
Under review as a conference paper at ICLR 2023

GRAPH-INFORMED NEURAL POINT PROCESSES WITH
MONOTONIC NETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-class event data is ubiquitous in real-world applications. The recent neural
temporal point processes (Omi et al., 2019) have used monotonic nets to model the
cumulative conditional intensity to avoid an intractable integration in the likelihood.
While successful, they are restricted to single-type events and can easily sink to
poor learning results. To address these limitations and to exploit valuable structural
information within event participants, we develop a Graph-Informed Neural Point
Process (GINPP) that can freely handle multiple event types, greatly improve
learning efficiency, and effectively integrate the graph information to facilitate
training. First, we find the bottleneck of the previous model arises from the standard
softplus transformation over the output of the monotonic net, which enlarges the
prediction variations of the monotonic net and increases the training challenge. We
propose a shift-scale variant that can significantly reduce the variation and promote
the learning efficiency. Second, we use a conditional mark distribution to model
multiple event types, without the need for explicitly estimating the intensity for
each type. The latter can be much more challenging. Third, we use random walk to
collect the neighborhood of each event participant, and use an attention mechanism
to update the hidden state of each participant according to the observed events of
both the participant itself and its neighborhood. In this way, we can effectively
leverage the graph knowledge, and scale up to large graphs. We have shown the
advantage of our approach in both ablation studies and real-world applications.

1 Introduction

Real-world applications often involve multi-class events. For example, 911 calls seek for a variety
of helps, traffic records include different types of accidents, and among social network users are
various types of interactions (tweeting, following, poking, etc.). Neural temporal point processes
(e.g., (Du et al., 2016; Mei and Eisner, 2017; Zhang et al., 2020a; Zuo et al., 2020)) are a family of
powerful methods for event modeling and prediction, which use neural networks (NN) to model the
intensity of events and can flexibly estimate the complex dependencies among the observed events.
However, due to the use of NNs, the cumulative (i.e., integral of) conditional intensity in the point
process likelihood is often analytically intractable, and demand a complex, expensive approximation.
To bypass this issue, the recent work Omi et al. (2019) uses a monotonic net (Sill, 1997; Chilinski
and Silva, 2020) to model the monotonically increasing cumulative intensity to avoid the integration,
and the intensity is obtained by simply taking the derivative. To ensure the positiveness, a softplus
transformation is applied to the output of the monotonic net. Despite the elegance and success, this
method only supports single-type events. More important, it often suffers from inefficient learning
and easily falls into poor performance.

In this paper, we propose GINPP, a graph-informed neural point process model to overcome these
problems, and to further utilize the valuable structural knowledge within the event participants, which
is often available in practice. The major contributions of our work are listed as follows.

• First, we investigate the learning challenge of (Omi et al., 2019), and find the bottleneck
arises from the softplus transformation over the monotonic net prediction to ensure posi-
tiveness. To obtain an output slightly above zero, the standard softplus demands the input,
i.e., the monotonic net prediction, must be negative and have much greater scales. Hence, a
small output range can cause a much wider input (monotonic net prediction) range, which

1



Under review as a conference paper at ICLR 2023

are biased toward the negative domain. The large variation of the prediction scale makes
the estimation of the monotonic net much more difficult and inefficient.

• Second, we propose a shift-scale variant of the softplus function, where the scale controls the
shape and the shift controls the position. By setting these two hyperparameters properly, the
required input range can be greatly shrunk, and get close to the output range. Accordingly,
the variations of the prediction scales is significantly reduced, and the learning of the
monotonic net is much easier and more efficient.

• Third, we construct a marked point process for multi-class events. By introducing a con-
ditional mark distribution, we can freely handle different event types and only need a
single-output monotonic net, which models the unified cumulative conditional intensity.
This is more efficient and convenient than a naive extension that separately estimates the
cumulative intensity for each particular event type.

• Fourth, to incorporate the graph structure in training, we use random walk to collect the
neighborhood for each participant. We use an attention mechanism to update the hidden
state of each participant, according to the observed events of not only the participant itself,
but also its neighborhood. In this way, the estimation of hidden state can be improved with
enriched observations, and the event dependencies can be more comprehensively captured.
The random walk further enables us to scale to large graphs. Accordingly, we develop an
efficient, scalable stochastic mini-batch learning algorithm.

For evaluation, we first examined GINPP in ablation studies. We tested the performance of the
monotonic net with our shift-scale softplus transformation in learning two benchmark functions: one
is monotonic and the other is not. Our method converges fast, accurately learns the first function,
and finds a close monotonic approximation to the second function. By contrast, with the standard
softplus, the learning is saturated early at large loss values and the estimation is much worse. Then,
we tested on a synthetic bi-type event dataset. GINPP accurately recovered the intensity for each
event type via the learned overall intensity and the mark distribution. Next, we evaluated GINPP
in six real-world benchmark datasets. We examined the accuracy in predicting the time and type
of future events. In both tasks, GINPP consistently outperforms all the competing methods. Even
without incorporating the graphs, GINPP still achieves better accuracy. When the graph structure is
available, GINPP improves the accuracy further.

2 Background

Temporal Point Process (TPP) is a general mathematical framework for event modeling (Daley and
Vere-Jones, 2007). A TPP is specified by the conditional intensity (or rate) of the events. Suppose
we have K types of events, and denote by λk(t) the conditional intensity for event type k. Given a
sequence of observed events and their types, Γ = [(t1, s1), . . . , (tN , sN )], where tn is the timestamp
and sn is the type of each event n (1 ≤ sn ≤ K, tn ≤ tn+1). The likelihood of the TPP is given by

p(Γ) =
∏K

k=1
exp

(
−
∫ T

0

λk(t)dt

)
·
∏N

n=1
λsn(tn), (1)

where T is the entire span of the observed events. One popular TPP is the homogeneous Poisson
process, which assumes each conditional intensity λk(t) is a time-invariant constant λ0k, and has
nothing to do with previous events {(tn, sn)|tn < t}. While simple and convenient, Poisson processes
ignore the complex relationships among the events. The Hawkes process (Hawkes, 1971) is more
expressive in that it models the excitation effect among the events,

λk(t) = λ0k +
∑

tn<t
ρsn→k(t− tn) (2)

where λ0k ≥ 0 is the background rate, ρsn→k(∆) > 0 is the triggering kernel, and quantifies how
much contribution the past event at tn, of type sn, makes to trigger a new event of type k to occur at
t. The most commonly used triggering kernel is an exponential kernel, which assumes an exponential
decay of the excitation effect along with the time lag ∆.

Neural Temporal Point Process. Hawkes processes only account for additive, excitation effects, and
are inadequate to capture various complex event dependencies. To overcome this limitation, recent
works (Du et al., 2016; Mei and Eisner, 2017) use neural networks to model the conditional intensity.
Typically, a recurrent neural network (RNN) is used to capture the complex event dependencies. For

2



Under review as a conference paper at ICLR 2023

each event n, we introduce a hidden state hn, which is computed according to the previous state
hn−1, the current time, event type, and other input features. An illustrative example is

hn = RNN-Cell(hn−1, tn, sn). (3)

Then we obtain the conditional intensity through a positive transformation over the hidden state, e.g.,
λk(t) = f(w>k hn). We then substitute the intensity into (1), and maximize the likelihood to estimate
the model parameters.

Although the NN modeling of λk(t) greatly increases the model capacity/expressivity, it makes the
cumulative intensity in the likelihood (1), namely

∫ T
0
λk(t)dt, analytically intractable to compute.

We have to use approximations, such as Monte-Carlo sampling and numerical quadrature, which can
be expensive and complex. To sidestep this issue, Omi et al. (2019) instead modeled the cumulative
conditional intensity with the RNN output,

φ(hn−1, t) = fsp (MNet (hn−1, t)) =

∫ t

tn−1

λ(τ)dτ, (4)

where tn−1 ≤ t ≤ tn, hn−1 is the RNN state corresponding to the last observed event, MNet is a
monotonic net (Sill, 1997; Chilinski and Silva, 2020), which guarantees the output is monotonically
increasing along with the input time t and hence is consistent with the cumulative intensity, and fsp
is the softplus function, fsp(·) = log(1 + exp(·)), which is to ensure the positiveness. Note fsp is
also monotonically increasing, and the transformation with fsp does not change the monotonicity on
t. Since Omi et al. (2019) only considered single-type events, we omit the subscript k and denote the
single conditional intensity by λ(t). Given (4), we can obtain the conditional intensity by taking the
derivative, λ(tn) = ∂φ(hn−1,t)

∂t

∣∣∣
t=tn

. The likelihood of an event sequence [t1, . . . , tN ] is

p(t1, . . . , tN ) =
∏N

n=1
exp

(
−
∫ tn

tn−1

λ(t)dt

)
· exp

(
−
∫ T

tN

λ(t)dt

)
·
∏N

n=1
λ(tn)

=

N∏
n=1

φ(hn−1, tn) · φ(hN , T ) ·
N∏
n=1

∂φ(hn−1, t)

∂t

∣∣∣∣
t=tn

(5)

where t0 = 0 and h0 is initial state of the RNN. Since there is no integration, the computation and
optimization is much easier and more convenient, especially with automatic differentiation libraries.

3 Model

Although the model of (Omi et al., 2019) is smart and successful, it only supports single-type events.
More important, we found that it often suffers from inefficient learning and easily falls into poor
performance. To address these issues and to further take advantage of the structural knowledge within
the event participants, we develop GINPP, a graph-informed neural point process model based on the
monotonic net, presented as follows.

Specifically, we assume our dataset includes K types of events, which were launched by M par-
ticipants. Each observed event sequence is a series of mixed-type events launched by a particular
participant. For example, in online social media, a tweeter account can be viewed as a participant,
which can launch a series of events of different types: tweeting, retweeting, replying, like, direct
messaging, etc. We denote the event sequence of participantm by Γm = [(tm1 , s

m
1 ), . . . , (tmNm

, smNm
)]

where each event type smn ∈ {1, . . . ,K} (1 ≤ n ≤ Nm). Among the M participants is a graph
structure that encodes their correlations, denoted by G = (E,V) where V = {1, . . . ,M} is the vertex
set, and E = {(i, j)} is the edge set.

First, we consider extending (Omi et al., 2019) to support multiple event types. A straightforward
extension is to follow the idea of (Mei and Eisner, 2017) and expand the output dimension of
the monotonic net to K (see (4)) for each participant (vertex) m. We then apply an element-
wise softplus transformation to obtain the cumulative conditional intensity for each event type k,
namely, φk(hmn−1, t) = fsp

(
MNet

(
hmn−1, t

)
[k]
)
, where hmn−1 is the hidden state of the vertex m.

However, this method will increase the learning challenge of the monotonic net, becauseK monotonic
constraints have to be satisfied simultaneously. To circumvent this issue, we construct a marked point

3



Under review as a conference paper at ICLR 2023

process (Daley and Vere-Jones, 2007), where the event type is considered as a mark of the event.
As in (4), we still use a single-output monotonic net, but to model a global cumulative conditional
intensity φ(hmn−1, t). We then introduce a mark distribution to sample the event type according to the
last state hmn−1 and the time lag ∆t = t− tmn−1,

p(s = k|t) ∝ exp
(
u>k β(hmn−1,∆t)

)
(6)

where β(·) is the output of a neural network, and uk is the embedding of event type k, which
will be jointly estimated during training. The conditional intensity is therefore given by λmk (t) =

λm(t)p(s = k|t) where λm(t) =
∂φ(hm

n−1,t)

∂t is the global conditional intensity. The likelihood of the
event sequence Γm = [(tm1 , s

m
1 ), . . . , (tmNm

, smNm
)] is therefore a minor adjustment of (5),

p(Γm) = exp

(
−
∫ T

0

[
K∑
k=1

λmk (t)

]
dt

)
Nm∏
n=1

λmsmn (tmn )

=

Nm∏
n=1

φ(hmn−1, t
m
n ) · φ(hmNm

, T ) ·
Nm∏
n=1

(
p(s = smn |tmn )

∂φ(hmn−1, t)

∂t

∣∣∣∣
t=tmn

)
. (7)

This simple modification enables us to freely model multiple types of events, but sidesteps the
difficulty of learning a multi-output monotonic net. Empirically, we found our method is much more
effective.

0.0 0.2 0.4 0.6 0.8 1.0
y

−10

−8

−6

−4

−2

0

x
=
So

ft
Pl
us

−1
(y

)

Inverse Softplus

(a) Inverse softplus

−6 −4 −2 0 2 4
x, f(x)

0.0

0.1

0.2

0.3

De
ns

ity
 Fu

nc
tio

ns

f(x) ~ Uniform [0, 3.0]
dist x, standard softplus
dist x, α= 0.0, γ= 0.5
dist x, α= 0.5, γ= 0.5

(b) Density curve

Figure 1: Inverse of the standard
softplus and the input distribution
for shift-scale softplus.

Second, we investigate the learning challenge of (Omi et al., 2019).
We find the bottleneck arises from the standard softplus trans-
formation fsp in (4), which enlarges the prediction scales of the
monotonic net and increases the training difficulty. Specifically, as
a continuous relaxation of the ReLU activation, the output fsp(x)
is approximately equal to the input x only when the output is rel-
atively big, e.g., 3.05 = fsp(3). By contrast, when the output is
small, e.g., close to zero, the input x is a negative number with a
much larger scale, e.g., 0.0009 = fsp(−7). This can be seen from
the inverse, f−1sp (y) = log(ey − 1). As shown in Fig. 1a, when y
is close to zero, ey − 1 is close to zero, and the inverse function
varies violently. As a consequence, a small output range requires
a much wider input range, and the monotonic net’s prediction has
to cover this input range. For example, an output range [10−4, 3]
corresponds to the input range [−9.21, 2.95]. Hence, the varia-
tion of the monotonic net’s prediction is greatly enlarged. This
can be further verified from a probabilistic analysis. Suppose the
training output follows a uniform distribution in [0, 3]. This is
reasonable, because in practice, we often normalize the data to
avoid their scales being too large for better numerical stability and
optimization efficiency. We then look into the corresponding input
distribution of the standard softplus. As shown in Fig. 1b (the blue
line), the input distribution is much wider, and includes a long, fat tail over the negative domain. That
means, the prediction of the monotonic net has to fit many negative values with much larger scales,
which can bring back the troubles in optimization efficiency and numerical stability. To alleviate this
issue, we propose a shift-scale variant of the softplus function,

f̂sp(x;α, γ) = γ log(1 + exp(
x− α
γ

)) (8)

where α and γ are two hyperparameters, shift and scale. When α > 0, the function body is moved
toward the right of the x-axis and hence the negative input range needed to obtain close-to-zero
outputs is shrunk. Furthermore, when we choose γ ∈ (0, 1), the absolute value of the input is
amplified. That means, to achieve the same output, e.g., 0.0009, the scale of the input x — i.e., the
output of the monotonic net — can be greatly decreased. Therefore, both α and γ can shrink the input
range, and reduce the fat tail of the distribution over the negative inputs, so as to make monotonic
net learning easier and more efficient. Fig. 1b shows the input distribution with α = 0, γ = 0.5 and
α = γ = 0.5. In both cases, the distribution over the large negative inputs is greatly reduced. The
reduction with α = γ = 0.5 is more significant. Our experiments have verified the improvement of
learning with our shift-scale softplus function (see Sec. 6.1).

4



Under review as a conference paper at ICLR 2023

Vertex m

Neighborhood
vertexes

RNN state
<latexit sha1_base64="0YYXKNEAegHf4alONa//Smd4CqM=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae005JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB1MbjO//UiVZpF8MNOY+gKPJAsZwcZK/Z7AZhyE6XjWFwNvUK64VXcOtEq8nFQgR2NQ/uoNI5IIKg3hWOuu58bGT7EyjHA6K/USTWNMJnhEu5ZKLKj203nqGTqzyhCFkbJPGjRXf2+kWGg9FYGdzFLqZS8T//O6iQmv/ZTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+S1kXVu6zW7muV+k1eRxFO4BTOwYMrqMMdNKAJBBQ8wyu8OU/Oi/PufCxGC06+cwx/4Hz+AJzfkpg=</latexit>

hm
1

<latexit sha1_base64="oy/J63pILVbsTQozz3s/rYdaZgM=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9klRD0SvXjERMAEFtItXWhou5u2qyEb/ocXDxrj1f/izX9jF/ag4CRNJjPv5U0niDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCP1EGBNOZO0ZZjh9CFWFIuA004wucn8ziNVmkXy3kxj6gs8kixkBBsr9XsCm3EQpuNZXwxqg3LFrbpzoFXi5aQCOZqD8ldvGJFEUGkIx1p3PTc2foqVYYTTWamXaBpjMsEj2rVUYkG1n85Tz9CZVYYojJR90qC5+nsjxULrqQjsZJZSL3uZ+J/XTUx45adMxomhkiwOhQlHJkJZBWjIFCWGTy3BRDGbFZExVpgYW1TJluAtf3mVtGtV76Jav6tXGtd5HUU4gVM4Bw8uoQG30IQWEFDwDK/w5jw5L86787EYLTj5zjH8gfP5A55jkpk=</latexit>

hm
2

<latexit sha1_base64="1tUtpn7DThQJ4AsaFrq/CqdUalI=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRkt6rLoxmUF+4B2WjJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+QEMWfauO63s7K6tr6xWdgqbu/s7u2XDg6bOkoUoQ0S8Ui1A6wpZ5I2DDOctmNFsQg4bQXj28xvPVKlWSQfzCSmvsBDyUJGsLFSryuwGQVhOpr2RP+iXyq7FXcGtEy8nJQhR71f+uoOIpIIKg3hWOuO58bGT7EyjHA6LXYTTWNMxnhIO5ZKLKj201nqKTq1ygCFkbJPGjRTf2+kWGg9EYGdzFLqRS8T//M6iQmv/ZTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyraErzFLy+T5nnFu6xU76vl2k1eRwGO4QTOwIMrqMEd1KEBBBQ8wyu8OU/Oi/PufMxHV5x85wj+wPn8AZ/nkpo=</latexit>

hm
3

<latexit sha1_base64="DYu6j0DTnp68kItgE0bMSA7u+aI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae005JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB1MbjO//UiVZpF8MNOY+gKPJAsZwcZK/Z7AZhyE6XjWF4PaoFxxq+4caJV4OalAjsag/NUbRiQRVBrCsdZdz42Nn2JlGOF0VuolmsaYTPCIdi2VWFDtp/PUM3RmlSEKI2WfNGiu/t5IsdB6KgI7maXUy14m/ud1ExNe+ymTcWKoJItDYcKRiVBWARoyRYnhU0swUcxmRWSMFSbGFlWyJXjLX14lrYuqd1mt3dcq9Zu8jiKcwCmcgwdXUIc7aEATCCh4hld4c56cF+fd+ViMFpx85xj+wPn8AaFrkps=</latexit>

hm
4

<latexit sha1_base64="pqaDnaLiqA+rI5Xrw46cp9qbpP0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9gHttGTSTBuaZIYko5Sh/+HGhSJu/Rd3/o2ZdhbaeiBwOOde7skJYs60cd1vp7Cyura+UdwsbW3v7O6V9w+aOkoUoQ0S8Ui1A6wpZ5I2DDOctmNFsQg4bQXj28xvPVKlWSQfzCSmvsBDyUJGsLFSryuwGQVhOpr2RP+iX664VXcGtEy8nFQgR71f/uoOIpIIKg3hWOuO58bGT7EyjHA6LXUTTWNMxnhIO5ZKLKj201nqKTqxygCFkbJPGjRTf2+kWGg9EYGdzFLqRS8T//M6iQmv/ZTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyrZErzFLy+T5lnVu6ye359Xajd5HUU4gmM4BQ+uoAZ3UIcGEFDwDK/w5jw5L8678zEfLTj5ziH8gfP5A6Lvkpw=</latexit>

hm
5

<latexit sha1_base64="bNqjVXuwZMc0nrAq4g+0w/5nN/0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae005JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB1MbjO//UiVZpF8MNOY+gKPJAsZwcZK/Z7AZhyE6XjWF4PaoFxxq+4caJV4OalAjsag/NUbRiQRVBrCsdZdz42Nn2JlGOF0VuolmsaYTPCIdi2VWFDtp/PUM3RmlSEKI2WfNGiu/t5IsdB6KgI7maXUy14m/ud1ExNe+ymTcWKoJItDYcKRiVBWARoyRYnhU0swUcxmRWSMFSbGFlWyJXjLX14lrYuqV6te3l9W6jd5HUU4gVM4Bw+uoA530IAmEFDwDK/w5jw5L86787EYLTj5zjH8gfP5A6Rzkp0=</latexit>

hm
6

<latexit sha1_base64="KiSUjRcMwI84vMuhC7EwUNeA+Gc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIWJdFNy4r2Ae005JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB1MbjO//UiVZpF8MNOY+gKPJAsZwcZK/Z7AZhyE6XjWF4PaoFxxq+4caJV4OalAjsag/NUbRiQRVBrCsdZdz42Nn2JlGOF0VuolmsaYTPCIdi2VWFDtp/PUM3RmlSEKI2WfNGiu/t5IsdB6KgI7maXUy14m/ud1ExNe+ymTcWKoJItDYcKRiVBWARoyRYnhU0swUcxmRWSMFSbGFlWyJXjLX14lrYuqd1W9vL+s1G/yOopwAqdwDh7UoA530IAmEFDwDK/w5jw5L86787EYLTj5zjH8gfP5A6X3kp4=</latexit>

hm
7

<latexit sha1_base64="JKGcFkbGSxQia0WEkraicd/Po/8=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJdFNy4r2Ae005JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB1MbjO//UiVZpF8MNOY+gKPJAsZwcZK/Z7AZhyE6XjWF4PaoFxxq+4caJV4OalAjsag/NUbRiQRVBrCsdZdz42Nn2JlGOF0VuolmsaYTPCIdi2VWFDtp/PUM3RmlSEKI2WfNGiu/t5IsdB6KgI7maXUy14m/ud1ExPW/JTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+S1kXVu6pe3l9W6jd5HUU4gVM4Bw+uoQ530IAmEFDwDK/w5jw5L86787EYLTj5zjH8gfP5A6d7kp8=</latexit>

hm
8

Figure 2: State update for a vertex.

Finally, to incorporate the valuable graph
knowledge, we use an attention mechanism to
model the RNN states at each vertex (partici-
pant), based on the observed events occurred
on both the vertex itself and its neighborhood
(see Fig. 2). Specifically, we introduce an em-
bedding vector vm to represent each vertex m.
To compute the RNN states at each vertex m,
we flatten the observed event sequences on m
and its neighborhood Bm to obtain a single sequence Γ̂m = [(t1, s1, r1), . . . , (tN , sN , rN )], where
t1 ≤ . . . ≤ tN , {sn}Nn=1 are the event types, {rn}Nn=1 the vertex indices, and each rn ∈ {m} ∪ Bm.
For vertex m, we introduce a hidden state hmn at each event (tn, sn, rn). We update hmn by

gmn = RNN-Cell(hmn−1,usn , tn − tn−1), (9)

an = σ(τ · v>mvrn), (10)
hmn = an · gmn + (1− an) · hmn−1 (11)

where σ is the sigmoid function, an is an attention score computed from the inner product of the
vertex embeddings, and τ > 0 adjusts how much the score is leaning toward 0 or 1 (in our experiment
we set τ = 2.0). We can see that even if the event did not occur on vertex m, i.e., rn 6= m, we can
still update the state on m according to its similarity to the neighborhood vertex rn, i.e., the attention
score an. This score reflects how much the vertex m should pay attention to the event happened on
the neighborhood to update itself. If vertex m and rn are very dissimilar, i.e., an ≈ 0, then there is
almost no update. In this way, the correlation between the vertexes (participants), which are reflected
by the graph structure, are integrated into our model to bolster the estimation of the cumulative
conditional intensity (see (4)), better fit the observed data and improve the prediction. When there is
no graph structure, we have all rn = m and an ≈ 1, and we return to the standard RNN updates.

4 Algorithm

Given a collection of observed event sequences on all the vertexes (participants), D = {S1, . . . ,SL},
where each Sl = {Γ1

l , . . . ,Γ
M
l } (1 ≤ l ≤ L) and each Γml is an event sequence on vertex m

(1 ≤ m ≤ M ), we develop a stochastic mini-batch learning algorithm to estimate the vertex
embeddings {vj}Mj=1, the event type embeddings {uk}Kk=1, the parameters of the RNN and monotoic
net (see (9) and(4)), and the NN parameters for mark distribution (see (6)).

Specifically, to be scalable to a large graph G, at each step, we use random walk to sample a small set
of vertexes B. We view the vertexes in B are neighborhood to each other. Thereby, the neighborhood
includes not only the vertexes that are directly connected, but also the ones connected via a short
path. In this way, we can exploit more abundant local structural information. Next, to handle a large
number sequences L, we randomly select one sequence set Sl (l ∈ {1, . . . , L}), and use the subset
of sequences on the sampled vertexes, {Γml |m ∈ B}, to compute the likelihood (see (7)) and its
gradient. We use this gradient as a stochastic gradient to update the model parameters. We can apply
any stochastic optimization algorithm. Our stochastic training is summarized in Algorithm 1.

Algorithm 1 GINPP (D, E, G, α, γ)

Initialize the model parameters
repeat

Randomly shuffle the sequence sets in D = {S1, . . . ,SL}
for each set Sl do

Random walk over the graph G to sample a small set of vertexes B.
Pick the subset of sequences associated with B: A = {Γml |m ∈ B}
Compute the gradient of the likelihood on A according to (7).
Update the model parameters with the gradient (e.g., ADAM)

end for
until E epochs are done

5



Under review as a conference paper at ICLR 2023

5 Related Work
Poisson process is a popular tool for event data analysis, e.g., (Lloyd et al., 2015; Schein et al., 2015;
2016; 2019), but its independent increment assumption ignores the event dependencies or interactions.
Many works therefore propose to use Hawkes processes (HPs) (Hawkes, 1971) to capture the mutual
excitation effects among the events, such as (Blundell et al., 2012; Tan et al., 2016; Linderman and
Adams, 2014; Du et al., 2015; He et al., 2015; Wang et al., 2017; Yang et al., 2017a; Xu and Zha,
2017; Xu et al., 2018). A series of works improve the learning with HPs, such as nonparametric
kernel estimation (Zhou et al., 2013; Zhang et al., 2020b; Zhou et al., 2020), short doubly-censored
event sequences (Xu et al., 2017), Granger causality (Xu et al., 2016) and online estimation (Yang
et al., 2017b). Another recent line of works (Zhe and Du, 2018; Pan et al., 2020; Wang et al., 2020)
uses the HP framework for high-order structure decomposition and representation learning.

In order to estimate more complex event dependencies, recent research has attempted to use neural
networks to construct temporal point processes. Du et al. (2016) used an RNN to construct a marked
temporal point process, where the conditional intensity is formulated as a linear transformation of
the RNN state and the time difference then through an exponential transformation to ensure the
positiveness. Mei and Eisner (2017) proposed a continuous-time LSTM (Hochreiter and Schmidhuber,
1997) to model the conditional intensity and used the softplus transformation to ensure the positiveness.
To handle the intractable integration in the point process likelihood, Mei and Eisner (2017) used
a Monte-Carlo approximation. The recent works (Zhang et al., 2020a; Zuo et al., 2020) use the
attention mechanism (Vaswani et al., 2017; Bahdanau et al., 2014) to replace the RNN framework,
but they still have to approximate the integration in the likelihood. Omi et al. (2019) bypassed this
problem by feeding the RNN states into a monotonic net (Sill, 1997; Chilinski and Silva, 2020) to
directly model the cumulative conditional intensity, so we do not need to explicitly compute the
integration. The monotonic net is typically a multi-layer perceptron but imposes the nonnegative
constraint over the weights during learning to fulfill the monotonicity. While successful, the model of
Omi et al. (2019) only supports single-type events, which can be limited in practice. Our work GINPP
extends their model to support multi-type events with the marked point process framework (Daley
and Vere-Jones, 2007), which is simple and efficient. Note that Du et al. (2016) also used the marked
point process framework. GINPP uses the RNN framework to model the hidden state due to the stable
and excellent performance, but an attention mechanism is used to incorporate the graph structure into
the state computation. Hence, GINPP can be viewed as a hybrid approach. It is straightforward to
extend GINPP to a full attention model.

Other works include Zhou et al. (2021) that extends HPs with a mixture of shifted Beta densities,
ODE based models (Rubanova et al., 2019), neural network influence kernels (Zhu et al., 2021a)
, deep Fourier kernels (Zhu et al., 2021b), the intensity-free point process learning (Shchur et al.,
2019) that models the time difference between successive events, etc. Based on the intensity-free
framework (Shchur et al., 2019), Zhang et al. (2021) also proposed a neural point process model with
a prior graph incorporated. But their goal is to infer the labels of nodes in the graph to detect clusters
and anomalies, rather than predict the occurrence and type of new events. The recent work of Pan
et al. (2021) develops a nonparametric decaying model of the temporal inference, and can explicitly
recover various excitation and inhibition effects, and their decay patterns among the events. While
flexible and interpretable, it still needs to approximate the cumulative conditional intensity, which is
done via Gauss-Laguerre quadrature.

6 Experiment
6.1 Ablation Study
We first performed an ablation study to confirm the effectiveness of our shift-scale softplus transfor-
mation (8). To this end, we tested with two functions:

g1(x) = 0.5 · σ (5(x− 1)) , g2(x) = 0.3 ·
(

0.5 sin(10x)e−x/2 + ex − 1
)
− 0.2 (12)

where g1(x) > 0 monotonically increases with the input x and g2 does not. We used a monotonic net
plus the shift-scale softplus transformation to learn the two functions. The monotonic net includes
two layers, with 256 neurons per layer, and tanh activation. We uniformly sampled 50 training
points from x ∈ [0, 2]. We implemented the model with TensorFlow, and used Adam for stochastic
optimization. The learning rate was set to 10−3. We set α = 0, γ = 0.2 and α = 0.5, γ = 0.2. We
also tested with the standard softplus We show the learning curves and estimated the functions in

6



Under review as a conference paper at ICLR 2023

100 200 300 400 500 600
epochs

0.00

0.05

0.10

0.15

Tr
ai

ni
ng

 L
os

s

standard softplus
α= 0.0, γ= 0.2
α= 0.5, γ= 0.2

(a) g1 learning curve

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.1

0.2

0.3

0.4

0.5

f(x
)

Ground Truth
standard softplus
α= 0.0, γ= 0.2
α= 0.5, γ= 0.2

(b) g1 estimation

50 100 150 200 250 300 350 400
epochs

0.0

0.1

0.2

0.3

0.4

0.5
Tr

ai
ni

ng
 L

os
s

standard softplus
α= 0.0, γ= 0.2
α= 0.5, γ= 0.2

(c) g2 learning curve
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.5

1.0

1.5
Ground Truth
standard softplus
α= 0.0, γ= 0.2
α= 0.5, γ= 0.2

(d) g2 estimation
Figure 3: The learning curves and estimation results of monotonic net with softplus transformation.

Fig. 3. As we can see, with our shift-scale softplus, the learning converges much faster (see Fig. 3a
and Fig. 3c). With the standard softplus, the learning fell into a relative big loss first, and stayed
there for quite a long time before the new improvement started to happen. By contrast, during the
stage that the standard softplus was stuck, our shift-scale softplus had driven the training loss to
drop fast and converged (see the red line). This shows that the shift-scale version can greatly boost
the learning efficiency. Note that for standard softplus, the long stucking stage can signal a wrong
message that the training can stop. The estimated functions with our shift-scale softplus are also more
accurate. From Fig. 3b and 3d, our learned functions are quite close to the ground-truth. In Fig. 3b,
our estimation (α = 0.5, γ = 0.2) almost overlaps with the ground-truth. By contrast, the estimation
with the standard softplus (the blue line) has a clear deviation. Therefore, it shows that our shift-scale
softplus not only bolster the learning efficiency but also leads to better learning results.

0 10 20 30 40
time(t)

1

2

3

4

To
ta

l I
nt

en
sit

y

Ground Truth
Estimated

(a) Total intensity

0 10 20 30 40

0

1

2

3
Estimated: Type 0
Estimated: Type 1

Ground Truth: Type 0
Ground Truth: Type 1

Type 0 Events
Type 1 Events

(b) Intensity of each type
Figure 4: Estimation of the conditional intensity.

Next, we examined if GINPP can recover
the ground-truth conditional intensity. To
this end, we generated a synthetic dataset
of bi-type events, where type 0 events ex-
cite type 1 events while type 1 inhibits type
0, and events of the same type do not influ-
ence on each other,

ρ0→1(∆) = max(1.0− 0.05∆2, 0),

ρ1→0(∆) = −0.5 exp(−0.5∆).

We then substitute ρ0→1 and ρ1→0 into (2)
(background rate is zero). To ensure the
positiveness, we applied a softplus transfor-
mation to obtain the conditional intensity.
We used Thinning algorithm Lewis and
Shedler (1979) to sample 10K sequences
for training and 1K for validation. Each
sequence consists of 64 events. We evalu-
ated the likelihood of the validation set after each training epoch, and halted the training when no
improvement was observed (i.e., early stopping). We used the GRU cell for our RNN component.
The dimension of the hidden state and event type embeddings was set to 64 and 16, respectively. For
the monotonic net component, we used two hidden layers, 256 neurons per layer, and tanh activation.
For the NN in the mark distribution (see (6)), we used one hidden layer, with 256 neurons and RELU
activation function. We set α = γ = 0.5 for the shift-scale softplus. We used Adam for stochastic
optimization with learning rate 10−3 and mini-batch size 64. The maximum number of epochs was
set to 100. Fig. 4a shows the estimated total conditional intensity, and we can see it matches the
ground-truth quite closely. Then Fig. 4b reports the derived conditional intensity for type 0 and type
1 from the learned mark distribution. As we can see, GINPP can also accurately recover the intensity
for each event type, although it does not explicitly estimate them. The results have confirmed the
capability of our multi-type event model.

7



Under review as a conference paper at ICLR 2023

6.2 Predictive Performance

Next, we evaluated the performance of GINPP in predicting the time and type of future events. To this
end, we used six real-world benchmark datasets, where the first four do not include graph information
and the remaining two are associated with graphs. (1) Retweet (Zhao et al., 2015), including 24K
event sequences and three event types: retweeting by “small" , “medium” and “large” retweeters.
(2) SO (Du et al., 2016), 6, 633 awarding sequences in the Q/A site Stack Overflow. The event type
is the award, such as “Nice Question”, “Guru”, and “Great answer”. There are 22 event types. (3)
MIMIC (Du et al., 2016), clinical visit events from 650 anonymous patients in seven years, and the
event type is the diagnosis outcome. There are 75 outcomes. (4) Social1, 48.9K student activity
events in the campus of a university. The event type corresponds to the campus location of the event
and we have 50 event types, and 1,614 event sequences happened among 51 students. (5) 911Call2,
251K emergence calls in Montgomery County of Pennsylvania from year 2015 to 2017. There are
three types of calls (events): EMS, FIRE and Traffic. We have collected 6,187 event sequences from
73 zones. We viewed each zone as a vertex, and added an edge if two zones are neighboring each
other. (6) SLCCrimel3, 48.7K criminal events happened in 23 zones of Salt Lake City. There are 25
event types (e.g., robbery, murder and arson) and 1,403 sequences. We viewed each zone as a vertex
and created the graph according to the geographic neighboring relationship.

We compared with the following popular and/or state-of-the-art approaches: (1) PP, simple ho-
mogeneous Poisson process, (2) Hawkes process (HP) with an exponential triggering kernel, (3)
Recurrent Marked Temporal Point Process (RMTPP) (Du et al., 2016), (4) Neural Hawkes Processes
(NeuralHP) (Mei and Eisner, 2017), (5) Self-Attentive Hawkes Process (SAHP) (Zhang et al., 2020a)
that uses the self-attention mechanism to model the conditional intensity for each event type, (6)
Transformer Hawkes process (TRHP) (Zuo et al., 2020) that also uses the attention mechanism
to model the intensity. In addition, we compared with (7) Simple Statistics (SS) that predicts the
occurrence time of new events with the average lag between successive events, and predicts the
new event type with the most frequent type of the observed events. We used the original imple-
mentation of NeuralHP (https://github.com/HMEIatJHU/neurawkes), SAHP (https:
//github.com/QiangAIResearcher/sahp_repo), TRHP (https://github.com/
SimiaoZuo/Transformer-Hawkes-Process), and a popular open-source implementation
of RMTPP (https://github.com/woshiyyya/ERPP-RMTPP). For GINPP, we employed
the same setting as in the ablation study (see Sec. 6.1). In addition, we set the dimension of the vertex
embeddings to 16. To perform random walk, we randomly selected an initial vertex, and each step
randomly hopped to a vertex that connects to the current vertex. The probability is the inverse of the
degree of the current vertex. We maintained the visited vertex set until the number reached to the
mini-batch size. Except SS, all the methods used ADAM for stochastic optimization with learning
rate 10−3, and the mini-batch size was chosen from {8, 16, 32}. We used the default settings of all
the other methods, and early stopping for every method.

We randomly split each dataset into 70% for training, 10% for validation, and 20% for testing. Each
method was used to predict the occurrence time and type of the last event in each test sequence. We
repeated the experiment for five times, and computed the average root-mean-square-error (RMSE)
and classification accuracy (ACC) for time and type predictions, respectively. We computed the
standard deviation. For all the datasets, we also ran our method without graphs (i.e., we set an empty
G), denoted by GINPP-1. The results are reported in Table 1. As we can see, in every dataset, GINPP
outperforms all the competing methods, in many cases by a large margin. It shows our method is
superior in both event time and type prediction. When the graph knowledge is available, GINPP is
better than our method not incorporating the graph structure, i.e., GINPP-1. The results show that the
graph structure can further facilitate the training and prediction, and our attention method is effective.

Finally, we investigated the attention score between the vertexes after training. Specifically, we
examined three zones in 911Call dataset: Zone 2, 52 and 67. Fig. 5a shows the locations of all the
zones. The points represent the observed events on those zones. The color represents the region of
each zone. Then Fig 5b, 5c and 5d show the attention scores between the all the event locations and
the events in zone 2, 52 and 67, respectively. The color indicates the magnitude; see the color bar.
We can see that in many cases, when the event locations are in the neighboring zones, the attention

1http://realitycommons.media.mit.edu/SocialEvolutionData.html
2https://www.kaggle.com/datasets/mchirico/montcoalert
3https://opendata.utah.gov/browse?category=Public%20Safety

8

https://github.com/HMEIatJHU/neurawkes
https://github.com/QiangAIResearcher/sahp_repo
https://github.com/QiangAIResearcher/sahp_repo
https://github.com/SimiaoZuo/Transformer-Hawkes-Process
https://github.com/SimiaoZuo/Transformer-Hawkes-Process
https://github.com/woshiyyya/ERPP-RMTPP
http://realitycommons.media.mit.edu/SocialEvolutionData.html
https://www.kaggle.com/datasets/mchirico/montcoalert
https://opendata.utah.gov/browse?category=Public%20Safety


Under review as a conference paper at ICLR 2023

RMSE Retweet SO MIMIC Social 911Call SLCCrime
SS 33.241 ± 0.28 1.561 ± 0.02 1.274 ± 0.07 11.643 ± 3.28 21.754 ± 0.52 8.024 ± 0.30
PP 34.294 ± 0.33 1.178 ± 0.02 1.132 ± 0.05 7.630 ± 1.08 19.119 ± 0.24 6.340 ± 0.36
HP 32.557 ± 0.40 1.240 ± 0.01 1.002 ± 0.05 7.670 ± 1.03 18.380 ± 0.24 6.382 ± 0.36

RMTPP 47.704 ± 0.29 1.656 ± 0.04 1.015 ± 0.04 7.966 ± 1.06 22.031 ± 1.06 8.873 ± 0.37
NeuralHP 34.912 ± 0.34 1.173 ± 0.01 1.026 ± 0.03 7.740 ± 1.07 20.790 ± 0.23 7.498 ± 0.40

SAHP 34.894 ± 0.35 1.565 ±0.05 1.035 ± 0.04 7.941 ± 1.07 20.398 ± 0.30 7.970 ± 0.40
TRHP 34.055 ± 0.36 1.127 ± 0.02 1.071 ± 0.03 7.912 ± 1.03 20.919 ± 0.26 7.337 ± 0.48

GINPP-1 32.258 ± 0.31 1.112 ± 0.01 0.874 ± 0.03 7.616 ± 1.08 16.155 ± 0.27 6.072 ± 0.31
GINPP - - - - 15.446 ± 0.28 5.993 ± 0.29

ACC
SS 0.549 ± 0.002 0.366 ± 0.010 0.305 ± 0.021 0.122 ± 0.006 0.526 ± 0.008 0.222 ± 0.006
PP 0.549 ± 0.002 0.366 ± 0.010 0.186 ± 0.050 0.110 ± 0.005 0.544 ± 0.008 0.181 ± 0.011
HP 0.540 ± 0.014 0.357 ± 0.007 0.294 ± 0.041 0.123 ± 0.009 0.511 ± 0.013 0.216 ± 0.013

RMTPP 0.575 ± 0.006 0.376 ± 0.008 0.848 ± 0.018 0.509 ± 0.008 0.531 ± 0.005 0.203 ± 0.009
NeuralHP 0.574 ± 0.014 0.383 ± 0.007 0.718 ± 0.041 0.556 ± 0.009 0.511 ± 0.013 0.218 ± 0.013

SAHP 0.497 ± 0.027 0.305 ± 0.025 0.337 ± 0.036 0.053 ± 0.015 0.293 ± 0..021 0.041 ± 0.016
TRHP 0.541 ± 0.004 0.375 ± 0.008 0.768 ± 0.015 0.485 ± 0.007 0.532 ± 0.008 0.220 ± 0.011

GINPP-1 0.607 ± 0.004 0.401 ± 0.009 0.863 ± 0.015 0.616 ± 0.011 0.550 ± 0.005 0.228 ± 0.011
GINPP - - - - 0.553 ± 0.005 0.233 ± 0.009

Table 1: Predictive performance of the time (RMSE) and type (ACC) of the future events.

(a) Zone map (b) Zone 2

(c) Zone 52 (d) Zone 67
Figure 5: The attention scores of zone 52, 2, and 67. The cross is the center of the zone.

score with them is high. This implies those events take significant impacts on updating the hidden
state of the zone. However, there are also cases that the attention score with neighboring zones is
small or close to zero, for example, the purple points surrounding Zone 2 (see Fig. 5b) and on right
side of Zone 67 (see Fig. 5d). In such cases, the neighborhood events have little effect on the state
update. This has shown the selection effect of the attention mechanism. On the other hand, the
attentions score is in general smaller or closer to zero for distant zones. This might be attributed to
the incorporation of the graph structure, because the distant vertexes are unlikely to be collected by
the random walk, and hence their embeddings can be more dissimilar after training.

7 Conclusion

We have developed GINPP, a graph-informed neural point process that can avoid intractable integra-
tion in the likelihood, support multiple event types, and incorporate valuable graph knowledge into
training and prediction. The experiments in ablation studies and seven real-world applications have
shown the encouraging results.

9



Under review as a conference paper at ICLR 2023

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Blundell, C., Beck, J., and Heller, K. A. (2012). Modelling reciprocating relationships with hawkes
processes. In Advances in Neural Information Processing Systems, pages 2600–2608.

Chilinski, P. and Silva, R. (2020). Neural likelihoods via cumulative distribution functions. In
Conference on Uncertainty in Artificial Intelligence, pages 420–429. PMLR.

Daley, D. J. and Vere-Jones, D. (2007). An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. (2016). Recurrent
marked temporal point processes: Embedding event history to vector. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1555–1564.

Du, N., Farajtabar, M., Ahmed, A., Smola, A. J., and Song, L. (2015). Dirichlet-hawkes processes
with applications to clustering continuous-time document streams. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 219–228.
ACM.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90.

He, X., Rekatsinas, T., Foulds, J., Getoor, L., and Liu, Y. (2015). Hawkestopic: A joint model for
network inference and topic modeling from text-based cascades. In International conference on
machine learning, pages 871–880.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–
1780.

Lewis, P. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous poisson processes by thinning.
Naval research logistics quarterly, 26(3):403–413.

Linderman, S. and Adams, R. (2014). Discovering latent network structure in point process data. In
International Conference on Machine Learning, pages 1413–1421.

Lloyd, C., Gunter, T., Osborne, M., and Roberts, S. (2015). Variational inference for gaussian
process modulated poisson processes. In International Conference on Machine Learning, pages
1814–1822. PMLR.

Mei, H. and Eisner, J. M. (2017). The neural hawkes process: A neurally self-modulating multivariate
point process. In Advances in Neural Information Processing Systems, pages 6754–6764.

Omi, T., Aihara, K., et al. (2019). Fully neural network based model for general temporal point
processes. In Advances in Neural Information Processing Systems, pages 2122–2132.

Pan, Z., Wang, Z., Phillips, J. M., and Zhe, S. (2021). Self-adaptable point processes with nonpara-
metric time decays. Advances in Neural Information Processing Systems, 34:4594–4606.

Pan, Z., Wang, Z., and Zhe, S. (2020). Scalable nonparametric factorization for high-order interaction
events. In International Conference on Artificial Intelligence and Statistics, pages 4325–4335.
PMLR.

Rubanova, Y., Chen, R. T., and Duvenaud, D. K. (2019). Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32.

Schein, A., Linderman, S., Zhou, M., Blei, D., and Wallach, H. (2019). Poisson-randomized gamma
dynamical systems. In Advances in Neural Information Processing Systems, pages 782–793.

10



Under review as a conference paper at ICLR 2023

Schein, A., Paisley, J., Blei, D. M., and Wallach, H. (2015). Bayesian poisson tensor factorization for
inferring multilateral relations from sparse dyadic event counts. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1045–1054.
ACM.

Schein, A., Zhou, M., Blei, D. M., and Wallach, H. (2016). Bayesian poisson tucker decomposition
for learning the structure of international relations. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16, pages
2810–2819. JMLR.org.

Shchur, O., Bilovs, M., and Günnemann, S. (2019). Intensity-free learning of temporal point processes.
In International Conference on Learning Representations.

Sill, J. (1997). Monotonic networks. Advances in neural information processing systems, 10.

Tan, X., Naqvi, S. A., Qi, A. Y., Heller, K. A., and Rao, V. (2016). Content-based modeling of
reciprocal relationships using hawkes and gaussian processes. In UAI.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 30, pages 5998–6008. Curran Associates, Inc.

Wang, Y., Ye, X., Zha, H., and Song, L. (2017). Predicting user activity level in point processes
with mass transport equation. In Advances in Neural Information Processing Systems, pages
1644–1654.

Wang, Z., Chu, X., and Zhe, S. (2020). Self-modulating nonparametric event-tensor factorization. In
International Conference on Machine Learning, pages 9857–9867. PMLR.

Xu, H., Farajtabar, M., and Zha, H. (2016). Learning granger causality for hawkes processes. In
International Conference on Machine Learning, pages 1717–1726.

Xu, H., Luo, D., Chen, X., and Carin, L. (2018). Benefits from superposed hawkes processes. In
International Conference on Artificial Intelligence and Statistics, pages 623–631. PMLR.

Xu, H., Luo, D., and Zha, H. (2017). Learning hawkes processes from short doubly-censored event
sequences. In International Conference on Machine Learning, pages 3831–3840.

Xu, H. and Zha, H. (2017). A dirichlet mixture model of hawkes processes for event sequence
clustering. In Advances in Neural Information Processing Systems, pages 1354–1363.

Yang, J., Rao, V. A., and Neville, J. (2017a). Decoupling homophily and reciprocity with latent space
network models. In UAI.

Yang, Y., Etesami, J., He, N., and Kiyavash, N. (2017b). Online learning for multivariate hawkes
processes. In Advances in Neural Information Processing Systems, pages 4937–4946.

Zhang, Q., Lipani, A., Kirnap, O., and Yilmaz, E. (2020a). Self-attentive hawkes process. In
International Conference on Machine Learning, pages 11183–11193. PMLR.

Zhang, R., Walder, C., and Rizoiu, M.-A. (2020b). Variational inference for sparse gaussian process
modulated hawkes process. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 6803–6810.

Zhang, Y., Sharma, K., and Liu, Y. (2021). Vigdet: Knowledge informed neural temporal point
process for coordination detection on social media. Advances in Neural Information Processing
Systems, 34:3218–3231.

Zhao, Q., Erdogdu, M. A., He, H. Y., Rajaraman, A., and Leskovec, J. (2015). Seismic: A self-
exciting point process model for predicting tweet popularity. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1513–1522.
ACM.

11



Under review as a conference paper at ICLR 2023

Zhe, S. and Du, Y. (2018). Stochastic nonparametric event-tensor decomposition. In Advances in
Neural Information Processing Systems, pages 6856–6866.

Zhou, F., Li, Z., Fan, X., Wang, Y., Sowmya, A., and Chen, F. (2020). Efficient inference for
nonparametric hawkes processes using auxiliary latent variables. Journal of Machine Learning
Research, 21(241):1–31.

Zhou, F., Zhang, Y., and Zhu, J. (2021). Efficient inference of flexible interaction in spiking-neuron
networks. In Proceedings of the International Conference on Learning Representations (ICLR).

Zhou, K., Zha, H., and Song, L. (2013). Learning triggering kernels for multi-dimensional hawkes
processes. In International Conference on Machine Learning, pages 1301–1309.

Zhu, S., Wang, H., Dong, Z., Cheng, X., and Xie, Y. (2021a). Neural spectral marked point processes.
In International Conference on Learning Representations.

Zhu, S., Zhang, M., Ding, R., and Xie, Y. (2021b). Deep fourier kernel for self-attentive point
processes. In International Conference on Artificial Intelligence and Statistics, pages 856–864.
PMLR.

Zuo, S., Jiang, H., Li, Z., Zhao, T., and Zha, H. (2020). Transformer hawkes process. In International
Conference on Machine Learning, pages 11692–11702. PMLR.

12


	Introduction
	Background
	Model
	Algorithm
	Related Work
	Experiment
	Ablation Study
	Predictive Performance

	Conclusion

