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Abstract

Hyperbolic spaces have been quite popular in the recent past for representing
hierarchically organized data. Further, several classification algorithms for data
in these spaces have been proposed in the literature. These algorithms mainly
use either hyperplanes or geodesics for decision boundaries in a large margin
classifiers setting leading to a non-convex optimization problem. In this paper, we
propose a novel large margin classifier based on horospherical decision boundaries
that leads to a geodesically convex optimization problem that can be optimized
using any Riemannian gradient descent technique guaranteeing a globally optimal
solution. We present several experiments depicting the competitive performance of
our classifier in comparison to SOTA.

1 Introduction

Hyperbolic space, a non-Euclidean space with constant negative curvature, has been shown [25, 23,
29, 24] to be effective for representing hierarchically organized data. For example, authors in [25]
showed that a tree can be embedded in a hyperbolic space with arbitrarily small distortion. The
main reason for this is that a hyperbolic space can be regarded as a continuous version of trees – the
volume of the space grows exponentially as one moves away from the center in hyperbolic space.
This matches the growth pattern of the number of nodes in a tree which grows exponentially as the
depth of the tree increases. Hyperbolic space embedding has been shown to be a promising approach
for representing data with a (latent) hierarchical structure [23, 24, 29, 15].

Recently, representation of data in hyperbolic space for the fundamental tasks of unsupervised and
supervised learning has been popularized in various contexts, e.g., dimensionality reduction [10, 13],
clustering [22], large-margin classifier [12, 32, 11], regression [20], etc. Existing ’linear’ classifiers in
hyperbolic spaces are predominantly based on geodesics i.e., using geodesics as decision boundaries.
In [12], the decision boundary is chosen to be the intersection of the hyperboloid model and a
hyperplane in the ambient space, which in this case is the Minkowski space. Then, the support vector
machine (SVM) in hyperbolic space is formulated as a nonconvex optimization problem. In [32],
authors followed the same parameterization of the hyperbolic geodesic decision plane and provided
a series of algorithms to provably learn large margin classifiers in hyperbolic space. However, as
pointed out by [11], the algorithm in [32] fails to converge in practice. Authors in [11] used the
Poincaré ball model and parameterized the geodesic decision plane as a hyperplane mapped using the
exponential map from the tangent space at some reference point. They first constructed convex hulls
for each data cluster in the hyperbolic space and the reference point is then chosen to be the midpoint
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between different convex hulls. Then they apply a Euclidean perceptron/SVM algorithm to data lifted
into the tangent space at the aforementioned reference point. Although the optimization problem in
the tangent space is convex, the procedure of the tangent space approximation introduces inaccuracies
and distortions. Moreover, convex hull learning is highly unstable and their implementation is only
applicable to the 2-dimensional hyperbolic space.

Finally, it is worth mentioning that linear classification within hyperbolic space, which can be
considered as the last layer, referred to as the hyperbolic logistic regression (LR), is a fundamental
component of hyperbolic neural networks (HNNs) [16, 27]. The calculation of logits in this layer is
based on the distances between samples and the geodesic decision boundary. Notably, this hyperbolic
LR employs a geodesic decision boundary but is not a large-margin classifier.

1.1 Horospherical Decision Boundaries for Classification in Hyperbolic Sapce

Figure 1: A 2-d Poincaré disk model B2

and its boundary ∂B2 = S1. Given an
ideal point ω ∈ ∂B2, the black lines and
curves are hyperbolic geodesics starting
(ending) atω and the red circles are horo-
cycles centered at ω.

Horospheres, which are the level sets of the Busemann
function in hyperbolic spaces, are the analogs of Euclidean
hyperplanes [4]. Horospheres (horocycles) are contained
in the Poincaré ball (disk) and are tangential to the ball
(disk) at an ideal point as shown in Figure 1. A collec-
tion of horospheres centered at the same ideal point are
parallel to each other and the lengths of geodesic seg-
ments between two horospheres are all equal, just as the
lengths of line segments between parallel hyperplanes
in Euclidean space are all equal. This property of horo-
spheres was explored by [9] to develop a dimensionality
reduction method for data in hyperbolic space. By using
horospherical projection, they are able to preserve the dis-
tance information in the original data. However, there is
no literature on constructing a ‘linear’ classifier in hyper-
bolic space using horospheres as the decision boundaries
although the horospheres are the hyperbolic equivalent of
Euclidean hyperplanes. Therefore, it is natural to consider
the use of horospheres as decision boundaries for classifi-
cation in hyperbolic spaces. In this work, we propose a novel hyperbolic large-margin classifier using
horospheres as decision boundaries in the Poincaré model. We term this classifier as a HoroSVM.
The horospheres are well-defined in the Poincaré ball model. A toy example as shown in Figure 2
demonstrates the advantage of horospherical decision boundaries over geodesic decision boundaries.
As the tree-structured data grows in depth, leaf nodes are embedded closer to each other within a
subtree and among different subtrees. One of the classification problems in hyperbolic space is to
determine whether a node belongs to a chosen subtree given the embedding. For comparison purposes,
the decision boundaries of HoroSVM (Figure 2(a)) and hyperboloid SVM [12] (Figure 2(b)) are
shown in the figure. As evident, the horospherical decision boundary perfectly separates (the root
node is excluded in training) the data while the geodesic decision boundary makes several mistakes
on both positive and negative samples. We present a novel formulation of the classification problem
in the hyperbolic space as a geodesically convex optimization problem on a Riemannian manifold.
This optimization problem can be easily solved using any Riemannian gradient descent technique
guaranteeing global optimality. Gradient-based optimizations for geodesically convex problems
guaranteeing global optimal solutions are the topic of investigation in optimization literature and
we refer the reader to [35] for detailed convergence analysis of several such optimization methods.
Further, we empirically validate our method on several real and synthetic data sets.

It should be noted that a horosphere decision boundary has been used in some recent works [31, 28]
in constructing HNNs. For example, authors in [31] proposed hyperbolic neuron models using
the Busemann function as a generalization of the Euclidean inner product to extract horosphere
features from data. Authors in [28] proposed a shallow fully-connected continuous network spanned
by (hyperbolic) neurons, on noncompact symmetric space (including hyperbolic space) using the
Helgason-Fourier transform. Authors in [33] produced Euclidean features from hyperbolic embed-
dings via the eigenfunctions of the Laplace operator in the hyperbolic space where the eigenfunctions
involve horosphere features. Note that none of the above works developed a large margin classifier
using the horosphere as a decision boundary. To the best of our knowledge, our work is the first in the
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(a) Horospherical decision boundary (b) Geodesic decision boundary

Figure 2: A balanced tree with depth 6 and spread 4 embedded in a 2-d Poincaré ball model using
[15] is depicted in the figure. The orange plus node is the root of a chosen subtree, the blue dots are
positive samples (nodes of the subtree) and the red dots are negative samples. (a) depicts a HoroSVM
performance on the classification of positive and negative samples/nodes along with a zoomed-in
version on its right. (b) depicts the geodesic boundary from the competing method, Hyperboloid
SVM [12], along with the zoomed-in version to its right.

literature to present a convex optimization formulation of a large-margin classifier using a horosphere
decision boundary in a hyperbolic space.

The rest of this paper is organized as follows. In Section 2, we present some background on hyperbolic
geometry pertinent to the work presented here. In Section 3, we present our horospherical boundary-
based classification methods. Experimental results are presented in Section 4 to demonstrate the
advantage of our HoroSVM over competing hyperbolic classifiers. Finally, we conclude in Section 5.

2 Background

In this section, we review some basic concepts of hyperbolic geometry including the generalization
of the Euclidean hyperplane to the hyperbolic space namely, the horosphere.

2.1 Hyperbolic Space and the Poincaré Ball Model

There are five isometric models of the hyperbolic space: the Poincaré ball model, the Lorentz model,
the Klein model, the upper-half space model, and the Hemisphere model [7]. We choose the Poincaré
Ball model in this paper as it is easy to visualize and the Busemann function has a nice closed-form
expression in this model. Note that the decision boundary of choice in our work is the level-set of the
Busemann function namely, the horosphere.

An n-dimensional Poincaré Ball model, denoted by (Bn, gB), consists of all points in an open
ball of radius 1, i.e., Bn = {x ∈ Rn : ‖x‖ < 1}, and equipped with the Riemannian metric
gB(x) = 4(1 − ‖x‖2)−2gR, where ‖·‖ is the Euclidean L2 norm, and gR is the Euclidean metric.
The geodesic distance between points x,y ∈ Bn is dB(x,y) = cosh−1

(
1 + 2 ‖x−y‖2

(1−‖x‖2)(1−‖y‖2)

)
.

2.2 Horospheres

Geodesics, geodesic rays, and ideal points The shortest path that connects two points in the
Poincaré Ball model is called a geodesic segment. A geodesic ray is a geodesic segment that can be
infinitely extended in one direction. We call the endpoint at infinity of a geodesic ray an ideal point.
For Bn, ideal points form the boundary of the ball: ∂Bn = Sn−1 = {x ∈ Rn : ‖x‖ = 1}, where
Sn−1 is the (n− 1)-dimensional hypersphere. The hypersphere (Sn−1, gS) is a Riemannian manifold
equipped with the Riemannian metric gS = 4(1 + ‖x‖2)−2gR.

Busemann function [6] Let ω ∈ ∂Bn be an ideal point and γω : [0,∞) → Bn a geodesic ray
pointing ω. The Busemann function is defined as

bω(x) = lim
t→∞

(d(γω(t),x)− t), x ∈ Bn. (1)
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In the Poincaré Ball model, Eq. (1) has a closed form : bω(x) = − log 1−‖x‖2
‖ω−x‖2 .

Horospheres [6] In Bn, a horosphere is a (n − 1)-dimensional sphere that is internally tangent
to ∂Bn at an ideal point. For a given ω ∈ ∂Bn, the level sets of Busemann function bω(x) in the
Poincaré ball model is a series of horospheres tangent at ω. Horospheres are hyperbolic hyperplanes
in the sense that the corresponding construction in Euclidean space gives a hyperplane.

Given an ideal point ω ∈ ∂Bn, the function defined by 〈ω, x〉B : x 7→ −bω(x) is constant over
horosphere tangent at ω.1 Hence any horosphere can be parameterized with an ideal point ω and an
offset value b of the level set.

Let Π denote the set of horospheres of Bn. A horosphere π ∈ Π can be parameterized by 0 < µ ∈ R+

2, ω ∈ Sn−1, and b ∈ R as

πµ,ω,b := {z ∈ Bn|µ〈ω, z〉B − b = 0}. (2)

We will use π or π· to represent a horosphere in different parameterizations hereafter.

3 Horospherical Boundary-based Classification

In this section, we present the key theoretical contributions of our work namely, a horosphere-based
SVM classifier that involves formulating and solving a geodesically convex optimization problem.
First, we present some preliminary facts and results about the horospheres. Then, we present the
optimization problems for the horospherical perceptron and SVM along with analysis.

3.1 Point to Horosphere Distance

While the distance from the origin o to a horosphere has been known for decades [18] (Introduction
4.1, p.31), we present a natural generalization of previous results by providing a closed-form expres-
sion for measuring the hyperbolic distance from any arbitrary point x ∈ Bn to a given horosphere
πµ,ω,b. The following remark provides this result.
Proposition 3.1. Let πµ,ω,b be a horosphere. The hyperbolic distance of a point x ∈ Bn to a
horosphere πµ,ω,b is given by

dB(x, πµ,ω,b) =
|µ〈ω,x〉B − b|

µ
. (3)

Notice that it shares a similarity to the Euclidean distance of a point to a hyperplane. Before presenting
the proof for Proposition 3.1, we recall the following Fact 3.2 and Lemma 3.3 from [31].
Fact 3.2. Given an ideal point ω and a point x ∈ Bn, there is a unique horosphere passing through
x and tangent at ω.
Lemma 3.3. [31] Let Πω be the set of horocycles of Bn tangent at ω. Given λ ∈ R, let πλ,ω be the
unique horosphere that passes through tanh(λ/2)·ω and tangent atω. Note that Πω = ∪λ∈R{πλ,ω}.
We have the following two results: (i) the hyperbolic lengths of geodesic (that pass through ω)
segments between πλ1,ω and πλ2,ω are equal to |λ1 − λ2|; (ii) 〈ω, x〉B = λ for any x ∈ πλ,ω .

Figure 3 shows a 2D Poincaré disk model B2 and its boundary S1. The point o is the origin of the
disk, x ∈ B2 is a point, and ω ∈ S1 is a point at infinity (an ideal point). Two geodesics ending at
the same ω from x and o respectively are shown in the figure (black solid line/curve). The circle
πµ,ω,b is a given horocycle tangent (red solid circle) at ω. The hyperbolic distance dB(x, πµ,ω,b)
between x and πµ,ω,b is identified as the distance between x and yx where yx is the projection
of x to πµ,ω,b along the geodesic ending at ω. Let πx (red dashed circle) be the unique horocycle
that passes through x and is tangent at ω. Note that the lengths of all geodesic segments between
two horocycles are the same. That is, dB(x, πµ,ω,b) = dB(x,yx) = dB(x0,y0), where x0,y0 are
horocyclic projections [9] of x,yx along πx and πµ,ω,b respectively.

1Note that the Euclidean inner product 〈w, ·〉 is constant over a hyperplane that is perpendicular to a given
direction w.

2Parameter µ is included for simplicity in analysis later on (Eq 3, 12)
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Proof of Proposition 3.1. Given a point x ∈ Bn and an ideal point ω ∈ Sn−1, let π ∈ Πω be a
horosphere tangent at ω and πx ∈ Πω be the unique horosphere that passes through x. Write
〈ω,x〉B = λx and then x0 = tanh(λx/2) · ω is the horospherical projection of x along πx. For
consistency in notation, we write πx as πλx,ω . Since the horosphere πµ,ω,b can be reparameterized
as πλ,ω , where λ = b

µ , the hyperbolic distance from x to πµ,ω,b is the hyperbolic distance between

πλx,ω and πλ,ω which is |λx − λ| = |µ〈ω,x〉B−b|
µ (by Lemma 3.3). This completes the proof. �

3.2 Horospherical Decision Boundaries

Figure 3: The relationship between
horocycles, geodesic, and the horocyclic
projections in B2.

We consider classification problems in hyperbolic space
of the following form: X ⊂ Bn denotes the feature space
and Y = {±1} denotes the binary label space. In the
following, we denote the training set by S ⊂ X × Y . The
decision rule using a horosphere as its decision boundary
can be written as the following function f : X 7→ Y where

f(x;µ,ω, b) = sign (µ〈ω,x〉B − b) . (4)

The positive samples are expected to lie inside a horo-
sphere while the negative samples are expected to lie out-
side a horosphere. This is analogous to the linear decision
boundary in Euclidean space and we will build a horo-
spherical perceptron and a horospherical SVM based on
this decision boundary.

It should be noted that in Rn the hyperplane ξa,w,b = {z ∈ Rn|a〈w, z〉 − b = 0} where a ∈
R+,b ∈ R, w ∈ Sn−1 is the hyperplane ξa,−w,−b. However, the horospheres πµ,ω,b and πµ,−ω,−b
respectively represent two distinct horospheres, centered at ω and −ω respectively. Let Π+ =
{πµ,ω,b ∈ Π|b > 0} and Π− = {πµ,ω,b ∈ Π|b < 0}. Thus, Π+,Π− ⊂ Π and the radius of π ∈ Π+

is less than 1/2 and the radius of π ∈ Π− is greater than 1/2. In most cases of classification in
hyperbolic space, the positive samples are clustered near the boundaries. Hence, we restrict ourselves
to finding a horosphere π ∈ Π+ that separates data, instead of searching over Π. Intuitively, we are
looking for a ‘small’ horosphere that captures the positive samples. We are now ready to present the
Horospherical Perceptron followed by the Horospherical SVM.

3.3 Horospherical Perceptron

The loss function for the proposed horospherical perceptron is given by

l(µ,ω, b;x, y) = max(0,−y · (µ〈ω,x〉B − b)) , (µ,ω, b) ∈ R+ × Sn−1 × R+, (5)

which is zero when the instance is classified correctly and is proportional to the signed distance of the
instance from the horosphere when it is misclassified. The empirical loss for a given data set S is

L(µ,ω, b) =
1

|S|
∑

{x,y}∈S

l(µ,ω, b;x, y) (6)

Hence, the optimal horosphere is learned by solving the above optimization problem on the manifold
R+ × Sn−1 × R+, i.e.,

µ∗,ω∗, b∗ = arg min
(µ,ω,b)

L(µ,ω, b) (7)

To further analyze this optimization problem, we first recall some facts about geodesic convexity.
Definition 3.4. (Geodesically convex sets [30]). Let (M, g) be a Riemannian manifold. A set
A ⊆M is said to be a geodesically convex set if, for any two points p, q ∈ A, the geodesic γpq that
connects them is contained inA.
Definition 3.5. (Geodesically convex/concave functions [30]) Let A ⊆M be a geodesically convex
set. A function f : A → R is said to be a geodesically convex function if, for any p, q ∈ A the
composition f ◦ γpq : [0, 1]→ R is a convex function, where γpq : [0, 1]→M is a geodesic that
connects p, q. f is said to be a geodesically concave function if −f is a geodesically convex function.
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Theorem 3.6. [30] LetA ⊆M be a geodesically convex set. A function f : A→ R is geodesically
convex if and only if its epigraph epi(f) = {(p, c)|f(p) ≤ c} ⊂ A× R is a convex set.

Now we present the main theoretical result of this paper.
Theorem 3.7. For a given training data sample {x, y} ∈ S, 0 < ‖x‖ < R < 1 (the hyperbolic
feature x neither lie on the center nor lie on the boundary), l(µ,ω, b;x, y) is a geodesically convex
function on R+ ×A× R+ and is a geodesically concave function on R+ ×B × R+, where

A =

{
ν ∈ Sn−1

∣∣∣∣y · xTν‖x‖ > 0

}
⊂ Sn−1, B =

{
ν ∈ Sn−1

∣∣∣∣y · xTν‖x‖ < 0

}
⊂ Sn−1. (8)

Note that bothA andB are geodesically convex sets.

Proof. Let l(µ,ω, b;x, y) = max(0,−g(µ,ω, b;x, y)) where g(µ,ω, b;x, y) = y · (µ〈ω,x〉B − b).
Since max(0,−a) is a convex function in a ∈ R and g(·) is linear in µ and b, we only need to show
that g(·), as a function of ω ∈ Sn−1, is geodesically convex (concave). Without loss of generality, let
µ = 1 and b = 0. Also note that y is the label of data that takes values from {−1,+1} which may
flip the inequality. It suffices to validate results for the positive sample, i.e, y = 1.

With a slight abuse of notation, let g(ω;x) = g(1,ω, 0;x, 1) = 〈ω,x〉B = ln 1−‖x‖2
‖ω−x‖2 defined on

A =
{
ν ∈ Sn−1

∣∣xT ν
‖x‖ > 0

}
⊂ Sn−1. Since− ln(·) is decreasing and convex, we only need to check

h(ω;x) = ‖ω − x‖2 is geodesically convex onA, i.e, check that the epigraph of h is a convex set.
Note that x

Tω
‖x‖ = cos(θω) for ω ∈ Sn−1 where θω = ∠(ω,x).

epi(h) = {(ω, c) ∈ A× R|‖ω − x‖2 ≤ c}

=

{
(ω, c)

∣∣∣∣xTω‖x‖ ≥ 1

2‖x‖
(1 + ‖x‖2 − c)

}
= {(ω, c)| cos(θω) ≥ d(c)} =

{
A× [d(c),∞) if d(c) ≤ 0

Ad × [d(c),∞) if d(c) > 0

(9)

where d(c) is a real number depending on c and ‖x‖ and Ad = {(ω, c)| cos(θω) ≥ d(c)} is the
collection of unit vectors where the angle between the vectors given the data x is small i.e., restricted
to a small region on the sphere. The last equality follows from the definition ofA andAd: if d(c) ≤ 0,
then {ω : cos(θω) ≥ d(c)} ∩A = A. Similarly, if d(c) > 0, {ω : cos(θω) ≥ d(c)} ∩A = {ω ∈
Sn−1| cos(θω) ≥ d(c)} := Ad(c). BothA andAd are geodesically convex sets and this completes
the proof. �

The convex setsA,B are the hemispheres of Sn−1 separated by the hyperplane {z ∈ Rn|xTz = 0}
(the hyperplane has x as its normal vector) in its ambient space Rn. Theorem 3.7 tells us that
given one data sample (x, y), the optimal value described in Eq. (7) exists in R+ × A × R+,
and it is globally optimal. For a collection of training samples S = {(xi, yi)}Ni=1, let Ai ={
ν ∈ Sn−1

∣∣yi · xT
i ν
‖xi‖ > 0

}
. If the data are separable by a horosphere, it follows that ∩Ni=1Ai is non-

empty and convex. Then the loss function given S is geodesically convex on R+×∩Ni=1Ai×R+ and
the global optimum can be obtained using any gradient-based optimization. Numerically, we apply a
Riemannian gradient descent method on the entire space R+ × Sn−1 × R+ since g(µ,ω, b;x, y) is
continuous.

3.4 Horospherical SVM

Given a horospherical decision boundary πµ,ω,b parameterized by ω ∈ Sn−1, µ ∈ R+, and b ∈ R,
the margin γ is the minimal distance from training samples S to the decision boundary:

γ(µ,ω, b) = inf
{x,y}∈S

y · f(x;µ,ω, b) · dB(x, πµ,ω,b) = inf
{x,y}∈S

y · (µ〈ω,x〉B − b)
µ

. (10)

The maximum margin classifier can be obtained by solving the following optimization problem:

max
µ,ω,b

γ(µ,ω, b) s.t. y · (µ〈ω,x〉B − b)
µ

≥ γ for all (x, y) ∈ S. (11)
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Theorem 3.8. The maximum margin classification problem in hyperbolic space with horosphere as
its decision boundary described in Eq. (11) is equivalent to the following optimization problem:

min
µ,ω,b

1

2
µ2 s.t. y · (µ〈ω,x〉B − b) ≥ 1 for all (x, y) ∈ S. (12)

The proof is analogous to that in the Euclidean case [3]. Note that the margin is unchanged if we
apply the following scale transformation: µ→ µ/γ and b→ b/γ. We can also build a soft-margin
horospherical SVM, dubbed HoroSVM, by minimizing the following loss function:

l(µ,ω, b;x, y) =
1

2
µ2 + C

|S|∑
i=1

max(0, 1− yi · (µ〈ω,xi〉B − b)). (13)

where C is a hyperparameter that controls the tradeoff between minimizing misclassification and
maximizing margin.

It is easy to see that the same result as in Theorem 3.7 holds for the loss function in Eq. (13). That is,
the loss function is a geodesically convex function on one geodesically convex subset of the parameter
space and a geodesically concave function on the other geodesically convex subset of the parameter
space. Recall that the idea behind proving that the loss function in the horospherical perceptron,
max(0,−g(·)), where g(·) = y · (µ〈ω,x〉B − b), is geodesically convex is based on the important
fact that max(0,−a) is a convex function in a ∈ R. Similarly, the same idea applies to HoroSVM,
where the hinge loss is used, and the loss function becomes 1

2µ
2 + max(0, 1 − g(·)). Note that

max(0, 1 − a) is also a convex function in a ∈ R and 1
2µ

2 is a convex function in µ, these facts
complete the proof of the desired property for the HoroSVM, which is analogous to Theorem 3.7 for
horospherical perceptron.

We can then apply any Riemannian gradient descent optimization methods for updating the parameters
in HoroSVM since the problem is an optimization problem over a product space of Riemannian
manifolds, R+ × Sn−1 ×R+. We refer the readers to [5] and [1] for more details about optimization
techniques on Riemannian manifolds.

4 Experiments

In this section, we present several experimental results obtained from an application of our HoroSVM
to synthetic data as well as real data sets used in published literature. Our implementation is based
on Pymanopt [19] using the Riemannian conjugate gradient method [26] on Intel(R) Xeon(R) CPU
E5-2683 v3 @ 2.00GHz.

4.1 Network Data Set

Here, we follow the experimental setup in [12], and evaluate our HoroSVM over four real-world
network data sets used by [8]: karate [34] (2 classes, 34 nodes ), polblogs [2] (2 classes, 1224
nodes ), polbooks 3 (3 classes, 105 nodes ), and football [17] (12 classes, 115 nodes ).

The network data is embedded in a 2D hyperbolic space using the method of [8]. Given the hyperbolic
embeddings, we compare our HoroSVM with three other competing large margin classifiers: Eu-
clidean SVM (even though it violates the hyperbolic geometry), hyperboloid SVM [12], and Poincaré
SVM [11]. The absence of comparison with [32] in this experiment is due to two reasons. First,
[32] aims to provide a theoretical understanding of hyperbolic spaces in classification, focusing on
’linearly’ separable data (data that can be separated by a geodesic). They do not address extensions
to nonlinearly separable data, which limits their applicability to many practical datasets. Second,
for datasets that are linearly separable in hyperbolic space, the approach in [32] aligns with the
hyperboloid SVM when adversarial training is not applied in [32].

For multiclass classification, a one-verses-rest strategy is applied. We conducted a five-fold cross-
validation on each data set, where we chose the hyperparameter C from {1, 5, 10} during the
cross-validation procedure. Note that a more extensive search space for C may lead to potential
performance improvements. The mean of the F1 score followed by the standard deviation over five

3http://www-personal.umich.edu/~mejn/netdata/
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Table 1: F1 scores for node classification on network datasets. Boldface indicates best performance.

Methods Karate Polblogs Polbooks Football

Euclidean SVM 0.95 ± 0.06 0.92 ± 0.02 0.83 ± 0.03 0.29 ± 0.12
Hyperboloid SVM 0.95 ± 0.06 0.92 ± 0.01 0.83 ± 0.03 0.30 ± 0.14
Poincaré SVM 0.78 ± 0.16 0.92 ± 0.02 0.84 ± 0.03 0.32 ± 0.04
HoroSVM (Ours) 0.98 ± 0.04 0.93 ± 0.01 0.85 ± 0.04 0.34 ± 0.06

Table 2: F1 scores for subtree classification on four subtrees of WordNet. Boldface indicates the best
performance on 2D embeddings of each dataset.

Methods animal.n.01 group.n.01 worker.n.01 mammal.n.01
3218/798 6649/1727 861/254 953/228

Hyperboloid SVM (D = 2) 0.53 ± 0.07 0.52 ± 0.01 0.54 ± 0.04 0.39 ± 0.03

Hyperbolic LR (D = 2) 0.46 ± 0.08 0.52 ± 0.04 0.54 ± 0.07 0.32 ± 0.10
Hyperbolic LR (D = 5) 0.95 ± 0.03 0.76 ± 0.07 0.80 ± 0.08 0.78 ± 0.04
Hyperbolic LR (D = 10) 0.96 ± 0.01 0.86 ± 0.05 0.84 ± 0.04 0.94 ± 0.04

Euclidean SVM (D = 2) 0.39 ± 0.01 0.39 ± 0.00 0.32 ± 0.02 0.20 ± 0.01
Euclidean SVM (D = 5) 0.95 ± 0.00 0.79 ± 0.01 0.38 ± 0.02 0.44 ± 0.01
Euclidean SVM (D = 10) 0.97 ± 0.00 0.91 ± 0.00 0.46 ± 0.04 0.72 ± 0.05

HoroSVM (D = 2) 0.57 ± 0.07 0.65 ± 0.01 0.62 ± 0.01 0.42 ± 0.01
HoroSVM (D = 5) 0.93 ± 0.01 0.88 ± 0.00 0.82 ± 0.04 0.88 ± 0.01
HoroSVM (D = 10) 0.95 ± 0.02 0.91 ± 0.01 0.86 ± 0.01 0.93 ± 0.02

trials are summarized in Table 1. As evident from the table, our method yields the best results on all
the data sets.

HoroSVM outperformed other methods on all four data sets. The data in karate are well-separated
and thus both Euclidean SVM and hyperboloid SVM performed equally well. Our method outper-
forms the others since the horospheres have several nice properties, the most important of which is
that the Busemann function whose level sets are the horospheres is a convex function that guarantees
global optimality in the optimization. Notice that the performance of Poincaré SVM on karate is
inferior to others by a significant amount. The reason is that the performance of Poincaré SVM is
sensitive to the choice of the reference point. We demonstrate our performance gain on the remaining
data sets, and our method is more consistent, compared to Euclidean SVM and hyperboloid SVM, in
terms of lower standard deviation, on football data set where data exhibit a larger variance/spread.

4.2 Subtree Classification in WordNet

A task of considerable interest in hyperbolic space classification problems is to determine whether a
node belongs to a given subtree in the hyperbolic embedding. We obtained hyperbolic embeddings
in various dimensions using the approach in [15] for WordNet 4 noun hierarchy (82,115 nodes).
We consider four subtrees whose roots are the following synsets: ANIMAL.N.01, GROUP.N.01,
WORKER.N.01, and MAMMAL.N.01.

We split all nodes in a subtree into positive training (80%) and test (20%) nodes and applied the
same process to the remaining WordNet nodes to create negative training and test sets. The average
F1 scores and the standard deviations over 3 trials are shown in Table 2. The number of positive
training/test samples of each data set are listed as well. We exclude Poincaré SVM from the
comparisons in this task. The reason being, data are highly imbalanced in this task and the positive
samples are clustered near the boundary. The reference point learned in Poincaré SVM will be close
to the boundary where the tangent approximation of data at this reference point is highly distorted,
as opposed to the original hyperbolic embeddings. It is therefore hard to locate a hyperplane in the

4https://wordnet.princeton.edu/
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tangent space that separates the lifted (mapped) data. In addition, the learning of the reference point
is only applicable to 2D hyperbolic space.

As well known in the Euclidean SVM literature, a vanilla (unweighted) implementation of SVM
performs poorly on extremely imbalanced data, we observed the same behavior in training HoroSVM
on this task. We preprocessed the data by downsampling the majority class of samples (the negative
samples) to train a robust model. Note that our HoroSVM can be naturally extended to a class/instance-
weighted version by assigning a class/instance weight to the penalty term C for each sample, allowing
us to address more general imbalanced data. Since there is no protocol for dealing with unbalanced
data in training a hyperboloid SVM, we presented the Euclidean SVM results using the same
preprocessed data for reference. In addition, we presented results of hyperbolic logistic regression
(LR) [15], which is not a large-margin classifier on this task, where the imbalanced data is handled
by sampling the equal number of negative and positive nodes in each mini-batch of size 16 during
training.

Now, we highlight several results in Table 2. The superior performance of hyperboloid SVM over
hyperbolic LR is expected, as both methods use geodesic decision boundaries but hyperboloid SVM
aims to maximize the margin. However, the training of hyperboloid SVM is highly unstable as we
mentioned earlier due to the non-convex optimization process. Euclidean SVM under-performs as it
does not take into account the hyperbolic geometry. Our HoroSVM exhibits a significant improvement
in predicting words in a subtree, as evidenced by higher F1 scores across all the subtrees. The small
number of nodes within a subtree, compared to the whole WordNet, causes the nodes to cluster near
the boundary in their hyperbolic embeddings. Thus, horosphere is an ideally suited decision boundary
(in comparison to the geodesic boundary in [12]) to isolate the subtree.

4.3 Synthetic Data with Noisy Labels

Figure 4: Training (left) and test (right) F1 scores of
several methods on synthetic data with noisy labels at
different noise levels.

To demonstrate the robustness of our
HoroSVM, we apply it to synthetic data
with noisy labels at varying levels/amounts
of noise. Specifically, we generated 100
synthetic datasets by sampling from a Gaus-
sian mixture model defined on the Poincaré
disk model as in [12]. The isotropic Gaus-
sian distribution in hyperbolic space is re-
ferred to as the Riemannian normal distri-
bution, and we used the sampling method
presented in [21]. For each dataset, we
sampled two centroids from a zero-mean Riemannian normal distribution with a variance of 1.5.
We then sampled 200 data points from a unit-variate Riemannian normal distribution centered at
each centroid, resulting in a dataset of 400 points classified into positive and negative classes. We
split the dataset into training and test sets with 100 positive/negative samples in the training set and
100 positive/negative samples in the test set. We then generated datasets with noisy labels at noise
levels: η ∈ {0, 0.05, 0.1, . . . , 0.5} by flipping the labels of a proportion η of the training (not test)
samples, with an equal number of positive and negative samples flipped. The train/test average F1
scores of each method across all datasets at varying noise levels are shown in Fig 4. We compared
our HoroSVM with hyperboloid SVM, hyperbolic LR, and a two-layer HNN [15] (with a hidden
dimension of 5). While all methods depict decreasing training F1 scores as the noise level increases,
HoroSVM outperforms the others consistently throughout the training process. Hyperbolic LR and
HNN exhibit the least resistance to label noise, with test F1 scores dropping (faster) with increasing
noise level. Both hyperboloid SVM and HoroSVM demonstrate consistent performance across
different noise levels, owing to the inherent robustness of large-margin classifiers. However, the
training of hyperboloid SVM is highly unstable resulting in its inferior performance. HoroSVM
demonstrates its superiority in accuracy and robustness as evidenced in the results. In addition, we
present the average training times for each method on one dataset (200 samples) as follows: 6.57
seconds (Hyperboloid SVM), 3.98 seconds (Hyperbolic LR), 9.06 seconds (HNN), and 3.73 seconds
(HoroSVM). Notably, HoroSVM stands out as the fastest.
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5 Discussion and Conclusions

In this paper, we presented a novel large margin classifier, dubbed HoroSVM, whose decision
boundaries are horospheres that are the level sets of a Busemann function. We presented a novel
formulation leading to the optimization of a geodesically convex loss performed using a Riemannian
gradient-based method and guaranteeing a globally optimal solution. We demonstrated superior to
competitive performance of the HoroSVM over SOTA large margin classifiers.

In Euclidean space, a kernel SVM is usually favored over the linear SVM due to its ability to cope
with non-linearly separable data. In Hyperbolic space, the challenge lies in developing valid positive
definite kernels (see [14] for details on validity of kernels on Riemannian manifolds). The only
reported work on KSVM in hyperbolic space that we are aware of is [12], which uses a kernel that
violates the positive definiteness property of RKHS kernels. Thus the problem of interest is primarily
defining a valid family of kernels in hyperbolic space. We will address this in our future work.
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