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Abstract

Spiking neural networks (SNNs) offer a promising avenue to implement deep neural1

networks in a more energy-efficient way. However, the network architectures of2

existing SNNs for language tasks are too simplistic, and deep architectures have3

not been fully explored, resulting in a significant performance gap compared to4

mainstream transformer-based networks such as BERT. To this end, we improve5

a recently-proposed spiking transformer (i.e., Spikformer) to make it possible to6

process language tasks and propose a two-stage knowledge distillation method for7

training it, which combines pre-training by distilling knowledge from BERT with8

a large collection of unlabelled texts and fine-tuning with task-specific instances9

via knowledge distillation again from the BERT fine-tuned on the same training10

examples. Through extensive experimentation, we show that the models trained11

with our method, named SpikeBERT, outperform state-of-the-art SNNs and even12

achieve comparable results to BERTs on text classification tasks for both English13

and Chinese with much less energy consumption.14

1 Introduction15

Modern artificial neural networks (ANNs) have been highly successful for a wide range of natural16

language processing (NLP) and computer vision (CV) tasks. However, it requires too much compu-17

tational power and energy to train and deploy state-of-the-art ANN models, leading to a consistent18

increase of energy consumption per model over the past decade. The energy consumption of large19

language models, such as ChatGPT[OpenAI, 2022] and GPT-4[OpenAI, 2023], is unfathomable20

even during inference. In recent years, spiking neural networks (SNNs), arguably known as the third21

generation of neural network [Maas, 1997], have attracted a lot of attention due to their high biological22

plausibility, event-driven property and low energy consumption [Roy et al., 2019]. Like biological23

neurons, SNNs use discrete spikes to process and transmit information. Nowadays, neuromorphic24

hardware can be used to fulfill spike-based computing, which provides a promising way to implement25

artificial intelligence with much lower energy consumption.26

Spiking neural networks have achieved great success in image classification task [Hu et al., 2018, Yin27

et al., 2020, Fang et al., 2021, Ding et al., 2021, Kim et al., 2022a, Zhou et al., 2022] and there have28

been some works [Plank et al., 2021, Lv et al., 2023, Zhu et al., 2023] that have demonstrated the29

efficacy of SNNs in language tasks partially. However, the backbone networks employed in SNNs for30

language tasks are overly simplistic, which significantly lowers the upper bound on the performance31

of their SNN models. For instance, the SNN used by Lv et al. [2023], which is built upon TextCNN32

[Kim, 2014], demonstrates a notable performance gap compared to those built on Transfomer-based33
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(b) SpikeBERT
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Figure 1: (a) The architecture of Spikformer [Zhou et al., 2022]. (b) The architecture of our
SpikeBERT. We improve Spikformer in its architecture, making it possible to process languages.
Firstly, Spiking Patch Splitting (SPS) module was replaced with a word embedding layer so that the
network can take discrete words (or tokens) as input. Secondly, we make the shape of the attention
map yielded by Spiking Self Attention (SSA) to be N × N , rather than D ×D, where D and N
denote dimensionality of hidden layers and the length of inputs respectively. Lastly, the convolution
layers were replaced with linear layers, and the batch normalization with layer normalization. L and
L

′
denote the number of encoder blocks in Spikfomer and SpikeBERT, respectively.

[Vaswani et al., 2017] large language models like BERT [Devlin et al., 2019] and RoBERTa [Liu34

et al., 2019] on multiple classification benchmarks.35

Recently, Spikformer was proposed by Zhou et al. [2022], which first introduced Transformer36

architecture to SNNs and significantly narrowed the gap between SNNs and ViT [Dosovitskiy et al.,37

2020] on ImageNet [Deng et al., 2009] and CIFAR-10. We think that Spikformer provides the38

possibility to construct complex language representation models. As shown in Figure 1, considering39

the discrete nature of textual data, we improve the architecture of Spikformer to make it suitable40

for language tasks. we replace certain modules that were originally designed for image processing41

with language-friendly modules. Please see Section 3.2 for details on the improvement in network42

architecture. In general, a deeper ANN model often implies better performance. Increasing the43

depth of a ANN allows for the extraction of more complex and abstract features from the input data.44

However, Fang et al. [2020a] have shown that deep SNNs directly trained with backpropagation45

through time (BPTT) [Werbos, 1990] using surrogate gradients (See Section2.1) could suffer from46

the problem of gradient vanishing or exploding due to “self-accumulating dynamics”. Therefore, we47

proposed to use knowledge distillation [Hinton et al., 2015] to train language Spikformers so that the48

deviation of surrogate gradients in Spikformer would not be rapidly accumulated[Qiu et al., 2023].49

Inspired by the widely-used “pre-training + fine-tuning” recipe [Sun et al., 2019, Liu, 2019, Gururan-50

gan et al., 2020], we present a two-stage knowledge distillation strategy. In stage 1, we choose BERT51

as teacher model and the improved Spikformer as student model. We utilize a large collection of52

unlabelled texts to align features produced by two models in the embedding layer and multiple hidden53

layers. In stage 2, we use a BERT fine-tuned on a task-specific dataset as teacher and the model54

that completes stage 1 as student. At this stage, we first do the data augmentation for task-specific55

dataset and then employ the logits predicted by the teacher model to further guide the student model.56

After two-stage knowledge distillation, a spiking language model, named SpikeBERT, can be built57

by distilling knowledge from BERT. The experiment results show that SpikeBERT not only can58

outperform the state-of-the-art SNNs-like frameworks in text classification task but also achieve59

competitive performance to BERTs. The experiments of the ablation study (Section 4.5) also show60

that “pre-training distillation” plays an important role in training SpikeBERT.61

The major contribution of this study can be summarized as follows:62

• We improve the architecture of Spikformer for language processing and propose a two-stage,63

“pre-training + task-specific” knowledge distillation training method, in which the improved64

Spikformers are pre-trained on a huge collection of unlabelled texts before they are further65

fine-tuned on task-specific datasets by distilling the knowledge of feature extractions and66

predictive powers from BERTs.67

• We empirically show that SpikeBERT achieved significantly higher performance than68

existing SNNs on 6 different language benchmark datasets for both English and Chinese.69
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• This study is among the first to show the feasibility of transferring the knowledge of BERT-70

like large language models to spiking-based architectures that can achieve comparable71

results but with much less energy consumption.72

2 Related Work73

2.1 Spiking Neural Networks74

SNNs use discrete spike trains instead of continuous decimal values to compute and transmit infor-75

mation. Spiking neurons, such as Izhikevich neuron [Izhikevich, 2003] and Leaky Integrate-and-Fire76

(LIF) neuron [Wu et al., 2017], are usually applied to generate spike trains. However, due to the77

non-differentiability of spikes, training SNNs has been a great challenge for the past two decades.78

Currently, there are two mainstream approaches to address this problem.79

ANN-to-SNN Conversion ANN-to-SNN conversion method [Diehl et al., 2015, Cao et al., 2015,80

Rueckauer et al., 2017, Hu et al., 2018] aims to convert weights of a well-trained ANN to its SNN81

counterpart by replacing the activation function with spiking neuron layers and adding scaling rules82

such as weight normalization [Diehl et al., 2016] and threshold constraints [Hu et al., 2018]. This83

approach suffers from a large number of time steps during the conversion.84

Backpropagation with Surrogate Gradients Another popular approach is to utilize surrogate85

gradients [Neftci et al., 2019] during error backpropagation, enabling the entire procedure to be86

differentiable. Multiple surrogate gradients functions have been proposed, including the Sigmoid87

surrogate function [Zenke and Ganguli, 2017], Fast-Sigmoid [Zheng and Mazumder, 2018], and ATan88

[Fang et al., 2020a]. Backpropagation through time (BPTT) [Werbos, 1990] is one of the most popular89

methods for directly training SNNs[Shrestha and Orchard, 2018, Kang et al., 2022], which applies90

the traditional backpropagation algorithm [LeCun et al., 1989] to the unrolled computational graph.91

In recent years, several BPTT-like training strategies have been proposed, including SpatioTemporal92

Backpropagation (STBP) [Wu et al., 2017], STBP with Temporal Dependent Batch Normalization93

(STBP-tdBN) [Zheng et al., 2020], and Spatio-Temporal Dropout Backpropagation (STDB) [Rathi94

et al., 2020]. These strategies have demonstrated high performance under specific settings. For more95

detailed information about Backpropagation Through Time (BPTT), please refer to Appendix A.96

2.2 Knowledge Distillation97

Hinton et al. [2015] proposed the concept of knowledge distillation by utilizing the “response-98

based” knowledge (i.e., soft labels) of the teacher model to transfer knowledge. However, when this99

concept was first proposed, the features captured in the hidden layers were neglected, as they only100

focused on the final probability distribution at that time. To better learn from teacher models, some101

works [Zagoruyko and Komodakis, 2016, Heo et al., 2019, Chen et al., 2021] have advocated for102

incorporating hidden feature alignment during the distillation process. In addition, relation-based103

knowledge distillation has been introduced by Park et al. [2019], demonstrating that the interrelations104

between training data examples were also essential.105

Recently, there have been a few studies [Kushawaha et al., 2020, Takuya et al., 2021, Qiu et al., 2023]106

in which knowledge distillation approaches were introduced to train SNNs. However, most of them107

focused on image classification task only, which cannot be trivially applied to language tasks. In108

this study, we propose a two-stage knowledge distillation approach to train the proposed SpikeBERT109

for text classification tasks, which is among the first ones to show the feasibility of transferring the110

knowledge to SNNs from large language models.111

3 Method112

In this section, we describe how we improve the architecture of Spikformer and introduce our two-113

stage distillation approach for training SpikeBERT. Firstly, we will depict how spiking neurons and114

surrogate gradients work in spiking neural networks. Then we will show the simple but effective115
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modification of Spikformer to enable it to represent text information. Lastly, we will illustrate116

“pre-training + task-specific” distillation in detail.117

3.1 Spiking Neurons and Surrogate Gradients118

Leaky integrate-and-fire (LIF) neuron [Wu et al., 2017] is one of the most widely used spiking119

neurons. Similar to the traditional activation function such as ReLU, LIF neurons operate on a120

weighted sum of inputs, which contributes to the membrane potential Ut of the neuron at time step t.121

If membrane potential of the neuron reaches a threshold Uthr, a spike St will be generated:122

St =

{
1, if Ut ≥ Uthr;
0, if Ut < Uthr.

(1)

We can regard the dynamics of the neuron’s membrane potential as a resistor-capacitor circuit [Maas,123

1997]. The approximate solution to the differential equation of this circuit can be represented as124

follows:125

Ut = It + βUt−1 − St−1Uthr, It = WXt (2)

where Xt are inputs to the LIF neuron at time step t, W is a set of learnable weights used to integrate126

different inputs, It is the weighted sum of inputs, β is the decay rate of membrane potential, and127

Ut−1 is the membrane potential at time t− 1. The last term of St−1Uthr is introduced to model the128

spiking and membrane potential reset mechanism.129

In addition, we follow Fang et al. [2020b] and use Arctangent-like surrogate gradients function,130

which regards the Heaviside step function (Equation 1) as:131

S ≈ 1

π
arctan(

π

2
αU) +

1

2
(3)

Therefore, the gradients of S in Equation 3 are:132

∂S

∂U
=

α

2

1

(1 + (π
2
αU)2)

(4)

where α defaults to 2.133

3.2 SpikeBERT Architecture134

Spikformer [Zhou et al., 2022] is the first hardware-friendly Transformer-based spiking neural135

network, whose architecture is shown in Figure 1 (a). The most crucial module is the Spiking Self136

Attention (SSA), which utilizes discrete spikes to implement the self-attention mechanism without137

employing a softmax function:138

SSA (Qs,Ks, Vs) = S(BN(MLP(QsK
T
s Vs ∗ τ)))

Qs = SQs (BN (XsWQs)) , Ks = SKs (BN (XsWKs)) , Vs = SVs (BN (XsWVs))
(5)

where S is Heaviside step function like Equation 1, Xs ∈ RT×L×D is the input of SSA, T is number139

of time steps, BN is batch normalization, τ is a scaling factor. Outputs of SSA and Qs,Ks, Vs are all140

matrix containing 0 and 1. WQs
,WKs

,WVs
and MLP are all learnable decimal parameters.141

We modify Spikformer so that it can effectively process textual data. Firstly, we replace Spiking142

Patch Splitting (SPS) module with a word embedding layer and a spiking neuron layer so that it can143

process sentences. Meanwhile, we find that the shape of the attention map in vanilla Spikformer is144

D ×D where D is the dimensionality of the hidden layers, which is unreasonable in language tasks.145

For language tasks, the features shared with words in different positions by attention mechanism146

are more important than those in different dimensions. Therefore, we reshape the attention map in147

Spiking Self Attention (SSA) module to N ∗N where N is the length of inputs. Lastly, we use linear148

layers and layer normalization (LN) instead of convolution layers and batch normalization(BN). We149

show the architecture of SpikeBERT in Figure 1 (b).150
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Figure 2: Overview of our two-stage distillation method (pre-training + task-specific distillation) for
training SpikeBERT. T is the number of time steps of features in every layer. Notice that the logits
loss and cross-entropy loss are only considered in stage 2. The varying shades of color represent the
magnitude of the floating-point values. The dotted line under Li

fea indicates that features of some
hidden layers can be ignored when calculating feature alignment loss. If the student model contains
different numbers of layers from the teacher model, we will align features every few layers.

3.3 Two-stage Distillation151

Two-stage distillation is the key to enabling the student model with language processing ability. The152

first stage is to align the embeddings and hidden features between BERT and the improved Spikformer153

using a large-scale corpus. The second stage is to distill logits and cross-entropy information on a154

task-specific dataset from a fine-tuned BERT to the model finishing stage 1. We show the overview155

of our method in Figure 2.156

3.3.1 Stage 1. Pre-training Distillation157

Given a pre-trained BERT [Devlin et al., 2019] irrelevant to downstream tasks as teacher TM and158

an improved Spikformer as student SM , our goal in this stage is to align the embeddings and159

hidden features of TM and SM with a collection of unlabelled texts. We will introduce embedding160

alignment loss and feature alignment loss in the following.161

Feature Alignment Loss This loss Lfea is to measure the similarity of features between TM and162

SM at every hidden layer. However, the shape of the student model’s feature Fsm at every layer163

is T ×N ×D but that of BERT’s feature Ftm is N ×D, where T is the number of time steps, D164

is the dimensionality of hidden layers and L is sample length. What’s more, Fsm is a matrix only165

containing 0 and 1 but Ftm is a decimal matrix. To address the issue of different dimensions between166

Ftm and Fsm, as well as the disparity between continuous features of TM and discrete features of167

SM , a transformation strategy is necessary. We follow the feature transformation approaches of Heo168

et al. [2019], Chen et al. [2021], Qiu et al. [2023] to map the features of TM and SM to the same169

content space:170

F
′
tm = Ftm, F

′
sm = LayerNorm(MLP(

T∑
t

(F t
sm))) (6)

However, we find it hard to align the features generated by the student model with those generated by171

BERT for the first few layers in this stage. We think that’s because the student model might require172

more network layers to capture the essential features via the interaction among the inputs. As shown173

in Figure 2, we choose to ignore some front layers when calculating feature alignment loss. Assume174
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BERT contains B Transformer blocks (i.e., B layers) and assume the student model contains M175

Spike Transformer Block. Therefore, we will align features every ⌈ B
M ⌉ layers if B > M . For layer i176

in student model, its feature alignment loss is Li
fea = ||F ′

tm − F
′

sm||2.177

Embedding Alignment Loss As discussed in Section 3.2, the embeddings of the input sentences178

are not in the form of spikes until they are fed forward into the Heaviside step function. Define Etm179

and Esm as the embeddings of teacher and student, respectively so the feature alignment loss is180

Li
fea = ||Etm −MLP(Esm)||2. The MLP layer is a transformation playing a similar role as that in181

Equation 6.182

To sum up, in stage 1, the total loss L1 is the sum of chosen layer’s feature alignment loss:183

L1 = σ1

∑
i

Li
fea + σ2Lemb (7)

where the hyperparameters σ1 and σ2 are used to balance the learning of embeddings and features.184

3.3.2 Stage 2. Task-specific Distillation185

In stage 2, we take a BERT fine-tuned on a task-specific dataset as the teacher model, and the186

model completed stage 1 as the student. To accomplish a certain language task, there should be a187

task-specific head over the basic language model as shown in Figure 2. For example, it is necessary188

to add an MLP layer over BERT for text classification. Besides, data augmentation is a commonly189

used and highly effective technique in knowledge distillation[Jiao et al., 2019, Tang et al., 2019, Liu190

et al., 2022]. In the following, we will discuss our approach to data augmentation, as well as the191

logits loss and cross-entropy loss.192

Data Augmentation In the distillation approach, a small dataset may be insufficient for the teacher193

model to fully express its knowledge[Ba and Caruana, 2013]. To tackle this issue, we augment the194

training set in order to facilitate effective knowledge distillation. We follow Tang et al. [2019] to195

augment the training set:196

• Firstly, we randomly replace a word with [MASK] token with probability pmask.197

• Secondly, we replace a word with another of the same POS tag with probability ppos.198

• Thirdly, we randomly sample an n-gram from a training example with probability png,199

where n is randomly selected from {1, 2, ..., 5}.200

Logits Loss Following Hinton et al. [2015], we take logits, also known as soft labels, into con-201

sideration, which lets the student learn the prediction distribution of the teacher. To measure the202

distance between two distributions, we choose KL-divergence: Llogits =
∑c

i pilog
(

pi

qi

)
, where c203

is the number of categories, pi and qi denote the prediction distribution of the teacher model and204

student model.205

Cross-entropy Loss Cross-entropy loss can help the student model learn from the samples in206

task-specific datasets: Lce = −
∑c

i q̂ilog (qi), where q̂i represents the one-hot label vector.207

Therefore, the total loss L2 of stage 2 contains three terms:208

L2 = λ1

∑
i

Li
fea + λ2Lemb + λ3Llogits + λ4Lce (8)

where λ1, λ2, λ3, and λ4 are the hype-parameters that control the weight of these loss.209

For both stages, we adopt backpropagation through time (BPTT), which is suitable for training210

spiking neural networks. You can see the detailed derivation in Appendix A if interested.211

4 Experiments212

We conduct four sets of experiments. The first is to evaluate the accuracy of SpikeBERT trained213

with the proposed method on 6 datasets of text classification datasets. The second experiment is to214

compare the theoretical energy consumption of BERT and that of SpikeBERT. The third experiment is215

an ablation study about the training process. The last experiment is to figure out how the performance216

of SpikeBERT is impacted by the number of time steps and model depth.217

6



4.1 Datasets218

As mentioned in Section 3.3.1, a large-scale parallel corpus will be used to train student models in219

Stage 1. For the English corpus, we choose the “20220301.en” subset of Wikipedia1 and the whole220

Bookcorpus[Zhu et al., 2015], which are both utilized to pre-train a BERT [Devlin et al., 2019]. For221

the Chinese corpus, we choose Chinese-Wikipedia dump2 (as of Jan. 4, 2023). Additionally, we222

follow Lv et al. [2023] to evaluate the SpikeBERT trained with the proposed distillation method on223

six text classification datasets: MR[Pang and Lee, 2005], SST-2[Socher et al., 2013], SST-5, Subj,224

ChnSenti, and Waimai. The dataset details are provided in Appendix B.225

4.2 Implementation Details226

Firstly, we set the number of encoder blocks in SpikeBERT to 12. Additionally, we set the threshold227

of common spiking neurons Uthr as 1.0 but set the threshold of neurons in the spiking self-attention228

block as 0.25 in SpikeBERT. In addition, we set decay rate β = 0.9 and scaling factor τ as 0.125.229

We also set the time step T of spiking inputs as 4 and sentence length to 256 for all datasets.230

To construct SpikeBERT, we use two Pytorch-based frameworks: SnnTorch [Eshraghian et al., 2021]231

and SpikingJelly [Fang et al., 2020b]. Besides, we utilize bert-base-cased 3 from Huggingface as232

teacher model for English datasets and Chinese-bert-wwm-base4 [Cui et al., 2019] for Chinese233

datasets.234

In addition, we conduct pre-training distillation on 4 NVIDIA A100-PCIE GPUs and task-specific235

distillation on 4 NVIDIA GeForce RTX 3090 GPUs. Since surrogate gradients are required during236

backpropagation, we set α in Equation 3 as 2. In stage 1, we set the batch size as 128 and adopt237

AdamW [Loshchilov and Hutter, 2017] optimizer with a learning rate of 5e−4 and a weight decay238

rate of 5e−3. The hyperparameters σ1 and σ2 in Equation 7 are both set to 1.0. In stage 2, we set the239

batch size as 32 and the learning rate to 5e−5. For data augmentation, we set pmask = ppos = 0.1,240

png = 0.25. To balance the weights of the four types of loss in Equation 8, we set λ1 = 0.1, λ2 = 0.1,241

λ3 = 1.0, and λ4 = 0.1.242

4.3 Results243

We report in Table 1 the accuracy achieved by SpikeBERT trained with “pre-training + task-specific”244

distillation on 6 datasets, compared to 2 baselines: 1) SNN-TextCNN proposed by Lv et al. [2023];245

2) improved Spikformer directly trained with gradient descent algorithm using surrogate gradients.246

Table 1: Classification accuracy achieved by different methods on 6 datasets. A BERT model
fine-tuned on the dataset is denoted as “FT BERT”. The improved Spikformer directly trained
with surrogate gradients on the dataset is denoted as “Directly-trained Spikformer”. All reported
experimental results are averaged across 10 random seeds.

Model English Dataset Chinese Dataset Avg.MR SST-2 Subj SST-5 ChnSenti Waimai
TextCNN [Kim, 2014] 77.41 83.25 94.00 45.48 86.74 88.49 79.23
FT BERT [Devlin et al., 2019] 87.63 92.31 95.90 50.41 89.48 90.27 84.33
SNN-TextCNN [Lv et al., 2023] 75.45 80.91 90.60 41.63 85.02 86.66 76.71
Directly-trained Spikformer 76.38 81.55 91.80 42.02 85.45 86.93 77.36
SpikeBERT [Ours] 80.69 85.39 93.00 46.11 86.36 89.66 80.20

Table 1 demonstrates that the SpikeBERT trained with two-stage distillation achieves state-out-of-247

art performance across 6 text classification datasets. Compared to SNN-TextCNN, SpikeBERT248

achieved up to 5.42% improvement in accuracy (3.49% increase on average) for all text classification249

benchmarks. Furthermore, SpikeBERT outperforms TextCNN, which is considered a representative250

1
https://dumps.wikimedia.org/

2
https://dumps.wikimedia.org/zhwiki/latest/

3
https://huggingface.co/bert-base-cased

4
https://huggingface.co/hfl/chinese-bert-wwm
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artificial neural network, and even achieves comparable results to the fine-tuned BERT by a small251

drop of 4.13% on average in accuracy for text classification task. What’s more, Table 1 demonstrates252

that SpikeBERT can also be applied well in Chinese datasets (ChnSenti and Waimai).253

Fang et al. [2020a] propose that, in image classification task, surrogate gradients of SNNs may lead254

to gradient vanishing or exploding and it is even getting worse with the increase of model depth. We255

found this phenomenon in language tasks as well. Table 1 reveals that the accuracy of directly-trained256

Spikformer is noticeably lower than SpikeBERT on some benchmarks, such as MR, SST-5, and257

ChnSenti. This is likely because the directly-trained Spikformer models have not yet fully converged258

due to gradient vanishing or exploding.259

4.4 Energy Consumption260

An essential advantage of SNNs is the low consumption of energy during inference. We compare the261

theoretical energy consumption per sample of fine-tuned BERT and SpikeBERT on 6 test datasets262

and report the results in Table 2. The way to calculate floating point operations (FLOPs), synaptic263

operations (SOPs), and the theoretical energy consumption (Power) is shown in Appendix C.264

Table 2: Energy consumption per sample of fine-tuned BERT and SpikeBERT during inference on 6
text classification benchmarks. “FLOPs” denotes the floating point operations of fine-tuned BERT.
“SOPs” denotes the synaptic operations of SpikeBERT. “Power” denotes the average theoretical
energy required for each test example prediction.

Dataset Model FLOPs / SOPs(G) Power (mJ) Energy Reduction Accuracy (%)

ChnSenti FT BERT 22.46 103.38
73.28% ↓ 89.48

SpikeBERT 28.47 27.62 86.36

Waimai FT BERT 22.46 103.38
73.91% ↓ 90.27

SpikeBERT 27.81 26.97 89.66

MR FT BERT 22.23 102.24
74.93% ↓ 87.63

SpikeBERT 26.94 25.63 80.69

SST-2 FT BERT 22.23 102.24
73.78% ↓ 92.31

SpikeBERT 27.46 26.81 85.39

Subj FT BERT 22.23 102.24
77.17% ↓ 95.90

SpikeBERT 25.92 23.34 93.00

SST-5 FT BERT 22.23 102.24
76.92% ↓ 50.41

SpikeBERT 26.01 23.60 46.11

It is worth noting that the energy consumption of SpikeBERT is significantly lower than that of265

fine-tuned BERT, which is an important advantage of SNNs over ANNs in terms of energy efficiency.266

As shown in Table 2, SpikeBERT demands only 25.00% of the energy that fine-tuned BERT needs to267

achieve comparable performance on average. Moreover, on the Subj dataset, SpikeBERT can reduce268

energy consumption by up to 77.17% compared to fine-tuned BERT for predicting each text example.269

This indicates that SpikeBERT is a promising candidate for energy-efficient text classification in270

resource-constrained scenarios.271

4.5 Ablation Study and Impact of Hyper-parameters272

In this section, we conduct ablation studies to investigate the contributions of: a) different stages of273

the proposed knowledge distillation method, and b) different types of loss in Equation 8.274

As we can see in Table 4.5, SpikeBERTs without either stage 1 or stage 2 experience about 3.20%275

performance drop on average. Therefore, we conclude that the two distillation stages are both276

essential for training SpikeBERT. Furthermore, we observed that the average performance dropped277

from 76.30 to 73.27 when excluding the logits loss, demonstrating that the logits loss Llogits has the278

greatest impact on task-specific distillation. Meanwhile, data augmentation (DA) plays an important279

role in Stage 2, contributing to an increase in average performance from 75.54 to 76.30.280

We investigate how the performance of SpikeBERT is affected by the two important hyperparameters:281

time steps T and model depth. To this end, we conduct two experiments: (a) varying the number of282
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Table 3: Ablation studies of the two-stage distillation method. Row 3 and 4 show ablation experiment
results on the two steps of our proposed method. Row 5 to 9 are ablation experiment results on
different parts of Equation 8. “DA” stands for data augmentation.

Models MR SST-2 Subj SST-5 Avg. Drop
SpikeBERT 80.69 85.39 93.00 46.11 76.30 −
w/o Stage 1 76.04 82.26 91.80 42.16 73.07 -3.23
w/o Stage 2 75.91 82.26 91.90 42.58 73.14 -3.16

Stage 2

w/o DA 80.22 84.90 92.20 44.84 75.54 -0.76
w/o Lfea 78.35 83.48 92.20 43.57 74.40 -1.90
w/o Lemb 79.67 83.10 92.00 43.48 74.56 -1.74
w/o Llogits 76.19 82.64 91.90 42.35 73.27 -3.03
w/o Lce 80.43 85.23 93.00 45.86 76.13 -0.17

the time steps of spike inputs when training SpikeBERT; and (b) training a variant of SpikeBERT283

with different encoder block depths, specifically 6, 12, 18, using our proposed two-stage method.284

Figure 3 (a) shows how the accuracy of SpikeBERT varies with the increase of time steps. We find285

that, with the increase of time steps, the accuracy increases first, then remains unchanged, and reaches286

its maximum roughly at T = 4. Theoretically, the performance of SpikeBERT should be higher287

with bigger time steps. However, the performance of models with 8 and 12 time steps is even worse288

than that with 4 time steps on ChnSenti and Waimai datasets. A plausible explanation is that using289

excessively large time steps may introduce too much noise in the spike trains.290

1 2 4 8 12
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80
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Waimai

(a)

MR SST2 Subj SST5
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40

60

80
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Depth 12
Depth 18

(b)

Figure 3: (a) Accuracy versus the number of time steps. (b) Accuracy influenced by model depth.

In addition, as we can see from Figure 3 (b), the accuracy of SpikeBERT is generally insensitive to the291

model depths and even gets lower in some datasets. We think that’s because more spike Transformer292

blocks mean more spiking neurons (See Section 2.1), introducing more surrogate gradients when293

error backpropagation through time. Higher model depth often brings better model performance for294

traditional deep neural networks. However, it seems that deeper spiking neural networks cannot make295

further progress in performance. Many previous SNNs works [Zheng et al., 2020, Fang et al., 2020a,296

Kim et al., 2022b] have proved this deduction.297

5 Conclusion298

In this study, we extended and improved Spikformer to process language tasks and proposed a new299

promising training paradigm for training SpikeBERT inspired by the notion of knowledge distillation.300

We presented a two-stage, “pre-training + task-specific” knowledge distillation method by transferring301

the knowledge from BERTs to SpikeBERT for text classification tasks. We empirically show that302

our SpikeBERT outperforms the state-of-the-art SNNs and can even achieve comparable results to303

BERTs with much less energy consumption across multiple datasets for both English and Chinese,304

leading to future energy-efficient implementations of BERTs or large language models.305
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,360

and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. ArXiv,361

abs/2004.10964, 2020.362

Eugene M. Izhikevich. Simple model of spiking neurons. IEEE transactions on neural networks, 14363

6:1569–72, 2003.364

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for365

training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 2017.366

Peter Udo Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.367

Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.368

2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2015.369

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for370

energy-efficient object recognition. International Journal of Computer Vision, 113:54–66, 2015.371

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-372

sion of continuous-valued deep networks to efficient event-driven networks for image classification.373

Frontiers in Neuroscience, 11, 2017.374

Peter Udo Diehl, Guido Zarrella, Andrew S. Cassidy, Bruno U. Pedroni, and Emre O. Neftci.375

Conversion of artificial recurrent neural networks to spiking neural networks for low-power376

neuromorphic hardware. 2016 IEEE International Conference on Rebooting Computing (ICRC),377

pages 1–8, 2016.378

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking379

neural networks: Bringing the power of gradient-based optimization to spiking neural networks.380

IEEE Signal Processing Magazine, 36:51–63, 2019.381

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural382

networks. Neural Computation, 30:1514 – 1541, 2017.383

Nan Zheng and Pinaki Mazumder. A low-power hardware architecture for on-line supervised learning384

in multi-layer spiking neural networks. 2018 IEEE International Symposium on Circuits and385

Systems (ISCAS), pages 1–5, 2018.386

S. Shrestha and G. Orchard. Slayer: Spike layer error reassignment in time. ArXiv, abs/1810.08646,387

2018.388

11



Taewook Kang, Kwang-Il Oh, Jaejin Lee, and Wangrok Oh. Comparison between stdp and gradient-389

descent training processes for spiking neural networks using mnist digits. 2022 13th International390

Conference on Information and Communication Technology Convergence (ICTC), pages 1732–391

1734, 2022.392

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E.393

Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recognition.394

Neural Computation, 1:541–551, 1989.395

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained larger396

spiking neural networks. In AAAI Conference on Artificial Intelligence, 2020.397

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep398

spiking neural networks with hybrid conversion and spike timing dependent backpropagation.399

ArXiv, abs/2005.01807, 2020.400

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the401

performance of convolutional neural networks via attention transfer. ArXiv, abs/1612.03928, 2016.402

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A403

comprehensive overhaul of feature distillation. 2019 IEEE/CVF International Conference on404

Computer Vision (ICCV), pages 1921–1930, 2019.405

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge406

review. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages407

5006–5015, 2021.408

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. 2019409

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3962–3971,410

2019.411

R. K. Kushawaha, S. Kumar, Biplab Banerjee, and Rajbabu Velmurugan. Distilling spikes: Knowledge412

distillation in spiking neural networks. 2020 25th International Conference on Pattern Recognition413

(ICPR), pages 4536–4543, 2020.414

Sugahara Takuya, Renyuan Zhang, and Yasuhiko Nakashima. Training low-latency spiking neural415

network through knowledge distillation. 2021 IEEE Symposium in Low-Power and High-Speed416

Chips (COOL CHIPS), pages 1–3, 2021.417

Wei Fang, Yanqi Chen, Jianhao Ding, Ding Chen, Zhaofei Yu, Huihui Zhou, Yonghong Tian, and418

other contributors. Spikingjelly, 2020b. Accessed: YYYY-MM-DD.419

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.420

Tinybert: Distilling bert for natural language understanding. In Findings, 2019.421

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy J. Lin. Distilling422

task-specific knowledge from bert into simple neural networks. ArXiv, abs/1903.12136, 2019.423

Chang Liu, Chongyang Tao, Jiazhan Feng, and Dongyan Zhao. Multi-granularity structural knowl-424

edge distillation for language model compression. In Annual Meeting of the Association for425

Computational Linguistics, 2022.426

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NIPS, 2013.427

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,428

and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching429

movies and reading books. 2015 IEEE International Conference on Computer Vision (ICCV),430

pages 19–27, 2015.431

12



Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization432

with respect to rating scales. In ACL, 2005.433

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, A. Ng, and434

Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.435

In EMNLP, 2013.436

Jason Kamran Eshraghian, Max Ward, Emre O. Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,437

Bennamoun, Doo Seok Jeong, and Wei D. Lu. Training spiking neural networks using lessons438

from deep learning. ArXiv, abs/2109.12894, 2021.439

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, and Guoping Hu.440

Pre-training with whole word masking for chinese bert. IEEE/ACM Transactions on Audio, Speech,441

and Language Processing, 29:3504–3514, 2019.442

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-443

ence on Learning Representations, 2017.444

Youngeun Kim, Joshua Chough, and Priyadarshini Panda. Beyond classification: Directly training445

spiking neural networks for semantic segmentation. Neuromorphic Computing and Engineering, 2446

(4):044015, 2022b.447

G. Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep neural448

networks. 2015 IEEE International Electron Devices Meeting (IEDM), pages 4.2.1–4.2.4, 2015.449

13



Appendix450

A Backpropagation Through Time in Spiking Neural Networks451

The content of this section is mostly referred to Lv et al. [2023].452

Given a loss function L like Eqution 7 and 8, the losses at every time step can be summed together to453

give the following global gradient:454

∂L

∂W
=

∑
t

∂Lt

∂W
=

∑
i

∑
j≤i

∂Li

∂Wj

∂Wj

∂W (9)

where i and j denote different time steps, and Lt is the loss calculated at time step t. No matter which455

time step is, the weights of an SNN are shared across all steps. Therefore, we have W0 = W1 =456

· · · = W , which also indicates that ∂Wj

∂W = 1. Thus, Equation (9) can be written as follows:457

∂L

∂W
=

∑
i

∑
j≤i

∂Li

∂Wj
(10)

Based on the chain rule of derivatives, we obtain:458

∂L

∂W
=

∑
i

∑
j≤i

∂Li

∂Si

∂Si

∂Ui

∂Ui

∂Wj

=
∑
i

∂Li

∂Si

∂Si

∂Ui

∑
j≤i

∂Ui

∂Wj

(11)

where ∂Li

∂Si
is the derivative of the cross-entropy loss at the time step i with respect to Si, and ∂Si

∂Ui
can459

be easily derived using surrogate gradients like Equation 3. As to the last term of
∑

j≤i
∂Ui

∂Wj
, we can460

split it into two parts:461 ∑
j≤i

∂Ui

∂Wj
=

∂Ui

∂Wi
+

∑
j≤i−1

∂Ui

∂Wj
(12)

From Equation (2), we know that ∂Ui

∂Wi
= Xi. Therefore, Equation (9) can be simplified as follows:462

∂L

∂W
=

∑
i

∂Li

∂Si

∂Si

∂Ui︸ ︷︷ ︸
constant

 ∂Ui

∂Wj︸ ︷︷ ︸
constant

+
∑

j≤i−1

∂Ui

∂Wj

 (13)

By the chain rule of derivatives over time, ∂Ui

∂Wj
can be factorized into two parts:463

∂Ui

∂Wj
=

∂Ui

∂Ui−1

∂Ui−1

∂Wj
(14)

It is easy to see that ∂Ui

∂Ui−1
is equal to β from Equation (2), and Equation (9) can be written as:464

∂L

∂W
=

∑
i

∂Li

∂Si

∂Si

∂Ui︸ ︷︷ ︸
constant

 ∂Ui

∂Wj︸ ︷︷ ︸
constant

+
∑

j≤i−1

∂Ui

∂Ui−1︸ ︷︷ ︸
constant

∂Ui−1

∂Wj

 (15)

We can treat ∂Ui−1

∂Wj
recurrently as Equation (12). Finally, we can update the weights W by the rule of465

W = W − η ∂L
∂W , where η is a learning rate.466

B Datasets467

The benchmark we used in Table 1 includes the following datasets:468
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• MR: MR stands for Movie Review and it consists of movie-review documents labeled with469

respect to their overall sentiment polarity (positive or negative) or subjective rating [Pang470

and Lee, 2005].471

• SST-5: SST-5 contains 11, 855 sentences extracted from movie reviews for sentiment472

classification [Socher et al., 2013]. There are 5 categories (very negative, negative, neutral,473

positive, and very positive).474

• SST-2: The binary version of SST-5. There are just 2 classes (positive and negative).475

• Subj: The task of this dataset is to classify a sentence as being subjective or objective5.476

• ChnSenti: ChnSenti comprises about 7, 000 Chinese hotel reviews annotated with positive477

or negative labels6.478

• Waimai: There are about 12, 000 Chinese user reviews collected by a food delivery platform479

for binary sentiment classification (positive and negative)7 in this dataset.480

C Theoretical Energy Consumption Calculation481

For spiking neural networks (SNNs), the theoretical energy consumption of layer ξ can be calculated482

as483

Power(ξ) = 0.9pJ × SOPs(ξ) (16)

where 0.9pJ is the energy consumption per synaptic operation (SOP) [Indiveri et al., 2015, Hu et al.,484

2018, Zhou et al., 2022]. The number of synaptic operations at the layer ξ of an SNN is estimated as485

SOPs(ξ) = T × γ × FLOPs(ξ) (17)

where T is the number of times step required in the simulation, γ is the firing rate of input spike train486

of the layer ξ, and FLOPs(ξ) is the estimated floating point operations at the layer ξ.487

For classical artificial neural networks, the theoretical energy consumption required by the layer ξ488

can be estimated by489

Power(ξ) = 4.6pJ ∗ FLOPs(ξ) (18)

Note that 1J = 103 mJ = 1012 pJ.490

D Discussion of Limitations491

In the image classification task, spiking neural networks have demonstrated comparable performance492

to ViT on CIFAR-10-DVS and DVS-128-Gesture datasets, which are neuromorphic event-based493

image datasets created using dynamic vision sensors. We think that the performance gap bewteen494

SNNs and ANNs in language tasks is mainly due to the lack of neuromorphic language datasets. It is495

unfair to evaluate SNNs on the datasets that were created to train and evaluate ANNs because these496

datasets are mostly processed by continuous values. However, it is quite hard to convert language497

to neuromorphic information without information loss. We hope there will be a new technology to498

transfer senteces to neuromorphic spikes.499

In addition, GPU memory poses a limitation in our experiments. Spiking neural networks have an500

additional dimension, denoted as T (time step), compared to artificial neural networks. Increasing501

the number of time steps allows for capturing more information but results in an increased demand502

for GPU memory by a factor of T . During our experiments, we observe that maintaining the503

same number of time steps during training requires reducing the sentence length of input sentences,504

which significantly constrains the performance of our models. We remain optimistic that future505

advancements will provide GPUs with sufficient memory to support the functionality of SNNs.506

5
https://www.cs.cornell.edu/people/pabo/movie-review-data/

6
https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/ChnSentiCorp_htl_all/

ChnSentiCorp_htl_all.csv
7
https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv
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