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Abstract: We study the problem of teaching humanoid robots to imitate manip-1

ulation skills by watching single human videos. To tackle this problem, we in-2

vestigate an object-aware retargeting approach, where humanoid robots mimic3

the human motions in the video while adapting to the object locations during de-4

ployment. We introduce OKAMI, an algorithm that generates a reference plan5

from a single RGB-D video, and derive a policy that follows the plan to com-6

plete the task. OKAMI sheds light on deploying humanoid robots in everyday7

environments, where the humanoid robot will quickly adapt to a new task given a8

single human video. Our experiments show that OKAMI outperforms the base-9

line by 58.33%, while showcasing systematic generalization across varying visual10

and spatial conditions. More videos can be found in supplementary materials and11

website https://sites.google.com/view/okami-corl2024.12
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Figure 1: OKAMI enables a human user to teach the humanoid robot how to perform a task by providing a
single video demonstration.

1 Introduction14

Deploying generalist robots, such as robot butlers, to help with everyday tasks requires them to15

operate in our daily environments. Humanoid robots, with their human-like embodiment, naturally16

fit into environments tailored to humans. With recent advancements in hardware design and17

increased commercial availability, humanoids stand out as an ideal choice for deployment in our18

living and working spaces. Despite their great potential, humanoid robots struggle to interact19
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autonomously with objects. Recent works have developed deep imitation learning methods for20

humanoid manipulation [1–3]. However, they require collecting demonstrations through whole-21

body teleoperation, demanding both expertise and significant physical efforts. In contrast, humans22

have the ability to watch their partners do a task once and mimic it afterward. Motivated by this23

observation, we explore the idea of teaching humanoid robots to manipulate objects by watching24

humans. We consider a setting recently formulated as “open-world imitation from observation,”25

where a robot imitates a manipulation task from a single video of human demonstration [4–6].26

This process would facilitate users in effortlessly demonstrating a task to a robot and enable the27

humanoid robot to acquire new skills quickly.28

Enabling humanoids to imitate from single videos presents a great challenge. A major challenge is29

that the videos do not have labels for robot actions. Prior works tackle this challenge by optimizing30

robot actions to reconstruct the future object motion trajectories [4, 5], but they are limited to31

single-arm tabletop manipulators. Therefore, optimization-based approach becomes computation-32

ally expensive for humanoids due to their high degrees of freedom and joint redundancy [7]. The33

similar kinematic structure shared by humans and humanoids allows for an alternative approach34

of retargeting, which directly translates human motions to humanoids [8, 9]. However, most35

retargeting techniques focus primarily on mimicking free-space body motions [10–14], lacking the36

awareness of object contexts for manipulation tasks. To address this shortcoming, we introduce37

the concept of “object-aware retargeting.” By incorporating object awareness into the retargeting38

process, the resulting humanoid motions can be efficiently adapted to the locations of objects in39

open-ended environments.40

We introduce OKAMI (Object-aware Kinematic retArgeting for humanoid Manipulation41

Imitation), an object-aware retargeting method enables a humanoid with two dexterous hands to42

imitate manipulation behaviors from a single RGB-D video demonstration. OKAMI is a two-stage43

process that retargets the human motions to the humanoid robot that accomplishes the task across44

varying initial conditions. The first stage processes the video to generate a reference manipulation45

plan for the subsequent stage, where the humanoid motion is synthesized through motion retargeting46

that adapts to the object locations during deployment.47

OKAMI includes two key designs: The first design is an open-world vision pipeline that identifies48

task-relevant objects and reconstructs human motions from the video, and localizes task-relevant49

objects during evaluation. Localizing objects at test time also enables motion retargeting to adapt to50

different backgrounds or new instances of the same object categories, allowing the systematic gen-51

eralization of the policy across varied visual conditions. The second design is the factorized process52

for retargeting, where we retarget the body motions and hand poses separately. We first retarget53

the body motions from the reference plan in the task space, and then warp the retargeted trajectory54

given the location of task-relevant objects. Then, the trajectory of body joints is obtained through55

inverse kinematics. Then, OKAMI directly maps the joint angles of fingers from the plan onto56

the dexterous hands, reproducing hand-object interaction. With object-aware retargeting, OKAMI57

policies are able to achieve systematic generalization across various spatial layouts of objects.58

We evaluate OKAMI policies by providing video demonstrations of diverse tasks that cover various59

object interactions such as picking, placing, pushing, and pouring. We show that OKAMI policies60

achieve 71.66% task success rates averaged across all tasks in the experiment, outperforming the61

baseline by 58.33% on the selected two tasks. Qualitatively, we demonstrate that our humanoid62

robot is able to complete the demonstrated tasks in the real-world environments. In summary, our63

contributions of OKAMI are three-fold:64

1. OKAMI enables a humanoid robot to mimic human behaviors from a single video to ac-65

complish tasks. Its object-aware retargeting process generates feasible motions of the hu-66

manoid robot while adapting the motions to target object locations at test time.67

2. OKAMI uses foundation models to identify task-relevant objects without additional human68

inputs. Their common-sense reasoning ability identifies task-relevant objects even if they69

are not directly in contact with other objects or the robot hands, therefore being able to70

imitate more diverse tasks than prior work.71
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3. We validate OKAMI’s systematic generalization capabilities on humanoid robot hardware.72

OKAMI policies enable real-robot deployment in natural environments with different vi-73

sual backgrounds, unseen object layouts, and new instances of task-relevant objects.74

2 Related Work75

Humanoid Robot Control. A large body of literature has studied controlling humanoid robots to76

complete locomotion or manipulation tasks [10, 12, 15]. Methods like motion planning or optimal77

control typically require a perfect physics model of the humanoid robot and are often computation-78

ally expensive [11, 12, 16]. People have explored using the sim-to-real paradigm, where they train79

reinforcement learning agents in simulation with domain randomization so that the policies can be80

transferred robustly. However, such a method is typically limited by the simulation tasks that can be81

created and often only limited to the locomotion tasks [10], whereas the simulation of manipulation82

tasks is hard to design, not to mention the reward functions. Using human data makes humanoid83

robot control easier, given the similar kinematic structures between humans and humanoids. The84

control can be done through teleoperation, using either motion capture suits [9, 12, 17–21], telex-85

istence cockpits [22–26], VR devices [1, 27, 28], or using RGB video to track human motion [15].86

However, such remote control requires real-time control of human teleoperators, posing both great87

mental and physical stress on the teleoperators. Instead, we focus on the setting where a robot88

watches the human perform a manipulation task in an RGB-D video. While existing literature has89

explored such an imitation setup in the scope of tabletop manipulation [4–6], we are the first to study90

the problem within the scope of humanoid manipulation.91

Learning From Demonstrations / Imitation Learning. Imitation Learning has progressed sig-92

nificantly in learning vision-based robot manipulation with high sample efficiency [29–40]. Prior93

works have shown that with dozens of demonstrations, a robot can learn a visuomotor policy that94

completes various tasks, ranging from long-horizon manipulation tasks [30–32] to dexterous ma-95

nipulation [33–35]. However, collecting demonstrations often requires expertise in using teleop-96

eration devices, creating barriers to usability. Another line of work focuses on one-shot imitation97

learning [36, 37] or imitating from a single demonstration [38–40]. However, they either require98

additional data collection during a meta-training stage or still require teleoperation. Recently, peo-99

ple have shifted their focus towards imitating a single video demonstration without ground-truth100

label [4–6]. This problem was recently defined as “open-world imitation from observation” [4].101

However, unlike prior works that explicitly abstract away the embodiment motions due to the kine-102

matic differences between humans and robot arms, we exploit the embodiment information due to103

the embodiment similarity between human bodies and humanoid robots. In this work, OKAMI104

focuses on what we call object-aware retargeting. It is a method that adapts the motion of human105

bodies to humanoid robots so that we can achieve humanoid robot imitation.106

Motion Retargeting. Motion retargeting has been long studied for adapting the motion of a person107

or a character to another character[8]. Retargeting has a wide application in computer graphics and108

3D vision communities, where literature has extensively studied how to retarget human motions to109

human digital avatars [41–43]. This technique has been extended to robotics, where researchers fo-110

cus on how to reuse the motions of a human and recreate similar behaviors on a humanoid robot or111

other robots with anthropomorphism. Rich liteartures have investigated how to do retargeting with112

a variety of methodology, such as optimization-based (QP, motion planning, IK) [11, 12, 17, 44],113

geometric-based (affine mapping, etc.) [45], and learning-based [10, 13, 15]. These methods have114

been successfully used in generating quadruped locomotion, loco-manipulation, humanoid locomo-115

tion, manipulation, and loco-manipulation. However, these retargeting methods have been used in116

teleoperation systems in the scope of manipulation tasks, as they lack a vision pipeline that allows117

the robot to adapt to object locations automatically. In this work, we connect the retargeting process118

with open-world vision, endowing the retargeting process with object awareness so that the robot119

mimics the human motions from a video demonstration and adapts to the object locations at test time.120
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Figure 2: Overview of OKAMI. OKAMI is a two-staged method that enables a humanoid robot to imitate
a manipulation task from a single human video. In the first stage, OKAMI generates a reference plan for
subsequent manipulation, and the plan generation process uses GPT4V and multiple large vision models. In
the second stage, OKAMI follows the reference plan, where it retargets human motions onto the humanoid with
object awareness for each step of the plan. The retargeted motions are converted into robot joint configurations,
and the humanoid robot follows the joint configurations to complete the demonstrated manipulation task.

3 OKAMI121

In this work, we introduce OKAMI, a two-staged method that tackles “open-world imitation from122

observation.” OKAMI first generates a reference plan using the object locations and reconstructed123

human motions from a given RGB-D video; then it retargets the human motions trajectories to the124

humanoid robot while adapting the trajectories based on new locations of the objects. Figure 2125

illustrates the whole pipeline. We first formulate the problem of humanoid manipulation under126

“open-world imitation from observation.” Then, following the formulation, we introduce the two127

stages of OKAMI: reference plan generation and object-aware retargeting.128

3.1 Problem Formulation129

We formulate a humanoid manipulation task as a discrete-time Markov Decision Process defined130

by a tuple: M = (S,A, P,R, γ, µ), where S is the state space, A is the action space, P (·|s, a) is131

the transition probability, R(s) is the reward function, γ ∈ [0, 1) is the discount factor, and µ is132

the initial state distribution. In our context, S is the space of raw RGB-D observations that capture133

both the robot and object states, A is the space of the motion commands for the humanoid robot,134

R is the sparse reward function that returns 1 when a task is complete. The objective of solving a135

task is to find a policy π that maximizes the expected task success rates from a wide range of initial136

configurations drawn from µ at test time.137

In this paper, we consider the setting of “open-world imitation from observation” [4] in the scope138

of humanoid manipulation. In this setting, the robot system takes a recorded RGB-D human video,139

V as input, and returns a policy π that generates humanoid motion commands to complete the task140

as demonstrated in V . This setting is “open-world” as the robot does not have prior knowledge or141

ground-truth access to the categories or physical states of objects involved in the task, and it is “from142

observation” in the sense that video V does not come with any ground-truth robot actions. In this143

setting, a policy execution is considered successful if the state matches the states of the final frame144

from V . For all the tasks we evaluate, the success conditions are described in Appendix B.1. In145
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this paper, two more assumptions are made about V : all the image frames in V capture the human146

bodies, and the camera view of shooting V is static throughout the recording.147

3.2 Reference Plan Generation148

To enable object-aware retargeting, OKAMI first needs to generate a reference plan for the hu-149

manoid robot to follow. Here, we describe how the reference plan is generated. To this end, OKAMI150

needs to understand what objects are involved and how humans move the objects in the demonstrated151

task, which are described first before we introduce the plan generation step.152

Identify and Localize Task-Relevant Objects. Imitating a manipulation task requires the robot153

to understand what objects to interact with in order to complete the task. However, identifying task-154

relevant objects from pure images is a nontrivial challenge. While prior works use unsupervised155

approach to identify the objects [46, 47], they often assume simple visual backgrounds. Other al-156

ternatives require additional linguistic inputs from humans, inducing extra annotation cost from the157

user [48, 49]. Instead, we observe that most objects in everyday tasks are covered by common sense158

knowledge, where state-of-the-art Vision-Language Models (VLMs) such as GPT4V have internal-159

ized such knowledge through pre-training on internet data. Based on such observation, we leverage160

the power of GPT4V to identify task-relevant objects directly from the video demonstration V . Con-161

cretely, OKAMI samples the RGB image frames from V and prompting GPT4V with the concate-162

nated image of the sampled frames (Appendix A.2 describe the details of test prompt we use to query163

the object names from GPT4V). GPT4V returns a list of texts that describe the names of task-relevant164

objects in V . Subsequently, OKAMI uses Grounded-SAM [50] with the list of object names to seg-165

ments the objects on the first frame of V , and then track their locations across the entire video166

by propagating the first frame segmentation throughout the images using Cutie [51]. In the end,167

OKAMI localizes the task-relevant objects in V , which is the cornerstone for all subsequent steps.168

Reconstruct Human Motions. As mentioned in Section 1, retargeting human motions to the169

humanoid has great potential to generate feasible actions for humanoids due to their human-like170

embodiments. However, the video demonstration V does not come with annotations on the human171

motions. To fill in the gap of missing data, we use a pre-trained vision model that can reconstruct172

3D human models from in-the-wild videos (More details about training human reconstruction model173

are provided in Appendix A.1). The model outputs a sequence of SMPL-H (Skinned Multi-Person174

Linear Model with Hands) features [52], which capture the human body and hand poses throughout175

the video. From the trajectory of SMPL-H models, we obtain the estimated full-body poses, which176

include locations of body joints in the task space with respect to the human pelvis, and hand poses177

in joint configurations that describe how a hand interacts with an object. With the SMPL-H trajec-178

tories, OKAMI is able to retarget the human motions to the humanoids, which will be explained in179

Section 3.3. One advantage of using SMPL-H representation is that it captures human body poses180

while being invariant across humans with different demographics, and SMPL-H representation is181

easy to retarget motions to the humanoid robot that has different sizes from the human. As our182

experiments show, OKAMI is able to handle variations across different demonstrations.183

Generate a Plan From V . From the previous two steps, the robot has the notion of both task-184

relevant objects and how human manipulate the objects. However, naively warping the entire human185

motion trajectory based on object locations doom to fail. Instead, OKAMI needs to identify the186

subgoals in V such that we can warp segment of trajectories conditioning on the location of the187

object that is associated with a subgoal.188

We begin by performing temporal segmentations on the tracked object motions using changepoint189

detection, allowing us to identify subgoals. Next, we identify the target objects and reference objects190

for achieving each subgoal. This process is accomplished using a hybrid module that combines low-191

level point clouds to identify contacts and high-level common sense reasoning to understand objects192

that are not directly in contact (e.g., In a pouring task, the container is relevant to the task but never193

touched by the hand nor the cup).194
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Once the subgoals and associated objects are determined, we generate a reference plan, represented195

as {l0, l1, . . . , lN}, where each step li corresponds to an identified keyframe. Each step stores a196

three-element tuple (otarget, oreference, τSMPL
ti:ti+1

), which are the point clouds of the target object, the197

reference object and the SMPL-H trajectory segment between two keyframes, respectively. Note198

that oreference can be null if there is no spatial reference required for a step (e.g., grasping an object199

or closing a drawer as opposed the placing, where reference object is required). All the point clouds200

are obtained by back-projecting the segmented objects from RGB images using depth images [53].201

3.3 Object-Aware Retargeting202

Given a reference plan generated from the video demonstration, the humanoid robot follows the203

plan to imitate the demonstrated task in V . The robot follows each step li in the plan, where it first204

localizes the task-relevant objects, and retargets the corresponding segment of SMPL-H trajectory205

onto the humanoid while taking into account the target and reference objects. Then the retargeted206

trajectories are converted to the joint configuration trajectory using inverse kinematics for the robot207

hardware to execute. This process repeats until all the steps are executed and we evaluate if a rollout208

is successful or not following the success conditions of each task, as explained in Appendix B.1.209

Localize Objects at Test Time. The reference plan is executed step by step, with each step contain-210

ing a tuple of information about the target object, reference object, and the corresponding subgoal-211

bounded SMPL-H trajectory. To adapt the plan to the test-time environment, we localize the objects212

specified in the tuple using the robot’s current observation. By extracting 3D point clouds of the213

objects from the robot’s perception system, we can accurately track their positions and orientations.214

Localizing the objects at test-time paves the way for OKAMI to achieve systematic generaliza-215

tion across various visual conditions, including different backgrounds, and with new instances of216

task-relevant objects.217

Retarget Human Motions to the Humanoid. The key aspect of object-awareness in our approach218

is the ability to adapt to new locations of objects. Once OKAMI localizes the objects in the observa-219

tion, we develop a retargeting process that adapts humanoid motions to the object locations. Specif-220

ically, we employ a factorized process that separates the retargeting of the arm and hand motions. In221

this process, OKAMI first adapts the arm motions to the object locations so that the fingers of the222

hands are placed within the object-centric coordinate frame. Then OKAMI only needs to retarget223

fingers in the joint configuration to mimic how the human interacts with objects with their hands.224

Concretely, the retargeting process begins by mapping the human body motions from the task space225

to the humanoid robot. This process involves scaling and adjusting the trajectories to account for226

the differences in size and proportion between the human and the robot. Next, OKAMI warps227

the retargeted trajectory based on the locations of the objects observed at test time. It essentially228

“bends” the trajectory to ensure that the robot’s arm reaches the objects in their new positions while229

maintaining the overall trajectory shape of the demonstrated motions, making humanoid motions230

look natural. Specifically, there are two cases we consider for warping the trajectory: the first case231

is when there are no changes to the relational state between the target and the reference object or no232

reference object exists. In that case, we only warp the trajectory conditioning on the locations of the233

target object; the second case is where the relation state changes, meaning the trajectory needs to be234

conditioned on the reference object location.235

Once the arm trajectory is warped, we use inverse kinematics to solve a sequence of joint configu-236

rations for the arms. At the same time, we retarget the human’s hand poses to the robot in the con-237

figuration space. This means that we map the joint angles of the human hand to the corresponding238

joint angles of the robot’s hand, ensuring that the robot can replicate the fine-grained manipulations239

demonstrated by the human. Together, we have the trajectory of full-body joint configurations for240

the real robot hardware to execute using a low-level robot controller.241

Since the retargeting of arm motions between the human and the humanoid is affine, the retargeting242

process naturally allows us to scale and adjust motions given demonstrators with different demo-243

graphics such as heights. By adapting the arm trajectories to the object locations and retargeting the244
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Figure 3: Visualization of initial and final frames of both human demonstrations and robot rollouts for all tasks.

hand poses independently, OKAMI’s factorized process of retargeting achieves systematic general-245

ization across various spatial layouts.246

4 Experiments247

Our experiments are designed to answer the following research question: (1) Is OKAMI effective248

for a humanoid robot to imitate diverse manipulation tasks by watching single videos of human249

demonstrations? (2) Is it critical in OKAMI to retarget the body motions of demonstrators to the250

humanoid robot instead of only retargeting based on object locations? (3) Does OKAMI keep the251

good performance consistently given videos of the same task demonstrated by users with diverse252

demographics?253

4.1 Experimental Setup254

Tasks. Here we describe the tasks we choose. 1) Plush-toy-in-basket: plac-255

ing a plush toy in the basket; 2) Sprinkle-salt: sprinkling a bit of salt into the bowl;256

3) Close-the-drawer: pushing the drawer in to close it; 4) Close-the-laptop:257

closing the lid of the laptop; 5) Place-snacks-on-plate: placing a bag of snacks258

on the plate. We select these five tasks that cover all kinds of manipulation behav-259

iors: Plush-toy-in-basket and Place-snacks-on-plate require pick-and-place260

behaviors of daily objects; Sprinkle-salt is the task that covers pouring behavior;261

Close-the-drawer and Close-the-laptop require the humanoid to interact with artic-262

ulated objects, which is a common interaction exist in daily environments.263

Hardware Setup. We use Fourier-GR1 as the real robot hardware evaluation. The robot is equipped264

with two 6-DoF Inspire dexterous hands. For both video recording and robot camera observation,265

we use the D435i Intel RealSense camera. In all our experiments, we use a joint position controller266

that operates at 400Hz. To avoid jerky movements, we command the joint position targets at 40Hz267

and interpolate the commands to 400Hz trajectories.268

Evaluation Protocol. We evaluate 12 trials for each task. The locations of the objects are269

initialized within the intersection of the robot camera’s view and the humanoid arms’ reachable270

range. The tasks are evaluated on a tabletop workspace with multiple objects, including both271

task-relevant objects and various other objects. Further, we test new object generalization on272

Place-snacks-on-plate, Plush-toy-in-basket, and Sprinkle-salt tasks, chang-273

ing the involved plate, snack bag, plush toy, and bowl to other instances of the same type.274

Baselines. We compare our result with a baseline ORION [4]. Since ORION was proposed for275

parallel-jaw gripper, we cannot directly apply it in our experiments. To evaluate ORION in the hu-276

manoid experiments, we’ve made minimal modifications: we estimate the palm trajectory using the277

SMPL-H trajectories, and warp the trajectory conditioning on the new object locations. The warped278

trajectory is used in the subsequent inverse kinematics for computing robot joint configurations.279

4.2 Quantitative Results280

To answer question (1), we evaluate the policies of our method across 5 different tasks (introduced281

in the experimental setup section), which cover diverse behaviors such as daily pick-place, pouring,282

and manipulation of articulated objects. The result is shown in Figure 4(a). In our experiment,283
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Success rate Missed grasping Failed Completion

66.7%
58.3%

83.3%
75.0% 75.0%

Place-snacks-
on-plate

75.0%

58.3%
66.7%

Demonstrator 1 Demonstrator 2 Demonstrator 3

75.0%
83.3%83.3%

75.0%

Sprinkle-salt Plush-toy-in-
basket

Close-the-
laptop

Close-the-
drawer

Place-snacks-
on-plate

Close-the-
laptop

(a) (b)

Figure 4: (a) Evaluation of OKAMI over all five tasks, including the success rates and the quantification of
failed trials, separated by failure mode. (b) Evaluation of OKAMI using videos from different demonstrations.
Demonstrator 1 is the main person recording videos for all evaluations in (a).

we randomly initialize the object locations, so that the robot needs to adapt to the locations of284

the objects. This result supports the design of OKAMI and shows its effectiveness in achieving285

systematic generalizations over different visual and spatial conditions.286

To answer question (2), we compare OKAMI against ORION on two representative tasks,287

Place-snacks-on-plate and Close-the-laptop. OKAMI achieves 75.0% and 83.3%288

success rates, respectively, while ORION only achieves 0.0% and 41.2%, respectively. In the com-289

parison experiment, OKAMI differs from ORION in that ORION does not condition on the human290

body poses. The outperforming result suggests the importance of retargeting the body motion of the291

human demonstrators onto the humanoid when imitating from human videos.292

To answer question (3), we conduct a controlled experiment of recording videos of different demon-293

strators and test if OKAMI policies maintain good performance across different video inputs.294

Same as the previous experiment, we evaluate OKAMI on Place-snacks-on-plate and295

Close-the-laptop task. The result is shown in Figure 4(b). We show that for the task296

Close-the-laptop, there is no statistical significance in performance change. As for task297

Place-snacks-on-plate, while the evaluation maintains above 50%, the worst policy per-298

formance is 16.7% worse than the best policy performance. After looking into the video recording,299

we find that the motion of demonstrator 2 is relatively faster than the other two demonstrators, and300

faster motions create noisy estimation of motion when doing human model reconstruction. Overall,301

OKAMI is able to maintain reasonably good performance given videos from different demonstra-302

tors, but there is room for improvements to handle such variety.303

5 Conclusion304

This paper introduces OKAMI that enables a humanoid robot to imitate a single RGB-D human305

video demonstration. At the core of OKAMI is object-aware retargeting, which retargets the human306

motions onto the humanoid robot and adapts the motions to the object locations. OKAMI consists307

of two stages to realize object-aware retargeting. The first stage is generating a reference plan for308

manipulation from the video. The second stage is used for retargeting, where OKAMI retargets309

the arm motions in the task space and the finger motions in the joint configuration space. Our310

experiments validate the design of OKAMI, showing the systematic generalization of OKAMI311

policies.312

Limitations. The focus of OKAMI is on the upper body motion retargeting of humanoid robots,313

particularly for manipulation tasks within tabletop workspaces. A promising future direction is to314

include lower body retargeting that enable locomotion behaviors during video imtiation. To enable315

full-body loco-manipulation, whole-body motion controller needs to be imnplemented as oppposed316

to the joint position controller we used in OKAMI.317

Additionally, we focus on using RGB-D data in OKAMI, which prevents us from using in-the-wild318

internet videos recorded in RGB. Extending OKAMI will be another promising direction for future319

works.320
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