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Abstract—Learned compression is an emerging scheme of data
compression where the encoder and decoder are learned from
data. In learned compression, various deep neural network-based
methods are proposed. However, the idea of data-based code
construction does not necessarily require deep neural networks.
In this paper, we introduce a framework to incorporate this idea
into classical codes via an extension of the Bayes codes.

I. INTRODUCTION

Recently, a new scheme called learned compression has
been used for data compression. In contrast to most classical
data compression methods, in this scheme, the encoder and de-
coder are constructed based on a large amount of training data.
This scheme is rapidly expanding due to the development of
deep generative models. Various deep neural network (DNN)
based coding methods have been proposed, e.g., variational
auto-encoders [1] and recurrent neural networks [2].

However, the idea of data-based code construction does not
necessarily require DNNS. It is also possible to incorporate this
idea into classical codes. In particular, lossless compression us-
ing the Bayes codes [3] is suitable for incorporating this idea,
because the Bayes codes assume a Bayesian statistical model
as the data generation model, which can be hierarchically
extended. In fact, we have already reported some examples
in [4], [5]. In this paper, we generalize and summarize these
results as a unified framework of learned compression.

We expect that statistical-model-based methods can be
computationally more efficient and more easily avoid over-
fitting than DNN-based methods. There is also a possibility
that statistical-model-based methods may be more suitable
than DNN-based methods for lossless compression, where no
distortion is allowed and theoretical limits of compression are
well studied. In fact, many of the existing learned compression
methods have been applied to lossy compression. Thus, we
consider the DNN-based methods and the statistical-model-
based methods should be studied with careful comparison. We
hope this paper encourages the interplay between the two.

II. PRELIMINARIES: THE BAYES CODES [3]

We consider lossless compression of a sequence © =
Z1...T,, which is generated from a probability distribution
p(x|0). Here, we assume 6 is unknown and we cannot use
the true distribution p(x|@) as a coding probability of entropy
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codes such as arithmetic codes [6]. Therefore, we estimate it
by p(x). In the Bayes codes [3], we assume 6 follows a prior
distribution p(0|n), where 7 is a given hyper-parameter. This
enables us to adopt an estimation criterion for p(x|@). That is
the Bayes risk function (see, e.g., [7]) based on the Kullback-
Leibler (KL) information between the true distribution p(x|0)
and an estimated distribution p(x). It is known that the optimal
distribution minimizing this criterion is given as follows.

p(x) = [ p(x|0)p(0]n)de. (1)

The code where (1) is used as a coding probability of the
arithmetic code is called the Bayes code. The expected code
length of the Bayes code converges to the entropy of p(x|0)
with the true @ for sufficiently large data length, and its
convergence speed achieves a theoretical limit [8].

Further, according to [3], we can derive a sequential coding
algorithm where the following probability is used as the coding
probability of the arithmetic code for the jth symbol x;.

plajlai=) = [ p(a;|ai=t,0)p0|2i~t,n)d0,  (2)

where 277! denotes z;---x;_1. It is known that the code
length of the Bayes code using this coding probability coin-
cides with that using (1). If we assume p(@) is a conjugate
prior for p(x|@), we can analytically solve the integral in (2)
and repeat encoding of z; and updating of p(8|z7,n).

Remark 1: In [9], p(x|@) is assumed to be a context-
tree model, which includes arbitrary (infinite) order Markov
models as sub-models. Moreover, [9] has proposed an algo-
rithm to calculate (2) for the context-tree model without any
approximation, and its complexity is only O(n). Therefore, the
Bayes codes are not only for a trivial model like the Bernoulli
model but applicable to a broad range of models.

III. PROBLEM SETTING

In this section, we extend the Bayes codes and mathemati-
cally formulate the problem of learned compression, i.e., con-
structing an encoder and decoder from training sequences for
a target sequence. Let n; denote the length of the ith sequence
and we define @; = ;1 T;pn,. Let ™ = (1,...,Ty,)
be the training sequences and x,,; be the target sequence.
We assume each sequence z; is independently generated
according to a parameter ;. Let 8™ = (6y,...,0,,) be



the tuple of them. In addition, we assume the probability
distribution of «; has another parameter o;. For oy, we
assume it becomes difficult to calculate integrals in the coding
probability (1) or (2) for x; if we assume any prior distribu-
tion on it. Therefore, we treat «; as an unknown constant.
Using such a parameter, the model becomes more flexible.
Consequently, ; independently follows p(x;|0;; c;). We also
define a tuple a™ = (@, ..., a,;,). Moreover, we assume a
prior distribution on 8. It includes an additional parameter
B that is assumed to be an unknown constant because of a
similar reason to «;, and we assume 8; independently follows
p(0;|m; B). Lastly, we assume 7 is unknown and assume a
hyper-prior p(n). An idea of a hyper-prior distribution also
plays an important role in the DNN-based methods [1].

Under this condition, we define the problem of learned com-
pression as a problem to construct a coding algorithm for the
target sequence &,,,1 using training sequences i, ..., Ly,.

Example 1: In our previous study on lossless text compres-
sion [4], p(x;|0;; ;) was the context-tree model, p(0;|n; 3)
was Dirichlet distributions and a tree distribution [10], and
p(n) was beta distributions. In our previous study on lossless
image compression [5], p(x;|0;; ;) was a two-dimensional
autoregressive model, p(6;|n;3) was a mixture of Gauss-
gamma distributions, and p(n) was a Dirichlet distribution
and Gauss-Wishart distributions. Therefore, we could assume
a multimodal pixel distribution represented as a mixture of
autoregressive models in [5]. Non-linear autoregressive models
are also used in the DNN-based methods [2].

IV. LEARNED COMPRESSION ALGORITHMS

If o, +1 and B3 are given, in a similar manner to [3], the
optimal coding probability for x,,4; is given as follows:

p(mm-&-l |wm; AXp+-1, /6) = ffp($m+l |0m+1; am+1)
X p(Om11|m; B)p(n|z™; B)dO 4 1dn. 3)

However, we have some difficulties in calculating this.
First, o, 41 and B are unknown. Second, the integral for
7 is often computationally expensive. Therefore, we build in
pre-determined point estimators Gy,+1, ,é', and 7). ,é and 7
are estimated from ™ and shared between the encoder and
decoder beforehand. &, 41 is estimated from ., 1 and sent
to the decoder as a header information. Therefore, we use the
following approximate coding probability.

D @mi1) = [P(@mi1|0mt136m11)D(Om11]7;8) 00 1. (4)

This method can be considered a kind of learned com-
pression algorithm. It is because estimating 7 and 3 from
x™ corresponds to constructing a coding algorithm for x,, .
Hereafter, we call an estimation phase for  and 3 a learning
phase and we call a phase to estimate o, 41 and coding @, 41
a compression phase. We will describe them in order.

A. Learning Phase

To estimate 17 and 3, we can use any Bayesian estimation
methods such as variational Bayesian (VB) methods and
Markov chain Monte Carlo (MCMC) methods. Here, we use

the VB methods because it is usually more scalable than the
MCMC methods. In particular, the VB method simultaneously
estimating a deterministic parameter such as a™ and 3 is
called the empirical variational Bayesian (EVB) method. For
more scalability, we can also use the stochastic variational
inference (SVI) method [11].

In EVB method, we approximate the joint posterior
distribution p(60™,n|x™;a™,3) by a variational distribu-
tion q(0™,n), which satisfies the factorization property:
a(0™,m) = q(6™)q(n).

It is known (see, e.g., [12]) that minimizing the KL in-
formation KL(q(8™,n)|p(0™,n|x™;a™,3)) is equivalent
to maximizing a function called variational lower bound
VL(g; @™, 3). Further, it is also known (see, e.g., [12])
that the optimal variational distribution, which maximize

VL(g; a™, 3), fulfills the following equations:
Ing"(0™) = By (ny [Inp(6™, m, 2™; ™, B)] + const., (5)
Ing*(n) = Eg-(gm) [Inp(0™,n, 2™; ™, B)] + const.  (6)

Simultaneously, we maximize the variational lower bound
VL(g; ™, 3) with respect to a™ and 3, and define

(o)™ a™, B). (7

However, ¢*(0™), ¢*(n), (a*)™, and B* depend on each
other. Therefore, we update them in turn from any initial values
until the convergence. Let ¢ (8™), ¢ (n), (a®)™ and
B denote approximate solutions at the tth iteration. After
convergence, we use the expectation or the mode of ¢(°) (n)
and B(>) as 7 and ,é In the following, we describe some
discussions for calculating (5), (6), and (7).

1) Update of ¢'V(0™) and ¢)(n): By calculating (5),
an additional factorization is induced, and q(t)(am) =
[T, ¢“(6;) holds. Each factor is represented as follows:

,B* == argmaxqam g VL(g;

Ing)(8;) =Inp(i[6;: ")
+ Egie—1) (i) [In p(0; ;3 B 4 const.  (8)

By calculating (6), ¢)(n) is represented as follows:

g (m) =327, Egeo (o) I p(8ilm: B 1))
+ Inp(n) + const. )

Remark 2: When the components of the assumed model are
exponential families and they are locally conjugate each other,
in most cases, (8) and (9) have closed-form parametric repre-
sentations, and their updates are represented as the updates of
their parameters. So, we can efficiently calculate them.

2) Update of (™)™ and B™Y: In a similar manner
to general cases (e.g., [12]), the variational lower bound
VL(¢®; (a®=1)m B¢=1)) is described as follows.

VL(q®; (at=1)m, BU=D) =5 B [In p(a:|0; ol )]
+ 30 By Inp(6;|m; B4D)] + E o [Inp(n)]
— Y By [Ing(6;)] — Ege [Ing(n)].

Therefore, regarding ga(t’l)) , we only have to maximize
B, [In p(z;|0;; o¢1(-t71 )] for each agtfl), and for 30—, we

(10)



only have to maximize )" | E, ) [In p(6;|n; B, ie., we
use the following updating formulas.

agt) = arg maxe, E o [Inp(x;|0;; ;)]
BM = argmaxg Y i, E, o [Inp(05]n; B)]
Remark 3: In most cases, the objective functions in (11)
and (12) have similar forms to log-likelihood functions of ¢;

and 3. Therefore, we can apply various methods for maximum
likelihood estimation.

Y
12)

B. Compression Phase

1) Calculating Header Information: Before calculating (4),
we have to estimate a,,+1 by é&,,41, and send it to the de-
coder. We maximize the following formula. This is equivalent
to minimizing the code length of the Bayes code for =, .

I [ p(€m+1]0m+1; Qs 1)P(Omt1; 7, B)d0,,1 (13)

We may use any optimization algorithm, but the expectation
maximization (EM) algorithm works well for this problem. For
any probability distribution 7(6,,+1) such that the right-hand
side of (14) can be defined, it is known that the following
inequality holds (see e.g., [12]).

hl fp(mm+1 |0m+1; am+1)p(0m+l; "77 B)dem-&-l

1 m ,0m yXm M, 3
> f 7(0,11) In p(Tmi1 r(ot,jj) +1,7,8) 46,1

(14)

We maximize this lower bound by repeating the following E-
step and M-step from an initial value.

E-step: Fix a tentative value a%‘il, then (14) holds as an
equality when the following holds.

7(0mt1) = POt |Tmr1; 0oy, 1. B) (15)

Therefore, we update 7(0,,+1) by this formula. If we assume
p(Om+1|m; B) is a conjugate prior for p(x,;m41]0m+1; 1),
this posterior distribution has a closed-form parametric rep-
resentation, and we can efficiently calculate it in a similar
manner to Remark 2.

M-step: Fix r(0m+1) = p(0m+1‘wm+1§ a?rlzd+1’ ’f,”B)’ then
maximization of (14) is achieved when o]V, is as follows.

new

am+1 =arg maxam+1 fp(0m+1 |$m+1a a%ilu Iflﬂ /é)

X lnp($m+1|0m+l;am+1)d07n+1 (16)

If ¢ (8;) and p(B,,41|T 1 1; @2 1,7, B) has the same form,
which is often holds when we assume a conjugate prior, then
(16) is equivalent to (11), and we can easily solve it.

2) Entropy Coding: Finally, we sequentially encode @,
in a similar manner to Sec. II. More specifically, we use the
following coding probability for z,,1 ; in the arithmetic code.

ﬁ($m+1,j|($m+1)j_1)
= fp(xm+1,j|(mm+1)J71a Orni1; Qi)
X p(em,+1|(xm+1)J71;d7n+1aﬁ7/6)d0m+1; (17)

where (Z,41)7 7! denote 41,1 Ting1,j-1-

V. NUMERICAL RESULTS IN PREVIOUS PAPERS

Here, we introduce numerical results obtained by applying
our learned compression framework. Those results have been
reported in our previous papers. In [4], we performed exper-
iments on synthetic discrete sequences and real genome data.
On synthetic data, the average code length was reduced by
2.08%. On real data, the average code length was reduced
by 0.89%. In [5], we performed experiments on benchmark
images, and the average code length was reduced by 5.02%.

VI. CONCLUSION

We introduced a framework to incorporate the idea of
learned compression, i.e., the idea to construct the codes from
data, into classical data compression methods via an extension
of the Bayes codes. We generalized some specific examples
reported in our previous papers [4], [5] and summarized them
as a unified framework of learned compression. We hope this
framework encourages the interplay between the DNN-based
methods and the statistical-model-based methods.
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