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Abstract

The growing size of models and datasets have made distributed implementation1

of stochastic gradient descent (SGD) an active field of research. However the2

high bandwidth cost of communicating gradient updates between nodes remains3

a bottleneck; lossy compression is a way to alleviate this problem. We propose a4

new unbiased Vector Quantizer (VQ), named StoVoQ, to perform gradient quanti-5

zation. This approach relies on introducing randomness within the quantization6

process, that is based on the use of unitarily invariant random codebooks and on7

a straightforward bias compensation method. The distortion of StoVoQ signif-8

icantly improves upon existing quantization algorithms. Next, we explain how9

to combine this quantization scheme within a Federated Learning framework for10

complex high-dimensional model (dimension > 106), introducing DoStoVoQ. We11

provide theoretical guarantees on the quadratic error and (absence of) bias of the12

compressor, that allow to leverage strong theoretical results of convergence, e.g.,13

with heterogeneous workers or variance reduction. Finally, we show that training14

on convex and non-convex deep learning problems, our method leads to significant15

reduction of bandwidth use while preserving model accuracy.16

1 Introduction17

In this paper, we consider the Federated Learning framework, in which a potentially large number K18

of workers cooperate to solve the following problem:19

min
θ∈RD

K∑
k=1

fk(θ), (1)

where each function fk : RD → R represents the empirical risk on worker k ∈ [K] (where20

[K] = {1, . . . ,K}) and D is the ambient dimension of our problem. Each worker potentially holds a21

fraction of the data, and can share information with a central server, which progressively aggregates22

and updates the model accordingly [18, 17].23

Stochastic gradient algorithms [28] are particularly well suited in the large scale learning setting [6,24

7]. The methods can easily be adapted to the distributed (and more generally federated) learning25

framework; see [17] and the references therein. For synchronous distributed Stochastic Gradient26

Descent, at every iteration, given the current parameter θt, each worker computes an unbiased estimate27

gk,t+1(θt) of the gradient of the local loss function fk. The central server then aggregates those28

oracles and performs the update.29

Communicating the gradients from the local workers to the central server is often a major bottleneck.30

The drastic increase both in the number of parameters and of workers over the last years, has made31

this problem even more acute. Alleviating the communication cost is one of the crucial challenges of32
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federated learning [17, Sec. 3.5]. A central idea to tackle this issue is communication compression,33

which consists in applying a lossy compression to the parameters or gradients to be transmitted.34

Since compression alters the message transmitted, the number of iterations required to reach a given35

accuracy may increase, therefore compression is of interest in situations where the communication36

gains are large relative to the increase of communication rounds. The design of new compression37

schemes (see among others [30, 2, 4, 5, 34]) and the adaptation of the learning algorithms to this38

setting (see e.g. [32, 1, 35, 33, 36, 22, 26, 12, 11, 21] and the references therein) are an extremely39

active field of research.40

Our main contribution is to introduce a novel unbiased vector quantization procedure allowing to41

reach high-compression rate, with a small computational overhead. More precisely, our contribu-42

tions are as follow: first, we introduce StoVoQ, a vector quantization algorithm based on unitarily43

invariant random codebooks to automatically obtain directionally unbiased gradient oracles, and44

introduce a scalar correction function, that makes compression operator unbiased for a very modest45

computational cost. We further provide theoretical guarantees on the distortion of the compressor. In46

summary, StoVoQ algorithm is based on the following points, that are developed in Section 2.47

1. Vector quantization The input vector x ∈ Rd is mapped onto its nearest neighbor in a codebook48

CM = {ci}Mi=1.49

2. Random codebook. A new codebook is sampled every time a new quantization operation is50

performed. The proposed approach is different from classical random VQ which typically uses a51

random codebook, but which is sampled once and then kept fixed.52

3. Bias removal. By relying on unitarily invariant distribution for the codewords generation, the53

quantized value of each vector x ∈ Rd is directionnally unbiased. The bias only depends on the54

number and distributions of the random of codewords and on ‖x‖. This key property allows to55

derive a simple way to remove the quantization bias.56

Then, we describe how to use StoVoQ within the FL framework: this yields the algorithm DoStoVoQ.57

We prove that this process satisfies a strong assumption on the compression process, that allows to58

automatically derive fast convergence rates. In Section 3, we describe DoStoVoQ, i.e., how we solve59

the optimization problem (1) in dimension D.60

4. Splitting and renormalizing gradients. First, we split each gradient to compress into buckets61

(xi)i=1,...,L of dimension Rd, to use StoVoQ for each bucket.62

5. Synchronisation of random sequences of codebooks. We ensure that those codebooks are63

independent, at each step and between each machine, by generating a new codebook each time.64

To avoid any subsequent communication cost, we synchronously generate the codebooks on the65

central and local servers, by initially sharing random seeds.66

Remark that point 1 was also used in Dai et al. [8]. Points 2 to 3 and 5 are novel ideas that have not67

been leveraged in the FL framework. Finally, we demonstrate the effectiveness of random codebook68

quantization for gradient compression by extensive experiments in Section 4 on standard benchmarks69

like ImageNet or CIFAR10.70

2 StoVoQ algorithm71

Several compression operators [34, 27, 10, 4, 8, 36, 37] have been introduced recently as bandwidth72

reduction for distributed learning became a major challenge. In this section, we first discuss the73

importance of unbiasedness of compression operators in Subsection 2.1. We then present the StoVoQ74

compression scheme in Subsection 2.2. Finally, we compare StoVoQ to competing approaches, both75

theoretically and empirically on a small scale example with a high compression rate.76

2.1 Unbiased gradient estimate to mitigate high compression rates77

We here discuss an important property to mitigate high compression rates in FL settings. A compres-78

sion operator Comp is a (random) mapping on Rd. Consider the following assumption:79

A1 (Unbiased Compression with relatively bounded variance). A compression operator Comp80

is unbiased if for any x ∈ Rd, E[Comp(x)] = x. It is said to have a ω-bounded relative variance,81

for some ω > 0, if it satisfies, for all x ∈ Rd, E[‖Comp(x)− x‖2] ≤ ω‖x‖2.82
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The most classical compressors, especially Q-SGD and Rand-H satisfy A 1 with different ω, see83

Subsection 2.3 and Table 1. On the other hand, some compression operators are biased, i.e.,84

E[Comp(x)] 6= x for some x ∈ R. Those operators are often deterministic, as is the case for85

Top-H compressor. The most classical assumption for biased operators, is the following contractive86

property along the direction of descent [32, 5, 11]:87

A2 (Biased Compression with contraction). For δ > 0, a compression operator is said to be88

1/(1 + δ)-contractive if for any x ∈ Rd, we have E[‖Comp(x)− x‖] ≤ (1− 1/(1 + δ))‖x‖.89

Constants ω and δ from these two assumptions are both positive, and become larger as the compression90

rate increases. Alternative assumptions for the biased case have been introduced in [5].91

Impact of unbiasedness on the compression of a single vector.1 To understand the interaction be-92

tween the number of workers K and the compression error, a simple situation is the case in which the93

workers use independent and identically distributed compression operators (Compk)Kk=1 to compress94

the same vector x ∈ Rd. The central node aggregates {Compk(x)}Kk=1 into K−1
∑K
k=1 Compk(x).95

A bias-variance decomposition of the quadratic error gives:96

E[‖K−1
∑K
k=1 Compk(x)− x‖2] = ‖E[Comp1(x)]− x‖2 +K−1‖E[Comp1(x)]− x‖2].

The variance of the aggregated vector is reduced by a factor K−1 when averaging the messages97

send by the K workers, while the bias is independent of K. For example, if we use an unbiased98

compressor satisfying A 1, we get99

E
[
K−1

∑K
k=1 Compk(x)

]
= x, E

[∥∥x−K−1∑K
k=1 Compk(x)

∥∥2] ≤ (ω/K)‖x‖2, (2)

while for a deterministic biased compressor, we obtain that K−1
∑K
k=1 Compk(x) = Comp1(x)100

has the same error as any of the individual compressed vector. We therefore pay particular attention101

to obtaining an unbiased compressor in the following.102

2.2 StoVoQ definitions and main properties.103 Algorithm 1: StoVoQ with distribution p

Input : x ∈ Rd, p, M , P , seed s
Output : Codeword index ic, value ir

1 Sample CM ∼ p with seed s ; /* generate

codebook with distribution p */

2 c = VQ(x,C p
M ); /* perform Voronoi quant. */

3 ic = index of c; /* get index of codeword */

4 r = rpM (‖x‖); /* find radial bias in table */

5 ir = SQ(r−1) ; /* quantize r on P bits */

The basic idea behind VQ is to quantize a vector104

rather than each of its coordinates. A Vector105

Quantizer is a mapping VQ(·,CM ) : Rd →106

CM which maps x ∈ Rd to an element of a107

codebook CM , which is a finite subset of Rd108

with M elements. The code of StoVoQ is pro-109

vided in Algorithm 1, and its crucial steps are110

described hereafter: we introduce the notion of111

(a) Voronoi quantization scheme before describ-112

ing more precisely (b) random codebooks, (c) whose distributions are invariant by unitary transforms.113

Then, (d) a method to obtain an unbiased Voronoi scheme is presented and finally (e) its asymptotic114

properties (as M →∞) are given.115

(a) Voronoi Quantization. Voronoi quantization [23, 25], aims at selecting the closest codeword116

from CM , i.e.:117

VQ(x,CM ) , argminc∈CM
‖x− c‖ . (3)

Unfortunately, for any given CM , the Voronoi quantizer is not unbiased: indeed it is deterministic118

and VQ(x,CM ) 6= x if x 6∈ CM . A classical approach to construct a bias-free VQ is to use the119

optimal “dual" VQ (or Delaunay quantization) [24], but this approach is numerically expensive (see120

Subsection 2.3). To mitigate the bias, we rather use random codebooks.121

(b) Random Codebook. A key ingredient of StoVoQ is the use of a random codebook within the122

quantizer. We assume CM = [C1, . . . , CM ] where the codewords {Ci}Mi=1 are i.i.d. random vectors123

distributed according to p, the codeword distribution pdf. We denote CM ∼ p and use boldface124

to stress that CM is random. When quantizing a sequence of vectors {xt}∞t=0 ⊂ Rd we sample125

for each t ∈ N a new codebook CM,t ∼ p, compute VQ(x,CM,t) and transmit the index of the126

corresponding codeword ic,t ∈ [M ]. The codebook CM,t is not transmitted: the transmitter and the127

receiver use the same seeds so that the same codebooks CM,t can be reconstructed on both sides.128

1The impact of unbiasedness for obtaining optimal convergence complexities in FL is discussed in Section 3.
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(c) Unitary invariant Codewords. Denote by U(d) = {U,U∗U = I} the set of unitary transforms129

over Rd. We assume in the sequel that the codeword distribution p is unitary invariant, meaning that:130

A3. The distribution of the codewords p is invariant under the unitary group, i.e. for all U ∈ U(d),131

and any x ∈ Rd, p(Ux) = p(x).132

Examples of such distributions include isotropic Gaussian distributions (p = N (0, σ2 Id), σ2 > 0)133

and the uniform distribution on the Sphere (which is specifically discussed in Appendix D.1). Under134

A 3, there exists a non-negative function prad on R+ such that, for all x ∈ Rd, p(x) = prad(‖x‖).135

(d) The quantization bias is radial. Under A 3, we have the following crucial unitary invariance136

property. For A ⊂ Rd, and U ∈ U(d), we write UA = {Ux, x ∈ A}.137

Lemma 1. Assume A 3. For any nonnegative measurable function f , any U ∈ U(d) and x ∈ Rd,138

ECM∼p[f(VQ(Ux,CM ))] = ECM∼p[f(U VQ(x, UCM ))].139
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Figure 1: function rpM for d = 4 (dashed)
and d = 16 (solid), p = N (0, Id) andM =
210(orange), and M = 213(green).

The proof is postponed to Appendix A.3. Tak-140

ing f(x) = x, the previous result implies that141

for any x ∈ Rd and U ∈ U(d), it holds that142

ECM∼p[VQ(Ux,CM )] = UECM∼p[VQ(x, UCM )].143

A direct consequence of the elementary Lemma 3 is144

that the quantization error is radial:145

Theorem 1 (Quantization bias). Assume A 3. Then,146

for all M ∈ N, there exists a function rpM : R+ 7→147

R+ such that for all x ∈ Rd, ECM∼p[VQ(x,CM )] =148

rpM (‖x‖)x.149

The proof is postponed to Appendix A.4.150

In words, the expectation of the quantized vec-151

tor VQ(x,CM ) is colinear to the vector x, i.e.,152

VQ(x,CM ) is directionally unbiased. Moreover, this radial bias only depends on ‖x‖, M and153

the distribution p. This function is intractable, but it is straightforward to pre-compute it using154

Monte-Carlo method. We display rpM for p = N (0, Id) in Figure 1. Consequently, we can remove155

the bias of VQ(x,CM ) by re-scaling the corresponding codeword by 1/rpM (‖x‖).156

We now analyze the quantization distortion for a given x ∈ Rd vector. We need to strengthen the157

assumption about the distribution of the codewords. Consider the following assumption158

A 4. (1) there exists ε > 0 such that
∫
r2+εprad(r)dr < ∞ (2) for some δ > 0, mδ =159

infr≤δ prad(r) > 0, and (3) prad is unimodal, i.e. the super level sets {r ∈ R+, prad(r) ≥ t},160

for t ≥ 0 are convex subsets of R+.161

A 4 is obviously satisfied if we take p = N (0, σ2 Id) for any σ2 > 0.162

Theorem 2. Assume A 3-A 4. Define Cd = π−1Γ(1 + 2/d)Γ(1 + d/2)2/d. Then, for every x ∈ Rd,163

lim
M→∞

M2/dECM∼p[‖VQ(x,CM )− x‖2] = Cdp
−2/d
rad (‖x‖) .

The proof is postponed to Appendix C.1. Note that Cd ud→∞ d/(2πe) hence Cd grows only linearly164

with the dimension d. We can now exploit this result to control the radial bias as a function of ‖x‖.165

Since |rpM (‖x‖)− 1| ≤ ‖x‖−1{ECM∼p[‖VQ(x,CM )− x‖2]}1/2, Theorem 2 shows that166

lim sup
M→∞

M1/d|rpM (‖x‖)− 1| ≤ C1/2
d p

−1/d
rad (‖x‖)/‖x‖ .

In other words, for any x ∈ Rd, the radial bias rpM (‖x‖) approaches 1 as M → ∞ with a rate167

O(M−1/d). We use an a scalar quantizer SQ to transmit 1/rpM (‖x‖). Because the range of values168

taken by 1/rpM (‖x‖) is limited, a small number of bits P is sufficient (we typically use P = 3169

bits). The total number of transmitted bits is log2(M) + log2(P ). We use a random unbiased scalar170

quantizer (see e.g. [8, Eq. (2)]), a random mapping for R → SP an ordered subset of R with P171

elements. A scalar quantizer is said to be unbiased if E[SQ(r)] = r for all r ∈ R. Assuming that172

SQ is independent of CM , we get for all x ∈ Rd, E[SQ(1/rpM (‖x‖))]ECM∼p[VQ(x,CM )] = x. To173

save space, we present the details of the scalar quantization (based on nonuniform random dither)174

methods is presented in Appendix B.1.175
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(e) Random vs. Optimal codebooks: We finally motivate the choice of random codebooks and176

describe how to choose the codevector distribution p. For a given pdf q of the input the (quadratic)177

distortion is defined as:178

Dist(q,CM ) =

∫
Rd

‖x−VQ(x,CM )‖2 q(x) dx = EX∼q[‖X −VQ(X,CM )‖2] . (4)

We stress that in this case the expectation is taken w.r.t. the input distribution q, the codebook179

being deterministic in (4). A Voronoi optimal codebook C q,∗
M is a minimizer of the distortion over180

the set of codebooks: Dist(q,C q,∗
M ) = min|CM |=M Dist(q,CM ). Zador’s theorem [13] gives the181

distortion of the Voronoi optimal codebook in the limit of M →∞; see Appendix C.1 for a precise182

statement. Denote for β ∈ R+ and a function f on Rd, ‖f‖β = (
∫
|f(x)|βdx)1/β . It is known that183

if ‖q‖d/(d+2) < ∞, then as M → ∞, Dist(q,CM ) u M−2/dJd‖q‖d/(d+2), and Jd is a universal184

constant Jd satisfying Jd ud→∞ d/2πe (see Appendix C.2 for the exact constant).185

Using Theorem 2, we can quantify the loss between random codebook distributed according to p and186

the Voronoi optimal codebook for a given input distribution q when M →∞. Define187

C(q, p, d) =

∫
Rd

p(x)−2/dq(x)dx . (5)

If ‖q‖d/(d+2) < ∞, using the Hölder inequality with negative exponents (see [15, p. 191] and188

Appendix C.3),it holds that C(q, p, d) ≥ ‖q‖d/(d+2).189

Theorem 3. Assume that p satisfies A 3-A 4, ‖q‖d/(d+2) < ∞,
∫
Rd ‖x‖2+δq(x)dx < ∞ for some190

δ > 0, and C(q, p, d) <∞. Then,191

lim
M→∞

ECM∼p[Dist(q,CM )]/Dist(q,C q,∗
M ) = CdJ

−1
d C(q, p, d)‖q‖−1d/(d+2). (6)

with Cd defined in Theorem 2. Moreover, assume that input distribution q satisfies A 3-A 4, and set the192

codeword distribution pq,d,∗ = qd/(d+2)(x)/
∫
qd/(d+2)(x)dx. Then, C(q, pq,d,∗, d) = ‖q‖d/(d+2).193

The proof is postponed to Appendix C.2. In words, under general assumptions, the distortion194

achieved by a random quantizer VQ(·,CM ), CM ∼ p is rate optimal (with rate M−2/d). If195

in addition q is unitarily invariant and unimodal, then a random codebook distributed accord-196

ing to pq,d,∗ reaches the optimal distortion bound, up to universal constants (depending only197

on the dimension d). Moreover, as d → ∞, then CdJ−1d ud→∞ 1 and the efficiency gap van-198

ishes. As an illustration, assume that the input distribution is standard Gaussian q = N (0, Id)199

and set the codeword distribution to be pα = N (0, α2 Id) where α2 ∈ R∗+. If α2d > 2, then200

C(N (0, Id),N (0, α2 Id), d) = 2πα2{α2d/(α2d − 2)}d/2 and ‖N (0, Id)‖(2+d)/2 = (2π)(1 +201

2/d)1+2/d. The function α→ C(N (0, Id),N (0, α2 Id), d) has a unique minimum at α2
d = 1 + 2/d202

for which C(N (0, Id),N (0, α2
d Id), d) = ‖N (0, Id)‖(2+d)/2 showing that a random codebook sam-203

pled fromN (0, α2
d Id) is optimal. It is interesting to note that the variance of the codeword distribution204

should be (1 + 2/d) larger than the variance of the input distribution N (0, Id).205

2.3 Related works206

We compare StoVoQ with competing (random) compressors; additional details are given App. A.1.207

QSGD. Alistarh et al. [2] compresses each coordinate of the scaled vector x/‖x‖ on s+ 1 codewords.208

QSGD is a scalar quantizer which requires O(
√
d log2(d)) bits in its highest compression setting209

(s = 1, only two possible levels for each coordinate). The vector norm is transmitted with full210

precision ‖x‖ (16 or 32 bits). This is in general substantially higher than the number of bits used by211

VQ methods. In deep learning problems, it reduces the communication cost by a factor of 4 to 7 [2,212

Sec. 5].213

Top-H/Rand H. Achieving higher compression rates is possible through sparsification operators, that214

only transmit a few coordinates. The most popular schemes are Top-H and Rand-H compressors,215

that respectively map the vector to either its H largest coordinates, or a random subset of cardinality216

H , rescaled by d/H to ensure unbiasedness. Top-H is a biased operator, and the performance of217

Rand-H are poor on deep learning tasks [5, Figures 4 and 5].218
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Table 1: Per iteration communication complexity of most frequently used algorithms in dimension
d. Constants H and M respectively correspond to a number of coordinates to be transmitted and a
number of codewords, they are chosen by the user.

Uncomp. Scalar Quantization Vector Quantization
SGD Sign QSGD s≥1 Top-H Rand-H Polytope [10] HSQ-span [8] HSQ-greed [8] StoVoQ DoStoVoQ

#bits 32d d 32 + s
√
d log2(d) 32H 32H log2(2d) log2(M) log2(M) log2(M) log2(M)

Unbiased - X X X X X X (Th.4)
A.1 (ω + 1) - -

√
d/s - d/H d d - O(M−2/d) (Th.4)

A.2 (δ + 1) - - - d/H - - M/σmin(C) - -

HyperSphere Quantization (HSQ). HSQ was introduced by Dai et al. [8]. Two versions are consid-219

ered: (1) a - greedy- Voronoi VQ referred to as HSQ-greed in Table 1, which is biased, and for which220

the theoretical guarantee provided in the paper (in their Lemma 3 and Theorem 3, which corresponds221

to a variant of A 2 and the subsequent convergence rate) worsens as M increases, making it mostly222

vacuous; (2) an unbiased version VQ (HSQ-span), which uses a minimum-norm decomposition of223

x ∈ Span(CM ) the linear subspace generated by the codewords - this version suffers from a large224

variance (see Table 2) and potentially an ill-conditioning. Moreover, the performance of HSQ-span225

does not improve with M .226

StoVoQ builds on HSQ-greed, that achieves high compression factors (up to 60-100 to obtain close227

to SOTA performance on CIFAR10), while preserving a good flexibility w.r.t. the compression228

level. StoVoQ approach allows to remove its inherent bias and provide a much stronger convergence229

analysis: our approach is the first vector quantization scheme to provably benefit from an230

increasing number of elements in the codebook M (and obviously benefits from the number of231

workers K, as it is unbiased).232

Dual Quantization and Cross-polytope. An approach to constructing unbiased VQ is to use233

the dual VQ, also referred to as Delaunay Quantization (DQ); see [24]. DQ is unbiased for any234

x ∈ ConvHull(CM ), the convex hull of CM . DQ requires to compute the barycentric coordinates235

for x ∈ ConvHull(CM ), that is to solve (λx1 , . . . , λ
x
M ) = argminλ1,...,λM

‖x−
∑M
i=1 λici‖2, under236

the constraints λi ≥ 0,
∑M
i=1 λi = 1. The quantizer is obtained by drawing a codeword ci with237

probability [λx1 , . . . , λ
x
M ]. Computing the barycentric coordinates is in general very demanding238

unless CM has a very simple structure (see Appendix B for details). The Cross-Polytope239

method Gandikota et al. [10] is a simple instance of DQ, with a codebook CCP
2d composed of the240

2d canonical vectors
{
±
√
dei = ±(0, . . . , 0,

√
d, 0 . . . 0), i ∈ [d]

}
, that relies on the inclusion241

B2(0; 1) ⊂ B1(0;
√
d) = ConvHull(CCP

2d ). The barycentric decomposition can then easily be242

computed. Unfortunately, this method suffers from a large variance, as the quantization error243

‖VQCP(x,CM )− x‖ of any x is lower bounded by
√
d− 1, which means the error has the same244

quadratic error than the Rand-1 compressor.245

Table 1 summarizes the number of bits required to exchange the compressed value of a vector x ∈ Rd246

for the compression methods considered in this Section, as well as the assumptions they satisfy.247

Numerical comparisons: In Table 2, we compare the distortions achieved by the compression248

methods given in Table 1 for a communication budget of 16 bits for d = 16 and assuming that the249

input distribution is q = N (0, Id). The compression factor is 32 (assuming 32 bits floating point250

per coordinate). Such a compression rate is out of reach for QSGD, that requires, even for s = 1 at251

least
√
d log(d) +R bits, where R is the number of bits to encode the norm (32 in [2]). For QSGD we252

have quantized the norm (using an uniform quantizer) on 3 bits and obtained an averaged distortion253

of 36.10 (for K = 1) and 1.82 for (K = 20) - the total number of bits is 19-. We use H = 2 for254

Top-H and Rand-H and use a scalar quantizer with 8 bits. For HSQ, we use 6 bits for the norm,255

using the unbiased uniform quantizer given in [8] and a Voronoi optimal codebook for the uniform256

distribution on the unit-sphere with M = 210 codewords. For StoVoQ we use a random codebook257

with M = 213 codewords; the codewords are sampled from a N (0, (1 + 2/d) Id), and 3 bits are258

allocated for the scalar quantization of 1/rpM (the inverse of the radial bias). Finally, we average the259

result of 2 independent compressions for Polytope (following the replication technique described in260

[10]). We use n = 104 vectors, and report in Table 2 the distortion and sample variance. For StoVoQ261

with K = 20, the codebooks of the different workers are independent.262
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Table 2: Distortion for Gaussian inputs, for a fixed budget of 16 bits with d = 16.

Method Sign [4] Top-2 Rand-2 Polytope [10] HSQ-span [8] HSQ-greed [8] StoVoQ
# Bits (obj =16) 16 2× 8 2× 8 log2(2× 16)× 2 + 6 log2(210) + 6 log2(210) + 6 log2(213) + 3

Unbiased X X X X

K = 1 6.21 (0.02) 8.40 (0.04) 102.8 (0.9) 113.9 (0.6) 146.9 (0.6) 9.03 (0.04) 6.97 (0.02) :
K = 20 6.26 (0.02) 8.76 (0.04) 5.40 (0.04) 5.98 (0.03) 7.58 (0.04) 9.10 (0.04) 0.838 (0.005)

3 DoStoVoQ algorithm263

We illustrate how the StoVoQ compression scheme can be implemented in FL. To avoid cumbersome264

technical details, we focus here on the Federated-SGD algorithm. At iteration t+ 1, each worker265

computes a stochastic gradient gk,t+1 of the loss fk at the current model θt, compresses it into266

ĝk,t+1 = Comp(gk,t+1) and send it to the central server, that performs the update step θt =267

θt−1−γt/K
∑K
k=1 ĝk,t. The code of the resulting algorithm, DoStoVoQ-SGD, is given in Algorithm 2.268

At iteration t+ 1, the crucial steps are:269

1. Worker k ∈ [K] computes the norm ‖gk,t+1‖ of the D × 1 gradient gk,t+1 and then splits270

the scaled gradient gk,t+1 ×
√
D/‖gk,t+1‖ into L-buckets of size d: gk,t+1 ×

√
D/‖gk,t+1‖ =271

[b1k,t+1, . . . , b
L
k,t+1]. The norm ‖gk,t+1‖ is transmitted to the central node using a high-resolution272

scalar quantizer (or without quantization).273

2. Each worker quantizes the buckets {b1k,t+1, . . . , b
L
k,t+1} using StoVoQ. Independent codebooks274

{CM,k,t+1}k∈[K] are used to ensure that the quantizers remain conditionally independent (see275

below for a precise statement). The double stochasticity (each worker uses random codebooks,276

which are independent between workers and across iterations) motivates the name DoStoVoQ. At277

iteration t, the same codebook is used for all buckets of worker k. Formally, for ` ∈ [L] we apply278

(in parallel) StoVoQ(b`k,t+1, p,M,P, sk,t+1), with a sequence of different seeds (sk,t+1)k∈[K],t≥0.279

This sequence is shared between the workers and the central node at initialization.280

3. The central node computes (ĝk,t+1)k∈K from all messages received, performs the update on281

(θt)t≥, and broadcasts θt+1 to the workers.282

These steps would similarly allow to incorporate StoVoQ within any of the advanced FL algo-283

rithms, and Theorem 4 is the crucial assumption to derive the convergence rates, as described in284

Section 2. Natural extensions to DoStoVoQ-Fed-Avg, DoStoVoQ-DIANA and DoStoVoQ-VR-DIANA285

are provided in Appendix D.2.286

Algorithm 2: DoStoVoQ-SGD over T iterations
Input :T nb of steps, (γt)t≥0 LR, θ0, p, M , P ;
Output :(θt)t≥0

1 for t = 1, . . . , T do
2 w0 sends θt−1 and different seeds sk,t to each wk;
3 for k = 1, . . . ,K do
4 Compute local gradient gk,t at θt−1;
5 Split gk,t ×

√
D/‖gk,t‖ on [b1k,t, . . . , b

L
k,t] ;

6 for ` = 1, . . . , L (in parallel) do
7 (it,k,`c , it,k,`r ) = StoVoQ(b`k,t, p,M,P, sk,t)

8 end
9 Send (‖gk,t‖, (it,k,`c , it,k,`r )`∈[L]) to w0 ;

10 end
11 Reconstruct (ĝk,t)k∈K ;
12 Update: θt = θt−1 − γt 1

K

∑K
k=1 ĝk,t ;

13 end

Bias and variance of the com-287

pressed gradient with K workers.288

Consider the two filtrations (Ft)t≥0289

and (Gt)t≥0 defined recursively as fol-290

lows F0 = σ(∅) and for t ≥ 0,291

Gt+1 = Ft ∨ σ({gk,t+1, k ∈ [K]})292

and Ft+1 = Gt+1 ∨ σ({ĝk,t+1, k ∈293

[K]}). With these notations, for any294

t ≥ 0, θt is Ft-measurable.295

Theorem 4. At any iteration t +296

1 in DoStoVoQ, the K compressed297

stochastic gradients (ĝk,t+1)k∈[K]298

are (i) independent conditionally299

to Gt+1 (ii) conditionally unbiased,300

i.e., for all k ∈ [K], we have301

E [ ĝk,t+1 | Gt+1] = gk,t+1, (iii) sat-302

isfy the relatively bounded error con-303

dition of A 1, i.e. there exists a con-304

stant ωM such that, for all k ∈ [K]: E
[
‖ĝk,t+1 − gk,t+1‖2

∣∣Gt+1

]
≤ ωM‖gk,t+1‖2.305

Moreover, ωM decreases with the number of codewordsM and the P , as ωM = O(M−2/d)+O(2−P )306

[the dependence on p, d, and D is made explicit in the proof].307
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The first statement stems from the fact that each bucket is quantized using StoVoQ which is unbiased.308

The second statement is more challenging; proof is postponed to Appendix A.6. We stress that this309

result differs from Theorem 2, which corresponds to the distortion of a source with distribution q.310

Convergence results. Theorem 4 proves that our compression method satisfies the assumptions311

needed to obtain fast convergence rate, for DoStoVoQ-SGD, and for its variants DoStoVoQ-(VR)-312

DIANA. Consider a Smooth and Strongly Convex (SSC) function F =
∑K
k=1 fk, with condition313

number κ > 1. We measure the complexity of the algorithm by the number of iterations t required314

to obtain a model θt such that E[F (θt)] − minRD F ≤ ε. The result of VR-DIANA [16], which315

provides a complexity of Oκ→∞
(
κ (1 + ωM/K) log(ε−1)

)
[16, Corollary 2], applies to DoStoVoQ-316

VR-DIANA.317

Convergence rates for DoStoVoQ-DIANA (without VR), and on non-convex optimization problems318

can be obtained from Horváth et al. [16, Corollary 1,3,4]. As in the strongly-convex case, complexities319

increase by a factor depending on (1+ωM/K) w.r.t. uncompressed algorithm. Intuitively, the impact320

on the optimization complexity of a high compression is mitigated by the number of workers, which321

supports the use of independent and unbiased compressors when the number of workers is large and322

high compression factors are required.323

Indeed, these complexities can be compared to: (1) the one of uncompressed variance reduced324

distributed methods [9] that achieve a complexity of Oκ→∞
(
κ log(ε−1)

)
(in the SSC case); (2) the325

complexity for biased compression operators satisfying A 2, Beznosikov et al. [5, Theorem 13] that326

obtain Oκ→∞(κ(1 + δ) log(ε−1)) for compressed GD (independently of the number of workers);327

(3) the complexities of compressed SGD methods with error feedback in [11]2, that also have no328

dependency on the number of workers. Overall,the unbiased character is crucial to mitigate the329

variance increase resulting from high compression rates.330

4 Numerical experiments331

4.1 Least Squares Regression (LSR)332
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Figure 2: Comparison between GD (blue),
HSQ-greed (orange) and DoStoVoQ (green), on
a LSR problem in dimension D = 29.

We consider a least-squares problem with n =333

214 samples, a bucket size d = 16, D = 29, and334

K = 32 workers; each worker has access to a335

subset m = 211 samples (picked with replace-336

ment) to introduce a dependency in the data used337

by the workers. For i ∈ [n], we assume Xi ∼338

N (0, ID) and Yi ∼ N (X>i ω∗, 1) where ω∗ ∈339

RD. We solve infω∈RD

∑n
i=1 ‖Yi−X>i ω‖2 via340

a gradient descent with step size 1/αL where341

α is fine-tuned for each quantization method342

and L ≈ 2n is the smoothness constant. We343

use DoStoVoQ with M = 213 codewords sam-344

pled fromN (0, (1+2/d) Id) for DoStoVoQ and345

M = 210 on the unit Sphere for HSQ s.t. the346

number of bits transmitted at each round by the347

worker is set to 16 (see Table 2). Figure 2 reports348

the excess-log of the train loss over T = 10 iterations, for a standard GD. DoStoVoQ outperforms349

HSQ-greed: indeed the linear convergence rate of distributed GD is faster for an unbiased compressor350

than for the biased approach.351

4.2 Applications to Deep Neural Networks training352

Setting. We now describe our experimental framework for training two standard models of Deep353

Neural Networks: a VGG-16 [31] and a ResNet-18 [14]. We follow the standard procedure of training354

those models both on CIFAR-10 and ImageNet; the hyper-parameters are fine-tuned to optimize the355

accuracy without quantization. We do not compress the affine constant part of the affine convolutional356

2authors provide complexities for 10 algorithms in Table 1, with Error Feedback and under A 2.
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Table 3: Average accuracy over 5 experiments, after 100 epochs on CIFAR-10.

Algorithm SGD QSGD QSGD QSGD HSQ HSQ Dos. Dos.
2 bits 4 bits 8 bits d = 16 d = 8 d = 16 d = 8

Raw bits per bucket 32d
√
d log(d) log(d)

Effective Compression factor 1 ∼ 13 ∼ 8 ∼ 4 34 17 38 20
K = 1 worker 91.9 91.7 92.1 91.9 92.0 92.0 92.0 92.1
K = 8 worker 92.0 91.8 91.8 92.0 91.8 92.0 91.8 92.1

Table 4: Distortion for on a subset G of the gradients of a layer of CIFAR-10, for a fixed budget of 16
bits with d = 16.

Method Top-2 Rand-2 Polytope [10] HSQ-span [8] HSQ-greed [8] DoStoVoQ
# Bits (obj =16) 2× 8 2× 8 log2(2× 16)× 2 + 6 log2(210) + 6 log2(210) + 6 log2(213) + 3

Unbiased X X X X

K = 1 0.0022 0.025 0.028 0.034 0.0021 0.0026

layers and batch normalization layers. We apply independent DoStoVoQ on batches of 32 buckets of357

size d = 16 (i.e. we transmit a high-resolution norm for D = 32 · 16 = 512 coefficients).358

CIFAR-10. We use the implementation of HSQ [8]: the batch size is 256 for CIFAR-10, the total359

number of epochs is 100, the initial learning rate is 0.1, which is divided by 10 and 50 at epochs360

51 and 71. We report the accuracy of DoStoVoQ, QSGD, and HSQ-greed in table 4. By design, the361

compression factor of Q-SGD for d = 16 is 13, which is significantly less than HSQ or DoStoVoQ.362

Both HSQ and DoStoVoQ perform similarly and the accuracy gap between the two methods are under363

the sample variance (computed over 5 seed and about 0.2). In Table 4 we report the distortion of364

a random subset of gradients G = {gt, t ∈ [|G|]} (with |G| = 102, d = 16, D = 25 × d) obtained365

from a given layer of a VGG on CIFAR-10, i.e.: |G|−1
∑
gt∈G

∥∥K−1∑K
k=1(gk,t − ĝk,t)

∥∥2, where366

(ĝk,t)k∈[K] correspond to k independent workers compressing their own gradient gk,t. The choice367

of the layer does not affect significantly the results. Even with the actual gradient distribution,368

DoStoVoQ outperforms for a given compression factor each unbiased method. This is on pair369

with the observation that the gradients of a Deep Neural Network are approximately Gaussian370

distributed [3, 36, 4]. Additional experiments can be found in the Appendix.371

ImageNet. For ImageNet, we use different bucket sizes, the standard batch size of 256, and only372

K = 1 worker for energy savings (recall Imagenet training last about 1 day for a single worker on373

academic hardware). An initial learning rate of 0.1 is divided by 10 at epoch 30 and 60, while the374

model is trained for 90 epochs. A ResNet here obtains 69.9%, and with a compression factor of 8,375

the performance drops by 2.5%. Using d = 16, we reach a compression factor of 38, while the Top-1376

accuracy drops by only 4.8%: this is a substantially higher compression rate than the concurrent work377

QSGD on the ImageNet dataset.378

Computational impact. In the case of deep Neural Networks, our training procedure requires379

neither a substantial modifications of standard pipelines, nor a modification of the hyper-parameters380

which allows to save computational resources. Green Algorithm ([20]) shows that this work381

generated around 15kg of CO2, and require 400 kWh. A typical experiment lasted few hours on382

CIFAR-10 and about 3 days on ImageNet, which is in the standard range for this type of prototypical383

codes. This work could have future impact on FL, to reduce their electrical consumption.384

Broader impact. Federated learning enables multiple actors to build a common model without385

data sharing, hence respecting privacy. However classic FL methods consume an important amount386

of energy in transmitting information. Our method DoStoVoQ can be adapted to any FL framework387

while enabling important bandwidth savings. These savings highly counterbalance the computational388

impact of our experiments.389
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