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ABSTRACT

Weakly Supervised Referring Expression Comprehension (WREC) aims to locate
the target object described by a given expression using weak supervision signals,
such as image-text pairs. Existing WREC methods typically assume that for ev-
ery expression, there is always a corresponding object in the image or each frame
of a video, ignoring scenarios where multiple objects or no objects match the
expression. Additionally, current WREC methods primarily rely on contrastive
learning, using numerous positive and negative pairs to construct the loss. This
approach has drawbacks: it incurs high computational and memory costs, reduces
training efficiency, and is highly sensitive to pair selection, which can lead to un-
stable convergence or overfitting to specific pairs. In this paper, we introduce a
new task, Weakly Supervised Generalized Referring Expression Comprehension
(WGREC), which extends traditional WREC to handle more realistic and com-
plex scenarios. To address this task, we design a novel graph-based knowledge
distillation network (GKDN) guided by a large language model (LLM). By using
the LLM, we obtain two types of information: (1) descriptions of object candi-
dates and their relationships, and (2) pseudo-target positions for single or multiple
objects mentioned in the expression. This information helps our network build
attention graphs that model the link between objects and the expression while fil-
tering out irrelevant candidates. Finally, a concise objective function is designed,
leveraging predictions, expressions, and pseudo target positions, to distill the ca-
pabilities of the LLM into our network. Extensive experiments on gRefCOCO,
RefCOCO, RefCOCO+, and RefCOCOg datasets demonstrate that our method
achieves state-of-the-art (SoTA) performance, highlighting the effectiveness of
our approach and its potential to advance the field of WGREC.

1 INTRODUCTION

Vision-language representation learning is a fast-growing field in computer vision, supporting tasks
like referring expression comprehension (REC) Hamilton et al. (2024); Zhang et al. (2024), gen-
eration (REG) Sun et al. (2023a), segmentation (RES) Liang et al. (2022), visual question answer-
ing Dancette et al. (2023), image captioning Luo et al. (2023), and scene understanding Peng et al.
(2023a).

Among these tasks, weakly supervised referring expression comprehension (WREC) helps connect
visual and textual information by identifying objects described in natural language using limited
supervision. Unlike fully supervised methods, WREC learns from image-expression pairs without
access to exact object locations, requiring the model to infer the link between text and image during
training.

While WREC methods have made strong progress, they still face two key challenges. First, most
assume each expression refers to exactly one object in the image, which doesn’t account for more
complex cases where multiple or no objects match the expression. This limits their use in real-world
applications. Second, many rely heavily on contrastive learning and complex loss functions, which
can hurt generalization. Although recent work Liu et al. (2023a) introduced a broader task called
generalized referring expression segmentation to handle more realistic situations, extending WREC
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Figure 1: Our method operates differently during the training and inference phases. During training,
the LLM enhances the learning process by generating descriptions and pseudo labels, enabling the
GKDN to acquire capabilities from the LLM. During inference, only image-expression pairs are
input into the GKDN for prediction, ensuring efficient and independent deployment.

to these cases is still unexplored. Also, the method in Liu et al. (2023a) may include irrelevant image
regions when selecting object candidates, adding noise that can weaken performance.

Based on the aforementioned issues, a natural question arises: Can traditional WREC be extended
to handle more realistic and complex scenarios, and what would be an appropriate method to ad-
dress this challenge? In this paper, we introduce a new task, termed Weakly Supervised Generalized
Referring Expression Comprehension (WGREC), and propose a novel baseline network, referred
to as the Graph-Based Knowledge Distillation Network, as illustrated in Fig. 1, to tackle this task.
WGREC aims to locate all objects described by the expression in complex scenarios. Moreover, un-
like traditional REC tasks, which return the object closest to the expression when no match is found,
WGREC will return no object if none of the objects in the image correspond to the description.

During training, we use a large language model (LLM) as the teacher model and our designed
model as the student model. In the teacher model, the image is first processed by a Region Proposal
Network (RPN) to generate high-confidence region proposals. These proposals, along with the
image and the referring expression, are fed into the LLM to generate descriptions and predict pseudo
labels for each region proposal. In the student model, the region proposals are passed through a
description generator and classifier to produce corresponding descriptions and labels, which help
distinguish between proposals more precisely. These region proposals, along with their labels and
descriptions, are then input into our dynamic multi-graph attention module to model relationships
between the proposals. The output of this module, combined with the referring expression, is used in
our evaluation strategy to generate the final prediction. The descriptions produced by our method are
aligned with those from the LLM, improving the model’s ability to replicate the LLM’s performance.
During inference, only our proposed method is used for prediction.

In summary, there are three contributions in this paper.

• To the best of our knowledge, we are the first to extend traditional WREC to more realistic
and complex scenarios. Our introduced framework overcomes the limitations of existing
methods by enabling reliable multi-object localization, handling incomplete or noisy anno-
tations.

• To the best of our knowledge, we are the first to apply an LLM-based knowledge distil-
lation strategy to the WREC task. This new approach improves performance in complex
and realistic settings. By using the power of LLMs, our network becomes more compact
and accurately models the relationships between target objects and expressions, leading to
better localization and understanding even in difficult cases.

• We introduce a novel evaluation strategy that enables our method to better adapt to the
diverse scenarios in GREC, including cases with no target, a single target, or multiple
targets.
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2 RELATED WORKS

2.1 WEAKLY SUPERVISED REFERRING EXPRESSION COMPREHENSION (WREC)

Recent state-of-the-art REC methods mostly use transformers and need large, fully annotated
datasets for training. Although they perform well, they require a lot of computing power and man-
ual labeling. To address this, WREC methods have been developed, using weaker supervision like
image-text pairs to cut down on annotation effort and resource use. Early WREC methods Gpta et al.
(2020); Liu et al. (2019a;b; 2021); Sun et al. (2021); Wang et al. (2021); Zhang et al. (2020); Liu
et al. (2023b); Jiang et al. (2022); Liu et al. (2023c); Ji et al. (2024); Sun et al. (2023b); Chen et al.
(2018) primarily focused on two-stage frameworks. Among these, Liu et al. (2019b; 2023b); Sun
et al. (2021; 2023b); Chen et al. (2018); Ji et al. (2024); Jiang et al. (2022); Liu et al. (2023c); Jiang
et al. (2022); Liu et al. (2023c) introduce a reconstruction-based strategy that generates descriptions
for object proposals in an image. These generated descriptions, along with the input expression and
object proposals, are then combined and fed into vision-language interaction modules to localize
the target object, guided by contrastive learning techniques. Among, Liu et al. (2021) proposes a
coarse-to fine graph-based method to model relationships between object proposals during their in-
teraction with the expression, improving localization performance. Wang et al. (2021) introduces
a knowledge distillation strategy, aiming to extract the capabilities of an object detector to enhance
performance. In contrast, existing one-stage WREC methods Jin et al. (2023); Luo et al. (2025);
Zhao et al. (2018) employ anchor-text matching combined with contrastive learning for prediction.

However, existing WREC methods face two key challenges, as most assume each expression refers
to exactly one object—ignoring cases with multiple or no matches—and many rely on complex
contrastive learning frameworks that hinder generalization. To address these issues, we introduce a
new task, Weakly Supervised Generalized Referring Expression Comprehension (WGREC), which
extends WREC to more complex and realistic scenarios by handling multiple objects, modeling
their relationships, and learning from limited labeled data. Furthermore, we propose a Graph-based
Knowledge Distillation Network (GKDN) tailored for WGREC, which alleviates the limitations of
existing WREC approaches, achieves state-of-the-art performance, and generalizes effectively to
this broader task.

2.2 VISION-LANGUAGE LARGE MULTIMODAL MODELS FOR REC

Leveraging the remarkable generalization capabilities of LLMs, recent studies have expanded their
application to multi-modal domains by aligning visual inputs with LLMs. Early works, such as
VisualGPT Chen et al. (2022) and Frozen Tsimpoukelli et al. (2021), leveraged pre-trained lan-
guage models to enhance vision-language tasks like image captioning and visual question answering.
These foundational efforts laid the groundwork for subsequent advancements in vision-language re-
search, including Flamingo Alayrac et al. (2022) and BLIP-2 Li et al. (2023). In the context of REC,
pioneering works Peng et al. (2023b); Chen et al. (2023b;a); Zhang et al. (2025); Guo et al. (2024)
focus on integrating the target object to be localized and representing object locations using textual
coordinates or coordinate placeholders. This approach equips models with initial capabilities for
target object prediction. Subsequent research Wang et al. (2024) further improves REC performance
by incorporating data from diverse visual tasks and introducing more flexible referencing methods.
Notably, Griffon Zhan et al. (2025) and Griffon-v2 Zhan et al. (2024) unify localization tasks of
varying granularities through next-token prediction, enabling Large Multi-modal Models (LMMs)
to handle complex visual tasks included REC. Additionally, studies Jiao et al. (2024); Wang et al.
(2023); Zhao et al. (2023); Ma et al. (2025) enhance the positional perception abilities of models
in visual tasks by integrating visual expert models or specialized decoding structures. These meth-
ods provide valuable insights into enabling LMMs to tackle both visual and vision-language tasks
effectively.

To the best of our knowledge, LLMs have not yet been applied to the WREC task. In this paper, we
propose a method guided by knowledge distilled from LLMs. By leveraging this knowledge, our
approach achieves a more compact model size while maintaining competitive performance on both
WREC and WGREC tasks. Additionally, we introduce a new evaluation strategy that better captures
the flexible and complex nature of GREC scenarios.
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Figure 2: The object proposals and input expression are processed by a large language model (LLM)
and a language parser to get region descriptions and text features. The LLM’s descriptions serve as
pseudo-labels to help the description module generate better descriptions. Each proposal, along
with its category and description, is used to build three graphs: a visual graph, a category graph, and
a description graph. The visual and category graphs are combined using cross-modal attention to
create a vision-text graph. This graph is then merged with the description graph and passed through
the multi-DynaRecon module to find the regions most relevant to the expression. VTG and RDG
denote the vision-text graph and the region-description graph, respectively.

3 METHODOLOGY

Figure 2 illustrates our proposed framework, detailing both the training and sampling phases. The
Graph-Based Knowledge Distillation Network (GKDN) has four main parts: a Relation-Aware
Module that captures relationships between object proposals, a Graph Construction Module that
builds three types of graphs, a Cross-Modality Attention Module that combines information from
different graphs, and a Multi-DynaRecon Module that gradually refines the graph nodes most rele-
vant to the input expression.

3.1 PRELIMINARY

Given an image I and an expression Q composed of L words, we first employ a RPN network to
generate K object proposals, denoted as O =

{
oi ∈ RDo

}K

i=1
. These proposals are then processed

by a classifier to obtain their corresponding categorical labels C =
{
ci ∈ RDc

}K

i=1
. For the expres-

sion Q, we use BERT to embed each token as well as the entire expression. The resulting token
embeddings are represented

{
γi ∈ Rdγ

}L

i=1
, while the full expression embedding is denoted as q.

Relation-Aware Module. Previous reconstruction-based WREC methods reconstruct each ob-
ject proposal’s expression independently, ignoring relationships between proposals. To ad-
dress this limitation, we propose a relation-aware module that generates new regions by
combining object proposal positions. These reconstructed regions are then processed by
the description construction module to recover relationship descriptions. Specifically, let
the positions of the i-th and j-th objects be [lefti, topi, righti, bottomi] and [leftj ,
topj , rightj , bottomj], respectively. A new region posij is constructed as: posij =

4
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[max(lefti, leftj),max(topi, topj),max(righti, rightj),max(bottomi, rightj)]. Here, content
outside the overlapping area of proposals i and j is masked. The resulting region is then fed into the
description construction module for description generation.

LLMs. To effectively leverage the knowledge from the LLMs, we first input the object proposals
directly into the LLMs to generate descriptions for each proposal. The resulting object descriptions
are denoted as P =

{
pi ∈ RDp

}K

i=1
. Next, we combine every pair of object proposals with the

entire image and feed them into the LLM to obtain corresponding relationship descriptions, denoted
as R =

{
rij ∈ RDr

}K

i,j=1
.

3.2 GRAPH CONSTRUCTION

Visual, Categorical and Description Graph. After obtaining the object proposals along with
their corresponding categorical labels and descriptions, we construct three graphs: a visual graph
Ga, a categorical graph Gc and a description graph Gp. For the visual graph Ga = (Va, Ea),
the node features are denoted as Va =

{
vai ∈ Rda

}k

i=1
, and the edge features are E ={

eaij ∈ Rda
}k

i,j=1
. The i-th node feature of Ga is computed as:

vai = Wvis ([oi;µi]) + ba, (1)
where Wvis is a trainable weight matrix. ba is a trainable bias vector. oi denotes the visual features
of the i-th object proposal. µi = Wµ [xi, yi, wi, hi, wihi] encodes the spatial features of the i-th
proposal. Here, (xi, yi) are the normalized 2D coordinates of its center, while wi, hi, and wihi

represent the normalized width, height, and area, respectively. Wµ is a trainable parameters matrix.
The edge features between the i-th and j-th node of Ga is denoted as

eaij = Wedge

([
vai ; v

a
j ;µi;µj

])
, (2)

where Wedge is a trainable weight matrix.

For the categorical graph Gc, the node and edge weights are computed similarly, except that all
visual features (e.g., oi) are replaced by their corresponding textual features.

For the description graph Gp = (Vp, Ep), the node features Vp =
{
vpi ∈ Rdp

}k

i=1
and edge fea-

tures E =
{
epij ∈ Rdp

}k

i,j=1
are generated by the description construction module, which encodes

linguistic information from object descriptions P and their relationships R.

Cross-Modality Attention Fusion Module. To improve object proposal representation and
strengthen the graph nodes relevant to the referring expression, we extract each node from both the
visual graph Ga and categorical graph Gc to compute its similarity with the expression. Formally,
for the i-th node of Ga, the similarity scores are calculated as:

sai = Wa[tanh(v
a
i +Wqq)], (3)

where Wa and Wq denote trainable parameter matrices. The similarity scores between the edges
of Ga and the expression are similarly computed as

τaij = Wedge,a[tanh(e
a
ij +Wqq)], (4)

where Wedge,a denote trainable parameter matrix. The computation of node and edge scores for
categorical graphs is similar to that of visual graphs, except the label ‘a’ is replaced with ‘c’.

Then, we combine and fuse the nodes and edges from both graphs with their corresponding similarity
scores and the expression to construct a vision-text graph Gac. The i-th node of Gac is computed as

vaci = sai v
a
i + sciv

c
i ,

vaci = We2 (tanh (We1 [v
ac
i ; q])) ,

(5)

where We1 and We2 denote trainable parameter matrices. Furthermore, the node weight of the i-th
node of Gac is computed as

saci = sai + sci ,

wac
i =

exp (saci )∑K
n=1 exp (s

ac
n )

.
(6)
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Similarly, the edge weight of the Gac is computed as

τacij = τaij + τ cij ,

wac
ij =

exp
(
τacij

)∑K
n=1 exp (τ

ac
in )

.
(7)

For the description graph Gp, the node and edge weights are computed similarly to the visual graph,
denoted as {wp

i }
K
i=1 and

{
wp

ij

}K

i,j=1
.

3.3 MULTI-DYNARECON

Using the input expression as guidance, we apply a one-step reasoning method from Ke et al. (2025)
to both the vision-text and description graphs. This reduces the impact of unrelated nodes. We then
combine the refined graphs to improve the quality of the descriptions.

Specifically, let the nodes of the vision-text graph Gac (t) and the description graph Gp (t) at t
reasoning step (t ≥ 1) reasoning step be denoted as {vaci (t)}Ki=1 and {vpi (t)}

K
i=1, respectively. The

nodes in the vision-text graph that are identified as strongly related to the expression—based on the
strategy in Ke et al. (2025)—are passed through an MLP module to generate Kt four-dimensional
positional embeddings, where Kt is the number of such labeled nodes at step t. In other words, each
labeled node (high related to the expression) produces a 4D positional embedding.

These Kt generated positions, along with the full image, are passed through the relation-aware
module and the description construction module to refine both object descriptions and their cor-
responding relationship descriptions. Finally, we update Gac (t) and Gp (t) by fusing the refined
descriptions and vision-text graph nodes at step t with their counterparts from step t − 1. In this
process, the edge features of Gac (t) are computed as:

eacij (t) = Wac,t

([
vaci (t) ; vacj (t) ; q

])
, (8)

where Wac,t is the trainable parameter matrix. The node and edge weights of Gac (t) and Gp (t)
are computed similarly to Ga (i.e., following Eq. 3 and 4).

3.4 MATCHING

Previous method Liu et al. (2023a) used a two-stage evaluation strategy for GREC during loss func-
tion design. It first used a classifier to check if the target object mentioned in the expression exists in
the image. If so, it then searched for related object proposals using a threshold. This process reduced
localization efficiency. To improve this, after reasoning over T , we design the matching loss with a
novel evaluation strategy that uses only one threshold for object searching. For each example, we
calculate similarity scores between the final aggregated node features from both graphs (Gac(T ) and
Gp(T )) and the textual features of the entire expression q, as follow:

ξ∗i =

〈
WMv∗i (T )

∥WMv∗i (T ) ∥
,

Wqq

∥Wqq∥

〉
∗ ∈ {ac, p} , (9)

where WM and Wq represent trainable parameter matrices.

For samples with label r = 1 (indicating one or more objects match the expression), Y denote the
number of pseudo ground-truth (PGT) objects generated by the LLM. We compute the matching
loss using the similarity scores ξ∗i,gt of PGT nodes in both graphs as follows:

Pgt =

∑Y
i=1

exp(ξac
i,pgt+ξpi,pgt)∑K

j=1 exp
(
ξacj + ξpj

)
Y

,

Ls = − log (Ppgt) .

(10)

To enhance bounding box accuracy, we first concatenate the expression features with the ground-
truth node features from both graphs. These combined features are then used to refine the target

6
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Table 1: Comparison between our method and other approaches on the gRefCOCO dataset.
MiniGPT− v2† and MiniGPT− v2∗ represent MiniGPT-v2 denote MiniGPT-v2 evaluated us-
ing the strategy from Liu et al. (2023a) and our evaluation strategy, respectively. GKDN w/ F and
GKDN w/ W refer to our GKDN model under fully supervised and weakly supervised settings,
respectively. The best results are shown in bold, and weakly supervised results are shown in blue.

Methods Visual Encoder val testA testB
Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc

MCN DarkNet-53 28.0 30.6 32.3 32.0 26.8 30.3
VLT DarkNet-53 36.6 35.2 40.2 34.1 30.2 32.5

MDETR ResNet-101 42.7 36.3 50.0 34.5 36.5 31.0
UNINEXT ResNet-50 58.2 50.6 46.4 49.3 42.9 48.2

MiniGPT − v2† ViT 61.7 52.2 50.6 51.5 45.4 50.7
MiniGPT − v2∗ ViT 60.8 51.7 51.0 50.8 45.8 50.3

GKDN w/ F ResNet-101 45.2 44.6 49.7 38.3 38.5 33.7
GKDN w/ W ResNet-101 32.7 31.5 35.3 23.4 27.2 19.8

Table 2: Comparison between our method and other WREC approaches on the RefCOCO, /+/g
datasets.

Methods Visual Encoder RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g

VC VGG16 - 32.68 27.22 - 34.68 28.10 29.65
IGN ResNet101 34.78 - - - 36.91 36.91 35.46
ARN ResNet101 32.17 35.25 30.28 32.78 34.35 32.13 33.09

DTWREG ResNet101 38.35 39.51 37.01 38.19 39.91 37.09 42.54
APL DarkNet-53 64.51 61.91 63.57 42.70 42.84 39.80 50.22

RefCLIP DarkNet-53 60.36 58.58 57.13 40.39 40.45 38.86 47.87
GKDN ResNet101 67.84 65.84 62.18 47.65 46.28 42.36 53.34

object’s bounding box through additional fully-connected layers, supervised by a smooth L1 loss
(SmoothL1(·, ·)) between predicted and ground-truth boxes:

bi,pred = MLP
([

vaci,pgt(T ); v
p
i,pgt(T )

]
; q
)
,

Lreg =

∑Y
i=1 SmoothL1(bi,pred, bi,pgt)

Y
,

(11)

where bi,pred denotes the i-th predicted 4D bounding box vector (output by an MLP and bi,pgt
represents the i-th pseudo ground-truth box.

For samples with label r = 0 (indicating no target object matches the expression), the loss function
is defined as:

Lneg =

∑K
i=1 ξ

ac
i + ξpi

2K
, (12)

Thus, the final loss of our method is defined as:

L = Ls + Lreg + Lneg, (13)

During inference, we compute node-expression similarity scores between both graphs’ features
(Gac(T ), Gp(T )) and q. If all K scores ( ξ

ac
i +ξpi

2 ) fall below threshold, no target exists. Other-
wise, we consider the prediction correct if: (1) the number of matching nodes ≥ ground-truth boxes,
and (2) all corresponding predicted boxes have IoU ≥ 0.5 with ground-truth boxes (keeping only
the highest-IoU prediction when multiple boxes match one ground-truth).

4 EXPERIMENTAL RESULTS

In this section, we present extensive evaluation results of the proposed method on three challenging
REC benchmarks—RefCOCO Kazemzadeh et al. (2014), RefCOCO+ Kazemzadeh et al. (2014),
and RefCOCOg Mao et al. (2016)—as well as one challenging GREC benchmark: gRefCOCO Liu
et al. (2023a). RefCOCO and RefCOCO+ contain relatively short expressions, with average lengths
of 3.61 and 3.65 words, respectively. In contrast, RefCOCOg and Ref-reasoning feature longer and
more complex expressions, averaging 8.4 and 8.5 words, respectively. Due to limited space, we
provide detailed information about these datasets and implementation details in the supplementary
materials.
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Table 3: Ablation study of our method with different LLMs on the gRefCOCO dataset. GKDN w/ M
and GKDN w/ G represent GKDN using MiniGPT-v2 and Grounding DINO as the teacher model,
respectively.

Methods Visual Encoder val testA testB
Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc

MiniGPT-v2 (untrained) ViT 43.65 39.72 40.14 39.67 31.42 38.70
MiniGPT-v2 ViT 60.83 51.72 51.03 50.85 45.83 50.37

Grounding DINO ViT 42.84 41.35 41.54 41.62 32.38 40.26
GKDN w/ M (untrained) ResNet-101 14.34 25.83 23.25 14.64 17.82 15.62

GKDN w/ L ResNet-101 15.44 25.63 24.74 15.52 19.05 14.93
GKDN w/ M ResNet-101 32.75 31.54 35.32 23.43 27.24 19.85

Table 4: Ablation studies of our method using different numbers of graphs. V, C, and P stand for the
visual, categorical, and description graph.

V V+C V+C+P
Val TestA TestB

Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc
✓ 30.83 30.07 33.52 21.75 25.44 18.73
✓ ✓ 31.33 30.26 33.74 22.68 25.94 18.75
✓ ✓ ✓ 32.75 31.54 35.32 23.43 27.24 19.85

4.1 EVALUATION RESULTS

We first present the evaluation results of our method (GKND) and other baseline approaches on the
gRefCOCO dataset. To adapt MiniGPT-v2 to this task, we integrate it with our proposed evaluation
evaluation and fine-tune it on the gRefCOCO dataset. As shown in the second-to-last part of Table 1,
MiniGPT-v2 achieves the best performance. Additionally, when applying the two-stage evaluation
strategy from Liu et al. (2023a) to MiniGPT-v2, we observe that its performance under both their
strategy and ours is very similar. However, our evaluation strategy relies solely on a threshold-
based approach, without the need for a two-stage strategy, making it more efficient than the method
proposed in Liu et al. (2023a).

In the bottom section of Table 1, under the fully supervised setting, GKDN outperforms most SoTA
methods, with the exception of MiniGPT-v2 and UNINEXT, which rely on large pre-trained lan-
guage models and require significantly more computational resources. Under the weakly supervised
setting, guided by MiniGPT-v2, our method still surpasses several SoTA methods. These results
demonstrate that GKND is competitive under full supervision on gRefCOCO and has strong poten-
tial for WGREC.

We further compare our method with WREC methods on the RefCOCO /+/g datasets. The results
in Table 2 show that, on average, our method outperforms the current SoTA WREC method (APL)
by about 2.84%. Taken together, the results from Tables 1 and 2 confirm that our method achieves
strong performance in both generalized referring expression comprehension (GREC) and WREC,
especially with the assistance of large language models (LLMs). Although our performance in
WGREC is not yet remarkable, as the first work in this area, it demonstrates significant promise and
establishes a meaningful foundation for future research.

4.2 ABLATION STUDIES

We begin by evaluating the performance of our method using different LLMs. As shown in Table 3,
without training, both MiniGPT-v2 and Grounding DINO (11B) perform noticeably worse than
the trained version of MiniGPT-v2. Additionally, our method performs slightly better when using
Grounding DINO as the teacher model compared to the untrained MiniGPT-v2. Aforementioned
results suggest that current smaller-scale LLMs still hold significant potential for the GREC task.
Using a larger model such as Grounding DINO may further improve GKDN’s performance.

Later, we analyze the effectiveness of the visual graph, categorical graph, and description graph
in our network. The results presented in Table 4 show that the performance of GKDN gradually
improves when the categorical and description graphs are combined. Specifically, when the cate-
gorical graph is fused with the visual graph, the performance of our method improves by an average
of 0.39%. However, when the description graph is considered, the performance improves by an
average of 1.23%. These results show that both the categorical and description graphs provide com-
plementary and valuable information, helping GKDN achieve better performance.
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Table 5: Ablation study of multi-DynaRecon on the gRefCOCO dataset. GKDN w/o R and GKDN
w/o F indicate GKDN without the description strategy and graph fusion strategy, respectively.

Methods Visual Encoder val testA testB
Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc

GKDN w/o R ResNet-101 31.25 30.58 34.66 22.94 26.75 18.72
GKDN w/o F ResNet-101 31.68 30.74 34.83 23.07 26.87 19.45

GKDN ResNet-101 32.75 31.54 35.32 23.43 27.24 19.85

Figure 3: Visualization of our method on WREC and GWREC tasks. The first two samples in the
top row show results on the WREC task, while the remaining samples show results on the GWREC
task. Red bounding boxes represent the predicted results, and green bounding boxes indicate the
ground truth.

Finally, let’s focus on the advantages of our proposed multi-dynaRecon module. The results pre-
sented in Table 5 show that removing the description reconstruction and graph fusion strategies leads
to a slight decrease in performance. These findings demonstrate that gradually fusing graphs from
previous reasoning steps helps accumulate valid information. Furthermore, the combination of the
reconstruction operation and the removal of unrelated nodes effectively guides the model to focus
on object proposals that are highly relevant to the expression.

4.3 VISUALIZATION

”In addition to the quantitative results, we also provide visual examples of our method in Figure 3.
The first row shows accurate predictions made by our method, while the second row illustrates failure
cases. In the first row, the first two samples present results from the WREC task, and the remaining
three are from the GWREC task. It is evident that our method performs well on both tasks. Notably,
in the third sample, no objects are related to the ‘dog’, so the proposed method doesn’t output any
bounding boxes. In the fifth sample, although there are four motorbikes with identical shapes, our
method successfully locates each one correctly. In contrast, the second row highlights cases of
incorrect predictions. In the first sample, the target objects are clustered and partially overlapping,
resulting in incorrect localization. In the second sample, one ‘giraffe’ is occluded by the other,
preventing the model from accurately locating it. In the last two samples, the model fails to detect
all targets due to the dark background.

5 CONCLUSION

In this paper, we make a pioneering contribution by introducing a new task—Weakly Supervised
Generalized Referring Expression Comprehension (WGREC)—which, to the best of our knowledge,
is the first to extend traditional WREC to more realistic and complex scenarios. To address this task,
we propose a novel Graph-based Knowledge Distillation Network (GKDN) guided by a Large Lan-
guage Model (LLM). The LLM is used to generate enriched descriptions for object proposals, their
relationships, and pseudo-target positions in both single-object and multi-object scenarios described
by the expressions. These enhanced representations help our network construct a series of attention
graphs that effectively model the relationships between object candidates and the referring expres-
sion while filtering out irrelevant candidates. Furthermore, we introduce a new evaluation strategy
that remains compatible with existing REC methods. Extensive experiments on four datasets show
that our method achieves state-of-the-art performance on the WREC task. Although our method’s
performance on WGREC is not yet outstanding, this work serves as a foundational step, offering
valuable insights for future research in this direction.
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available and contain no personally identifiable information. We confirm that this research com-
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designed and written by the authors, who take full responsibility for the final content.
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Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual
language model for few-shot learning. In NIPS, 2022.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
ing. In CVPR, 2018.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adapta-
tion of pretrained language models for image captioning. In CVPR, 2022.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Kr-
ishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large lan-
guage model as a unified interface for vision-language multi-task learning, 2023a.

Kan Chen, Jiyang Gao, and Ram Nevatia. Knowledge aided consistency for weakly supervised
phrase grounding. In CVPR, June 2018.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal llm’s referential dialogue magic. In CoRR, 2023b.

Long Chen, Wenbo Ma, Jun Xiao, Hanwang Zhang, and Shih-Fu Chang. Ref-NMS: Breaking
proposal bottlenecks in two-stage referring expression grounding. In AAAI, 2021.

Corentin Dancette, Spencer Whitehead, Rishabh Maheshwary, Ramakrishna Vedantam, Stefan
Scherer, Xinlei Chen, Matthieu Cord, and Marcus Rohrbach. Improving selective visual ques-
tion answering by learning from your peers. In CVPR, 2023.

Tanmay Gpta, Arash Vahdat, Gal Chechik, Xiaodong Yang, Jan Kautz, and Derek Hoiem. Con-
trastive learning for weakly supervised phrase grounding. In ECCV, 2020.

Qiushan Guo, Shalini De Mello, Hongxu Yin, Wonmin Byeon, Ka Chun Cheung, Yizhou Yu, Ping
Luo, and Sifei Liu. Regiongpt: Towards region understanding vision language model. In CVPR,
2024.

Mark Hamilton, Andrew Zisserman, John R. Hershey, and William T. Freeman. Separating the
”chirp” from the ”chat”: Self-supervised visual grounding of sound and language. In CVPR,
2024.

Shuting He, Henghui Ding, Chang Liu, and Xudong Jiang. Grec: Generalized referring expression
comprehension. In CoRR, 2023.

Zhong Ji, Jiahe Wu, Yaodong Wang, Aiping Yang, and Jungong Han. Progressive semantic recon-
struction network for weakly supervised referring expression grounding. TCSVT, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haojun Jiang, Yuanze Lin, Dongchen Han, Shiji Song, and Gao Huang. Pseudo-q: Generating
pseudo language queries for visual grounding. In CVPR, 2022.

Yang Jiao, Shaoxiang Chen, Zequn Jie, Jingjing Chen, Lin Ma, and Yu-Gang Jiang. Lumen: Un-
leashing versatile vision-centric capabilities of large multimodal models. In CoRR, 2024.

Lei Jin, Gen Luo, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Annan Shu, and Rongrong Ji. Refclip:
A universal teacher for weakly supervised referring expression comprehension. In CVPR, 2023.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferItGame: Referring to
objects in photographs of natural scenes. In EMNLP, 2014.

Jingcheng Ke, Dele Wang, Jun-Cheng Chen, I-Hong Jhuo, Chia-Wen Lin, and Yen-Yu Lin. Make
graph-based referring expression comprehension great again through expression-guided dynamic
gating and regression. TMM, 2025.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023.

Chen Liang, Wenguan Wang, Tianfei Zhou, Jiaxu Miao, Yawei Luo, and Yi Yang. Local-global
context aware transformer for language-guided video segmentation. In CoRR, 2022.

Chang Liu, Henghui Ding, and Xudong Jiang. Gres: Generalized referring expression segmentation.
In CVPR, pp. 23592–23601, 2023a.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. In ECCV, 2025.

Xuejing Liu, Liang Li, Shuhui Wang, Zheng-Jun Zha, Dechao Meng, and Qingming Huang. Adap-
tive reconstruction network for weakly supervised referring expression grounding. In ICCV,
2019a.

Xuejing Liu, Liang Li, Shuhui Wang, Zheng-Jun Zha, Li Su, and Qingming Huang. Knowledge-
guided pairwise reconstruction network for weakly supervised referring expression grounding. In
MM, 2019b.

Xuejing Liu, Liang Li, Shuhui Wang, Zheng-Jun Zha, Zechao Li, Qi Tian, and Qingming Huang.
Entity-enhanced adaptive reconstruction network for weakly supervised referring expression
grounding. TPAMI, 2023b.

Yang Liu, Jiahua Zhang, Qingchao Chen, and Yuxin Peng. Confidence-aware pseudo-label learning
for weakly supervised visual grounding. In ICCV, 2023c.

Yongfei Liu, Bo Wan, Lin Ma, and Xuming He. Relation-aware instance refinement for weakly
supervised visual grounding. In CVPR, 2021.

Jianjie Luo, Yehao Li, Yingwei Pan, Ting Yao, Jianlin Feng, Hongyang Chao, and Tao Mei.
Semantic-conditional diffusion networks for image captioning. In CVPR, 2023.

Yaxin Luo, Xiaofu Ji, Jiayiand Chen, Yuxin Zhang, Tianhe Ren, and Gen Luo. Apl: Anchor-based
prompt learning for one-stage weakly supervised referring expression comprehension. In ECCV,
2025.

Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and Xiaojuan Qi. Groma: Localized visual
tokenization for grounding multimodal large language models. In ECCV, 2025.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L. Yuille, and Kevin Mur-
phy. Generation and comprehension of unambiguous object descriptions. In CVPR, 2016.

Songyou Peng, Kyle Genova, Chiyu “Max” Jiang, Andrea Tagliasacchi, Marc Pollefeys, and
Thomas Funkhouser. Openscene: 3d scene understanding with open vocabularies. In CVPR,
2023a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei.
Kosmos-2: Grounding multimodal large language models to the world. In CoRR, 2023b.

Jordi Pont-Tuset and Luc Van Gool. Boosting object proposals: From pascal to coco. In ICCV,
2015.

Mengyang Sun, Wei Suo, Peng Wang, Yanning Zhang, and Qi Wu. A proposal-free one-stage frame-
work for referring expression comprehension and generation via dense cross-attention. TMM,
2023a.

Mingjie Sun, Jimin Xiao, Eng Gee Lim, Si Liu, and John Y. Goulermas. Discriminative triad
matching and reconstruction for weakly referring expression grounding. TPAMI, 2021.

Mingjie Sun, Jimin Xiao, Eng Gee Lim, and Yao Zhao. Cycle-free weakly referring expression
grounding with self-paced learning. TMM, 2023b.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. In NIPS, 2021.

Liwei Wang, Jing Huang, Yin Li, Kun Xu, Zhengyuan Yang, and Dong Yu. Improving weakly
supervised visual grounding by contrastive knowledge distillation. In CVPR, 2021.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Keqin Chen, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding,
and Jie Tang. Cogvlm: Visual expert for pretrained language models. In NIPS, 2024.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, and Jifeng Dai. Visionllm: Large language model is also an open-ended
decoder for vision-centric tasks. In NIPS, 2023.

Yufei Zhan, Yousong Zhu, Hongyin Zhao, Fan Yang, Ming Tang, and Jinqiao Wang. Griffon v2:
Advancing multimodal perception with high-resolution scaling and visual-language co-referring.
In CoRR, 2024.

Yufei Zhan, Yousong Zhu, Zhiyang Chen, Fan Yang, Ming Tang, and Jinqiao Wang. Griffon:
Spelling out all object locations at any granularity with large language models. In ECCV, 2025.

Hao Zhang, Hongyang Li, Feng Li, Tianhe Ren, Xueyan Zou, Shilong Liu, Shijia Huang, Jianfeng
Gao, Leizhang, Chunyuan Li, and Jainwei Yang. Llava-grounding: Grounded visual chat with
large multimodal models. In ECCV, 2025.

Yuqi Zhang, Han Luo, and Yinjie Lei. Towards clip-driven language-free 3d visual grounding via
2d-3d relational enhancement and consistency. In CVPR, 2024.

Zhu Zhang, Zhou Zhao, Zhijie Lin, jieming zhu, and Xiuqiang He. Counterfactual contrastive
learning for weakly-supervised vision-language grounding. In NIPS, 2020.

Fang Zhao, Jianshu Li, Jian Zhao, and Jiashi Feng. Weakly supervised phrase localization with
multi-scale anchored transformer network. In CVPR, 2018.

Yang Zhao, Zhijie Lin, Daquan Zhou, Zilong Huang, Jiashi Feng, and Bingyi Kang. Bubogpt:
Enabling visual grounding in multi-modal llms. In CoRR, 2023.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

In this work, we use the region proposal network (RPN) from Chen et al. (2021) to generate object
proposals, and adopt the classifier from Anderson et al. (2018) to classify them. The RPN is based
on a ResNet-101 backbone and the LLM model we used as a teacher model is Grounding DINO Liu
et al. (2025) and MiniGPT-v2 Chen et al. (2023a). To prevent data leakage during training, we re-
move overlapping image categories between the COCO training set and the four datasets used in our

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: Ablation studies of our method in different reasonig steps.

2 3 4
Val TestA TestB

Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc Pr@(F1=1, IoU≥0.5) N-acc
✓ 32.08 31.35 34.44 22.93 26.84 19.56

✓ 32.75 31.54 35.32 23.43 27.24 19.85
✓ 31.25 30.83 34.16 21.95 26.08 18.27

experiments. Furthermore, the evaluation setting for our method on the GREC dataset gRefCOCO
follows the protocol in He et al. (2023). The reasoning step T is set to 3. A threshold of 0.7 is used
to determine whether an object matches the expression—specifically, if the score of a node in the
graph exceeds 0.7, the node is considered relevant to the expression. A prediction is deemed correct
if the Intersection-over-Union (IoU) between the predicted bounding boxes of the selected nodes
and the ground-truth bounding boxes exceeds 0.5.

A.2 DATASETS

• RefCOCO, RefCOCO+, and RefCOCOg: The RefCOCO and RefCOCO+ datasets con-
tain 142,210 and 141,564 expressions referring to 50,000 and 49,856 objects across 19,994
and 19,992 images, respectively. These expressions were collected through an interactive
game. Kazemzadeh et al. Kazemzadeh et al. (2014) divided RefCOCO into training, val-
idation, testA, and testB sets, with 120,624, 10,834, 5,657, and 5,095 expression-object
pairs, respectively. TestA focuses on images with multiple people, while testB contains
images with multiple non-human objects. RefCOCO+ uses the same split, with 120,191,
10,758, 5,726, and 4,889 pairs for training, validation, testA, and testB, respectively. Unlike
RefCOCO, RefCOCO+ excludes expressions based on absolute location. RefCOCOg, in
contrast, was collected in a non-interactive setting and includes 95,010 longer expressions
referring to 49,822 objects in 25,799 images. It is split into 80,512 for training, 4,896 for
validation, and 9,602 for testing. All three datasets are derived from MSCOCOPont-Tuset
& Van Gool (2015) and span 80 object categories.

• gRefCOCO: The dataset includes 278,232 expressions, covering 60,287 unique instances
across 19,994 images. Among these, 80,022 are multi-target expressions and 32,202 are
no-target expressions. All target instances are annotated with both masks and bounding
boxes. Some single-target expressions are inherited from RefCOCO. The annotation pro-
cess follows the ReferIt protocol Kazemzadeh et al. (2014) to ensure high quality, and the
data split aligns with the UNC partition of RefCOCO Kazemzadeh et al. (2014).

A.3 MORE ANALYSIS OF OUR METHOD

In this section, we investigate the effect of the number of reasoning steps on our method. As shown
in Table 6, when the number of reasoning steps is fewer than 3, the performance of our method
improves with each additional step. However, when the number of steps reaches 4, performance
begins to decline. This suggests that exceeding 3 reasoning steps may lead to overfitting.
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