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Alexandre Vérine 1 Benjamin Negrevergne 1 Fabrice Rossi 2 Yann Chevaleyre 1

Abstract

An invertible function is bi-Lipschitz if both the
function and its inverse have bounded Lipschitz
constants. Nowadays, most Normalizing Flows
are bi-Lipschitz by design or by training to limit
numerical errors (among other things). In this
paper, we discuss the expressivity of bi-Lipschitz
Normalizing Flows and identify several target dis-
tributions that are difficult to approximate using
such models. Then, we characterize the expres-
sivity of bi-Lipschitz Normalizing Flows by giv-
ing several lower bounds on the Total Variation
distance between these particularly unfavorable
distributions and their best possible approxima-
tion. Finally, we discuss potential remedies which
include using more complex latent distributions.

1. Introduction
A number of recent publications have demonstrated the ben-
efits of constructing machine learning models with a small
Lipschitz constant. First, models with a small Lipschitz
constant have been linked with better generalization capa-
bilities, both in terms of true risk (Bartlett et al., 2017), and
adversarial risk (Farnia et al., 2018). In addition, models
with a small Lipschitz constraint are more stable during
training, and are less prone to numerical errors, a property
which is particularly important in the context of invertible
neural networks and normalizing flows (Behrmann et al.,
2021).

Unfortunately, enforcing a small Lipschitz constant, either
by design, or using regularization during training, can im-
pede the ability of a model to fit the data distribution. Based
on this observation, several researchers have studied the
limitations of neural networks with bounded Lipschitz con-
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stant. In particular Tanielian et al. (2020) was able identify
a family of target distributions with disconnected support
that cannot be fitted with a GAN with a bounded Lipschitz
constant.

In this paper we focus on the impact of the Lipschitz con-
straints on normalizing flows. Normalizing flows are often
not only Lipschitz, but bi-Lipschitz, meaning that both the
mapping function and its inverse have bounded Lipschitz
constant. For example, Additive Coupling, neural ODE
and Residual Networks are bi-Lipschitz by design. Other
types of normalizing flows, can also be trained to be bi-
Lipschitz, in order to avoid exploding inverses (Behrmann
et al., 2021). We study the expressivity of normalizing flows
with bounded Lipschitz constant and discuss the impact of
the bi-Lipschitz constant on the Total Tariation distance.
More precisely, we give several lower bounds on the total
variation distance between the generated distribution and
the target distribution, in some (particularly unfavorable)
training settings.

2. Background
A normalizing flow is an invertible density model in which
both density estimation and sampling can be done efficiently.
In short, training a normalizing flow consists in learning an
invertible mapping between a data space X and a latent
space Z . Typically, the forward direction F : X → Z
(i.e. the normalizing direction) is tractable and exact and
the inverse direction F−1 : Z → X (i.e. the generative
direction) either has a closed form, or can be approximated
using an iterative algorithm.

Suppose that P ∗ is the true data distribution over X , and
that P ∗ admits a density function denoted p∗ that we wish
to approximate. We first chose a d-dimensional Gaussian
distribution Q over Z (a.k.a. the latent space), and its den-
sity function q(z) = 1

(
√

2π)d
e−

1
2‖z‖

2
2 . Then, we can define

p̂, the approximation of p∗, based on q and the mapping
F : X → Z , using a simple change of variable formula:

∀x ∈ X , p̂(x) = |det JacF (x)| q(F (x)) (1)

Note the estimated probability P̂ (A) of any event A ⊆ X
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can be retrieved as follows:

P̂ (A) = Q(F (A)) =

∫
F (A)

q(z)dz

As seen in Equation 1, performing density estimates requires
computing the determinant of the Jacobian matrix which can
be large in practice, thus most normalizing flows have been
specifically designed to make this computation efficient.

2.1. Bi-Lipschitz Normalizing Flows

In this paper, we focus on bi-Lipschitz normalizing flows,
which is a mapping F whose Lipschitz constants are
bounded in both directions. More specifically, we define the
bi-Lipschitz property as follows.

Definition 2.1. A bijective function F : X ⊂ Rd → Z ⊂
Rd is said to be (L1, L2)-bi-Lipschitz if F is L1-Lipschitz
and its inverse F−1 is L2-Lipschitz, i.e.:

∀x1,x2 ∈ X , ‖F (x1)− F (x2)‖ ≤ L1‖x1 − x2‖

and

∀z1, z2 ∈ Z, ‖F−1(z1)− F−1(z2)‖ ≤ L2‖z1 − z2‖

Alternatively, since the mapping F is bijective, the bi-
Lipschitz continuity can be expressed over F only as:
1
L2
‖x1 − x2‖ ≤ ‖F (x1)− F (x2)‖ ≤ L1‖x1 − x2‖

However, enforcing the bi-Lipschitz continuity of F results
in a bounded determinant for the Jacobian matrix:

Proposition 2.1. JacF satisfies for all x ∈ X :

1

Ld2
≤ |det JacF (x)| ≤ Ld1

As we will show in the rest of this paper, this can limit the
expressivity of normalizing flows.

This is relevant, because many normalizing flows are bi-
Lipschitz in practice, for example, the i-ResNet (Behrmann
et al., 2019) and the Residual Flow (Chen et al., 2020)
are both based on residual atomic blocks fi = Id + gi.
Their invertibility is ensured by the Lipschitz constant
Lip(gi) ≤ L < 1. If F is composed of m residual blocks
such that F = fm ◦ · · · ◦ f1, then the overall bi-Lipschitz
constants satisfy Lip(F ) ≤ (1 + L)m and Lip(F−1) ≤
1/(1 − L)m. Alternatively, in Glow (Kingma & Dhari-
wal, 2018) with atomic blocks Wi = PiLi(Ui + diag(si)),
the bi-Lipschitz constants statisfy: Lip(F ) ≤

∏m
i ‖Wi‖2

and Lip(F−1) ≤
∏m
i ‖W

−1
i ‖2. Consequently, the bi-

Lipschitzness constraints on either the function or its Ja-
cobian determinant can be released by increasing the depth
of the network but, by doing so, the stability of the inverse
can be affected (Behrmann et al., 2021).

2.2. Assessing the learning abilities

Our goal is to understand how the bi-Lipschitz property
affects the approximation ability of the network. To do so,
we will compare the true data distribution P ∗ and its density
p∗ with the learned distribution P̂ and its density p̂.

To evaluate how the true distribution P ∗ and the generated
distribution P̂ differ, we use the Total Variation (TV) dis-
tance defined as:

DTV(P ∗, P̂ ) = sup
A
|P ∗(A)− P̂ (A)|

3. Lower Bounds on the TV Distance
3.1. A bound on bi-Lipschitz normalizing flow for any

subset A

The first theorem is a lower bound on the TV distance be-
tween the learned distribution and the target distribution
in a general setting. Intuitively, the idea is to find an arbi-
trary subset A that is sufficiently concentrated so that the
Lipschitz constrained mapping can not concentrate enough
weight form the Gaussian distribution onto this subset.
Theorem 3.1 (bi-Lipschitz mappings fail to capture high
density subset). Let F be (L1, L2)-bi-Lipschitz and ηA =
P∗(A)
vol(A) be the average density over any subset A ⊂ Rd.
Then:

DTV(P ∗, P̂ ) ≥ sup
A

vol(A)

(
ηA −

(
L1

4L2

√
2π

)d)
Therefore, if there is a subset A that satisfies ηA >(

L1

4L2

√
2π

)d
, then the TV is necessarily strictly positive.

The proof of this Theorem is given in appendix A.1.

Remark that the bound in Theorem 3.1 depends on both
Lipschitz constraints L1 and L2. If a subsetA is found to be
very dense, the mapping will not be able to expand the given
volume of A to match the lower density of the Gaussian
density because of L1. On the other hand, the point with the
highest density within A will be matched with the highest
point on the Gaussian density but all its neighbourhood has
to me moved by a factor of 1/L2. The main advantage of
this formulation is to apply to any subset of the data space,
but at the expense of a loose bound on the TV.

3.2. Bounds for specific subset BR,x

The bound in Theorem 3.1 can be further improved by mak-
ing assumptions on the structure of the subset A. We choose
to focus on l2 balls instead of arbitrary subsets.

Let BR,x0 be the l2 ball with center x0 and radius R (i.e.
BR,x0 = {x ∈ X : ‖x − x0‖2 ≤ R}). Then we can
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Figure 1. Example of a target distribution where theorem 3.2 ap-
plies: the subset BR concentrates most of the weight in P ∗(BR),
but P̂ (BR) = Q(F (BR)) can only be as large as Q(BRL1

).

show that both high density balls and low density ones are
difficult to fit properly, the former because of the Lipschitz
constraint of F , the latter because of the Lipschitz constraint
of F−1. We first consider high density balls.

Theorem 3.2 (NF with a L1-Lipschitz mapping F fails to
capture high density balls). Let F be L1-Lipschitz. Then:

DTV(P ∗, P̂ ) ≥ sup
R,x0

(
P ∗(BR,x0)− RL1√

π

)

DTV(P ∗, P̂ ) > sup
R,x0

(
P ∗(BR,x0)− 4d1/4RL1

)
Therefore, if we find a ball for which the true measure sat-
isfies P∗(BR,x0

)

R > L1√
π

or P∗(BR,x0
)

R > 4d1/4L1, then the
TV is necessarily strictly positive.

The theorem 3.2 highlights the effect of the Lipschitz con-
straint of the forward mapping F . If a ball has a high
probability in the data space P ∗(BR), then the probability
assigned to this ball is at most Q(BRL1

) in the latent space
and is upper bounded by RL1/

√
π (Ball, 1993). A one di-

mensional representation of a pathological case for theorem
3.2 is shown on figure 1. In other words no ball with a high
enough density in data space can be expended sufficiently
to have a matching probability in the latent space. Note that
we could use a closed-form of Q(BRL1

) but it is less open
to interpretation than the approximations we have made.

Conversely, the mapping being bi-Lipschitz, the mapping
can not contract arbitrarily. If there is a low density zone
mapped on the maximum of the Gaussian density, then the
Normalizing Flow cannot reduce enough the probability of
the corresponding zone. Notice that the assumption of a low
density zone is strong but fairly reasonable. For instance,

Figure 2. Example of a target distribution for which Theorem 3.3
applies: the subset BR concentrates little weight in P ∗(BR), but
P̂ (BR) = Q(F (BR)) can only be as small as Q(BR/L2).

one can observe a multi-modal density with fairly well sep-
arated modes. If the modes are roughly equiprobable, we
expect a mapping to assign those modes in balanced way
around the mode of the Gaussian distribution in the latent
space. Therefore, the low density ball is mapped on a zone
wider than the ball BR/L2

and consequently the Gaussian
measure associated is lower bounded by Q(BR/L2

) as illus-
trated on the one dimensional example on figure 2. Despite
the lower bounds established by (Pinelis, 2020), there is
no reasonably interpretable bounds, therefore we use the
closed-form that is expressed with the Gamma function Γ
and the incomplete gamma function γ. The numerical ap-
proximations of the closed form are given in figure 3. We
can observe that the higher the dimension is, the larger the
l2 distance between two modes can be.

Theorem 3.3 (NF with L2-Lipschitz inverse mappings F−1

fail to capture low density balls). Let F−1 be L2-Lipschitz.
We consider the balls centered on F−1(0), we have the
lower bound:

DTV(P ∗, P̂ ) ≥ sup
R

γ(d2 ,
R2

2L2
2
)

Γ(d2 )
− P ∗(BR,F−1(0))


Therefore, if we find a ball for which the the true measure
satisfies P ∗(BR,F−1(0)) <

γ(d/2,R2/2L2
2)

Γ(d/2) , then the TV is
necessarily strictly positive.

Both formal proofs are detailed in appendix A.2 and A.3.

3.3. Comparison to related work

A related set up is used in (Tanielian et al., 2020). The
authors consider two disconnected subsets M1 and M2 sep-
arated by a distance D, with equal probabilities in the latent



On the expressivity of bi-Lipschitz normalizing flows

Figure 3. Representation of the Gaussian Measure of balls of radius
R/L2 centered on 0. The measure is given for dimension 1, 2,
10 and then the dimensions of MNIST (Yann LeCun et al., 2010),
CIFAR10 (Alex Krizhevsky, 2009) and CelebA (Liu et al., 2015)

space, i.e. P̂ (M1) = P̂ (M1) = 1/2. As a consequence,
F−1(0) is equidistant from M1 and M2 as illustrated in
Figure 4.
Corollary 3.3.1 (NF with L2-Lipschitz inverse mapping).
If F−1 is L2-Lipschitz, then we have a lower bound on the
TV distance based on the distance D between M1 and M2:

DTV(P ∗, P̂ ) ≥ γ(
d

2
,
D2

2L2
2

)/Γ(
d

2
).

Note that, the TV distance being defined as the sup on any
subspace A, we can accumulate the failures made by the
network, and therefore take into account the error when the
two manifolds M1 and M2 are too dense. This set up is
then a appropriate pathological case to study the effect of
the bi-Lipschitzness of the mapping.

The original work assesses the learning abilities of their
generative model, a GAN (Goodfellow et al., 2014), with
a definition of precision and recall given by (Sajjadi et al.,
2018) and improved by (Kynkäänniemi et al., 2019). The
main advantage of this metric is that is well fitted to be
used with the Gaussian Isoperimetric Inequality and there-
fore gives a result independent from the dimension. By
using, the TV distance or any distance for that matter, it can
be applied on distributions with any support. The details
of the Precision and Recall and the comparison between
both methods can be found in appendix B and the proof of
corollary 3.3.1 is in appendix A.4.

4. Potential remedies & Discussion
As mentioned earlier, increasing the Lipschitz constants of
the entire network (for example, by adding extra layers) may
impact invertibility and stability during training (Behrmann
et al., 2021), and thus is not a suitable approach to improve
the expressivity.

Alternatively, one can consider learning the parameters of
the latent Gaussian distribution µ and Σ = diag(σi). How-
ever, this is equivalent to changing the Lipschitz constants

Figure 4. Experimental set up given by (Tanielian et al., 2020)

of F from (L1, L2) to (L1

σ , L2σ), thus this results in trading
off the expected error on very dense subsets (Theorem 3.2)
with the expected error on subsets with low densities (The-
orems 3.3) or vice-versa. In other words this can lead to
a better approximation for a some particular data distribu-
tions, but it does not generally improve the expressivity of
the normalizing flow.

To improve expressivity, a Gaussian Mixture latent distribu-
tion can be considered. Indeed, Khayatkhoei et al. (2019)
and Izmailov et al. (2019) have shown that such distribu-
tions can learn disconnected manifolds. When the latent
distribution is a Gaussian Mixture, Theorem 3.3 does not
hold anymore. Limitations similar to the ones highlighted in
Theorem 3.2 still apply, but can be mitigated using learnable
parameters.

We can trivially adapt the lower bound from Theorem 3.2
to the Gaussian Mixture with K equally distributed modes
with learnable mean µj and diagonal covariance matrix
Σj = diag(σji):

DTV(P ∗, P̂ ) ≥ sup
R,x0

(
P ∗(BR,x0

)− 1

K

RL1∏
i σ

d
ji

√
π

)

As we can see here, the lower bound depends on the inverse
of the number of modes K in the mixture. Thus, this ap-
proach can solve the limitations highlighted in Theorem 3.2
only if K is small enough (so that the probability mapped
onto a dense subset can be sufficiently large). In addition,
further investigation is required to understand how to tune
or learn the parameters σij and K of the Gaussian Mixture
in order to obtain satisfying training results.

5. Conclusion
We have established the bi-Lipschitz constraints reduce the
expressivity of Normalizing flows. When the dataset meets
some particular conditions such as a high density zone or
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a low density zone between two high density zones, the re-
duced expressivity fails to capture the real distribution of the
dataset. To compensate, this lack of learning ability of the
mapping, a more complex, i.e. expressive latent distribution
can be implemented. However, this method suffers from
training difficulties and should be further studied.
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A. Proofs
A.1. Proof of theorem 3.1

By definition we have P̂ (A) =
∫
A
p̂(x)dx, then with the

change of variable formula we obtain:

P̂ (A) =
∫
A
|JacF (x)|q(F (x))dx

= 1
(2π)d/2

∫
A
|JacF (x)|e−‖F (x)‖2/2dx

As F−1 is L2-Lipschitz, F satisfies:

∀x1,x2 ∈ X ,
1

L2
‖x1 − x2‖ ≤ ‖F (x1)− F (x2)‖,

and in particular, we have:

∀x ∈ X , 1

L2
‖x1 − F−1(0)‖ ≤ ‖F (x)‖.

Consequently ∀x ∈ X

q(F (x)) = 1
(2π)d/2

e−‖F (x)‖2/2,

≤ 1
(2π)d/2

e−‖x/L2−F−1(0)/L2‖2/2,

≤ 1
(2π)d/2

e−‖T (x)‖2 ,

where T is the affine mapping given by

T (x) =
x− F−1(0)

4L2
.

As F is L1-Lipschitz we have |JacF (x)| < Ld1 and thus

P̂ (A) ≤
(
L1√
2π

)d ∫
A
e−‖T (x)‖22dx

≤
(
L1√
2π

)d ∫
T (A)

1
(4L2)d

dx

≤
(

L1

4L2

√
2π

)d
vol(A),

and thus TV (P ∗, P̂ ) = supA |P ∗(A)− P̂ (A)| implies

TV (P ∗, P̂ ) ≥

sup
A

(
P ∗(A)−

(
L1

4L2

√
2π

)d
vol(A)

)

A.2. Proof of theorem 3.2

By definition of the TV distance, we have

DTV(P ∗, P̂ ) ≥ sup
R,x0

|P ∗(BR,x0
)−Q(F (BR,x0

))|,

where BR,x0
is the ball of a radius R centered in x0.

Then, the idea is to show that the image of a ballBR by aL1-
Lipschitz function is in a ball of radius L1R, and then use a
reverse isoperimetric inequality the find an upper bound of
the measure of a ball of a radius L1R.

Proof of F (BR,x0
) ⊂ BL1R,F (x0)

First of all, for every z ∈ F (BR,x0), there exist x ∈ BR
such that F−1(z) = x, we have:

‖F (F−1(z))− F (x0)‖ = ‖F (x)− F (x0)‖
≤ L1‖x− x0‖
≤ L1R

Upper bound of Q(BL1R) First of all, it can be easily
establish that Q(BL1R(F (x0))) is at a maximum when
F (x0) = 0. From now on, we will only consider BL1R

the ball centered on 0. Therefore the objective is to find an
upper bound on:

Q(BL1R) =
∫
‖z‖<L1R

q(z)dz

=
∫
‖z‖<L1R

1
(
√

2π)d
e−‖z‖

2/2dz

We can use the polar coordinates system to get another
expression of the Gaussian measure with Sd−1(r) =
2πd/2rd−1

Q(d/2) being the volume of the hypersphere:

Q(BL1R) = 1
(2π)d/2

∫ L1R

0
Sd−1(r)e−r

2/2dr

= 2
2d/2Γ(d/2)

∫ L1R

0
rd−1e−r

2/2dr

However rd−1e−r
2/2 has a maximum value reached for

r =
√
d− 1, we can have an upper bound:

Q(BL1R) ≤ 2
2d/2Γ(d/2)

√
d− 1

d−1
e−

d−1
2

∫ L1R

0
dr

≤
√

2L1R
Γ(d/2)

(
d−1
2e

) d−1
2

Then, with the Stirling approximation of the Gamma func-
tion:

1

2
Γ(d/2) =

1

d
Γ(d/2 + 1)

≥
√
π
√
d

d
(d/2)d/2e−d/2

≥
√
π

2d/2
d

d−1
2 e−

d
2

We obtain:

Q(BL1R) ≤ 2
2d/2Γ(d/2)

(d− 1)
d−1
2 e−

d−1
2

≤ L1R
√
e√

π

(
d−1
d

) d−1
2

Using the bound

1√
e
<

(
d− 1

d

) d−1
2

,

we have
Q(BL1R) <

L1R√
π
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Otherwise, an inequality from (Ball, 1993) give for the hy-
persphere in Rd−1, an upper bound of the Gaussian Measure
over a convex set C in Rd:

∀d ≥ 2,

∫
∂C

q < 4d1/4

Therefore, for a Ball BL1R:

∀d ≥ 2, Q(BL1R) < 4d1/4L1R

Lower Bound of the TV As soon as we have an upper
bound on Q(BL1R), we have:

DTV(P ∗, P̂ ) ≥ sup
R,x0

(
P ∗(BR,x0)− L1R√

π

)
With the second upper bound, the theorem can be formulated
as:

DTV(µ∗, µθ) > sup
R,x0

(
µ∗(BR,x0

)− 4d1/4RL1

)
A.3. Proof of theorem 3.3

In this section, we denote BR = BR,F−1(0). As F−1 is
L2-Lipschitz, F−1(BR/L2,0) ⊂ BR and thus

P̂ (BR) ≥ P̂ (F−1(BR)) = Q(BR/L2,0).

By construction

Q(BR/L2,0) = P
(
‖z‖2 ≤ R2

L2
2

)
,

when z follows the standard Gaussian distribution in Rd.
This quantity can be computed using the cumulative distri-
bution function of the chi-square distribution, i.e.

Q(BR/L2,0) =
γ(d2 ,

R2

2L2
2
)

Γ(d2 )
,

where γ is the lower incomplete gamma function given by

γ(x, k) =

∫ x

0

tk−1e−tdt.

A.4. Proof of Corollary 3.3.1

Since M1 and M2 are separated by a distance D the ball
centered on F−1(0) has a radius at least as big as D that we
might call BD to simplify the notation. Therefore:

ᾱ = P̂ (M1) + P̂ (M2)

= 1− P̂ (M2 ∪M1)

≤ 1− P̂ (BD)
≤ 1−Q(F (BD))
≤ 1−Q(BD/L2

))

≤ 1−
γ( d

2 ,
D2

2L2
2

)

Γ( d
2 )

And since P ∗(BD) = 0:

DTV(P ∗, P̂ ) ≥ |P̂ (BD)− P ∗(BD)|
≥ P̂ (BD(F−1(0))

≥
γ( d

2 ,
D2

2L2
2

)

Γ( d
2 )

B. The link with the Precision and Recall for
generative models

B.1. Definitions of the precision and the recall

The precision and the recall are defined as such :
Definition B.1. For α, β ∈ [0, 1], the distributions P̂ is
said to have a precision α at recall β with respect to P ∗

if there exist the distributions ν, ν̂, ν∗, such that P̂ and P ∗

can be decomposed as such :

P̂ = αν + (1− α)ν̂ and P ∗ = βν + (1− β)ν∗

The distribution ν defined on Supp(P̂ ) ∪ Supp(P ∗) while
Supp(ν̂) = Supp(P̂ ) and Supp(P ∗) = Supp(ν∗)

It can be interpreted as such in (Sajjadi et al., 2018): ν
represent the part of P ∗ that P̂ correctly models, ν̂ is si-
multaneously the part of P ∗ that P̂ misses on their joint
support and all the points that should not be represented
by P̂ . Finally, ν∗ cover the points of P ∗ that P̂ could not
model and the difference between ν and ν̂ on their joint
support. Among all the potential decompositions, i.e. the
pairs (α, β), the focus is set on the maximum precision ᾱ
and the maximum recall β̄.
Proposition B.1. The maximum precision and the maxi-
mum recall satisfy :

ᾱ = P̂ (Supp(P ∗)) and β̄ = P ∗(Supp(P̂ ))

An improved version of the precision and the recall are
defined in (Kynkäänniemi et al., 2019).

B.2. The link between the maximum precision, the
maximum recall and the TV distance

The link between the TV and the maximum precision ᾱ and
the maximum recall β̄ is :

DTV(P ∗, P̂ ) ≥ |P ∗(Supp(P ∗))−P̂ (Supp(P ∗))| = 1−ᾱ

DTV(P ∗, P̂ ) ≥ |P ∗(Supp(P̂ ))− P̂ (Supp(P̂ ))| = 1− β̄

B.3. Corollary 3.3.1 given in terms of maximum
precision

Corollary B.0.1 (F−1 L2-Lipschitz). If F−1 is L2-
Lipschitz, therefore we have an upper bound on the maxi-
mum precision based on the distance D between M1 and
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M2:

ᾱ ≤ 1−+
γ(d2 ,

D2

2L2
2
)

Γ(d2 )

This result is to be compared with the actual upper bound
on the maximum precision:

ᾱ+
2D

L2
e−Φ−1(ᾱ/2)2 ≤ 1 where Φ(t) =

∫ t

−∞

exp(−r2/2)

2π
dr

Our result may depend on the dimension but an upper bound
of the precision can be directly computed.


