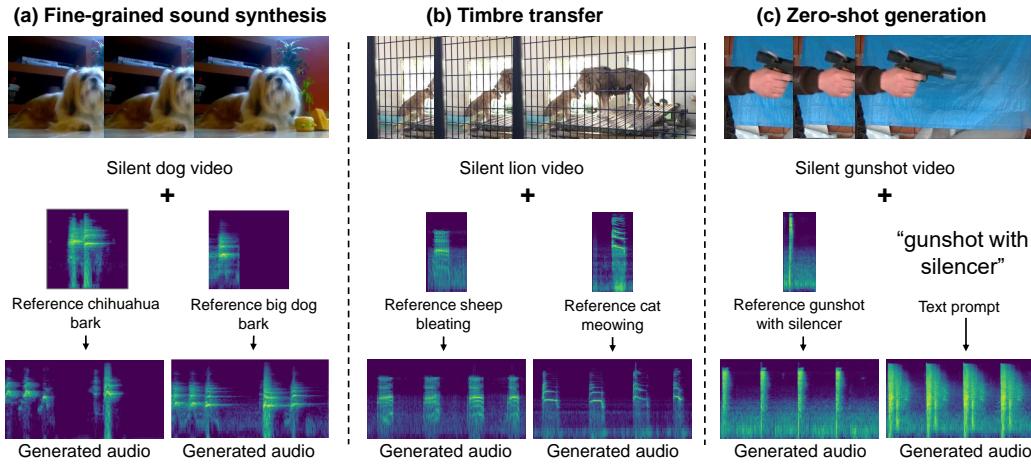


# 000 001 002 003 004 005 006 007 008 009 010 AC-FOLEY: REFERENCE-AUDIO-GUIDED VIDEO-TO-AUDIO SYNTHESIS WITH ACOUSTIC TRANSFER

011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
Anonymous authors  
Paper under double-blind review



026  
027  
028  
029  
030  
031  
Figure 1: **AC-Foley for conditional Foley generation with audio controls.** (a) Fine-grained sound synthesis: AC-Foley generates precise audio from a silent dog video based on reference sounds, such as a Chihuahua's or a big dog's bark. (b) Timbre transfer: Given a silent lion video, AC-Foley produces different audio outputs conditioned on reference sounds, such as sheep bleating or a cat meowing. (c) Zero-shot generation: Given a silent gunshot video, AC-Foley generates a gunshot with a silencer with reference audio, while a text prompt fails to do so.

## 032 033 034 035 ABSTRACT

036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Existing video-to-audio (V2A) generation methods predominantly rely on text prompts alongside visual information to synthesize audio. However, two critical bottlenecks persist: semantic granularity gaps in training data (e.g., conflating acoustically distinct sounds like different dog barks under coarse labels), and textual ambiguity in describing microacoustic features (e.g., "metallic clang" failing to distinguish impact transients and resonance decay). These bottlenecks make it difficult to perform fine-grained sound synthesis using text-controlled modes. To address these limitations, we propose **AC-Foley**, an audio-conditioned V2A model that directly leverages reference audio to achieve precise and fine-grained control over generated sounds. This approach enables: fine-grained sound synthesis (e.g., footsteps with distinct timbres on wood, marble, or gravel), timbre transfer (e.g., transforming a violin's melody into the bright, piercing tone of a suona), zero-shot generation of sounds (e.g., creating unique weapon sound effects without training on firearm datasets) and better audio quality. By directly conditioning on audio signals, our approach bypasses the semantic ambiguities of text descriptions while enabling precise manipulation of acoustic attributes. Empirically, AC-Foley achieves state-of-the-art performance for Foley generation when conditioned on reference audio, while remaining competitive with state-of-the-art video-to-audio methods even without audio conditioning.

054  
055  
056  
057 

## 1 INTRODUCTION

058  
059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071  
072  
Current video-to-audio generation frameworks aim to synthesize sound effects that are temporally and semantically aligned with the video to perform Foley tasks (Wang et al., 2024a; Cheng et al., 2024; Liu et al., 2024; Viertola et al., 2025; Wang et al., 2024b; Zhang et al., 2024). While these approaches have made progress in generating synchronized audios, they often fail to provide the fine-grained control needed by sound creators. They cannot synthesize creator-specified variations – a limitation starkly evident when artists need multiple acoustic versions of the same visual action (e.g., footsteps varying by surface material). Most existing systems provide only limited control mechanisms, including video clip conditions (Du et al., 2023) and text (Xie et al., 2024), but these approaches face two fundamental limitations: 1) Dataset granularity gaps: Training annotations often flatten acoustically distinct categories (e.g., labeling all dog vocalizations as "barking"). Consequently, even with differentiated prompts like "high-pitched Chihuahua bark" versus "deep German Shepherd growl", models generate sonically indistinguishable outputs due to insufficient acoustic diversity in supervision. 2) Descriptive limitations of language: Text prompts inherently fail to encode micro-acoustic attributes – for instance, "metallic clang" ambiguously represents both a hammer striking an anvil (sharp attack, high-frequency resonance) and a steel chain dropping (diffused impact, low-mid decay), resulting in inconsistent audio rendering. These constraints severely restrict the ability to specify nuanced sound variations aligned with creative intent.073  
074  
075  
076  
077  
078  
To address these limitations, some recent works have attempted to improve flexibility by enhancing text control for audio generation or doing audio extension based on audio conditions (Chen et al., 2024). However, text-based methods remain constrained by language's inability to specify sub-semantic acoustic details, while audio extension approaches inherently limit creative diversity by anchoring outputs to pre-existing sounds. This leaves creators without tools to synthesize novel yet precisely controlled audio aligned with artistic vision.079  
080  
081  
082  
083  
084  
085  
086  
In this work, we propose a reference-audio guided video-to-audio synthesis framework to bridge this gap. By integrating reference audio as a control signal, our method enables precise sound characteristic manipulation while maintaining synchronization, avoiding semantic ambiguity in text through direct acoustic modeling. Building on multimodal joint training following (Cheng et al., 2024), we unify video, audio, and text modalities to learn cross-modal representations that enhance both quality and controllability. Empirically, we observe a significant relative improvement in audio quality (20% lower Fréchet Distance (Kilgour et al., 2019) and 28% lower Kullback–Leibler distance) and acoustic fidelity (22% lower Mel Cepstral Distortion).087  
088  
089  
090  
091  
Previous work (Du et al., 2023) shares some similarities with ours by also incorporating audio as a control mechanism. However, their method requires a reference video clip (including audio) for control, and the reference and generated audio must have identical durations, limiting flexibility. Additionally, their approach was trained on relatively small datasets (Greatest Hits (Owens et al., 2016) and Countix-AV (Zhang et al., 2021)), which restricts generalizability compared to our framework.092  
093  
094  
095  
096  
097  
098  
099  
100  
The central challenge of our method is adapting reference audio to the video context without sacrificing synchronization or audio quality. Simply overlaying the reference sound onto the footage leads to two main problems: temporal misalignment (mismatched duration and pacing) and poor audio–visual cohesion when the sound is not properly adapted. This is especially difficult when the system must both generate sounds that are synchronized with visual events and transform the conditional reference audio to match the video's timing while preserving its timbral characteristics. In short, the difficulty lies in learning how to transform the reference audio to fit the temporal and contextual structure of video, ensuring that the resulting audio is both coherent with the visuals and faithful to the characteristics of the reference sound. This underscores the need for innovative methods capable of bridging this gap.101  
102  
103  
104  
105  
106  
Our solution introduces a two-stage training framework: 1) Acoustic Feature Learning: Train with overlapping audio-video segments to establish reference sound feature extraction. 2) Temporal Adaptation: Condition on non-overlapping audio from the same video, leveraging inherent audio self-similarity (e.g., footsteps in a scene share acoustic properties). This phase forces the model to align reference characteristics with visual timing while preserving acoustic fidelity.107  
In summary, we propose **AC-Foley**, a video-to-audio synthesis framework enabling precise acoustic control via reference audio conditioning. By unifying video, audio, and text modalities through joint

108 training, our method learns adaptive cross-modal representations that preserve synchronization while  
 109 transforming reference sounds to match video context.  
 110

## 111 2 RELATED WORK

### 113 2.1 VIDEO-TO-AUDIO GENERATION

115 Recent progress in multimodal generation has spurred diverse technical approaches for video-  
 116 conditioned audio synthesis. Transformer-based architectures dominate the field, with methods  
 117 like SpecVQGAN (Iashin & Rahtu, 2021), FoleyGen (Mei et al., 2024b) and V-AURA (Viertola et al.,  
 118 2025) employing auto-regressive frameworks for temporal coherence, while some methods (Liu et al.,  
 119 2024; Pascual et al., 2024; Tian et al., 2025) utilize masked token prediction for audio waveform  
 120 generation. An emerging paradigm leverages diffusion models and flow matching techniques, such as  
 121 the latent space denoising mechanisms of Diff-Foley (Luo et al., 2023) and VTA-LDM (Xu et al.,  
 122 2024) and the rectified flow matching of Frieren (Wang et al., 2024b). Some approaches (Jeong et al.,  
 123 2025; Wang et al., 2024a; Xing et al., 2024; Zhang et al., 2024) train new control modules for pre-  
 124 trained text-to-audio models on audio-visual data to perform video-to-audio tasks, and recent works  
 125 like Movie Gen Audio (Polyak et al.) demonstrate text’s complementary role in video-conditioned  
 126 synthesis. Though these methods achieve varying degrees of synchronization, they primarily focus on  
 127 reproducing audio semantically implied by visual content. MMAudio (Cheng et al., 2024) explores  
 128 multimodal joint training across video and text modalities but remains limited to basic semantic  
 129 control. Our approach advances this field by enabling precise acoustic manipulation through audio  
 130 conditioning while maintaining synchronization, supporting novel Foley applications like semantic  
 131 sound substitution and timbre transfer that existing methods cannot achieve.

### 132 2.2 TIMBRE CONTROL

133 Prior audio manipulation research primarily focused on single-modality transformations. Early style  
 134 transfer methods adapted image synthesis techniques like feature statistic matching to separate audio  
 135 content from timbral style (Verma & Smith, 2018). Musical timbre editing frameworks (Huang et al.,  
 136 2018) leveraged CycleGAN (Zhu et al., 2017) architectures for cross-instrument sound conversion.  
 137 While effective for audio-to-audio tasks, these methods ignore visual context crucial for video-  
 138 synchronized Foley applications. Recent video-aware approaches introduce novel conditioning  
 139 paradigms: MultiFoley (Chen et al., 2024) extends partial audio tracks into complete soundscapes  
 140 while preserving original acoustic signatures through audio continuation, and CondFoley (Du et al.,  
 141 2023) generates analogous sounds by matching full-length audio-video pairs. However, fundamental  
 142 limitations persist – audio extension methods constrain output diversity through strict inheritance of  
 143 conditioned clips, while duration-matched conditioning restricts creative adaptation across temporal  
 144 scales. Our approach transcends these constraints by enabling variable-length audio conditioning  
 145 without temporal coincidence requirements, achieving both precise timbral control and flexible  
 146 synchronization with visual events.

## 147 3 AC-FOLEY

### 149 3.1 PRELIMINARIES

151 **Conditional Flow Matching Objective.** We extend conditional flow matching (CFM) (Lipman  
 152 et al., 2022; Tong et al., 2023) to jointly model three modalities: video  $\mathbf{V}$ , audio  $\mathbf{A}$ , and text  $\mathbf{T}$ . The  
 153 enhanced velocity field  $v_\theta$  now operates under the multimodal condition  $\mathcal{C} = \{\mathbf{V}, \mathbf{A}, \mathbf{T}\}$  through

$$155 \mathbb{E}_{t, q(x_0), q(x_1, \mathcal{C})} \|v_\theta(t, \mathcal{C}, x_t) - (x_1 - x_0)\|^2, \quad (1)$$

156 where timestep  $t \in [0, 1]$ ,  $q(x_0)$  is the standard normal distribution,  $q(x_1, \mathcal{C})$  is sampled from training  
 157 data, and  $x_t = tx_1 + (1 - t)x_0$  linearly interpolates between Gaussian noise  $x_0$  and target latent  $x_1$ .  
 158

### 159 3.2 MULTIMODAL TRANSFORMER.

160 Our objective is to synthesize temporally precise and acoustically faithful sound effects for silent  
 161 videos through multimodal conditional guidance. Formally, given a silent video sequence  $\mathbf{V} \in$

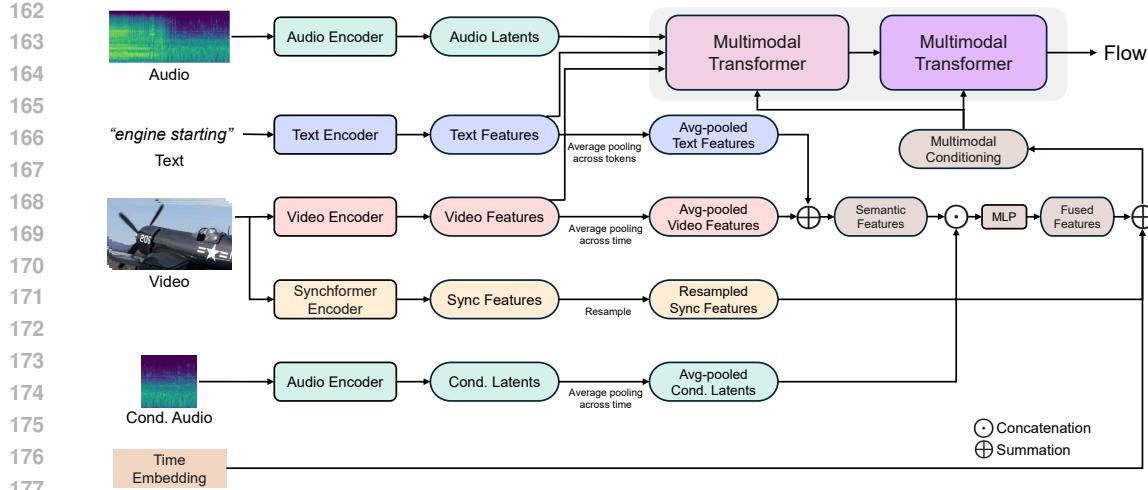


Figure 2: **Overview of our method.** Different modalities (video, text, and audio) jointly interact in the multimodal transformer network. Multimodal conditioning with audio injects semantic, temporal and acoustic information for more precise control.

$\mathbb{R}^{T_v \times H \times W \times 3}$  with  $T_v$  frames, a reference audio clip  $\mathbf{A}_c \in \mathbb{R}^{T_a}$  specifying target acoustic properties and a text prompt  $\mathbf{T}$  describing semantic requirements, we learn a conditional generation model  $\mathcal{G}_\theta$  that produces

$$\mathbf{A}_t = \mathcal{G}_\theta(\mathbf{V}, \mathbf{A}_c, \mathbf{T}) \quad \text{where} \quad \mathbf{A}_t \in \mathbb{R}^{T_a}. \quad (2)$$

As illustrated in Figure 2, we adopt the successful framework of the multimodal transformer design, which can efficiently model the interactions between video, audio, and text modalities.

### 3.3 AUDIO CONTROL MODULE

**Audio Encoding.** The audio processing pipeline begins by converting raw waveform signals into time-frequency representations through Short-Time Fourier Transform (STFT) operations. Following this, we compute mel-scale spectral (Stevens et al., 1937) representations that serve as intermediate features. These spectral features undergo dimensional reduction via a pretrained variational autoencoder (VAE) (Kingma & Welling, 2014), producing compact latent embeddings  $x_1$  that drive our generation process.

During the synthesis phase, the system reconstructs audio outputs through a two-stage inversion process: First, the generated latent vectors are projected back to mel-spectrogram space using the VAE decoder. Subsequently, these reconstructed spectral representations are converted into time-domain waveforms through a pretrained vocoder (Lee et al., 2022).

**Multimodal Conditioning with Audio.** Our conditioning mechanism addresses the limitations of existing methods, which primarily rely on text or video for control. While some approaches (Lee et al., 2025) incorporate conditional audio inputs, they often use encoders like CLAP (Wu et al., 2023) to process the audio, extracting only semantic information and overlooking the rich acoustic features present in the audio signal. We use the pretrained VAE encoder for processing reference audio, which preserves the complete acoustic signature (spectral/timbral characteristics) through its latent space.

In our method, we compute a multimodal conditioning vector  $\mathbf{c} \in \mathbb{R}^{1 \times h}$  shared across all transformer blocks, which integrates information from text, video, and conditional audio. The conditional audio is processed through our audio encoding pipeline, followed by average pooling, to extract meaningful acoustic features that capture fine-grained auditory details. These acoustic features are combined with the Fourier encoding of the flow time step, the visual and text features encoded by CLIP (Radford et al., 2021) and average-pooled, and the sync features (initially extracted at 24 fps by Synchformer (Iashin et al., 2024) and resampled via nearest-neighbor interpolation to match the audio latent representation) to form the multimodal conditioning vector  $\mathbf{c}$  (Figure 2).

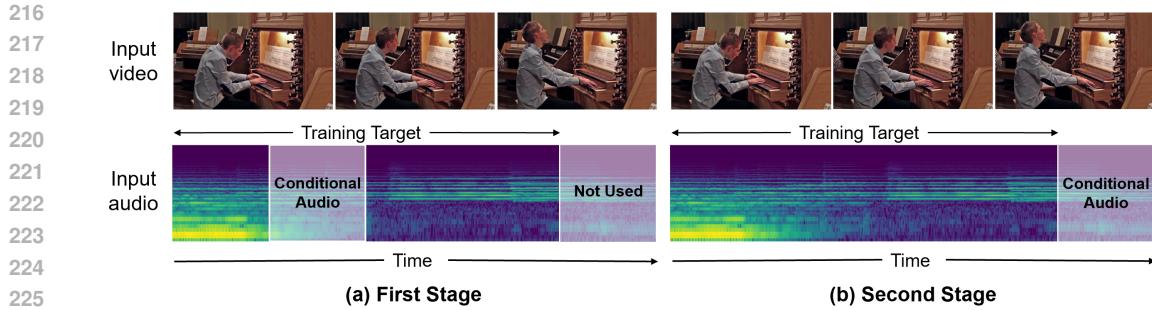


Figure 3: **Illustration of the two-stage training process for audio generation.** (a) Stage I: Overlapping Conditioning. The random 2 seconds of the 8-second target audio are used as the conditional audio, allowing the model to learn the utilization of acoustic features from overlapping audio segments. (b) Stage II: Non-overlapping Conditioning. The non-overlapping last 2 seconds of the 10-second video clip are used as the conditional audio, leveraging inherent audio self-similarity within the video to enhance model generalization.

This multimodal conditioning vector is then applied to modulate the input  $\mathbf{f} \in \mathbb{R}^{L \times h}$ , where  $L$  is the sequence length, using adaptive layer normalization (adaLN) layers (Perez et al., 2018):

$$\text{adaLN}(f, c) = \text{LayerNorm}(f) \cdot \mathbf{W}_\gamma(c) + \mathbf{W}_\beta(c), \quad (3)$$

where  $\mathbf{W}_\gamma$  and  $\mathbf{W}_\beta$  are MLPs. By explicitly incorporating acoustic features from the conditional audio, rather than relying solely on semantic information, our method provides richer and more precise control over audio generation. This design enables the model to leverage both the semantic context and the detailed acoustic characteristics of the input, resulting in more contextually and acoustically aligned outputs.

### 3.4 TRAINING STRATEGY

Following MMAudio (Cheng et al., 2024), we train our model on both audio-text-visual datasets and audio-text datasets. Specifically, we use VGGSound (Chen et al., 2020), which contains approximately 180K 10-second videos, as our audio-text-visual dataset. For audio-text datasets, we utilize AudioCaps2.0 (Kim et al.), comprising around 98K manually captioned 10-second audio clips, and WavCaps (Mei et al., 2024a), which includes roughly 7600 hours of automatically captioned audio. Since the audio clips in WavCaps vary in length, we extract non-overlapping 10-second segments, resulting in a combined total of 600K audio-text pairs, including data from AudioCaps2.0.

**Two-Stage Training.** We adopt a two-stage training scheme. From each 10-second video clip, we take the first 8 seconds as the training target. In Stage I (overlap), we randomly sample a 2-second segment from those 8 seconds to serve as the conditional audio (Figure 3a). This direct reference-target alignment teaches the model to extract and exploit acoustic features (e.g., timbre and spectral patterns), but because the condition overlaps the target, it can encourage trivial “copy and paste” behavior. To mitigate that, in Stage II (no overlap), we use the last 2 seconds of the 10-second clip, which does not overlap the 8-second target, as the condition (Figure 3b). This exploits the natural self-similarity often present within videos (e.g., repeated actions) and forces the model to apply learned acoustic features in novel temporal contexts rather than simply reproducing the reference.

This complementary design addresses the main failure modes of single-stage approaches: overlap-only training yields reference-replicating behavior, while non-overlap-only training creates a feature-utilization gap and temporal disconnection because aligned reference-target pairs are absent. Stage I supplies synchronized supervision for reliable feature extraction; Stage II enforces generalization and prevents reliance on overlap.

Finally, we finetune our model for 40k iterations on a high audio-visual correspondence subset of VGGSound (Chen et al., 2020), which was selected using an ImageBind (Girdhar et al., 2023) score threshold of 0.3, following (Viertola et al., 2025; Chen et al., 2024).

270 Through this two-stage training approach, we find that the model learns to assume that the conditional  
 271 audio is informative about the target sound. Empirically, this leads the model to base its predictions  
 272 on the conditional sound rather than on simple overlap. As a result, at test time, the model can  
 273 generate high-quality audio even when the conditional sound is sampled from a completely different  
 274 video.

## 276 4 EXPERIMENTS

### 277 4.1 EXPERIMENT SETUP

280 We assess our model using the VGGSound test set (Chen et al., 2020), refining the dataset by  
 281 employing ImageBind (Girdhar et al., 2023) to exclude samples with a correspondence score below  
 282 0.3, following (Viertola et al., 2025; Chen et al., 2024). This process results in a curated set of  
 283 8,676 videos. For each 10-second video, we extract the first 8 seconds of the video as video input  
 284 and use the final 2 seconds of the original audio as conditioning input. **Notably, using the final**  
 285 **2s as a non-overlapping reference does not introduce bias, since 10s clips are typically trimmed**  
 286 **from longer continuous videos/audios, which means the last 2s are not systematically different from**  
 287 **other segments.** For fair evaluation, all audio generations are assessed at the 8-second mark. We  
 288 compare our model against various video-to-audio synthesis baselines, utilizing precomputed samples  
 289 from MultiFoley (Chen et al., 2024), Frieren (Wang et al., 2024b), and reproducing results using  
 290 the official inference code for MMAudio (Cheng et al., 2024), FoleyCrafter (Zhang et al., 2024),  
 291 V-AURA (Viertola et al., 2025), **SSV2A (Guo et al., 2024)**, ThinkSound (Liu et al., 2025) and  
 292 HunyuanVideo-Foley (Shan et al., 2025).

### 293 4.2 METRICS

295 Following prior works (Cheng et al., 2024; Chen et al., 2024), we evaluated our model’s performance  
 296 across several dimensions: distribution matching, semantic alignment, temporal synchronization, and  
 297 spectral fidelity—the latter to account for the control of acoustic characteristics through conditional  
 298 audio. We employed Fréchet Distance (FD) and Kullback–Leibler (KL) distance to assess distribution  
 299 matching, utilizing PaSST (Koutini et al., 2021), PANNs (Kong et al., 2020), and VGGish (Gemmeke  
 300 et al., 2017) as embedding models for FD, and PANNs and PaSST as classifiers for the KL distance.

301 Semantic alignment was evaluated using the ImageBind (Girdhar et al., 2023) score, which measures  
 302 the semantic correspondence between the generated audio and the input video. Temporal synchroniza-  
 303 tion was evaluated using a synchronization score (DeSync), predicted by Synchformer (Iashin  
 304 et al., 2024), which quantifies the misalignment (in seconds) between audio and video. Due to  
 305 Synchformer’s context window limitation of 4.8 seconds, we averaged the results from the first  
 306 and last 4.8 seconds of each 8-second video-audio pair. **As a complementary measure of temporal**  
 307 **alignment, we also report onset accuracy, which is the proportion of correctly aligned audio event**  
 308 **onsets between the generated and ground-truth audio, and its average precision (AP).**

309 For spectral fidelity, we utilized Mel Cepstral Distortion (MCD) as our metric. A lower MCD value  
 310 indicates a closer match between the synthesized and real mel cepstral sequences, suggesting higher  
 311 fidelity in audio generation.

### 313 4.3 MAIN RESULTS

315 **Foley generation with audio conditioning.** Only one prior video-conditioned baseline (Video-  
 316 Foley (Lee et al., 2025)) was available, but its performance was far from competitive. To create a  
 317 stronger and fair comparison, we therefore train our own audio-conditioned baseline: we implement  
 318 the MMAudio (Cheng et al., 2024) architecture and use CLAP (Wu et al., 2023) as the conditional  
 319 audio encoder, keeping the same injection scheme and all training hyperparameters as our method.  
 320 Under this controlled setup, AC-Foley outperforms both the trained MMAudio+CLAP baseline and  
 321 the published Video-Foley model on all evaluation metrics, demonstrating that conditioning directly  
 322 on acoustic features (our approach) offers advantages over using a semantic encoder like CLAP.

323 Compared to video-to-audio approaches more broadly, our method shows comprehensive advantages  
 324 across distributional, semantic and spectral measures. Notably, while MMAudio (Cheng et al., 2024)

324  
 325 Table 1: Quantitative comparison of video-to-audio generation methods across multiple metrics. Best  
 326 results are **bolded**; second-best results are underlined.

| Method                     | Distribution matching |                       |                     |                       |                       | Semantic    |              | Temporal      |               | Spectral     |
|----------------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-------------|--------------|---------------|---------------|--------------|
|                            | FD <sub>PaSST</sub> ↓ | FD <sub>PANNS</sub> ↓ | FD <sub>VGG</sub> ↓ | KL <sub>PaSST</sub> ↓ | KL <sub>PANNS</sub> ↓ | IB↑         | DeSync↓      | Onset Acc.↑   | Onset AP↑     | MCD↓         |
| With Audio Conditioning    |                       |                       |                     |                       |                       |             |              |               |               |              |
| Video-Foley                | 613.05                | 73.17                 | 17.45               | 4.16                  | 4.75                  | 3.6         | 1.214        | <b>0.2146</b> | <b>0.3409</b> | 17.41        |
| MMAudio + Clap             | <u>70.80</u>          | <u>7.95</u>           | <u>4.33</u>         | <u>1.17</u>           | <u>1.36</u>           | <u>35.7</u> | <b>0.431</b> | <b>0.2511</b> | <b>0.5107</b> | <u>14.63</u> |
| AC-Foley (ours)            | <b>56.00</b>          | <b>4.93</b>           | <b>1.08</b>         | <b>0.84</b>           | <b>0.95</b>           | <b>37.1</b> | <u>0.465</u> | <b>0.2832</b> | <b>0.5317</b> | <b>11.37</b> |
| Without Audio Conditioning |                       |                       |                     |                       |                       |             |              |               |               |              |
| V-AURA                     | 215.95                | 14.55                 | 2.40                | 1.66                  | 1.99                  | 31.1        | 0.947        | <b>0.2188</b> | <b>0.4880</b> | 15.52        |
| <b>SSV2A</b>               | <b>236.71</b>         | <b>17.47</b>          | <b>2.34</b>         | <b>1.74</b>           | <b>1.85</b>           | <b>26.2</b> | <b>1.210</b> | <b>0.2116</b> | <b>0.3988</b> | <b>19.79</b> |
| FoleyCrafter               | 139.50                | 17.48                 | 2.74                | 1.93                  | 1.96                  | 28.4        | 1.230        | <b>0.2033</b> | <b>0.5312</b> | 16.04        |
| Frieren                    | 110.61                | 11.29                 | <b>1.38</b>         | 2.46                  | 2.36                  | 25.5        | 0.856        | <b>0.2239</b> | 0.4689        | 14.98        |
| MultiFoley                 | 133.94                | 12.85                 | 2.37                | 1.56                  | 1.66                  | 27.0        | 0.825        | <b>0.2431</b> | <b>0.5173</b> | 15.18        |
| ThinkSound (w/o. CoT)      | 112.70                | 9.51                  | <u>1.39</u>         | 1.42                  | 1.57                  | 27.9        | 0.501        | <b>0.2735</b> | <b>0.5189</b> | <u>14.35</u> |
| HunyanVideo-Foley          | 85.19                 | 12.14                 | 2.91                | 1.52                  | 1.72                  | 34.7        | 0.492        | <b>0.2671</b> | <b>0.5271</b> | 15.12        |
| MMAudio-L-V2               | <u>69.25</u>          | <u>8.81</u>           | 3.98                | <b>1.12</b>           | <u>1.34</u>           | <b>37.8</b> | <b>0.392</b> | <b>0.2816</b> | <b>0.5257</b> | <b>14.11</b> |
| AC-Foley (w/o. audio)      | <b>64.90</b>          | <b>8.59</b>           | 3.87                | <u>1.17</u>           | <b>1.34</b>           | 36.6        | <u>0.410</u> | <b>0.2619</b> | <b>0.5095</b> | 14.59        |

341  
 342 Table 2: Quantitative comparison of timbre transfer with audio conditioning on the Greatest Hits  
 343 dataset. **Note that CondFoley is trained on the Greatest Hits dataset, while AC-Foley is not.**

| Method          | Onset Acc. ↑  | Onset AP ↑    | MCD ↓       |
|-----------------|---------------|---------------|-------------|
| CondFoley       | 0.3906        | 0.6611        | 4.18        |
| AC-Foley (ours) | <b>0.3948</b> | <b>0.6629</b> | <b>3.39</b> |

350 achieves better DeSync scores, our investigation of ground truth (GT) audio-video pairs uncovers a  
 351 DeSync mismatch of 0.558s, which is higher than the results of MMAudio and ours. This finding may  
 352 imply that: (1) MMAudio and we may over-optimize for the Synchformer metric. (2) The metric's  
 353 4.8-second context window inadequately captures long-term synchronization patterns.

354 These comprehensive improvements suggest that AC-Foley achieves better holistic audio generation  
 355 quality while maintaining precise control over acoustic properties - a critical requirement for video-  
 356 conditioned audio synthesis tasks. Our findings particularly highlight the importance of unified feature  
 357 representation learning, as evidenced by the consistent performance gains across complementary  
 358 evaluation dimensions.

360 **Foley generation without audio conditioning.** Our framework can also support normal video-  
 361 to-audio synthesis without audio condition. To achieve this, we replace the conditional audio input  
 362 with a learned null embedding. We provide the results of our method comparison with the prior arts  
 363 in Table 1. As shown in the table, our AC-Foley (w/o audio) achieves top or near-top performance  
 364 on several distribution-matching metrics (lowest FD<sub>PaSST</sub> and FD<sub>PANNS</sub>, tied/best KL<sub>PANNS</sub>, and  
 365 second-best KL<sub>PaSST</sub>), while maintaining strong semantic alignment (IB second only to MMAudio-L-  
 366 V2 (Cheng et al., 2024)) and temporal synchronization (DeSync near the best). Despite our primary  
 367 focus being audio-conditioned generation, the unconditional (null-embedding) setting demonstrates  
 368 that our framework can match or closely approach existing SOTA performance in video-to-audio  
 369 tasks without fine-tuning.

370 **Timbre transfer with audio conditioning.** We evaluate our audio conditioning framework following  
 371 the experimental protocol and dataset from (Du et al., 2023). The evaluation set is constructed  
 372 from the Greatest Hits dataset (Owens et al., 2016), where 2-second silent video clips are randomly  
 373 paired with three distinct 2-second conditional audio-visual clips from other test videos. We use  
 374 onset accuracy, and its average precision (AP) to evaluate temporal synchronization. Mel-Cepstral  
 375 Distortion (MCD) is used to measure acoustic fidelity.

377 As shown in Table 2, our AC-Foley outperforms CondFoley (Du et al., 2023) on all metrics, despite  
 378 not being trained on the Greatest Hits dataset (Owens et al., 2016), unlike CondFoley. Additionally,

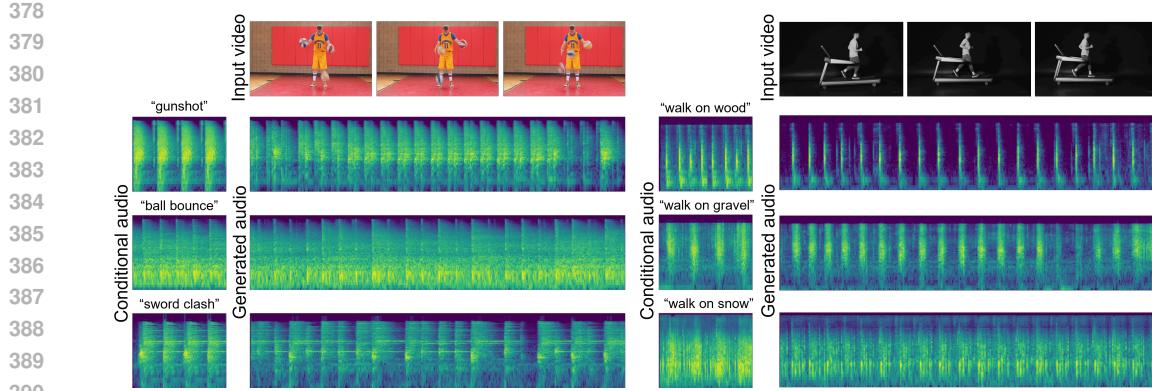


Figure 4: **Qualitative examples of Foley generation with audio conditioning.** We present generated results for two videos, each paired with three distinct conditional audio inputs. These examples highlight our model’s ability to generate synchronized audio while adapting to varying acoustic characteristics, effectively demonstrating the impact of audio control.

Table 3: Comparison of our method and MMAudio-L-V2 in terms of temporal alignment and acoustic fidelity. We show our win rate and the tie rate of temporal alignment, and our win rate of acoustic fidelity. 95% confidence intervals are reported in gray.

| Comparison           | Temporal alignment |                   | Acoustic fidelity |
|----------------------|--------------------|-------------------|-------------------|
|                      | Win rate (%)       | Tie rate (%)      | Win rate (%)      |
| Ours vs MMAudio-L-V2 | 61.1( $\pm 4.3$ )  | 21.8( $\pm 3.6$ ) | 83.5( $\pm 3.4$ ) |

while CondFoley requires conditional audio-visual clips to strictly match the duration of the generated audio, our framework supports flexible conditioning with arbitrary-length audio.

For fair comparison, we generate 2-second audio during testing, though our model is trained to handle 8-second sequences. This domain gap could slightly constrain our performance, yet we still achieve superior results. These improvements, combined with our flexible conditioning, highlight AC-Foley’s robustness and generalization for real-world scenarios with variable condition lengths and limited domain-specific training data.

We also show some qualitative examples for Foley generation with audio conditioning in Figure 4, showcasing our model’s ability to leverage the acoustic information from the conditional audio while maintaining precise temporal alignment. Please see our supplementary material for examples.

**Human studies.** We selected 32 high-quality videos from the VGGSound test set (Chen et al., 2020) to ensure a diverse range of categories and clear temporal information. For each video, we used the last 2 seconds of audio from the original 10-second clip as the conditional audio, with the corresponding category name serving as the text prompt to generate the audio for the first 8 seconds of the original video. Our method was compared against MMAudio-L-V2 (Cheng et al., 2024).

In the user study, participants watched and listened to three video clips for each question: one real clip and two generated clips. Each clip was paired with an audio sample—one corresponding to the real audio, one generated by our model, and the other produced by the baseline. Participants were asked to evaluate the following two aspects: (1) Acoustic Fidelity: Participants were instructed to select which generated audio was closer to the real audio. (2) Temporal Alignment: Given that both methods achieved good synchronization between audio and video, participants might find it challenging to determine which performed better. Therefore, in addition to the two options, we included the choice "Both have good sync / Difficult to choose." The results are presented in Table 3. For acoustic fidelity, our method significantly outperformed MMAudio-L-V2 (Cheng et al., 2024), achieving a win rate of 83.5%. In terms of temporal alignment, as both methods demonstrated similar performance, participants frequently selected the "Both have good sync / Difficult to choose" option

432  
 433 Table 4: Performance comparison of audio conditioning approaches (overlapping/non-overlapping  
 434 segments) and finetuning strategies across distribution matching (FD/KL), semantic consistency (IB),  
 435 temporal alignment (DeSync), and spectral quality (MCD) metrics.

| 436<br>437 Method | 438 Distribution matching |                           |                         |                           |                           | 439 Semantic |              | 440 Temporal    |               | Spectral |
|-------------------|---------------------------|---------------------------|-------------------------|---------------------------|---------------------------|--------------|--------------|-----------------|---------------|----------|
|                   | 441 FD <sub>PaSST</sub> ↓ | 442 FD <sub>PANNs</sub> ↓ | 443 FD <sub>VGG</sub> ↓ | 444 KL <sub>PaSST</sub> ↓ | 445 KL <sub>PANNs</sub> ↓ | 446 IB↑      | 447 DeSync↓  | 448 Onset Acc.↑ | 449 Onset AP↑ | 450 MCD↓ |
| Overlap           | 80.07                     | 7.81                      | 1.12                    | 0.88                      | 1.03                      | 35.5         | 0.506        | 0.2502          | 0.5204        | 12.84    |
| Non-overlap       | 60.82                     | 5.06                      | 1.20                    | 0.84                      | 0.96                      | 36.8         | 0.506        | 0.2540          | 0.5206        | 11.30    |
| Two-stage w/o ft. | 56.00                     | 5.11                      | 1.21                    | 0.84                      | 0.95                      | 37.0         | 0.468        | 0.2599          | 0.5229        | 11.37    |
| Two-stage         | <b>56.00</b>              | <b>4.93</b>               | <b>1.08</b>             | <b>0.84</b>               | <b>0.95</b>               | <b>37.1</b>  | <b>0.465</b> | <b>0.2832</b>   | <b>0.5317</b> | 11.37    |

442  
443 Table 5: Results when we use average pooling or attention-based pooling.

| 444 Method      | 445 Distribution matching |                           |                         |                           |                           | 446 Semantic |              | 447 Temporal    |               | Spectral |
|-----------------|---------------------------|---------------------------|-------------------------|---------------------------|---------------------------|--------------|--------------|-----------------|---------------|----------|
|                 | 448 FD <sub>PaSST</sub> ↓ | 449 FD <sub>PANNs</sub> ↓ | 450 FD <sub>VGG</sub> ↓ | 451 KL <sub>PaSST</sub> ↓ | 452 KL <sub>PANNs</sub> ↓ | 453 IB↑      | 454 DeSync↓  | 455 Onset Acc.↑ | 456 Onset AP↑ | 457 MCD↓ |
| Attention-Based | <b>55.60</b>              | 5.16                      | 1.24                    | <b>0.82</b>               | 0.95                      | 37.0         | 0.484        | 0.2598          | 0.5155        | 11.36    |
| Average (ours)  | 56.00                     | <b>4.93</b>               | <b>1.08</b>             | 0.84                      | <b>0.95</b>               | <b>37.1</b>  | <b>0.465</b> | <b>0.2832</b>   | <b>0.5317</b> | 11.37    |

450 (21.8%). Nevertheless, our method still attained a slightly higher win rate of 61.6% compared to  
 451 MMAudio-L-V2.

452  
453 4.4 ABLATION STUDY

454  
**Two-Stage Training Mechanism** We employ a two-stage training strategy to optimize model  
 455 performance (Table 4). For each 10-second video-audio clip, the first 8 seconds of audio are  
 456 consistently used as the training target. In Stage 1 (Figure 3a), the random sampled 2-second segment  
 457 of the target audio serves as the acoustic condition, achieving FD<sub>PaSST</sub> of 80.07 – this indicates  
 458 the model might simply "copy-paste" conditional audio. In Stage 2 (Figure 3b), switching to the  
 459 non-overlapping final 2-second audio as the condition significantly reduces FD<sub>PaSST</sub> to 56.00 (↓30.1%)  
 460 and optimizes KL<sub>PANNs</sub> from 1.03 to 0.95, demonstrating that the model learns to leverage inherent  
 461 self-similarity characteristics of video clips rather than mechanical replication.

462  
**Subset Finetuning Strategy** By finetuning on a high-quality audiovisual subset of VG-  
 463 GSound (Chen et al., 2020) (selected via ImageBind score >0.3) for 40k iterations, the model  
 464 achieves optimal semantic consistency (IB↑37.1) and temporal synchronization (DeSync↓0.465,  
 465 Onset Acc.↑0.2832 and Onset AP↑0.5317) (Table 4). Compared to the non-finetuned version, spec-  
 466 tral distortion (MCD) remains stable at 11.37, indicating that this strategy effectively enhances  
 467 cross-modal alignment while preserving audio quality.

468  
**Average Pooling** Considering that taking the average pooling for conditional audio may remove  
 469 some acoustic features, we compare the performance of our average-pooling and attention-based  
 470 pooling. Table 5 shows that the two methods yield comparable results. We choose average pooling as  
 471 it provides better training stability and lower computational cost. Additionally, experiments show  
 472 that important acoustic features such as timbre, pitch, and rhythmic patterns can be well preserved  
 473 after average pooling.

474  
475 Table 6: Results when we mask out different conditioning components during inference.

| 476 Method | 477 Distribution matching |                           |                         |                           |                           | 478 Semantic |              | 479 Temporal    |               | Spectral |
|------------|---------------------------|---------------------------|-------------------------|---------------------------|---------------------------|--------------|--------------|-----------------|---------------|----------|
|            | 480 FD <sub>PaSST</sub> ↓ | 481 FD <sub>PANNs</sub> ↓ | 482 FD <sub>VGG</sub> ↓ | 483 KL <sub>PaSST</sub> ↓ | 484 KL <sub>PANNs</sub> ↓ | 485 IB↑      | 486 DeSync↓  | 487 Onset Acc.↑ | 488 Onset AP↑ | 489 MCD↓ |
| w/o. audio | 64.90                     | 8.59                      | 3.87                    | 1.17                      | 1.34                      | 36.6         | <b>0.410</b> | 0.2619          | 0.5095        | 14.59    |
| w/o. sync  | 90.63                     | 6.96                      | 1.17                    | 1.12                      | 1.19                      | 32.5         | 1.240        | 0.2100          | 0.4925        | 11.71    |
| w/o. video | 55.86                     | 4.90                      | 1.13                    | 0.85                      | 0.96                      | 36.9         | 0.471        | 0.2589          | 0.5117        | 11.36    |
| w/o. text  | <b>55.63</b>              | <b>4.87</b>               | 1.11                    | 0.85                      | 0.96                      | 36.8         | 0.474        | 0.2576          | 0.5123        | 11.36    |
| Ours       | 56.00                     | 4.93                      | <b>1.08</b>             | <b>0.84</b>               | <b>0.95</b>               | <b>37.1</b>  | 0.465        | <b>0.2832</b>   | <b>0.5317</b> | 11.37    |

486     **Multimodal Conditioning Components** In our multimodal conditioning mechanism, each modal-  
 487     ity plays a complementary role. Text and video provide stable, high-level semantic, audio provides  
 488     acoustic cues, and the sync features preserve frame-level alignment. This design allows the model  
 489     to maintain global controllability (consistent timbre/semantic intent) and fine-grained temporally  
 490     alignment. Table 6 shows that multi-modal information is complementary and necessary. Discarding  
 491     any modality would result in significant losses in specific task dimensions (especially when removing  
 492     audio or sync), while our approach achieves optimal overall performance.

## 493     5 CONCLUSION

494     We present AC-Foley, a novel audio-conditioned framework for video-to-audio generation that  
 495     enables precise acoustic control through direct audio conditioning. By leveraging a two-stage training  
 496     strategy, our approach effectively addresses critical challenges such as temporal adaptation and  
 497     acoustic fidelity preservation, allowing reference sounds to be intelligently transformed and aligned  
 498     with visual contexts. Extensive experiments demonstrate notable improvements over both text-  
 499     conditioned baselines and video-conditioned methods, achieving superior control precision and audio  
 500     quality. These advancements pave the way for new possibilities in creative sound design, particularly  
 501     for applications requiring fine-grained acoustic variations that closely match visual events.

## 502     ETHIC STATEMENT

503     Our experiments include a human study, which was conducted solely as an online user study. All  
 504     participants participated voluntarily, and after obtaining informed consent. We note that malicious  
 505     actors could potentially combine our system with video generation models to create synchronized  
 506     audiovisual forgeries. To mitigate this risk, we will implement a safeguard by releasing our model  
 507     under the Apache 2.0 license with explicit ethical use prohibitions when we are ready.

## 513     REFERENCES

514     Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-  
 515     visual dataset. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and  
 516     Signal Processing (ICASSP)*, pp. 721–725. IEEE, 2020.

517     Ziyang Chen, Prem Seetharaman, Bryan C. Russell, Oriol Nieto, David Bourgin, Andrew Owens,  
 518     and Justin Salamon. Video-guided foley sound generation with multimodal controls. *CoRR*,  
 519     abs/2411.17698, 2024. doi: 10.48550/ARXIV.2411.17698. URL <https://doi.org/10.48550/arXiv.2411.17698>.

520     Ho Kei Cheng, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander G. Schwing, and Yuki  
 521     Mitsufuji. Taming multimodal joint training for high-quality video-to-audio synthesis. *CoRR*,  
 522     abs/2412.15322, 2024. doi: 10.48550/ARXIV.2412.15322. URL <https://doi.org/10.48550/arXiv.2412.15322>.

523     Yuexi Du, Ziyang Chen, Justin Salamon, Bryan Russell, and Andrew Owens. Conditional generation  
 524     of audio from video via foley analogies. In *Proceedings of the IEEE/CVF Conference on Computer  
 525     Vision and Pattern Recognition*, pp. 2426–2436, 2023.

526     Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing  
 527     Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for  
 528     audio events. In *2017 IEEE international conference on acoustics, speech and signal processing  
 529     (ICASSP)*, pp. 776–780. IEEE, 2017.

530     Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand  
 531     Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Proceedings of the  
 532     IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.

533     Wei Guo, Heng Wang, Weidong Cai, and Jianbo Ma. Gotta hear them all: Sound source aware vision  
 534     to audio generation. *arXiv e-prints*, pp. arXiv–2411, 2024.

540 Sicong Huang, Qiyang Li, Cem Anil, Xuchan Bao, Sageev Oore, and Roger B Grosse. Tim-  
 541 bretron: A wavenet (cyclegan (cqt (audio))) pipeline for musical timbre transfer. *arXiv preprint*  
 542 *arXiv:1811.09620*, 2018.

543

544 Vladimir Iashin and Esa Rahtu. Taming visually guided sound generation. *arXiv preprint*  
 545 *arXiv:2110.08791*, 2021.

546

547 Vladimir Iashin, Weidi Xie, Esa Rahtu, and Andrew Zisserman. Synchformer: Efficient synchroniza-  
 548 tion from sparse cues. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech*  
 549 *and Signal Processing (ICASSP)*, pp. 5325–5329. IEEE, 2024.

550

551 Yujin Jeong, Yunji Kim, Sanghyuk Chun, and Jiyoung Lee. Read, watch and scream! sound  
 552 generation from text and video. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
 553 volume 39, pp. 17590–17598, 2025.

554

555 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing  
 556 and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF*  
 557 *Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.

558

559 Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fréchet audio distance: A  
 560 reference-free metric for evaluating music enhancement algorithms. In Gernot Kubin and Zdravko  
 561 Kacic (eds.), *20th Annual Conference of the International Speech Communication Association,*  
 562 *Interspeech 2019, Graz, Austria, September 15-19, 2019*, pp. 2350–2354. ISCA, 2019. doi: 10.  
 563 21437/INTERSPEECH.2019-2219. URL [https://doi.org/10.21437/Interspeech.](https://doi.org/10.21437/Interspeech.2019-2219)  
 564 2019-2219.

565

566 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. AudioCaps: Generating  
 567 Captions for Audios in The Wild.

568

569 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*  
 570 *arXiv:1412.6980*, 2014.

571

572 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes, 2014. URL <http://arxiv.org/abs/1312.6114>.

573

574 Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley. Panns:  
 575 Large-scale pretrained audio neural networks for audio pattern recognition. *IEEE/ACM Transac-  
 576 tions on Audio, Speech, and Language Processing*, 28:2880–2894, 2020.

577

578 Khaled Koutini, Jan Schlüter, Hamid Eghbal-Zadeh, and Gerhard Widmer. Efficient training of audio  
 579 transformers with patchout. *arXiv preprint arXiv:2110.05069*, 2021.

580

581 Junwon Lee, Jaekwon Im, Dabin Kim, and Juhan Nam. Video-foley: Two-stage video-to-sound  
 582 generation via temporal event condition for foley sound. *IEEE Transactions on Audio, Speech and*  
 583 *Language Processing*, 2025.

584

585 Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A universal  
 586 neural vocoder with large-scale training. *arXiv preprint arXiv:2206.04658*, 2022.

587

588 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching  
 589 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

590

591 Huadai Liu, Jialei Wang, Kaicheng Luo, Wen Wang, Qian Chen, Zhou Zhao, and Wei Xue.  
 592 Thinksound: Chain-of-thought reasoning in multimodal large language models for audio generation  
 593 and editing, 2025. URL <https://arxiv.org/abs/2506.21448>.

594

595 Xiulong Liu, Kun Su, and Eli Shlizerman. Tell what you hear from what you see - video to audio  
 596 generation through text. *CoRR*, abs/2411.05679, 2024. doi: 10.48550/ARXIV.2411.05679. URL  
 597 <https://doi.org/10.48550/arXiv.2411.05679>.

598

599 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*  
 600 *arXiv:1711.05101*, 2017.

594 Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-foley: Synchronized video-to-audio  
 595 synthesis with latent diffusion models. *Advances in Neural Information Processing Systems*, 36:  
 596 48855–48876, 2023.

597

598 Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D. Plumbley,  
 599 Yuexian Zou, and Wenwu Wang. WavCaps: A ChatGPT-assisted weakly-labelled audio captioning  
 600 dataset for audio-language multimodal research. *IEEE/ACM Transactions on Audio, Speech, and*  
 601 *Language Processing*, pp. 1–15, 2024a.

602 Xinhao Mei, Varun Nagaraja, Gael Le Lan, Zhaocheng Ni, Ernie Chang, Yangyang Shi, and Vikas  
 603 Chandra. Foleygen: Visually-guided audio generation. In *2024 IEEE 34th International Workshop*  
 604 *on Machine Learning for Signal Processing (MLSP)*, pp. 1–6. IEEE, 2024b.

605

606 Andrew Owens, Phillip Isola, Josh McDermott, Antonio Torralba, Edward H Adelson, and William T  
 607 Freeman. Visually indicated sounds. In *Proceedings of the IEEE conference on computer vision*  
 608 *and pattern recognition*, pp. 2405–2413, 2016.

609

610 Santiago Pascual, Chunghsin Yeh, Ioannis Tsiamas, and Joan Serrà. Masked generative video-to-  
 611 audio transformers with enhanced synchronicity. In *European Conference on Computer Vision*, pp.  
 612 247–264. Springer, 2024.

613 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual  
 614 reasoning with a general conditioning layer. In Sheila A. McIlraith and Kilian Q. Weinberger  
 615 (eds.), *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),*  
 616 *the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium*  
 617 *on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,*  
 618 *February 2-7, 2018*, pp. 3942–3951. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11671. URL  
 619 <https://doi.org/10.1609/aaai.v32i1.11671>.

620

621 A Polyak, A Zohar, A Brown, A Tjandra, A Sinha, A Lee, A Vyas, B Shi, CY Ma, CY Chuang,  
 622 et al. Movie gen: A cast of media foundation models. 2024a. URL [https://api.semanticscholar.org/CorpusID\\_273403698](https://api.semanticscholar.org/CorpusID_273403698).

623

624 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 625 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 626 models from natural language supervision. In *International conference on machine learning*, pp.  
 627 8748–8763. PMLR, 2021.

628

629 Sizhe Shan, Qiulin Li, Yutao Cui, Miles Yang, Yuehai Wang, Qun Yang, Jin Zhou, and Zhao Zhong.  
 630 Hunyuanvideo-foley: Multimodal diffusion with representation alignment for high-fidelity foley  
 631 audio generation, 2025. URL <https://arxiv.org/abs/2508.16930>.

632

633 Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A scale for the measurement of the  
 634 psychological magnitude pitch. *The journal of the acoustical society of america*, 8(3):185–190,  
 1937.

635

636 Zeyue Tian, Yizhu Jin, Zhaoyang Liu, Ruibin Yuan, Xu Tan, Qifeng Chen, Wei Xue, and Yike Guo.  
 637 Audiox: Diffusion transformer for anything-to-audio generation. *arXiv preprint arXiv:2503.10522*,  
 638 2025.

639

640 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-  
 641 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models  
 642 with minibatch optimal transport. *arXiv preprint arXiv:2302.00482*, 2023.

643

644 Prateek Verma and Julius O Smith. Neural style transfer for audio spectrograms. *arXiv preprint*  
 645 *arXiv:1801.01589*, 2018.

646

647 Ilpo Viertola, Vladimir Iashin, and Esa Rahtu. Temporally aligned audio for video with autoregression.  
 In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing*  
 (ICASSP), pp. 1–5. IEEE, 2025.

648 Heng Wang, Jianbo Ma, Santiago Pascual, Richard Cartwright, and Weidong Cai. V2a-mapper: A  
 649 lightweight solution for vision-to-audio generation by connecting foundation models. In Michael J.  
 650 Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on*  
 651 *Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial*  
 652 *Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,*  
 653 *EAAI 2024, February 20-27, 2024, Vancouver, Canada*, pp. 15492–15501. AAAI Press, 2024a.  
 654 doi: 10.1609/AAAI.V38I14.29475. URL [https://doi.org/10.1609/aaai.v38i14.  
 655 29475](https://doi.org/10.1609/aaai.v38i14.29475).

656 Yongqi Wang, Wenxiang Guo, Rongjie Huang, Jiawei Huang, Zehan Wang, Fuming You, Ruiqi Li,  
 657 and Zhou Zhao. Frieren: Efficient video-to-audio generation network with rectified flow matching.  
 658 *Advances in Neural Information Processing Systems*, 37:128118–128138, 2024b.

659 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.  
 660 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption  
 661 augmentation. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*  
 662 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

663 Zhipeng Xie, Shengye Yu, Qile He, and Mengtian Li. Sonicvisionlm: Playing sound with vision  
 664 language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
 665 *Recognition*, pp. 26866–26875, 2024.

666 Yazhou Xing, Yingqing He, Zeyue Tian, Xintao Wang, and Qifeng Chen. Seeing and hearing: Open-  
 667 domain visual-audio generation with diffusion latent aligners. In *Proceedings of the IEEE/CVF*  
 668 *Conference on Computer Vision and Pattern Recognition*, pp. 7151–7161, 2024.

669 Manjie Xu, Chenxing Li, Xinyi Tu, Yong Ren, Rilin Chen, Yu Gu, Wei Liang, and Dong Yu.  
 670 Video-to-audio generation with hidden alignment. *arXiv preprint arXiv:2407.07464*, 2024.

671 Yiming Zhang, Yicheng Gu, Yanhong Zeng, Zhenning Xing, Yuancheng Wang, Zhizheng Wu, and  
 672 Kai Chen. Foleycrafter: Bring silent videos to life with lifelike and synchronized sounds. *arXiv*  
 673 *preprint arXiv:2407.01494*, 2024.

674 Yunhua Zhang, Ling Shao, and Cees G. M. Snoek. Repetitive activity counting by  
 675 sight and sound. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 14070–14079. Computer Vision  
 676 Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01385. URL [https://openaccess.thecvf.com/content/CVPR2021/html/Zhang\\_Repetitive\\_Activity\\_Counting\\_by\\_Sight\\_and\\_Sound\\_CVPR\\_2021\\_paper.html](https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Repetitive_Activity_Counting_by_Sight_and_Sound_CVPR_2021_paper.html).

677 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation  
 678 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference*  
 679 *on computer vision*, pp. 2223–2232, 2017.

680  
 681  
 682  
 683  
 684  
 685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701

## 702 A TRAINING DETAILS

704 We train our model using the AdamW optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2017)  
 705 with an initial learning rate of  $10^{-4}$ , implementing a linear warm-up schedule for the first 1K steps  
 706 across 260K total iterations at a batch size of 320. The learning rate undergoes scheduled decay: first  
 707 to  $10^{-5}$  after 200K iterations, then to  $10^{-6}$  after 240K iterations. For model stabilization, we employ  
 708 post-hoc exponential moving averaging (EMA) (Karras et al., 2024) with a consistent relative width  
 709 parameter  $\sigma_{\text{rel}} = 0.05$  across all models. To optimize training efficiency, we utilize `bfloat16`  
 710 mixed-precision computation and precompute all audio latent representations and visual embeddings  
 711 offline for efficient loading during the training process. The training was conducted on 8 NVIDIA  
 712 H800 GPUs and completed in roughly 26 hours.

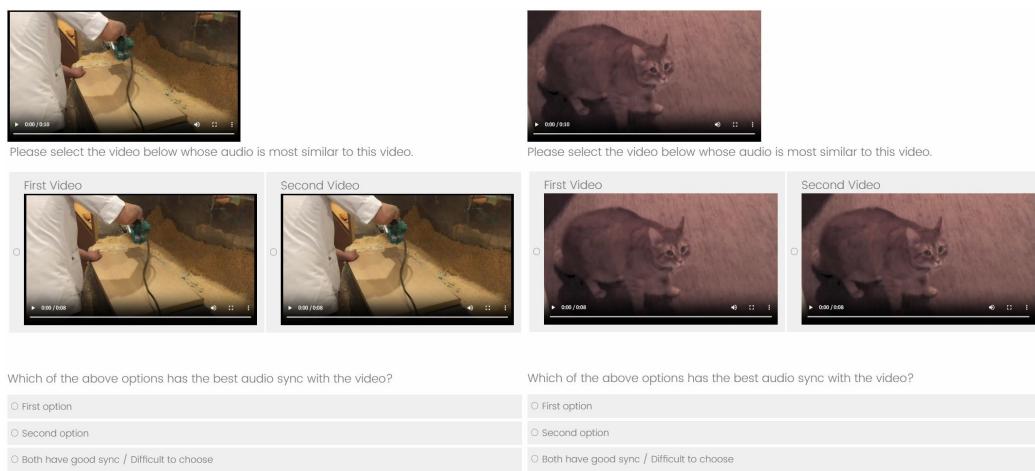
## 714 B NETWORK DETAILS

716 Our model generates 44.1kHz audio encoded as 40-dimensional, 43.07fps latents. The transformer  
 717 employs an architecture with 7 multimodal blocks followed by 14 single-modal blocks and a hidden  
 718 dimension of 896.

## 721 C HUMAN STUDIES

723 **Videos and Reference Audios** We manually selected 16 high-quality videos from the VGGSound  
 724 test set (Chen et al., 2020), which cover a variety of categories and contain clear, easily perceivable  
 725 temporal actions. For each video, we used the last 2 seconds of audio from the original 10-second  
 726 clip as the conditional reference audio, with the corresponding category name serving as the text  
 727 prompt to generate the audio for the first 8 seconds of the original video.

728 **User study survey.** In the survey, participants watched and listened to 16 pairs of videos with  
 729 generated audio, each with a real video for reference, comparing our method with MMAudio-L-  
 730 V2 (Cheng et al., 2024). We performed a single-choice experiment where we randomized the  
 731 presentation order of the video pairs. For each video pair, participants were asked to respond to two  
 732 questions: 1) Please select the video below whose audio is most similar to this video (real video).  
 733 2) Which of the above options (two videos with generated audio) has the best audio sync with the  
 734 video? The first question evaluates the acoustic fidelity between the generated audio and the ground  
 735 truth audio. The second question evaluates the temporal alignment between the audio and video. We  
 736 show a screenshot of our user study survey in Figure 5.



754 Figure 5: Screenshot of user study survey.  
 755

756  
 757 Table 7: Comparison of Mel-Cepstral Distortion for Foley generation using different conditional  
 758 audio versus without conditional audio.

| 759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>Method | 767<br>768<br>769<br>770<br>771<br>772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782<br>783<br>784<br>785<br>786<br>787<br>788<br>789<br>790<br>791<br>792<br>793<br>794<br>795<br>796<br>797<br>798<br>799<br>800<br>801<br>802<br>803<br>804<br>805<br>806<br>807<br>808<br>809<br>Mel Cepstral Distortion (MCD)↓ |                                    |                                    |                                    |                                    |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
|                                                                | 760<br>761<br>762<br>763<br>Ref. A                                                                                                                                                                                                                                                                                                          | 760<br>761<br>762<br>763<br>Ref. B | 760<br>761<br>762<br>763<br>Ref. C | 760<br>761<br>762<br>763<br>Ref. D | 760<br>761<br>762<br>763<br>Ref. E |
| Without audio                                                  | 20.95                                                                                                                                                                                                                                                                                                                                       | 16.12                              | 15.56                              | 22.74                              | 15.83                              |
| With audio                                                     | <b>18.24</b>                                                                                                                                                                                                                                                                                                                                | <b>11.96</b>                       | <b>14.43</b>                       | <b>12.20</b>                       | <b>10.85</b>                       |

## D MORE ABLATION STUDY

767  
**Reference Audio Control** To validate the effectiveness of our conditional audio mechanism, we  
 768 conduct a controlled experiment on the VGGSound test set (Chen et al., 2020). Five distinct audio  
 769 clips are randomly selected from the WavCaps dataset (Mei et al., 2024a), each truncated to the first  
 770 2 seconds as universal conditional references. For every test video, we generate five audio samples  
 771 conditioned on these five references. We compute the Mel Cepstral Distortion (MCD) between each  
 772 generated audio and its corresponding conditional reference to measure the acoustic (Table 7). As a  
 773 baseline, we replace the conditional audio with a learnable null embedding vector (initialized as zeros  
 774 and optimized during training) while retaining the same video inputs, then generate audio samples  
 775 and calculate their MCD against the original 5 reference audios. This design isolates the impact of  
 776 conditional guidance by comparing identical video inputs with and without referential control under  
 777 fixed acoustic targets.

## E LIMITATIONS

781 While AC-Foley demonstrates strong performance in single-source sound control scenarios, our  
 782 method exhibits limitations when handling complex auditory environments. When input videos and  
 783 conditional audio contain multiple concurrent sound sources (e.g., overlapping dialogue, ambient  
 784 noise, and object interactions), the model may struggle to align specific sound elements with their  
 785 corresponding visual triggers precisely. Additionally, extreme temporal mismatches between refer-  
 786 ence sounds and visual content (e.g., conditioning slow cat meowing sounds on video showing rapid  
 787 keyboard typing) may lead to suboptimal generation quality due to conflicting rhythmic patterns.

## F DATASET LICENSES

791 The following datasets were used in this work, along with their corresponding licenses:

1. VGGSound (Chen et al., 2020): Creative Commons Attribution 4.0 International (CC-BY 4.0).
2. AudioCaps2.0 (Kim et al.): MIT license.
3. WavCaps (Mei et al., 2024a): Creative Commons Attribution 4.0 International (CC-BY 4.0).

## G LLM USAGE

799 During the writing process, the authors used a large language model (LLM) solely for language  
 800 polishing and grammatical/style improvements. The LLM did not contribute to research ideation,  
 801 experimental design, data collection, analysis, or the substantive academic content of the paper. The  
 802 authors take full responsibility for the final text and for all claims made in the manuscript. The LLM  
 803 is not listed as an author.