

While real-world embodied agents and video game140

agents can utilize audio using similar methods, they141

have a different set of requirements.142

The audio-aware agents should be able to utilize143

audio in a useful way, but their output does not144

need to be perfect. Unlike with real-world embod- 145

ied agents, mistakes can even be beneficial for the 146

gameplay experience. Additionally, the agents need 147

to be able to work with soft real-time simulations. 148

Missing a deadline is not critical, but can harm the 149

experienced quality of service. The agents also do 150

not need to make decisions on every simulation tick, 151

but still often enough to be able to fluently navigate 152

the simulated environment. 153

Considering the use of deep reinforcement learning 154

for the audio-aware agents there are two challenges: 155

1) The computational requirements of audio-aware 156

agents and the related spatial audio rendering by 157

the runtime system should be relatively low. Run- 158

ning in real-time also during training avoids audio 159

distortions. 2) The training of the agents should be 160

efficient enough in order to make their use realistic 161

in the context of video game development. Espe- 162

cially the latter aspect is dependent on the operating 163

environment of the agents as complex audio scenes 164

make the training challenging. 165

3.2 Platform 166

We use Unity [4] as our platform. We combine Unity 167

with its deep reinforcement learning framework ML- 168

Agents [4]. ML-Agents includes a training pipeline 169

for simple DRL architectures with popular methods, 170

such as PPO [13]. It also exposes the Unity API for 171

external tools, such as Ray RLlib [14] enabling the 172

use of complex DRL models. 173

3.3 Observations 174

Virtual agents observe their surroundings through 175

abstractions called sensors. In the context on ML- 176

Agents, the simplest sensors are fixed length vector 177

sensors, that can be filled with arbitrary values. 178

To be able to use audio data as the input for 179

our policy network, we need to have an audio sen- 180

sor, but ML-Agents does not include any audio- 181

related sensors. We opted to use a third-party sensor 182

from GitHub user mbaske [15], which is available 183

on GitHub with the MIT license. The sensor sup- 184

ports observing stereo audio in spectral domain us- 185

ing Short-Time Fourier Transform (STFT) [16] with 186

different windowing functions [17], such as Hanning 187

and Rectangular window. The windowing function 188

affects the amplitude and frequency accuracy of the 189

sensor. The sensor constructs an observation batch 190

by sampling the audio into a buffer over several 191

simulation ticks. 192

3.4 Audio rendering libraries 193

By default, popular game engines such as Unity 194

and Unreal Engine support simplified spatialization 195

without accounting for reflections or occlusions. To 196

enable more complex audio observations, we use 197

2

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Unity

Unity
Client

Audio policy

Main server
(Unity)

Unity
Client

Unity
Client

Audio
engine

instance

Audio policy

Audio
engine

instance

Audio
engine

instance

Unity

Audio policy

Multi-listener
audio engine

a) Distributed
architecture

b) Multiple
audio engines

c) Enhanced
audio engine

Figure 1. Approaches for multi-listener setup.

Table 1. System specifications

Label CPU GPU RAM OS

A Intel 13900k GTX 1080 ti 64 GB Windows 11
B Intel 13400 RTX 3080 32 GB Ubuntu 22.04

Steam Audio [18] as a plugin for Unity. Steam Au-198

dio is one of the several libraries [8] that support199

spatial audio. It supports spatialization through200

head related transfer function (HRTF), which mod-201

els the interaural level differences (ILD) and the202

interaural time difference (ITD). It also supports203

occlusions and reflections either by real-time ray204

tracing for dynamic scenes or baked audio propaga-205

tion for static scenes.206

3.5 Multi-listener support207

Even with Steam Audio, Unity supports only one208

active audio listener at a time. This means that all209

audio will be rendered from the point of view of a210

single agent. From the training perspective, having211

only one audio listener limits parallelization of the212

training process as one instance will only support213

one agent. From the runtime perspective, the audio214

listener is often reserved for the player.215

We propose three basic ways to enable multi-216

listener simulation. These are shown in Figure 1.217

1. Each client has its own audio engine instance218

running and will therefore be able to feed mul-219

tiple agents with audio observations. The game220

logic runs on the main server, but the audio221

events are replicated on the remote clients.222

2. Creating multiple instances of the audio engine223

within a single game instance, thus removing224

the overhead caused by the network.225

3. An audio engine that natively supports multiple226

listeners, which eases internal optimizations.227

Integrating the multi-listener support directly into228

the engines opens optimization opportunities and229

removes overhead but also increases significantly the230

implementation effort. We selected Option 1 for our231

experimentation.232

Other possible sensorsAudio data
(stereo, 0.2 s)

STFT
(20x42x42 floats)

CNN
(3 stacks of

ResNet)

Position Raycasts

FCNN
(3x512)

Action
(direction vector

with 2 floats)

Figure 2. Sensor data processing in our agent design.

4 Experiment setup 233

In this section, we describe the setup for our ex- 234

periment. Our goal is to create and evaluate the 235

effect of using multiple listeners as proposed in Fig- 236

ure 1 (leftmost), while also training and evaluating 237

a DRL-based audio-aware agent using Unity and 238

Steam Audio. The multi-listener measurements are 239

done on hardware configuration A as seen in Table 240

1. The agents are trained using both configurations 241

A and B. 242

We consider a hide-and-seek scenario, where an 243

audio-aware agent attempts to find the target (e.g., 244

the player) in an indoors area. The target is con- 245

stantly making noise by randomly playing back one 246

of eight footstep audio clips. In order to make sim- 247

plify the evaluation of the agents, the target is repre- 248

sented as a static object that does not move around 249

in the environment. The motivation for this setup 250

comes from a typical scenario, where the player at- 251

tempts to evade detection. 252

The agent can observe its surroundings with sen- 253

sors as described in Figure 2. The audio data is fed 254

through STFT to a convolutional neural network 255

(CNN) and the integration of other sensor data is 256

done with a fully connected neural network (FCNN). 257

In our experiment, the other sensors are excluded 258

and the audio sensor is the only source of data. 259

4.1 Multi-listener setup 260

We measure the impact of running multiple simu- 261

lation instances in parallel as proposed in Figure 262

1 (leftmost). Each Unity instance is running the 263

exact same scene with Steam Audio and one audio 264

agent with a CNN-based audio model. The number 265

of audio sources is varied between 1, 10 and 30 au- 266

dio sources to evaluate the impact of having several 267

audio sources. 268

4.2 Environments 269

The agent performance is compared in multiple en- 270

vironments with increasing complexity. The easiest 271

environment (”Simple”) is an empty hall without any 272

obstructions. The second environment (”Medium”) 273

adds some obstructions in the form of rooms and 274

walls, making it necessary to utilize indirect audio 275

3

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

reflections. The third environment (”Complex”) in-276

creases the difficulty by including more walls. The277

environments are described in more detail in Ap-278

pendix B.279

4.3 Agent design280

The agents are trained using PPO [13] over 10 mil-281

lion samples in the second (”Medium”) environment.282

The training hyperparameters are listed in Appendix283

A.1.284

The policy design is shown in Figure 2. In order to285

isolate the usefulness of the audio observations, the286

audio sensor is the only sensor included in the experi-287

ments. The agent outputs a two values, representing288

the x and y values of a 2-dimensional vector.289

The reward signal, denoted as R, is calculated by290

taking a dot product between the direction of the291

shortest path to the target and the action vector. To292

encourage finishing episodes as quickly as possible,293

we convert the result into a penalty by shifting it294

from range [-1, 1] to range [-2, 0]. Finally, it is scaled295

by the fixed delta time to make it invariant to the296

simulation physics update frequency. The agent is297

given an additional reward of 2 upon finishing an298

episode.299

The reward R at physics update n can be ex-300

pressed as:301

Rn = ((a · ŝ)− 1)∆t+

{
2, if target reached

0, otherwise
(1)302

where a is the action vector, (̂s) is a unit vector303

pointing to the shortest path to target and ∆t is304

the time between two physics updates (called fixed305

delta time in Unity). Maximum achievable reward306

during an episode is 2.307

To prevent agents from getting stuck between two308

locations, they need information on locations already309

visited. Instead of using more complex neural net-310

works like RNNs [19] or LSTMs, we used a simple311

weighted navigation grid (Appendix A.3). The grid312

node weights indicate the likelihood of audio coming313

from that direction. We adjust these weights based314

on neural network outputs and navigate towards the315

highest-weighted neighboring node. If there are no316

occlusions between the target and the agent, the317

navigation grid is ignored and the agent will travel318

directly towards the output direction.319

4.4 Evaluation metrics320

We evaluate the viability of our multi-listener ap-321

proach by measuring the CPU and memory (MEM)322

utilization with different configurations.323

We measure the agent performance using sample324

throughput, training time, and cumulative training325

reward during training. After training, we evaluate326

0 5 10 15 20 25 30 35 40
Number of listeners

10

20

30

40

50

FP
S

0

50

100

150

200

Th
ro

ug
hp

ut
 (a

ud
io

 s
am

pl
es

 p
er

 s
ec

on
d)

Multi-listener scalability

fps (1 sources)
fps (10 sources)
fps (30 sources)
throughput (1 sources)
throughput (10 sources)
throughput (30 sources)

Figure 3. Main server FPS and total audio sample
throughput. Each audio sample contains a 0.2 second
audio buffer collected over 10 simulation ticks.

0 5 10 15 20 25 30 35 40
Number of listeners

0

20

40

60

80

100

C
PU

 u
til

iz
at

io
n

(%
)

0

5

10

15

20

M
em

or
y

ut
iliz

at
io

n
(G

B)

Multi-listener hardware utilization
CPU (1 sources)
CPU (10 sources)
CPU (30 sources)
Memory (1 sources)
Memory (10 sources)
Memory (30 sources)

Figure 4. Average hardware utilization. CPU utiliza-
tion is an average over all 24 cores. Both metrics are
also affected by background processes.

the agent with a fixed set of 100 randomized episodes 327

in each environment using the SPL metric [20]. 328

SPL is defined as 329

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(2) 330

where N is the number of episodes, Si is 1 if the 331

episode i succeeded and 0 otherwise. The li is the 332

shortest path to target and pi is the length of the 333

path taken by the agent. 334

As such, SPL accounts for both failure to reach 335

the goal and the optimality of the path compared to 336

the shortest path. It is better than simply measuring 337

number of steps or time to reach the target, since the 338

distance to the target varies by episode. However, 339

as SPL relies on knowing the optimal path length, 340

it is not suitable for moving targets as such. 341

5 Results 342

In this section, we describe our measurement results 343

on multi-listener performance, training performance, 344

and agent performance with some analysis on the 345

probable causes of the observed behavior. 346

4

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0M 2M 4M 6M 8M 10M
Training steps

10
1

10
0

0

10
0

R
ew

ar
d

Average Smoothed Training Curves

STFT-H
STFT-R

Figure 5. Training reward over time.

5.1 Multi-listener performance347

Figure 3 shows how the performance scales with348

parallel audio-aware agents in three different config-349

urations. The figure shows the simulation frames per350

second (FPS) processed by the main server, which351

is set at a fixed rate of 50 FPS. Values lower than352

50 means that the simulator can no longer keep up353

with real-time. With only one audio source, the FPS354

stays nearly stable at up to 40 listeners. With 30355

sources, the simulation supports roughly 12 concur-356

rent audio-aware agents.357

Figure 3 also shows the total sample throughput358

for all audio-aware agents. Each audio sample is359

computed from a 0.2 second long audio buffer, which360

requires 10 simulation frames at 50 FPS. Sample361

throughput often directly correlates with the time it362

takes to train a DRL-based agent. From the figure,363

we can see that the sample throughput increases364

linearly to 200 audio samples per second with one365

audio source. With 30 audio sources, the throughput366

caps at 75 at around 15 environments.367

Figure 4 shows how the utilization of the CPU368

scales with parallel Unity instances. With one audio369

source, the CPU utilization stays below 5 % even370

at 40 parallel instances. With 10 audio sources,371

the CPU utilization stays reasonably low until 25372

environments before increasing exponentially. With373

30 audio sources, the CPU usage increases already374

after 10 instances. At 41 parallel instances, the375

whole system becomes unresponsive.376

Figure 4 also shows that each instance has a near377

linear effect on memory usage, which is on par with378

expectations. However, the number of audio sources379

has a clear effect on the coefficient of this linear380

behavior. With 30 audio sources the setup requires381

nearly double the memory compared to having one382

source. With 30 audio sources, one instances con-383

sumes roughly 300 MB of memory. The sudden384

increase of memory usage with one audio source385

after 30 listeners is likely caused by background load386

related to the Windows environment.387

5.2 Training performance388

We trained two DRL-based agents using two different389

STFT window functions (STFT-R for rectangular390

5 10 15
num_envs

0

250

500

750

1000

1250

1500

Ti
m

e
(m

in
ut

es
)

A (CPU)

5 10 15
num_envs

B (CPU)

5 10 15
num_envs

A (CPU+GPU)

5 10 15
num_envs

B (CPU+GPU)

Sample time
SGD time

Training time comparison

Figure 6. Training time comparison with different
computation configurations.

and STFT-H for Hanning window). The training 391

was repeated three times. During training, we collect 392

a sample on every simulation step. This increases 393

the sampling throughput, but the samples will have 394

overlap with each other as the audio buffer holds 395

data over 10 steps. 396

The Figure 5 shows the training reward curves. 397

The curves are averaged over all three runs and then 398

smoothed. The reward curves converge fast and 399

there is little improvement after 5 million steps. 400

Figure 6 shows the total training time for 10 mil- 401

lion steps with four different configurations. In ad- 402

dition to the total time, it shows how much time is 403

spent in collecting samples from the agents and how 404

long is spent updating the model with the Stochastic 405

Gradient Descent (SGD) [13]. With these config- 406

urations, increasing the amount of parallel Unity 407

instances up to 10 significantly increases the sample 408

throughput. Additionally, using GPU can nearly 409

halve the total training time by drastically reducing 410

time spent in computing SGDs. 411

Despite having a higher-end CPU, the configura- 412

tion A (CPU) is slower than B (CPU). This could 413

be due to the different operating system or some 414

other differences in hardware details, such as the 415

memory speed or motherboard configuration. 416

In conclusion, the sample throughput is a clear 417

bottleneck in a GPU-accelerated system. It might 418

be possible to further increase the sample through- 419

put by having multiple agents in one Unity instance 420

and by having faster-than-realtime audio render- 421

ing. Both of these could reduce the overhead from 422

running multiple Unity instances in parallel. 423

5.3 Audio-aware agent performance 424

After training the STFT-R and STFT-H agents, we 425

compared them to a random agent that traverses 426

randomly across the environment. As we repeated 427

the training three times, the results are also averaged 428

over three evaluations. 429

The Figure 7 shows a comparison of SPL values 430

achieved by different agents. The best possible SPL 431

value is 1. As expected, the audio-aware agents per- 432

form best in the simple scene with no obstacles with 433

an approximate SPL value of 0.85. The STFT-H 434

5

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Simple Medium Complex
Environment

0.0

0.2

0.4

0.6

0.8

1.0
SP

L

SPL in different environments

Model
STFT-H
STFT-R
Random

Figure 7. Measured SPL in different testing environ-
ments. Higher values are better.

0 2 4 6 8 10 12
Path corners

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy by path corners

Model
STFT-H
STFT-R
Random

Figure 8. Accuracy by remaining shortest path corners.

seems to perform slightly better than SRFT-R over-435

all. When obstacles are added, the agents perform436

worse, but still significantly better than the random437

agent. As reference, Anderson et al. [20] mention438

that an SPL of 0.5 shows a good level of naviga-439

tion performance in reasonably complex previously440

unseen environments.441

Figures 8 and 9 show how the remaining distance442

from the agent to the target affects agent prediction443

accuracy. If we denote the accuracy as A ∈ [0, 1],444

then A = 1 means that the action-vector is aligned445

with the shortest path to target. Likewise, A =446

0 means that the action-vector deviates from the447

direction of the shortest path by 180 degrees.448

Figure 8 shows the accuracy based on how many449

corners the shortest path to target has. The num-450

ber of corners depends on how many obstacles are451

between the agent and the target, since the agent452

must turn at least twice to get around an obstacle.453

Figure 9 shows the length of the shortest path to454

target in Unity units. From these figures, we can455

see that the remaining distance has a more linear456

effect on accuracy, while the amount of remaining457

obstacles has a more drastic effect.458

6 Discussion459

The lack of support for multiple audio listeners is a460

significant drawback in most current game engines as461

it limits the options of using audio as an observation462

for deep learning agents.463

However, it seems that our approach of using mul-464

tiple clients can ease these limitations. Our experi-465

mentation demonstrates that with a rather simple466

10
-20

20
-30

30
-40

40
-50

50
-60

60
-70

70
-80

80
-90

90
-10

0

10
0-1

10

11
0-1

20

Path length (Unity units)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Accuracy by path length

Model
STFT-H
STFT-R
Random

Figure 9. Accuracy by remaining shortest path length.

workaround in Unity nearly a dozen of audio-aware 467

agents can be supported. However, resource inten- 468

sive games likely need more game-specific optimiza- 469

tion than what we have done in our experimentation. 470

Our results also highlight that minor details, such 471

as the STFT windowing function, can noticeably af- 472

fect agent behavior. Therefore, the audio properties 473

of the environment and the audio sensor must be 474

chosen carefully. 475

As future work, we suggest looking at the other 476

proposed approaches for creating multi-listener sup- 477

port to reduce overhead. Having only one game 478

instance would remove the need for synchronization 479

between the clients and reduce memory usage. Simi- 480

lar to Cowan et al. [10] it is also likely that some of 481

the audio propagation computation could be reused. 482

Additionally, modifying the audio engine to sup- 483

port faster-than-realtime playback would be helpful. 484

For example, in our experiment, the sample through- 485

put was around 250 samples per second. This is 486

rather slow compared to the 120 000 samples per 487

second reached with the faster-than-realtime solu- 488

tion by Hegde et al. [3] for VizDoom. Similar to the 489

solution by Hedge et al., the audio backend would 490

likely need to be modified to enable full software 491

rendering of the audio at any sampling rate 492

7 Conclusion 493

In this paper, we presented our experimentation on 494

using multi-listener rendering in game engines for 495

enabling concurrent audio-aware agents with deep 496

reinforcement learning. Our work demonstrates how 497

current audio libraries can be utilized to create audio- 498

aware agents with reasonable training results. 499

While our results show the viability of using deep 500

learning based audio-aware agents in video games, 501

our research also highlights the need for further 502

research on the methodology and development of 503

applications and tools. The ability of faster-than- 504

realtime audio operations could significantly speed 505

up training of audio-aware agents. Likewise, native 506

support for multiple audio listeners would make 507

training and runtime more efficient while enabling 508

the use of multiple agents. 509

6

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References510

[1] J. Park, Y. Cho, G. Sim, H. Lee, and J. Choo.511

“Enemy spotted: In-game gun sound dataset512

for gunshot classification and localization”. In:513

2022 IEEE Conference on Games (CoG). Bei-514

jing, China: IEEE, Aug. 2022. doi: 10.1109/515

cog51982.2022.9893670.516

[2] C. Gan, X. Chen, P. Isola, A. Torralba,517

and J. B. Tenenbaum. “Noisy Agents: Self-518

supervised Exploration by Predicting Audi-519

tory Events”. In: 2022 IEEE/RSJ Interna-520

tional Conference on Intelligent Robots and521

Systems (IROS). Oct. 2022, pp. 9259–9265.522

doi: 10.1109/IROS47612.2022.9981614.523

[3] S. Hegde, A. Kanervisto, and A. Petrenko.524

“Agents that listen: High-throughput reinforce-525

ment learning with multiple sensory systems”.526

In: 2021 IEEE Conference on Games (CoG).527

IEEE, Aug. 2021. doi: 10.1109/cog52621.528

2021.9619096.529

[4] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J.530

Harper, C. Elion, C. Goy, Y. Gao, H. Henry, M.531

Mattar, and D. Lange. “Unity: A general plat-532

form for intelligent agents”. In: arXiv (2018).533

arXiv: 1809.02627 [cs.LG].534

[5] R. S. Sutton and A. G. Barto. Reinforcement535

Learning: An Introduction. en. MIT Press, Nov.536

2018. isbn: 9780262039246.537

[6] P.-A. Grumiaux, S. Kitić, L. Girin, and A.538

Guérin. “A survey of sound source localization539

with deep learning methods”. en. In: J. Acoust.540

Soc. Am. 152.1 (July 2022), p. 107. issn: 0001-541

4966, 1520-8524. doi: 10.1121/10.0011809.542

[7] S. Latif, H. Cuayáhuitl, F. Pervez, F.543

Shamshad, H. S. Ali, and E. Cambria. “A544

survey on deep reinforcement learning for545

audio-based applications”. In: Artificial In-546

telligence Review 56.3 (Mar. 2023), pp. 2193–547

2240. issn: 1573-7462. doi: 10.1007/s10462-548

022-10224-2.549

[8] M. Beig, B. Kapralos, K. Collins, and P.550

Mirza-Babaei. “An Introduction to Spatial551

Sound Rendering in Virtual Environments and552

Games”. In: The Computer Games Journal553

8.3 (Dec. 2019), pp. 199–214. issn: 2052-773X.554

doi: 10.1007/s40869-019-00086-0.555

[9] M. Kempka, M. Wydmuch, G. Runc, J.556

Toczek, and W. Jaśkowski. “ViZDoom: A557

Doom-based AI Research Platform for Vi-558

sual Reinforcement Learning”. In: IEEE Con-559

ference on Computational Intelligence and560

Games. Santorini, Greece: IEEE, Sept. 2016,561

pp. 341–348. doi: 10 . 1109 / CIG . 2016 .562

7860433.563

[10] B. Cowan, B. Kapralos, and K. Collins. “Re- 564

alistic Audio AI: Spatial Sound Modelling to 565

provide NPCs with Sound Perception”. In: 566

Audio Engineering Society Audio for AR/VR. 567

Aug. 2020. url: https : / / aes2 . org / 568

publications/elibrary-page/?id=20876. 569

[11] C. Chen, C. Schissler, S. Garg, P. Kobernik, A. 570

Clegg, P. Calamia, D. Batra, P. W. Robinson, 571

and K. Grauman. “SoundSpaces 2.0: A Simu- 572

lation Platform for Visual-Acoustic Learning”. 573

In: arXiv (2022). arXiv: 2206.08312 [cs.SD]. 574

[12] C. Gan, Y. Zhang, J. Wu, B. Gong, and 575

J. B. Tenenbaum. “Look, Listen, and Act: 576

Towards Audio-Visual Embodied Navigation”. 577

In: arXiv (2019). arXiv: 1912.11684 [cs.CV]. 578

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Rad- 579

ford, and O. Klimov. “Proximal Policy Opti- 580

mization Algorithms”. In: arXiv (2017). arXiv: 581

1707.06347 [cs.LG]. 582

[14] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. 583

Fox, K. Goldberg, J. Gonzalez, M. Jordan, and 584

I. Stoica. “RLlib: Abstractions for distributed 585

reinforcement learning”. In: International con- 586

ference on machine learning. PMLR. 2018, 587

pp. 3053–3062. 588

[15] mbaske. Audio Sensor Component for Unity 589

ML-Agents. en. url: https://github.com/ 590

mbaske/ml-audio-sensor. 591

[16] B. Boashash. Time-frequency signal analysis 592

and processing: A comprehensive reference. en. 593

2nd ed. San Diego, CA: Academic Press, Dec. 594

2015. isbn: 9780123984999. doi: 10.1016/ 595

c2012-0-00024-5. 596

[17] O. Özhan. “Short-Time-Fourier Transform”. 597

en. In: Basic Transforms for Electrical 598

Engineering. Cham: Springer Interna- 599

tional Publishing, 2022, pp. 441–464. 600

isbn: 9783030988456,9783030988463. doi: 601

10.1007/978-3-030-98846-3_7. 602

[18] Valve. Steam Audio. https : / / 603

valvesoftware.github.io/steam-audio/. 604

Accessed: 2024-9-5. 605

[19] I. Goodfellow, Y. Bengio, and A. Courville. 606

Deep Learning. en. MIT Press, Nov. 2016. isbn: 607

9780262035613. 608

[20] P. Anderson, A. Chang, D. S. Chaplot, A. 609

Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, 610

J. Malik, R. Mottaghi, M. Savva, and A. R. Za- 611

mir. “On Evaluation of Embodied Navigation 612

Agents”. In: arXiv (2018). arXiv: 1807.06757 613

[cs.AI]. 614

[21] Valve. Steam Audio Material documentation. 615

https : / / valvesoftware . github . io / 616

steam- audio/doc/unity/material.html. 617

Accessed: 2024-9-6. 618

7

https://doi.org/10.1109/cog51982.2022.9893670
https://doi.org/10.1109/cog51982.2022.9893670
https://doi.org/10.1109/cog51982.2022.9893670
https://doi.org/10.1109/IROS47612.2022.9981614
https://doi.org/10.1109/cog52621.2021.9619096
https://doi.org/10.1109/cog52621.2021.9619096
https://doi.org/10.1109/cog52621.2021.9619096
https://arxiv.org/abs/1809.02627
https://doi.org/10.1121/10.0011809
https://doi.org/10.1007/s10462-022-10224-2
https://doi.org/10.1007/s10462-022-10224-2
https://doi.org/10.1007/s10462-022-10224-2
https://doi.org/10.1007/s40869-019-00086-0
https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1109/CIG.2016.7860433
https://aes2.org/publications/elibrary-page/?id=20876
https://aes2.org/publications/elibrary-page/?id=20876
https://aes2.org/publications/elibrary-page/?id=20876
https://arxiv.org/abs/2206.08312
https://arxiv.org/abs/1912.11684
https://arxiv.org/abs/1707.06347
https://github.com/mbaske/ml-audio-sensor
https://github.com/mbaske/ml-audio-sensor
https://github.com/mbaske/ml-audio-sensor
https://doi.org/10.1016/c2012-0-00024-5
https://doi.org/10.1016/c2012-0-00024-5
https://doi.org/10.1016/c2012-0-00024-5
https://doi.org/10.1007/978-3-030-98846-3_7
https://valvesoftware.github.io/steam-audio/
https://valvesoftware.github.io/steam-audio/
https://valvesoftware.github.io/steam-audio/
https://arxiv.org/abs/1807.06757
https://arxiv.org/abs/1807.06757
https://arxiv.org/abs/1807.06757
https://valvesoftware.github.io/steam-audio/doc/unity/material.html
https://valvesoftware.github.io/steam-audio/doc/unity/material.html
https://valvesoftware.github.io/steam-audio/doc/unity/material.html

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A Agent details619

A.1 Training hyperparameters620

The agents are trained using Unity ML-Agents li-621

brary with PPO. The structure of the neural network622

(NN) follows the default implementation included623

in ML-Agents (version 0.30.0) with hyperparameter624

setting given in A.1. The audio data is included as625

a set of images, which ML-Agents feeds to a Resnet-626

style CNN. The output of the CNN is concatenated627

with the vector inputs from other sensors and fed628

to a linear network. In the experiments presented629

in this paper, the other sensors were excluded and630

the agents were using the audio sensor only.631

A.2 Random agent632

The random agent does not have any NN-based633

model. Instead, it chooses random coordinates in the634

environment and navigates towards them using the635

Unity NavMesh. Upon reaching these coordinates,636

it selects new coordinates. This process is repeated637

until the agent gets within 15 units of the target.638

When the agent arrives within 15 units of the639

target, we assume that it can see the target and the640

agent navigates directly towards the target. Without641

having this kind of an detection range, it would be642

unlikely for the agent to ever encounter the target.643

The environments are 100x100 units large.644

A.3 Navigation grid645

Without any assistance, the DRL-based agents can646

easily get stuck between two points. Typically, this647

happens near walls: an agent infers that the audio648

is coming from the direction of the wall. The agent649

gets stuck in a loop of retreating and approaching.650

The behavior can be corrected by keeping a record651

of historical actions and observations, which we im-652

plement with a navigation grid (Navgrid).653

Navgrid is a grid of evenly spaced navigation654

nodes placed across the environment. Adjacent655

nodes are neighbours to each other, if there is a clear656

unobstructed in line of sight between the nodes. In-657

stead of directly using the NN output for navigation,658

we use it to update the Navgrid weights and navi-659

gate towards the highest-weight neighboring node.660

When a node is reached, the agent starts navigating661

towards the neighboring node that leads to the path662

of highest cumulative discounted weights.663

Each node has a weight W ∈ [0, 100]. To represent664

the uncertainty of old weights, all node weights decay665

towards a neutral value Wneutral = 20 at the rate of666

γ = 0.1 units per physics update.667

The pseudocode for the weight update algorithm668

is visible in Listing 1. The algorithm updates the669

weights of nearby nodes at the maximum depth of670

dmax = 2 nodes. Nodes in the general direction671

Parameter Value

maximum steps 10 000 000
batch size 1024
buffer size 10240
learning rate 0.0003
beta 0.005
epsilon 0.2
lambd 0.90
num epoch 3
hidden units 512
num layers 3

Table A.1. ML-Agents hyperparameters

Listing 1. NavGrid update pseudocode

def UpdateWeights(agent , action):

c = agent.getClosestNode ()

c.setWeight (0)

N = c.neighbors

for n in N:

dir = agent.getUnitVectorToNode(n)

w = dot(action , dir) # [-1, 1]

n.addWeight(w)

U = n.neighbors

for u in U:

if u in N:

continue

u.addWeight(w * discount)

of the action will get an increase in weight, while 672

nodes in the opposite direction will get a reduction 673

in weight. The change in weight is propagated to 674

further neighbors with a discount of λd−1 (where 675

d is the depth and λ = 0.5) up to the maximum 676

depth dmax, as the uncertainty of the audio direction 677

increases the deeper we progress into the graph. 678

The weight of the closest node to the agent is 679

set to 0, as we can be certain that the target is 680

not nearby. This is because the agent does not use 681

the Navgrid, if it has line-of-sight to the target. In 682

our experiment, the agent is given the line-of-sight 683

information, but it could also be predicted by the 684

agent from sensor data. 685

Figure B.1 shows a Navgrid example with a red 686

line visualizing the current agent output. The small 687

white square near the end of the red lines is the 688

target. Based on previous outputs from the agent, 689

the related heatmap shows the likely location of 690

the target (higher weights are more bright and red 691

than the lower ones). Black areas in the heatmap 692

are missing values caused by how the heatmap is 693

rendered. 694

8

NLDL
#32

NLDL
#32

NLDL 2025 Full Paper Submission #32. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure B.1. An example Navgrid (left) and its weight
visualized as a heatmap (right).

(a) Simple (b) Medium (c) Complex

Figure B.2. The audio environments of our experiment.

B Audio environments695

In the experiment we used three separate environ-696

ments. They can be seen in Figure B.2. Surface697

properties are set as Steam Audio Geometry [21],698

with the same absorption, scattering and transmis-699

sion values. Absorption affects how the low, medium700

and high frequencies are separately absorbed. Scat-701

tering affects the direction of reflection when sound702

is reflected from a surface. Transmission affects how703

much low, medium and high frequencies can pass704

through the surface without reflections.705

9

	Introduction
	Related work
	Audio agents in virtual environments
	The problem space
	Platform
	Observations
	Audio rendering libraries
	Multi-listener support

	Experiment setup
	Multi-listener setup
	Environments
	Agent design
	Evaluation metrics

	Results
	Multi-listener performance
	Training performance
	Audio-aware agent performance

	Discussion
	Conclusion
	Agent details
	Training hyperparameters
	Random agent
	Navigation grid

	Audio environments

