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Abstract
In this work, we introduce a novel approach to single-source domain
generalization (SDG) in medical imaging, focusing on overcoming
the challenge of style variation in out-of-distribution (OOD) do-
mains without requiring domain labels or additional generative
models. We propose a Universal Frequency Perturbation frame-
work for SDG termed as UniFreqSDG, that performs hierarchi-
cal feature-level frequency domain perturbations, facilitating the
model’s ability to handle diverse OOD styles. Specifically, we de-
sign a learnable spectral perturbation module that adaptively learns
the frequency distribution range of samples, allowing for precise
low-frequency (LF) perturbation. This adaptive approach not only
generates stylistically diverse samples but also preserves domain-
invariant anatomical features without the need for manual hyper-
parameter tuning. Then, the frequency features before and after
perturbation are decoupled and recombined through the Content
Preservation Reconstruction operation, effectively preventing the
loss of discriminative content information. Furthermore, we intro-
duce the Active Domain-variance Inducement Loss to encourage
effective perturbation in the frequency domain while ensuring
the sufficient decoupling of domain-invariant and domain-style
features. Extensive experiments demonstrate that UniFreqSDG
increases the dice score by an average of 7.47% (from 77.98% to
85.45%) on the fundus dataset and 4.99% (from 71.42% to 76.73%) on
the prostate dataset compared to the state-of-the-art approaches.
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1 Introduction
In deep learning, Domain Adaptation (DA) [21, 31] and Domain Gen-
eralization (DG) [29, 75] aim to address data distribution variations
that deviate from the independent and identically distributed (𝑖 .𝑖 .𝑑 .)
assumption [7]. The objective of DG [15] is to develop a model
using data from one or several related but distinct source domains,
ensuring robust generalization to any out-of-distribution (OOD)
target domain. Single-source Domain Generalization (SDG) focuses
on the realistic challenge of developing methods that generalize
from a single source to multiple OOD target domains[35, 62]. This is
particularly significant in medical imaging, where the broad appli-
cability of models in real-world settings is crucial, especially under
conditions of limited data availability or privacy concerns[45].

In SDG, Data Augmentation is recognized as a key technique,
involving the transformation of original (𝑥,𝑦) pairs into (𝐴(𝑥), 𝑦)
pairs where 𝐴(·) simulates domain shifts[48, 58]. The strategic
development of 𝐴(·) is critical for enhancing model performance.
Data augmentation aims to increase the diversity and informative-
ness of training data, thereby strengthening the model’s ability to
generalize across OOD target domains.

Data augmentation techniques for SDG can broadly be catego-
rized into three types: Image Transformations,Model-based Augmen-
tation, and Feature-based Augmentation [62, 75]. Image Transforma-
tions are widely used but often suffer from being problem-specific
and limited in simulating domain shifts [51, 70]. Model-based Aug-
mentation employs either off-the-shelf or learnable models 𝐴(·)
for adversarial learning, aiming to maximize differences between
source and synthesized samples while ensuring semantic consis-
tency [48, 58, 64, 74]. However, challenges arise in dense predic-
tion tasks and in maintaining semantic details in high-quality syn-
thetic medical images[48]. Feature-based Augmentation attempts to
expand the single source domain by generating pseudo domains
[32, 47, 62, 72]. However, to effectively balance domain diversity

https://orcid.org/0000-0000-5084-5085
https://orcid.org/0000-0003-2997-4012
https://orcid.org/0000-0002-9863-5404
https://orcid.org/0000-0003-1771-2752
https://doi.org/10.1145/3664647.3681536
https://doi.org/10.1145/3664647.3681536


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Chuang Liu, Yichao Cao, Xiu Su and Haogang Zhu

FFT

𝑟

𝓕 𝓧𝒊
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒

𝛼 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 

0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0

ℳ ℱℎ 𝒳𝑖 = (1 −ℳ) ×𝒜 𝒳𝑖

ℱ𝑙 𝒳𝑖 = ℳ ×𝒜 𝒳𝑖

iFFT

𝓧𝒊

0 0 0 0 0 0 0 0 0 0

Segmentation backbone Channel Concatenation

r Learnable radius

𝜶 Learnable strength

𝓧𝒊 Original features

𝓧𝒊
𝒓𝒆𝒄 Reconstructed features

𝓧𝒊 Perturbed features

𝝍 Decoupling module

𝛼1
𝛼2
𝛼3
𝛼n

Low−frequency radius

P
ertu

rb
a
tio

n

𝓧𝒊
𝒄

𝓧𝒊
𝒔

𝝍

𝓧𝒊
𝒄

𝓧𝒊
𝒔

CC C C

𝝍

Output

𝓧𝒊

ℒ𝑑𝑒𝑐 ℒ𝑑𝑒𝑐

ℒ𝑐𝑜𝑛

ℒ𝑠𝑡𝑦

𝓧𝒊
𝒓𝒆𝒄

𝓧𝒊

𝓧𝒊
𝒄

𝓧𝒊
𝒔

𝓧𝒊
𝒄

𝓧𝒊
𝒔

𝓧𝒊

𝓧𝒊
𝒓𝒆𝒄

ℒ𝑠𝑡𝑦

ℒ𝑑𝑒𝑐

ℒ𝑑𝑒𝑐

Learnable Spectral Perturbation

Content Preservation Reconstruction Active Domain-Variance Inducement

Embedding Space

Input

Decoupling Decoupling

C

Gram 
Matrices

𝓧𝒊
𝒄

𝓧𝒊
𝒔

𝓧𝒊
𝒄

𝓧𝒊
𝒔

ɡ(𝓧𝒊
𝒄)

ɡ(𝓧𝒊
𝒔)

ɡ(𝓧𝒊
𝒄)

ɡ(𝓧𝒊
𝒔)

Gram 
Matrices

Gram Matrices

Figure 1: The overall framework of the proposed UniFreqSDG. Our proposed framework comprises three key components: (a)
LSP introduces learnable LF radius 𝑟 and Gaussian perturbation strength 𝛼 to adaptively enlarge the scope of single-source
domain features. (b) CPR decouples and recombines pre- and post-perturbation features to preserve the content information
and asisit the model to perceive the potential domain shifts. (c) The ADI designs three loss function L𝑑𝑒𝑐 , L𝑠𝑡𝑦 and L𝑐𝑜𝑛 to
ensure the effectiveness of perturbation strength and information decoupling.

and maintain semantic integrity, domain expansion primarily re-
quires careful calibration of complex loss term interactions across
input, latent, and output spaces. Some other approaches [13, 33, 77]
include using mix-up or randomization strategies on latent feature
statistics to enhance data diversity, but these rely on fixed per-
turbations (linear interpolation or random perturbation), limiting
effective domain transfer.

Recently, frequency domain methods oriented towards multi-
source domain generalization in the tasks of classification [53, 61,
63, 67] and semantic segmentation [28, 36, 54, 79] have elucidated
several intriguing phenomena: 𝑖) Among the amplitude and phase
spectra, the phase spectrum is more adept at capturing high-level
semantics. 𝑖𝑖) The low-frequency (LF) bands of the amplitude spec-
trum predominantly harbor style information or low-level statistics,
such as illumination and lighting. Nevertheless, these methods face
significant challenges: 𝑖) They necessitate more stringent require-
ments on the quantity and labeling of source domains, thus limiting
the widespread deployment in practical settings. 𝑖𝑖) The simple
linear combination of known style components results in samples
that are significantly inadequate in covering the extensive OOD
target domains.

To ameliorate the limitations regarding universality, flexibility,
and generalization encountered by prior methodologies, as shown
in Fig. 1, we propose a Universal Frequency Perturbation framework
for SDG termed as UniFreqSDG. The core idea lies in the infusion
of adaptive frequency domain perturbations into the multi-level

latent space of training data derived from a singular source domain.
The contributions of this work can be summarized as follows:

• We propose a universal adaptive frequency domain pertur-
bation approach for single-source domain generalization in
medical imaging. Our method enhances adaptability and
robustness by applying hierarchical feature-level frequency
perturbations directly, without needing domain labels or
additional generative models.
• We introduce the Learnable Spectral Perturbation (LSP) mod-
ule, which adaptively learns sample frequency distributions
to predict low-frequency (LF) perturbation range and strength
automatically. This method can generate stylistically diverse
samples while preserving domain-invariant features.
• We design the Content Preservation Reconstruction (CPR)
strategy to prevent the loss of content information. Addition-
ally, the Active Domain-variance Inducement (ADI) Loss is
introduced to ensure the effectiveness of each feature com-
ponent and the "Decoupling-Reconstruction" process.
• Extensive experiments on UniFreqSDG achieve a remarkable
7.47% increase in dice score for the fundus dataset, reaching
85.45%, and a 4.99% improvement on the prostate dataset,
achieving 76.73%. These results not only signify substantial
progress but also surpass previous state-of-the-art methods
in SDG task.
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2 Related Work
2.1 Domain Generalization in Medical Imaging
In the medical image segmentation, domain generalization (DG)
[1, 22, 56, 69] has been explored extensively. Some techniques[36,
37, 51, 70, 80] employ image-level data augmentation for style di-
versification, while others [8, 13, 42, 79] manipulate feature space
samples through methods like adversarial learning or statistics
randomization. Meanwhile, strategies such as [20, 27] focusing on
learning cross-domain feature invariance through a distanglement
manner. Recently, frequency-based methods [36, 57, 79] have begun
to emerge in the field of medical imaging. However, the significant
style variations between different imaging modalities limit the uni-
versality of these methods. This motivated us to explore an effective
and general frequency perturbation approach in the feature latent
space utlizing an adaptive frequency perturbation method.

2.2 Single-source Domain Generalization (SDG)
SDG method [18, 35, 40] focuses on extracting robust, invariant
features from only the source data, assuming no access to the target
domain. This poses challenges due to limited data diversity. Stan-
dardmethods include Image Transformations, Adversarial Learning,
Model-based Augmentation, and Feature-based Augmentation. No-
table developments include diverse data augmentation techniques
[29, 66, 77] to reduce overfitting from domain shifts. Adversarial
approaches [9, 48, 73, 74] use an adversarial domain synthesizer
(ADS) for creating new domains via interpolation and ensuring
semantic consistency through mutual information regularization.
In medical imaging, techniques like image-level augmentation [51]
and adversarial training [8, 65] are used to simulate unseen images
and extend target domain coverage [11, 12, 30, 39, 43, 60, 68]. These
strategies guide our pursuit of a more universal and adaptable SDG
method by focusing on feature-level data augmentation to enhance
model resilience to diverse domain features.

2.3 Data Augmentation
Data augmentation, a key strategy for SDG, includes Image Trans-
formations, Adversarial Learning, Model-based Augmentation, and
Feature-based Augmentation [75]. Traditional image transforma-
tions [51, 70] often demand elaborate manual design, whereas
Model-based Augmentation [64, 74, 76] typically employs Style
Transfer Models or Learnable Augmentation Networks. Techniques
like AdaIN facilitate image transfer across domains for augmen-
tation. Feature-based Augmentation, in contrast, avoids complex
image-to-image models, focusing instead on efficient architecture.
Feature-based data augmentation methods [13, 46, 77, 78] strate-
gically normalize or randomize the statistics of features across
domains to improve adaptability to domain shifts. Frequency-based
perturbations [10, 63] and Amplitude Mixup (AM) in medical tasks
[36, 79] innovate by blending LF components from different sources,
though these often face challenges due to the limited diversity of
linearly mixed styles and multiple source requirements [2–6, 38].
Our novel LSP module circumvents these limitations by automati-
cally learning perturbation regions and strengths in feature spectra,
providing a plug-and-play solution for enhancing base models.
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Figure 2: Each feature map learns a dynamic LF radius 𝑟 and
strength 𝛼 to obtain the LF perturbations. Then, the dynamically
changing Gaussian noise is injected into the learned LF region.

3 Methodology
3.1 Problem Definition and Method Overview
In single-source domain generalization, the objective is to train
a model, symbolized as 𝜃 : X → Y, using a sole source domain
D𝑠 = {𝑥𝑠𝑖 , 𝑦

𝑠
𝑖
}𝑁𝑠

𝑖=1 (with 𝑁𝑠 = 1 in SDG). The expectation is that this
model will perform effectively across multiple target domainsD𝑡 =

{𝑥𝑡
𝑖
}𝑁𝑡

𝑖=1, where 𝑁𝑡 > 1. The primary challenge in SDG lies in the
unpredictable nature of these target domains. These domains often
exhibit substantial variations from the training domain, especially
in aspects like style, contrast, and overall visual properties.

3.2 Learnable Spectral Perturbation (LSP)
This section introduces a flexible frequency domain perturbation
strategy, termed Learnable Spectral Perturbation (LSP), which gener-
ates stylistically diverse counterparts from single-domain features.
As shown in Fig. 2, LSP adapts to the input data by learning the
range of LF representations and dynamically adjusting this range
based on frequency domain data, thus enhancing the diversity of
representation styles from a single source domain. The forthcoming
subsections will explore this approach in detail, focusing on the
learnable LF window and the perturbation strength.

3.2.1 Learnable Low-frequency window. For a given intermediate
feature X𝑖 ∈ R𝐻×𝑊 ×𝐶 , with 𝐻 , 𝑊 , and 𝐶 denoting the height,
width, and number of channels respectively, we perform a 2D FFT
[14] for each channel independently to obtain the corresponding fre-
quency representations F (X𝑖 ) ∈ R𝐻

′×𝑊 ′×𝐶′ . This computational
process can be formalized as follows:

F (X𝑖 ) (𝑢, 𝑣, 𝑐) =
𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0
X𝑖 (ℎ,𝑤, 𝑐)𝑒− 𝑗2𝜋

(
ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣

)
(1)

where 𝑗2 = −1. Here, 𝑢, 𝑣 , and 𝑐 respectively denote the indices
in the frequency domain representation F (X𝑖 ) along the height,
width, and channel dimensions. Meanwhile, the amplitude and
phase components are then respectively expressed as:

A(X𝑖 ) (𝑢, 𝑣, 𝑐) =
[
𝑅2 (F (X𝑖 ) (𝑢, 𝑣, 𝑐)) + 𝐼2 (F (X𝑖 ) (𝑢, 𝑣, 𝑐))

]1/2
P(X𝑖 ) (𝑢, 𝑣, 𝑐) = arctan

[
𝐼 (F (X𝑖 ) (𝑢, 𝑣, 𝑐))
𝑅(F (X𝑖 ) (𝑢, 𝑣, 𝑐))

] (2)
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where 𝑅(·) and 𝐼 (·) represent the real and imaginary part of F (X𝑖 ),
respectively. For intermidiate feature maps X𝑖 ∈ R𝐻×𝑊 ×𝐶 , the
Fourier transformation for each channel is computed independently
to get the corresponding amplitude and phase information. Besides,
thanks to the conjugate symmetric property of FFT, F (X𝑖 ) only
needs retain the half of spatial dimensions thus has a spatial reso-
lution of 𝐻 ×

( ⌊
𝑊
2
⌋
+ 1

)
×𝐶 .

In order to implement perturbations within the LF range, we
first employ a learnable binary windowM to separate LF and HF
components. The window function is defined as:

M(𝑢, 𝑣, 𝑐) =
{

1, 𝑖 𝑓 |𝑢 −𝑊 ′/2| ≤ 𝑟𝑊 ′ and |𝑣 − 𝐻 ′/2| ≤ 𝑟𝐻 ′

0, otherwise
(3)

where 𝑟 denotes the proportion of the LF range within the frequency
domain representation F (X𝑖 ). The role of M is to introduce a
learnable binary mask near the center of F (X𝑖 ), which adaptively
adjusts its range based on the input data. This mask defines the
LF range crucial for frequency domain perturbation. Notably, the
LF range 𝑟 is independently learned and computed for different
channels of the input features X𝑖 at various levels.

To calculate the LF range 𝑟 , we begin by aggregating the concate-
nated amplitude composition concat [A(X𝑖 ),A(X𝑖 )] via a global
pooling layer, resulting in a semantically-rich channel vector {𝛼}2𝑐

𝑖=1 =
[𝛼1, 𝛼2, . . . , 𝛼2𝑐 ]. An MLP consisting of fully connected layers and
activation functions then maps this vector to a channel-wise feature
space S = [𝛽1, 𝛽2, . . . , 𝛽2𝑐 ], indicative of the learnable perturbation
ratio 𝑟 and strength 𝛼 . The computational process is as follows:

S = 𝐸𝑥𝑝𝑎𝑛𝑑 (𝑀𝐿𝑃 (𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝐶𝑜𝑛𝑐𝑎𝑡 [A(X𝑖 ),A(X𝑖 )]))) (4)

The 𝐸𝑥𝑝𝑎𝑛𝑑 function scales vectors to match the spatial dimensions
of position embedding features. Eq. (4) allows us to observe changes
in the input sample’s spectrum, F (X𝑖 ), and to introduce adaptive
Gaussian perturbations with strength 𝛼 = S[𝑐 : 2𝑐] into the LF
components across varying radius 𝑟 = S[0 : 𝑐]. This approach
ensures that the model has considerable flexibility in handling the
input features.

With the learnable LF maskM applied to each feature channel,
we can delineate the low-frequency (LF) and high-frequency (HF)
components in the frequency domain as follows:

F 𝑙 (X𝑖 ) =M ⊙ A(X𝑖 ) (5)

Fℎ (X𝑖 ) = (1 −M) ⊙ A(X𝑖 ) (6)
where ⊙ denotes element-wise multiplication. In Fig. 3, we visualize
the learned low-frequency masks M as well as the feature and
spectral representations pre- and post-perturbation.

3.2.2 Learnable Perturbation Strength. For a feature map X𝑖 , we
separate its frequency domain into low- and high-frequency compo-
nents, F 𝑙 (X𝑖 ) and Fℎ (X𝑖 ), as defined in Eq. (5) and (6). Recognizing
the varied intensities of elements due to domain shifts in differ-
ent data distributions, we aim to inject adaptive noise into the LF
components that represent style features. This is preceded by a
statistical analysis of the frequency distribution of the data, where
the LF spectrum is modeled as a multivariate Gaussian distribu-
tion, centered at the original values with variance derived from the
values across different samples.

Original Amplitude
Original Feature Perturbed Feature

Perturbed Amplitude Low-frequency Window

(c)(a) (b) (d) (e)

Figure 3:We visualized the perturbation of the encoder’s first-block
of UniFreqSDG𝑚 : (a) Original input features, (b) features after per-
turbation, (c) spectrum of original features, (d) spectrum after per-
turbation, (e) learned LF regions and noise.

Θ2 (F 𝑙 (X𝑖 )) =
1

𝑊 ′𝐻 ′𝑟2

∑︁
𝑢

∑︁
𝑣

[
F 𝑙 (X𝑖 ) − E[F 𝑙 (𝑋𝑖 )]

]2
(7)

where the𝑊 ′𝐻 ′𝑟2 denotes the area of the LF region. The variance
magnitude Θ2 reflects the intensity of element variation, serving
as a crucial metric for understanding domain shifts. This quantita-
tive analysis delineates the fluctuation of elements in response to
domain changes. A higher variance Θ2 indicates increased variabil-
ity, underscoring element sensitivity to domain-specific modifica-
tions. Noise perturbations are then injected into the LF components
F 𝑙 (X𝑖 ), based on the variation intensity Θ2 across different fre-
quency ranges. This process enhances adaptability to the input data,
as described below:

F̂ 𝑙 (X𝑖 ) = F 𝑙 (X𝑖 ) + 𝛼 · 𝜁 , 𝜁 ∼ N(0,Θ2 (F 𝑙 (X𝑖 ))) (8)

where the parameter 𝜁 denotes the Gaussian noise sampled from
the normal distribution, and 𝛼 ∈ R𝐵×𝐶 is a matrix of channel scores
that determine the perturbation strength calculated in Eq. (4).

Finally, through the inverse Fast Fourier Transform (𝑖𝐹𝐹𝑇 ), we
combine the phase and the spectrum of the perturbed LF compo-
nents F̂ 𝑙 (X𝑖 ) with those of the LF components Fℎ (X𝑖 ) to obtain
the final perturbed features:

X̂𝑖 = F −1 ( [F̂ 𝑙 (X𝑖 ), Fℎ (X𝑖 )]) (9)

Thus, we successfully expand the single-source domain training
data with an effectively, learnable spectral perturbation module.

3.3 Content Preservation Reconstruction (CPR)
To prevent damage to the content components during high-intensity
feature perturbations, we developed a Content Preservation Recon-
struction strategy. This approach involves decomposing both the
pre-perturbation and post-perturbation feature maps, X𝑖 and X̂𝑖 ,
into content and style components. The style features from post-
perturbation are then recombined with the content features from
pre-perturbation to train the model. The benefits of this approach
are twofold: on the one hand, it replenishes any potential loss in the
content part of the model; on the other hand, it guides the model
to understand the perturbation information. This strategy can be
summarized as "Perturbation Introduction & Content Preservation".
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Algorithm 1 Framework for UniFreqSDG Method.
1: Input: Pre-trained backbone, SDG dataset, maximum training

epochs 𝑁 , LSP module shown in Fig. 2.
2: Init 𝜏 = 0, parameters of LSP;
3: while 𝜏 ≤ 𝑁 do
4: (1) Hierarchical feature map extraction for input: X𝑖 ;
5: (2) X̂𝑖 ← 𝐿𝑆𝑃 (F (X𝑖 )) ; ⊲ Perturbation Injection
6: (3) Generate the content-related weight tensorW𝑖 ;
7: X𝑟𝑒𝑐

𝑖
= (W𝑖 ⊙ X𝑖 ) + (X𝑖 − X𝑐𝑖 ) ; ⊲ CPR Strategy

8: (4) ADI strategy for diverse feature component:
9: L𝑎𝑑𝑖 = 𝜆1L𝑑𝑒𝑐 + 𝜆2L𝑠𝑡𝑦 + 𝜆3L𝑐𝑜𝑛 ⊲ ADI Loss Calculation
10: (5) Calculate the overall loss:
11: L𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑠𝑒𝑔L𝑠𝑒𝑔 + 𝜆𝑎𝑑𝑖L𝑎𝑑𝑖 ;
12: (6) Optimize the learnable weights of UniFreqSDG;
13: end while
14: Output: The optimized weights of UniFreqSDG.

Specifically, we decouple the original frequency domain fea-
tures X𝑖 into category-related content components X𝑐

𝑖
and domain-

related style components X𝑠
𝑖
:

X𝑐𝑖 =W𝑖 ⊙ X𝑖 ,X𝑠𝑖 = X𝑖 − X𝑐𝑖 (10)

whereW𝑖 represents a weight tensor learned by the decoupling
module. In this work, we provide an example of a simple decou-
pling module, which consists of channel attention (𝐶𝐴) and spatial
attention (𝑆𝐴) [59], with the aim of filtering generalizable content
information from both the channel and spatial perspectives. The
process can be simplified toW𝑖 = 𝐶𝐴(X𝑖 ) ⊙ 𝑆𝐴(X𝑖 ). Additionally,
we conduct an ablation study to assess various attention types for
the decoupling operation in the experiment section. While the ar-
chitecture design of the attention module is not the primary focus
of our current work, it presents a valuable avenue for future explo-
ration. Consequently, specific information withinX𝑖 can be directly
extracted through element-wise multiplication.

Similarly, the perturbed features X̂𝑖 can be decoupled into con-
tent components X̂𝑐

𝑖
and domain-related style components X̂𝑠

𝑖
:

X̂𝑐𝑖 = Ŵ𝑖 ⊙ X̂𝑖 , X̂𝑠𝑖 = X̂𝑖 − X̂𝑐𝑖 (11)

where Ŵ𝑖 denotes the weight tensor corresponding to the per-
turbed features X̂𝑐

𝑖
.

To compensate for the potential loss of content components
due to perturbations in the frequency domain, we design a feature
reconstruction strategy focused on content preservation. This strat-
egy involves recombining the perturbed style components with the
original content components:

X𝑟𝑒𝑐𝑖 = X𝑐𝑖 + X̂
𝑠
𝑖 (12)

In this way, the model’s decoder is able to obtain well-represented
content alongside hierarchical features X𝑟𝑒𝑐 perturbed with a cer-
tain strength of style disturbance. This capability facilitates the
model’s adaptation to varying degrees of domain shift problems
throughout the training process.
3.4 Active Domain-variance Inducement (ADI)
During themodel’s optimization, we implemented a strategy named
Active Domain-variance Inducement to ensure the convergence of

intricately designed structures. This optimization strategy is based
on three key objectives: i) to decouple the features into content and
style components effectively during the reconstruction process; ii)
to maximize the difference in style components post-perturbation
compared to pre-perturbation; iii) to maintain as much consistency
as possible in the content components post-perturbation with those
pre-perturbation.

3.4.1 Gram-based Style Discrepancy Metric. To maximize the do-
main discrepancy between style components before and after per-
turbation, we introduce a Gram-matrix based metric to explicitly
depict the domain discrepancy. The Gram matrix captures stylistic
features like textures and patterns, indirectly delineating domain-
specific information without direct relevance to task objectives
[19]. First, to promote the full decoupling of features into content
and style components before and after perturbation, our decouple
process can be presented as follow:

L𝑑𝑒𝑐 = − 1
𝐵

𝐵∑︁
𝑖=1

( (
G(X𝑠𝑖 ) − G(X

𝑐
𝑖 )
)2 + (G(X̂𝑠𝑖 ) − G(X̂𝑐𝑖 ))2) (13)

where G(X𝑖 ) denotes the Gram matrix of the 𝑖-th samples in X
respectively. The Gram matrix G(X) is calculated as:

G(X) = 1
𝐶 × 𝑁 XX

𝑇 (14)

X ∈ R𝐻×𝑊 ×𝐶 is reshaped into a matrix of dimensions (𝐶, 𝑁 ), with
𝐶 being the number of channels and 𝑁 the total number of elements
divided by the number of channels, and X𝑇 is the transpose of X.
Secondly, to encourage a significant difference between the style
components after perturbation compared to those before, we set a
perturbation inducement term:

L𝑠𝑡𝑦 = − 1
𝐵

𝐵∑︁
𝑖=1

(
G(X𝑠𝑖 ) − G(X̂

𝑠
𝑖 )
)2

(15)

3.4.2 Explicit Content Consistency Constraint. Additionally, the
perturbation injection process involves learnable LF ranges and per-
turbation strength. To facilitate representation, we define a feature
similarity measurement function, 𝑆𝑖𝑚 (e.g., Cosine Similarity). The
following constraint rules are based on this measurement. These
learnable perturbation noises should consider the preservation of
content components:

L𝑐𝑜𝑛 = 𝑆𝑖𝑚(X𝑐𝑖 , X̂
𝑐
𝑖 ) (16)

The overall Active Domain-variance Inducement loss, L𝑎𝑑𝑖 , can
be defined as:

L𝑎𝑑𝑖 = 𝜆1L𝑑𝑒𝑐 + 𝜆2L𝑠𝑡𝑦 + 𝜆3L𝑐𝑜𝑛 (17)

3.5 Training Objective
Our proposed UniFreqSDG method is summarized in Algorithm
1. In our methodology, three distinct loss functions are employed:
segmentation loss L𝑠𝑒𝑔 and Active Domain-variance Inducement
loss L𝑎𝑑𝑖 . The segmentation loss L𝑠𝑒𝑔 comprises a combination
of Dice loss L𝑑𝑖𝑐𝑒 and Cross-Entropy loss L𝑐𝑒 . Thus, our overall
optimization objective can be expressed by the following equation:

L𝑠𝑒𝑔 = L𝑑𝑖𝑐𝑒 + L𝑐𝑒 ,L𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑠𝑒𝑔L𝑠𝑒𝑔 + 𝜆𝑎𝑑𝑖L𝑎𝑑𝑖 (18)
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Table 1: DSC Comparison of State-Of-The-Art (SOTA) methods on Fundus segmentation task [13]. We mark the top results in bold.

Methods Optical Disc / Cup Segmentation (DSC↑) Avg. DSC ↑A to Rest B to Rest C to Rest D to Rest E to Rest
ERM [50] 74.54, 59.21 82.30, 71.96 78.06, 59.12 79.79, 59.23 85.25, 58.88 70.83

RandConv [66] (ICLR’21) 79.63, 64.14 85.00, 72.40 87.77, 69.57 83.08, 64.38 86.31, 60.37 75.27
CSDG [42] (TMI’22) 78.40, 65.11 86.02, 76.19 87.64, 70.79 83.51, 65.26 87.09, 65.28 76.53

MaxStyle [8] (MICCAI’22) 77.40,65.44 86.95,74.52 87.95, 67.62 84.69, 66.05 87.95, 64.84 76.34
SAN-SAW [44] (CVPR’22) 76.42, 59.01 83.79, 73.23 84.17, 65.51 81.83, 62.36 87.00, 64.42 73.77
EFDM [71] (CVPR’22) 78.79,57.73 84.83,72.20 85.25, 65.94 82.13, 61.62 85.45, 63.02 73.70
DSU [33] (ICLR’22) 76.88, 61.26 84.17, 74.10 89.12, 70.16 83.53, 63.19 87.09, 59.65 74.91

SLAug [51] (AAAI’23) 79.83, 64.53 87.42, 75.94 88.18, 71.30 83.17, 64.52 86.57, 67.12 76.86
TriD [13] (MICCAI’23) 81.86, 66.67 88.19, 75.43 89.62, 70.85 84.81, 67.53 87.88, 66.96 77.98
Aloft-E [23] (CVPR’23) 87.46, 74.67 89.25, 76.53 90.32, 74.85 88.45, 75.53 88.31, 76.63 82.20

(85.83, 71.38)±0.54 (89.16, 75.67)±0.21 (86.59 , 74.95)±0.47 (87.12, 74.32)±0.98 (87.59 , 75.17)±0.36 80.78UniFreqSDG𝑠 +3.97, +4.71 +0.97, +0.24 -3.03, +4.10 +2.31, +6.79 -0.29, +8.21 +2.8
(90.03, 77.61)±0.65 (92.89, 79.65)±1.18 (91.20 , 78.48)±0.32 (91.76, 78.96)±1.23 (90.98 , 79.64)±0.56 85.31UniFreqSDG𝑚 +8.17, +10.94 +4.70, +4.22 +1.58, +7.63 +6.95, +11.43 +3.10, +12.68 +7.33
(91.05, 76.59)±0.34 (92.59, 81.91)±0.92 (91.59 , 78.86)±0.26 (91.87, 79.39)±0.78 (91.08, 80.24)±0.43 85.45UniFreqSDG𝑙 +9.19, +9.92 +4.40, +6.48 +1.97, +8.01 +7.06, +11.86 +3.20, +13.28 +7.80

CRAFT(Ours) TriD SLAug RandConvMixStyleMaxStyleCSDG

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Qualitative comparisons across DGMethods: fundus imag-
ing (top rows) vs. Prostate (bottom rows) with ground truth (red
contours) and Predictions (green contours). The subfigures (a) to (g)
correspond to: (a) our UniFreqSDG, (b) Aloft-E [23], (c) TriD [13], (d)
SLAug [51], (e) CSDG [42], (f) MaxStyle [8], and (g) RandConv [66].

where 𝜆𝑠𝑒𝑔 and 𝜆𝑎𝑑𝑖 are hyperparameters to balance the weights
of the segmentation loss and the inducement loss, respectively. A
detailed discussion of the hyperparameters for the loss function is
provided in ablation studies section. During inference, all the per-
turbation operations are removed, and the segmentation network
is tested on the unseen target domains.

4 Experiments
4.1 Datasets and Evaluation Metrics
We performed Single-source Domain Generalization (SDG) experi-
ments across three datasets: OD/OC (Fundus) segmentation dataset
[13], Prostate segmentation dataset [56], and the PACS dataset [48]
for natural image classification. We utilized Dice Similarity Coef-
ficients (DSC) [%] and Average Surface Distance (ASD) [pixel] to
quantitatively assess the segmentation results. Detailed descriptions
of each dataset and the ASD results are presented in the Appen-
dix. ResNet [24] is utilized as the backbone for the segmentation

network, modified with UNet-style skip connections. The evalua-
tion methods for the model are consistent with those established
in previous research [49, 58]. In the ablation studies, we utilize
UniFreqSDG𝑚 to perform all the experiments. More details about
experimental hyperparameters are shown in Appendix.

4.2 Main Results
We conducted a comprehensive evaluation of our proposed method
in comparison with state-of-the-art SDG methods, such as Aloft-E
[23], TriD [13], SLAug [51] and MaxStyle [8], on medical segmenta-
tion datasets. We designed three variants of different scales, tailored
to different computational capacities, to ensure comprehensive ex-
perimentation: UniFreqSDG𝑠 , UniFreqSDG𝑚 , and UniFreqSDG𝑙 ,
based respectively on ResNet-18, ResNet-34, and ResNet-50. Pre-
viously, most existing methods utilize the ResNet-34 architecture.
The results of this comparison are presented in Tab. 1 and Tab. 2.

For instance, fromTab. 1, we observe thatUniFreqSDG𝑚 achieves
a substantial increase in the Dice Similarity Coefficient (DSC) for
OD/OC segmentation tasks in Domain A generalization to other
domains, with improvements of 8.17 and 10.94, respectively, com-
pared to the TriD method [13]. Furthermore, similar results are
observed in other settings within Tab. 1 and across Tab. 2. These
experimental results validate the effectiveness of our proposed Uni-
versal Frequency Domain Perturbation method for SDG tasks. To
further validate the model’s generalizability to domain shift prob-
lems, we conducted SDG classification tasks on the Natural image
classification dataset PACS [29, 48]. UniFreqSDG is trained on one
of the four style source domains—Photo (P), Art (A), Cartoon (C),
and Sketch (S)—and then tested on the remaining domains. The
related results can be seen from Tab. 3, our approach achieves a
significant advantage on three different backbones.

4.3 Ablation Studies
4.3.1 Effect of each new component. Ablation studies on UniFre-
qSDG components are detailed in Tab. 4, using a plain ResNet-
based segmentation model as the baseline on the Fundus dataset.
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Table 2: DSC Comparison of State-Of-The-Art (SOTA) methods on Prostate segmentation task [56]. We mark the top results in bold.

Methods
Prostate Segmentation (DSC ↑)

Avg. DSC ↑
A to Rest B to Rest C to Rest D to Rest E to Rest F to Rest

ERM [50] 63.73 61.21 27.41 34.36 44.10 61.70 48.75
RandConv[66] (ICLR’21) 75.52 57.23 44.21 61.27 49.98 54.21 57.07

CSDG[42] (TMI’22) 80.72 68.00 59.78 72.40 68.67 70.78 70.06
MaxStyle[8] (MICCAI’22) 81.25 70.27 62.09 58.18 70.04 67.77 68.27
EFDM[71] (CVPR’22) 80.87 69.78 63.16 65.39 69.84 67.15 69.37
SLAug[51] (AAAI’23) 81.20 69.32 60.92 73.72 67.15 71.93 70.71
TriD[13] (MICCAI’23) 81.50 70.28 62.89 74.52 72.12 69.11 71.74
Aloft-E[23] (CVPR’23) 81.61 72.05 64.26 79.23 73.04 72.25 73.74

81.79±0.23 72.19±0.12 64.58±0.13 79.17±0.34 73.18±0.39 72.39±0.29 73.88
UniFreqSDG𝑠 +0.29 +1.91 +1.69 +4.65 +1.06 +3.28 +2.14

82.55±0.12 77.17±0.07 66.11±0.21 82.35±0.18 75.86±0.26 73.74±0.38 76.30
UniFreqSDG𝑚 +1.05 +6.89 +3.22 +7.83 +3.74 +4.63 +4.56

82.79±0.14 77.65±0.16 67.18±0.56 82.51±0.15 76.12±0.32 74.13±0.27 76.73
UniFreqSDG𝑙 +1.29 +7.37 +4.29 +7.99 +4.0 +5.02 +4.99

Table 3: SDG classification on PACS [48]. We train the model on one
of these source domains and evaluate the model on the rest domains.

Methods Venue P A C S Avg. ACC.
ERM [50] - 33.65 65.38 64.20 34.15 49.34

ERM w/ MAD [49] CVPR’23 32.32 66.47 69.80 34.54 50.78
Augmix [25] ICLR’19 38.30 66.54 70.16 52.48 56.87
pAdaln [41] CVPR’21 33.66 64.96 65.24 32.04 48.98
Mixstyle [77] ICLR’21 37.44 67.60 70.38 34.57 52.50
DSU [34] ICLR’22 42.10 71.54 74.51 47.75 58.97
ACVC [16] CVPR’22 48.05 73.68 77.39 55.30 63.61

ACVC w/ MAD [49] CVPR’23 52.95 75.51 77.25 57.75 65.87
- 55.02 76.60 78.19 63.35 68.29

UniFreqSDG𝑠 - +2.07 1.09 +0.94 +5.60 +2.42
- 55.65 77.43 80.42 66.38 69.97

UniFreqSDG𝑚 - 2.70 1.92 +3.17 +8.63 +4.10
- 56.97 78.94 79.51 68.92 70.59

UniFreqSDG𝑙 - +4.02 +3.43 +2.26 11.17 +4.72

Table 4: Ablation experiments on each component in UniFreqSDG
for the Fundus segmentation [13].

Variants LSP CPR L𝑑𝑒𝑐 L𝑠𝑡𝑦 L𝑐𝑜𝑛 Fundus Prostate
Baseline - - - - 80.32 60.51
Variant1 ✓ - - - - 83.45 73.89
Variant2 ✓ ✓ - - - 83.98 74.67
Variant3 ✓ ✓ ✓ - - 84.23 75.68
Variant4 ✓ ✓ - ✓ - 84.12 75.92
Variant5 ✓ ✓ - - ✓ 84.27 75.82
Variant6 ✓ ✓ ✓ ✓ - 84.45 75.98
Variant7 ✓ ✓ ✓ - ✓ 84.35 76.12
Variant8 ✓ ✓ - ✓ ✓ 84.54 76.02

UniFreqSDG𝑚 ✓ ✓ ✓ ✓ ✓ 85.31 76.30

Results demonstrate that the addition of Learnable Spectral Pertur-
bation (LSP) and Content Preservation Reconstruction (CPR) no-
tably boosts performance. The inclusion of L𝑑𝑒𝑐 , L𝑠𝑡𝑦 , and L𝑐𝑜𝑛 ,
components of the Active Domain-variance Inducement Loss, each

Table 5: Performance comparisons of different inserted positions
of our UniFreqSDG method on the Fundus segmentation tasks [13].

Encoder Decoder Fundus Dataset
𝐸1 𝐸2 𝐸3 𝐸4 𝐷1 𝐷2 𝐷3 𝐷4 Avg. DSC ↑
✓ - - - - - - - 83.98
- ✓ - - - - - - 83.56
- - ✓ - - - - - 83.43
- - - ✓ - - - - 83.19
✓ ✓ - - - - - - 84.09
✓ ✓ ✓ - - - - 84.60
✓ ✓ ✓ ✓ - - - - 85.31
✓ ✓ ✓ ✓ ✓ - - - 82.17
✓ ✓ ✓ ✓ - ✓ - - 83.66
✓ ✓ ✓ ✓ - - ✓ - 83.33
✓ ✓ ✓ ✓ - - - ✓ 82.96

positively impacts performance. Variants 3 through 8 compare the
effects of these loss components. Omitting any of these losses de-
creases performance, underscoring that ADI loss effectively guides
LSP to generate diverse style samples and helps the model adapt to
style variations in OOD samples, thereby enhancing generalization.
4.3.2 Effect of different perturbation injected positions. To evaluate
the impact of perturbation injection locations on SDG performance,
perturbations were introduced at various positions within the hi-
erarchical feature maps of UniFreqSDG. The findings, presented
in Tab. 5, indicate that perturbation injection in the encoder con-
sistently improves model performance over the baseline across all
locations. Conversely, perturbations in the decoder negatively af-
fect performance, likely due to its proximity to the output, where
perturbations can more significantly influence the results.

4.3.3 T-SNE visualization for UniFreqSDG. In Fig. 6, we use t-SNE
visualization [52] to compare the feature separability of UniFre-
qSDG with that of the TriD method [13]. The visualization shows
that, in the first column, the category features differentiated by
TriD have poorer discernibility, likely due to inadequate learning
capabilities for handling OOD conditions. This results in an inabil-
ity to adapt to significant style variations. In the second column,
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(a) (b)
A B C D E A B C D E

Figure 5: Ablation study for different perturbation noise distribu-
tions on two datasets: (a) Fundus [13], (b) Prostate [56].
Table 6: Performance comparisons of different implementations of
the decoupling module on Fundus dataset [13].

Decoupling
Optical Disc / Cup Segmentation (DSC ↑)

Avg. DSC ↑
A B C D E

SA 83.16 86.59 85.39 83.75 85.36 84.96
CA 80.97 87.11 83.54 84.38 85.50 84.30

Self-attention 82.17 85.40 82.49 83.99 84.26 83.66
ECA 81.54 87.14 84.69 84.77 84.39 84.51

CA + SA 83.82 86.27 84.84 85.36 85.31 85.31

features from different domains using the TriD method tend to
cluster together, indicating a lack of discriminative ability across
categories. Conversely, UniFreqSDG demonstrates effective catego-
rization across different domains. Features from different domains
and categories are well-separated within the distribution contours
marked by magenta and violet dashed lines, illustrating UniFre-
qSDG’s capability to distinguish data from unseen domains.

4.3.4 Different distributions for perturbing. In this work, we default
to using noise sampled from a Gaussian distribution for perturba-
tion injection. Here, we also consider other noise distributions:
Random Gaussian Distribution (referred to as Random) and the
Uniform Distribution (referred to as Uniform). For the Random
distribution, we sample random noises from a Gaussian distribu-
tion 𝑁 (0, 1) and add them to the LF components. For the uniform
distribution, noise is sampled from 𝑈 (−Θ, +Θ), with Θ being the
variance defined in Eq. 8. As shown in Fig. 5, overall, noise injection
using the Gaussian Distribution exhibits the best performance.

4.3.5 The ablation study of different decoupling module. In CPR
module, the "decoupling-reconstruction" operation successfully
extracts category-relevant, domain-invariant features from both
channel and spatial dimensions, ensuring content preservation dur-
ing LF perturbations. We evaluated several alternative modules,
including Spatial Attention (SA) [59], Channel Attention (CA) [26],
Efficient Channel Attention (ECA) [55], and the Self-attentionmech-
anism [17]. As presented in Tab. 6, our approach, which facilitates
interactions across channels and pixels, outperforms these alterna-
tive decoupling methods. Furthermore, the experimental findings
suggest that the decoupling module does not significantly alter the
performance of our method, underscoring the effectiveness and
robustness of our overall framework.

4.3.6 Feature-level visualization. We also visualized the fundus
image features decoupled by the model, including content and style

Optical Cup Optical Disc Domain A
Domain B Domain C
Domain D Domain E
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Figure 6: The t-SNE visualization. Colors are used to indicate cate-
gories in the first column and domains in the second column. The
first column demonstrates that our method possesses stronger recog-
nition capabilities for segmentation structures, evident from the
distinct color groupings representing different categories. The sec-
ond column illustrates that our method can more effectively reduce
the gap between different domains (themagenta and violet dashed
lines represent the distribution contours of two categories).

(a) (b) (c) (a) (b) (c)

Figure 7: Visualization of decoupled features in the CPR module:
(a) input, (b) content feature, and (c) style feature.

features, as shown in Fig. 7. From the figure, it is observable that
the content feature focuses more on the fundus-related Optical cup
and disc within the image, whereas the style feature pays more
attention to variations in brightness and background information.

5 Conclusion
In this work, we propose the UniFreqSDG for single-source do-
main generalization in medical imaging. By innovatively designing
Learnable Spectral Perturbations, UniFreqSDG adaptively intro-
duces low-frequency perturbations into hierarchical features based
on the input data. The Content Preservation Reconstruction strat-
egy is designed to prevent the loss of category-related content
information, and an Active Domain-Variance Inducement strat-
egy is introduced to ensure the effectiveness and efficiency of the
entire framework. Extensive experiments conducted across three
datasets demonstrate the universality, flexibility, and generalization
capabilities of our method.
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