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Abstract

Night-to-Day translation (Night2Day) aims to achieve day-like vision for nighttime1

scenes. However, processing night images with complex degradations remains a2

significant challenge under unpaired conditions. Previous methods that uniformly3

mitigate these degradations have proven inadequate in simultaneously restoring4

daytime domain information and preserving underlying semantics. In this paper,5

we propose N2D3 (Night-to-Day via Degradation Disentanglement) to identify6

different degradation patterns in nighttime images. Specifically, our method com-7

prises a degradation disentanglement module and a degradation-aware contrastive8

learning module. Firstly, we extract physical priors from a photometric model9

based on Kubelka-Munk theory. Then, guided by these physical priors, we design a10

disentanglement module to discriminate among different illumination degradation11

regions. Finally, we introduce the degradation-aware contrastive learning strategy12

to preserve semantic consistency across distinct degradation regions. Our method13

is evaluated on two public datasets, demonstrating a significant improvement of14

5.4 FID on BDD100K and 10.3 FID on Alderley.15

1 Introduction16

Nighttime images often suffer from severe information loss, posing significant challenges to both17

human visual recognition and computer vision tasks including detection, segmentation, etc. [14].18

In contrast, daylight images exhibit rich content and intricate details. Achieving day-like nighttime19

vision remains a primary objective in nighttime perception, sparking numerous pioneering works [30].20

Night-to-Day image translation (Night2Day) offers a comprehensive solution to achieve day-like21

vision at night. The primary goal is to transform images from nighttime to daytime while maintaining22

their underlying semantic structure. However, achieving this goal is challenging. It requires to process23

complex degraded images using unpaired data, which raises additional difficulties compared to other24

image translation tasks.25

Recently, explorations have been made in Night2Day. Early approaches, such as ToDayGAN,26

demonstrated the effectiveness of cycle-consistent learning in maintaining semantic structure [1].27

Subsequent methods incorporated auxiliary structure regularization techniques, including perceptual28

loss and uncertainty regularization, to better preserve the original structure [33, 18]. Furthermore,29

some methods utilized daytime images with nearby GPS locations to aid in coarse structure regular-30

ization [26]. However, these methods often neglect the complex degradations at nighttime, applying31

structure regularization uniformly and resulting in severe artifacts. To address this issue, more recent32

approaches adopt auxiliary human annotations to maintain semantic consistency, such as segmenta-33

tion maps and bounding boxes [16, 22]. Despite their potential, these methods are labor-intensive34

and challenging, especially since many nighttime scenes are beyond human cognition.35
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Figure 1: Illustration of our motivation. (a) The disentanglement process leverages physical priors. (b)
The image patches are restored individually for each degradation type. (c) The proposed Disentangled
Regularization improves the overall performance.

The critical limitation of the aforementioned methods is the disregard for complex degraded regions.36

Specifically, different regions in nighttime images possess varying characteristics, such as extreme37

darkness, well-lit regions, light effects, etc. Treating all these degraded regions equally could adversely38

impact the results. As illustrated in Figure 1, our key insight emphasizes that nighttime images suffer39

from various degradations, necessitating customizing restoration for different degradation types.40

Intuitively, we manage to disentangle nighttime images into patches according to the recognized41

degradation type and learn individual restoration patterns for them to enhance the overall performance.42

Motivated by this point, we propose N2D3 (Night to Day via Degradation Disentanglement), which43

utilizes Generative Adversarial Networks (GANs) to bridge the domain gap between nighttime and44

daytime in a degradation-aware manner, as illustrated in Figure 2. There are two modules in N2D3,45

including physical-informed degradation disentanglement and degradation-aware contrastive learning,46

which are employed to preserve the semantic structure of nighttime images. In the disentanglement47

of nighttime degradation, a photometric model tailored to nighttime scenes is conducted to extract48

physical priors. Subsequently, the illuminance and physical priors are integrated to disentangle49

regions into darkness, well-lit, high-light, and light effects. Building on this, degradation-aware50

contrastive learning is designed to constrain the similarity of the source and generated images in51

different regions. It comprises disentanglement-guided sampling and reweighting strategies. The52

sampling strategy mines valuable anchors and hard negative examples, while the reweighting process53

assigns their weights. They enhance vanilla contrastive learning by prioritizing valuable patches with54

appropriate attention. Ultimately, our method yields highly faithful results that are visually pleasing55

and beneficial for downstream vision tasks including keypoint matching and semantic segmentation.56

Our contributions are summarized as follows:57

(1) We propose the N2D3 translation method based on the illumination degradation disentanglement58

module, which enables degradation-aware restoration of nighttime images.59

(2) We present a novel degradation-aware contrastive learning module to preserve the semantic60

structure of generated results. The core design incorporates disentanglement-guided sampling and61

reweighting strategies, which greatly enhance the performance of vanilla contrastive learning.62

(3) Experimental results on two public datasets underscore the significance of considering distinct63

degradation types in nighttime scenes. Our method achieves state-of-the-art performance in visual64

effects and downstream tasks.65

2 Related Work66

Unpaired Image-to-Image Translation. Unpaired image-to-image translation addresses the chal-67

lenge of lacking paired data, providing an effective self-supervised learning strategy. To overcome the68

efficiency limitations of traditional cycle-consistency learning, Park et al., first introduces contrastive69

learning to this domain, achieving efficient one-sided learning[20]. Following this work, several stud-70

ies have improved the contrastive learning by generating hard negative examples [24], re-weighting71

positive-negative pairs [31], and selecting key samples [9]. Furthermore, other constraints, such as72

density [27] and path length [28], have been explored in unpaired image translation. However, all73

these works neglect physical priors in the nighttime, leading to suboptimal results in Night2Day.74
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Figure 2: The overall architecture of the proposed N2D3 method. The training phase contains
the physical prior informed degradation disentanglement module and degradation-aware contrastive
learning module. They are utilized to optimize the ResNet-based generator which is the main part in
the inference phase.

Nighttime Domain Translation. Domain translation techniques have been applied to address adverse75

nighttime conditions. An early contribution is made by Anoosheh et al., which demonstrates the76

effectiveness of cycle-consistent learning in Night2Day[1]. Following this, many works incorporate77

different modules into cycle-consistent learning to enhance structural modeling capabilities. Zheng et78

al. incorporate a fork-shaped encoder to enhance visual perceptual quality[33]. AUGAN employs79

uncertainty estimation to mine useful features in nighttime images[18]. Fan et al. explore inter-80

frequency relation knowledge to streamline the Night2Day process[5]. Xia et al. utilize nearby GPS81

locations to form paired night and daytime images, providing weak supervision[26]. Some other82

studies incorporate human annotations to impose structural constraints, overlooking the practical83

difficulty of acquiring such annotations at nighttime with multiple degradations [11][16] [22]. To84

address the concerns of the aforementioned methods, the proposed N2D3 explores patch-wise85

contrastive learning with physical guidance, so as to achieve degradation-aware Night2Day. N2D3 is86

free of human annotations and offers comprehensive structural modeling to provide faithful translation87

results.88

3 Methods89

Given nighttime image IN ∈ N and daytime image ID ∈ D, the goal of Night2Day is to translate90

images from nighttime to daytime while preserving content semantic consistency. This involves the91

construction of a mapping function F with parameters θ, which can be formulated as Fθ : IN → ID.92

Our method N2D3 is illustrated in Figure 2. To train a generator for Night2Day, we employ GANs as93

the overall learning framework to bridge the domain gap between nighttime and daytime. Our core94

design, consisting of the degradation disentanglement module and the degradation-aware contrastive95

learning module, aims to preserve the structure from the source images and suppress artifacts.96

In this section, we first introduce physical priors in the nighttime environment, and then describe97

the degradation disentanglement module and the degradation-aware contrastive learning module,98

respectively.99

3.1 Physical Priors for Nighttime Environment100

The illumination degradations at night are primarily categorized as darkness, well-lit regions, high-101

light regions, and light effects. As shown in Figure 3, well-lit represents the diffused reflectance under102

normal light, while the light effects denote phenomena such as flare, glow, and specular reflections.103

Intuitively, these regions can be disentangled through the analysis of illumination distribution. Among104

these degradation types, darkness and high-light are directly correlated with illuminance and can be105

effectively disentangled through illumination estimation.106

As a common practice, we estimate the illuminance map L by utilizing the maximum RGB channel107

of image IN as L = maxc∈R,G,B IcN . Then k-nearest neighbors [4] is employed to acquire three108

clusters representing darkness, well-lit, and high-light regions. These clusters are aggregated as109

masks Md, Mn, Mh. However, the challenge arises with light effects that are mainly related to110
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Figure 3: The first row displays nighttime images, while the second row shows the corresponding
degradation disentanglement results. The color progression from blue, light blue, green to yellow
corresponds to the following regions: darkness, well-lit, light effects, and high-light, respectively.

the illumination. Light effects regions tend to intertwine with well-lit regions when using only the111

illumination map, as they often share similar illumination densities. To disentangle light effects from112

well-lit regions, we need to introduce additional physical priors.113

To extract the physical priors for disentangling light effects, we develop a photometric model derived114

from Kubelka-Munk theory [17]. This model characterizes the spectrum of light E reflected from an115

object as follows:116

E(λ, x) = e(λ, x)(1− ρf (x))
2R∞(λ, x) + e(λ, x)ρf (x), (1)

here x represents the horizontal component for analysis, while the analysis of the vertical component117

y is the same as the horizontal component. λ corresponds to the wavelength of light. e(λ, x) signifies118

the spectrum, representing the illumination density and color. ρf stands for the Fresnel reflectance119

coefficient. R∞ is the material reflectivity function, formulated as follows at a specific location120

x = x0:121

R(λ) = a(λ)−
√
a(λ)2 − 1, a(λ) = 1 +

k(λ)

s(λ)
, (2)

where k(λ) and s(λ) denote the absorption and scattering coefficients, respectively. This formulation122

implies that for any local pixels, the material reflectivity is determined if the material is given.123

Assuming C is the material distribution function, which describes the material type varying across124

locations, the material reflectivity R∞ can be formulated as:125

R∞(λ, x) = R(λ)C(x). (3)
Since the mixture of light effects and well-lit regions has been obtained previously, the core of126

disentangling light effects from well-lit regions lies in separating the illumination e(λ, x) and re-127

flectance components R(λ)C(x). Note that the Fresnel reflectance coefficient ρf (x) approaches 0 in128

reflectance-dominating well-lit regions, while ρf (x) approaches 1 in illumination-dominating light129

effects regions. According to Equation (1), the photometric model for the mixture of light effects and130

well-lit regions is formulated as:131

E(λ, x) =

{
e(λ, x), if x /∈ Ω

e(λ, x)R(λ)C(x), if x ∈ Ω
, (4)

where Ω denotes the reflectance-dominating well-lit regions.132

Subsequently, we observe that the following color invariant response to the regions with high color133

saturation, which is suitable to extract the illumination:134

Nλmxn =
∂m+n−1

∂λm−1∂xn
{ 1

E(λ, x)

∂E(λ, x)

∂λ
}, (5)

This invariant has the following characteristics:135

Nλmxn =
∂m+n−2

∂λm−1∂xn−1

∂

∂x

{
1

E(λ, x)

∂E(λ, x)

∂λ

}
=

∂m+n−2

∂λm−1∂xn−1

∂

∂x

{
1

e(λ, x)

∂e(λ, x)

∂λ
+

1

R(λ)C(x)

∂R(λ)C(x)

∂λ

}
=

∂m+n−1

∂λm−1∂xn

{
1

e(λ, x)

∂e(λ, x)

∂λ

}
.

(6)
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Equation (5) to Equation (6) demonstrate that the invariant Nλmxn captures the features only related136

to illumination e(λ, x). Consequently, we assert that Nλmxn functions as a light effects detector137

because light effects are mainly related to the illumination. It allows us to design the illumination138

disentanglement module based on this physical prior.139

3.2 Degradation Disentanglement Module140

In this subsection, we will elucidate how to incorporate the invariant for extracting light effects into141

the disentanglement in computation. As common practice, the following second and third-order142

components, both horizontally and vertically, are taken into account in the practical calculation of the143

final invariant, which is denoted as N :144

N =
√
N2

λx +N2
λλx +N2

λy +N2
λλy. (7)

here Nλx and Nλλx can be computed through E(λ, x) by simplifying Equation (5). The calculation145

of Nλy and Nλλy are the same. Specifically,146

Nλx =
EλxE − EλEx

E2
, Nλλx =

EλλxE
2 − EλλExE − 2EλxEλE + 2E2

λEx

E3
, (8)

where Ex and Eλ denote the partial derivatives of x and λ.147

To compute each component in the invariant N , we develop a computation scheme starting with the148

estimation of E and its partial derivatives Eλ and Eλλ using the Gaussian color model:149 [
E(x, y)
Eλ(x, y)
Eλλ(x, y)

]
=

[
0.06, 0.63, 0.27
0.3, 0.04, −0.35
0.34, −0.6, 0.17

][
R(x, y)
G(x, y)
B(x, y)

]
, (9)

where x, y are pixel locations of the image. Then, the spatial derivatives Ex and Ey are calculated by150

convolving E with Gaussian derivative kernel g and standard deviation σ:151

Ex(x, y, σ) =
∑
t∈Z

E(t, y)
∂g(x− t, σ)

∂x
, (10)

where t denotes the index of the horizontal component x and Z represents set of integers. The spatial152

derivatives for Eλx and Eλλx are obtained by applying Equation (10) to Eλ and Eλλ. Then invariant153

N can be obtained following Equation (8) and Equation (7).154

To extract the light effects, ReLU and normalization functions are first applied to filter out minor155

disturbances. Then, by filtering invariant N with the well-lit mask Mn, we obtain the light effects156

from the well-lit regions. The operations above can be formulated as:157

Mle = ReLU(
N − µ(N)

σ(N)
)⊙Mn, (11)

while the well-lit mask are refined: Mn ←Mn −Mle.158

With the initial disentanglement in Section 3.1, we obtain the final disentanglement: Md, Mn, Mh159

and Mle. All the masks are stacked to obtain the disentanglement map. Through the employment of160

the aforementioned techniques and processes, we successfully achieve the disentanglement of various161

degradation regions.162

3.3 Degradation-Aware Contrastive Learning163

For unpaired image translation, contrastive learning has validated its effectiveness for the preservation164

of content. It targets to maximize the mutual information between patches in the same spatial location165

from the generated image and the source image as below:166

ℓ(v, v+, v−) = − log
exp(v · v+/τ)

exp(v · v+/τ) +
∑Q

n=1 exp(v · v
−
n /τ)

, (12)

v is the anchor that denotes the patch from the generated image. The positive example v+ corresponds167

to the source image patch with the same location as the anchor v. The negative examples v− represent168
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patches with locations distinct from that of the anchor v. Q denotes the total number of negative169

examples. In our work, the key insight of degradation-aware contrastive learning lies in two folds: (1)170

How to sample the anchor, positive, and negative examples. (2) How to manage the focus on different171

negative examples.172

Degradation-Aware Sampling. In this paper, N2D3 selects the anchor, positive, and negative patches173

under the guidance of the disentanglement results. Initially, based on the disentanglement mask174

obtained in the Section 3.2, we compute the patch count for different degradation types, denoting as175

Ks, s ∈ [1, 4]. Then, within each degradation region, the anchors v are randomly selected from the176

patches of generated daytime images IN→D. The positive examples v+ are sampled from the same177

locations with the anchors in the source nighttime images IN , and the negative examples v− are178

randomly selected from other locations of IN . For each anchor, there is one corresponding positive179

example and Ks negative examples. Subsequently, the sample set with the same degradation type180

will be assigned weights and the contrastive loss will be computed in the following steps.181

Degradation-Aware Reweighting. Despite the careful selection of anchor, positive, and negative182

examples, the importance of anchor-negative pairs still differs within the same degradation. A known183

principle of designing contrastive learning is that the hard anchor-negative pairs (i.e., the pairs with184

high similarity) should assign higher attention. Thus, weighted contrastive learning can be formulated185

as:186

ℓ(v, v+, v−, wn) = − log
exp(v · v+/τ)

exp(v · v+/τ) +
∑Q

n=1 wn exp(v · v−n /τ)
, (13)

wn denotes the weight of the n-th anchor-negative pairs.187

The contrastive objective is depicted in the Similarity Matrix in Figure 2. The patches in different188

regions are obviously easy examples. We suppress their weights to 0, which transforms the similarity189

matrix into a blocked diagonal matrix with diag(A1, . . . , A4). Within each degradation matrix190

As, s ∈ [1, 4], a soft reweighting strategy is implemented. Specifically, for each anchor-negative191

pair, we apply optimal transport to yield an optimal transport plan, serving as a reweighting matrix192

associated with the disentangled results. It can adaptively optimize and avoid manual design. The193

reweight matrix for each degradation type is formulated as:194

min
wij ,i,j∈[1,Ks]

[

Ks∑
i=1

Ks∑
j=1,i̸=j

wij · exp (vi · v−j /τ)],

Ks∑
i=1

wij = 1,

Ks∑
j=1

wij = 1, i, j ∈ [1,Ks],

(14)

The aforementioned operations transform the contrastive objective to the Block Diagonal Similarity195

Matrix depicted in Figure 2. As a common practice, our degradation-aware contrastive loss is applied196

to the S layers of the CNN feature extractor, formulated as:197

LDegNCE(F) =
S∑

l=1

ℓ(v, v+, v−, wn). (15)

3.4 Other Regularizations198

As a common practice, GANs are employed to bridge the domain gap between daytime and nighttime.199

The adversarial loss is formulated as:200

Ladv(F) = ||D(IN→D)− 1||22,
Ladv(D) = ||D(ID)− 1||22 + ||D(IN→D)||22,

(16)

where D denotes the discriminator network. The final loss function is formatted as :201

L(F) = Ladv(F) + LDegNCE(F),
L(D) = Ladv(D).

(17)
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4 Experiments202

4.1 Experimental Settings203

Datasets. Experiments are conducted on the two public datasets BDD100K [29] and Alderley [19].204

Alderley dataset consists of images captured along the same route twice: once on a sunny day and205

another time during a stormy rainy night. The nighttime images in this dataset are often blurry due to206

the rainy conditions, which makes Night2Day challenging. BDD100K dataset is a large-scale high-207

resolution autonomous driving dataset. It comprises 100,000 video clips under various conditions.208

For each video, a keyframe is selected and meticulously annotated with details. We reorganized this209

dataset based on its annotations, resulting in 27,971 night images for training and 3,929 night images210

for evaluation.211

Evaluation Metric. Following common practice, we utilize the Fréchet Inception Distance (FID)212

scores [7] to assess whether the generated images align with the target distribution. This assessment213

helps determine if a model effectively transforms images from the night domain to the day domain.214

Additionally, we seek to understand the extent to which the generated daytime images maintain215

structural consistency compared to the original inputs. To measure this, we employ SIFT scores,216

mIoU scores and LPIPS distance [32].217

DownStream Vision Task. Two downstream tasks are conducted. In the Alderley dataset, GPS218

annotations indicate the locations of two images, one in the nighttime and the other in the daytime,219

as the same. We calculate the number of SIFT-detected key points between the generated daytime220

images and their corresponding daytime images to measure if the two images represent the same221

location. The BDD100K dataset includes 329 night images with semantic annotations. We employ222

Deeplabv3 pretrained on the Cityscapes dataset as the semantic segmentation model [2], then perform223

inference on our generated daytime images without any additional training and compute the mIoU224

(mean Intersection over Union).225

Table 1: The quantitative results on Alderley and BDD100k. ↓ means lower result is better. ↑ means
higher is better.

Dataset Alderley BDD100k
Methods FID↓ LPIPS↓ SIFT↑ FID↓ LPIPS↓ mIoU↑
Original Conf./Jour. 210 - 3.12 101 - 15.63
CycleGAN[34] ICCV 2017 167 0.706 3.36 51.7 0.477 13.42
StarGAN[3] CVPR 2018 117 - 3.28 68.3 - -
ToDayGAN[1] ICRA 2019 104 0.770 4.14 43.8 0.577 16.77
UGATIT[15] ICLR 2020 170 - 2.51 72.2 - -
CUT[20] ECCV 2020 64.7 0.707 6.78 55.5 0.583 9.30
ForkGAN[33] ECCV 2020 61.2 0.759 12.1 37.6 0.581 11.81
AUGAN[18] BMVC 2021 65.2 - - 38.6 - -
MoNCE[31] CVPR 2022 72.7 0.737 6.35 40.2 0.502 17.21
Decent[27] NIPS 2022 76.5 0.768 6.31 40.3 0.582 10.49
Santa[28] CVPR 2023 67.1 0.757 6.93 36.9 0.559 11.03
N2D-LPNet[5] CVPR 2023 - - - 69.1 - -
EnlightenGAN [13] TIP 2021 209.8 - 2.00 103.5 - 16.10
Zero-DCE [6] TPAMI 2022 246.4 - 4.34 90.5 - 15.90
DeLight [21] ECCV 2022 222.9 - 3.07 113.8 - 14.48
LLformer [23] AAAI 2023 275.6 - 7.62 123.1 - 15.28
WCDM [12] ToG 2023 239.6 - 7.10 124.3 - 16.32
GSAD [8] NIPS 2023 214.7 - 6.29 116.0 - 15.76
N2D3(Ours) - 50.9 0.650 16.62 31.5 0.466 21.58

4.2 Results on Alderley226

We first apply Night2Day on the Alderley dataset, a challenging collection of nighttime images227

captured on rainy nights. In Figure 4, we present a visual comparison of the results. CycleGAN [34]228

and CUT [20] manage to preserve the general structural information of the entire image but often229

lose many fine details. ToDayGAN [1], ForkGAN [33], Decent [27], and Santa [28] tend to miss230

important elements such as cars in their results.231

In Table 1, thirteen translation methods and three enhancement methods are compared, considering232

both visual effects and keypoint matching metrics. Our method showcases an improvement of 10.3233
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Real Night CycleGAN ForkGANToDayGAN

N2D3 (ours)Decent SantaCUT

Figure 4: The qualitative comparison results on the Alderley dataset.

Real Night CycleGAN ForkGANToDayGAN

N2D3 (ours)Decent SantaCUT

Figure 5: The qualitative comparison results on the BDD100K dataset.

in FID scores and 4.52 in SIFT scores compared to the previous state-of-the-art. This suggests that234

N2D3 successfully achieves photorealistic daytime image generation, underscoring its potential for235

robotic localization applications. The qualitative comparison results are demonstrated in Figure 4. In236

conclusion, N2D3 achieves top scores in both FID and LPIPS metrics, demonstrating its superiority237

in the Night2Day task. N2D3 excels in generating photorealistic daytime images while effectively238

preserving structures, even in challenging scenarios such as rainy nights in the Alderley.239

4.3 Results on BDD100K240

We conducted experiments on a larger-scale dataset, BDD100K, focusing on more general night241

scenes. The qualitative results can be found in Figure 5. CycleGAN, ToDayGAN, and CUT succeed242

in preserving the structure in well-lit regions. ForkGAN, Santa, and Decent demonstrate poor243

performance in such challenging scenes. Regretfully, none of them excel in handling light effects and244

exhibit weak performance in maintaining global structures. With a customized design specifically245

addressing light effects, our method successfully preserves the structure in all regions.246

The quantitative results are presented in Table 1. As the scale of the dataset increases, all the247

compared methods show an improvement in their performance. Notably, N2D3 demonstrates the best248

performance with a significant improvement of 5.4 in FID scores, showcasing its ability to handle a249

broader range of nighttime scenes and establishing itself as the most advanced method in this domain.250

We also investigate the potential of Night2Day in enhancing downstream vision tasks in nighttime251

environments using the BDD100K dataset. The quantitative results are summarized in Table 1.252

The enhancement methods demonstrate a slight improvement in segmentation results, while some253

image-to-image translation methods have a negative impact on performance. N2D3 exhibits the best254

performance in enhancing nighttime semantic segmentation with a remarkable improvement of255

5.95 in mIoU compared to inferring the segmentation model directly on nighttime images.256

In conclusion, N2D3 achieves top scores in both FID and LPIPS metrics, establishing itself as the257

most advanced method for the Night2Day task. It excels in generating photorealistic daytime images258

while preserving local and global structures. Moreover, the substantial improvement in nighttime259

semantic segmentation highlights its benefits for downstream tasks and its potential for wide-ranging260

applications.261
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Figure 6: The quantitative results of ablation on the number of patches of the degradation-aware
sampling.
Table 2: The quantitative results of ablation on the main component of degradation-aware con-
trastive learning. (a) denotes the degradation-aware sampling, and (b) denotes the degradation-aware
reweighting. L and N denotes the invariant types.

Main Component BDD100K Alderley
(a) (b) FID LPIPS FID LPIPS SIFT
% % 55.5 0.583 64.7 0.707 6.78
! % 36.9 0.495 56.6 0.698 16.52
! ! 31.5 0.466 50.9 0.650 16.62

Invariant Type BDD100K Alderley
L N FID LPIPS FID LPIPS SIFT
% % 55.5 0.583 64.7 0.707 6.78
! % 49.1 0.592 62.9 0.726 9.83
! ! 31.5 0.466 50.9 0.650 16.62

4.4 Ablation Study262

Ablation on the main component of degradation-aware contrastive learning. The core design of263

the degradation-aware contrastive learning module relies on two main components: (a) degradation-264

aware sampling, and (b) degradation-aware reweighting. As shown in Table 2, when degradation-265

aware sampling is exclusively activated, there is a noticeable decrease in FID on both datasets266

compared to the baseline (no components activated). Notably, the combination of degradation-aware267

sampling and reweighting achieves the lowest FID on both BDD100K and Alderley, indicating the268

effectiveness of degradation-aware sampling in conjunction with degradation-aware reweighting.269

Ablation on the number of patches in the degradation-aware sampling. To explore the impact270

of the number of sampling patches in our method, we conduct an ablation study on the number of271

sampling patches with settings of 64, 128, 256, 512, and 1024 for degradation-aware sampling. The272

FID and LPIPS scores are evaluated, as shown in Figure 6. The optimal performance is achieved with273

256 patches, and increasing the number of sampling patches beyond this point leads to a degradation274

in performance.275

Ablation on the type of the invariant in disentanglement. To explore different invariants for276

obtaining degradation-disentangled prototypes, we conduct an ablation study on the type of invariant.277

As shown in Table 2, when L is enabled, the FID decreases from 55.5 to 49.1 on BDD100K and278

from 64.7 to 62.9 on Alderley. This suggests that incorporating illuminance maps helps in reducing279

the perceptual gap between generated and source nighttime images. When N is activated, there280

is a consistent improvement in FID on both datasets, indicating that considering physical priors281

invariant contributes to more realistic image generation. The combination of both illuminance map282

and physical prior invariant results in the lowest FID on both datasets, showcasing the complementary283

nature of these degradation types in improving contrastive learning.284

5 Conclusion285

This paper introduces a novel solution for the Night2Day image translation task, focusing on trans-286

lating nighttime images to their corresponding daytime counterparts while preserving semantic287

consistency. To achieve this objective, the proposed method begins by disentangling the degradation288

presented in nighttime images, which is the key insight of our method. To achieve this, we contribute289

a degradation disentanglement module and a degradation-aware contrastive learning module. Our290

method outperforms the existing state-of-the-art, which shows the effectiveness of N2D3 and the291

superiority of the insight to disentangle the degradation.292
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A Overview399

This supplementary material is organized as follows. Appendix B provides additional details about400

the proof that the invariant Nλmxn is exclusively related to the illumination. Appendix C outlines the401

limitations and failure case of N2D3. Appendix D illustrates the implementation details, including402

N2D3 and other methods used in the experiments. Appendix E presents additional visualization403

results.404

B More Proof Details405

We provide a detailed proof process to demonstrate how the invariant Nλmxn is exclusively related406

to the illumination and can function as the light effect detector. First, consider the following407

equations, corresponding to Equation (5) in the main paper:408

Nλmxn =
∂m+n−2

∂λm−1∂xn−1

∂

∂x
{ 1

E(λ, x)

∂E(λ, x)

∂λ
}

=
∂m+n−2

∂λm−1∂xn−1

∂

∂x
{ 1

e(λ, x)

∂e(λ, x)

∂λ
+

1

R(λ)C(x)

∂R(λ)C(x)

∂λ
},

(18)

by applying the additivity of linear differential operators, the first term represents the invariants only409

related to the illumination. The second term can be simplified by applying the chain rule as follows:410

∂

∂x
{ 1

R(λ)C(x)

∂R(λ)C(x)

∂λ
}

=
1

R(λ)2C(x)2
(
∂2{R(λ)C(x)}

∂λ∂x
·R(λ)C(x)− ∂{R(λ)C(x)}

∂λ
· ∂{R(λ)C(x)}

∂x
)

=
1

R(λ)2C(x)2
(
∂R(λ)

∂λ

∂C(x)

∂x
·R(λ)C(x)− ∂R(λ)

∂λ
C(x) ·R(λ)

∂C(x)

∂x
) = 0.

(19)

Finally, we conclude that the invariant Nλmxn is exclusively related to the illumination and can be411

formulated as follows:412

Nλmxn =
∂m+n−2

∂λm−1∂xn−1

∂

∂x
{ 1

E(λ, x)

∂E(λ, x)

∂λ
}

=
∂m+n−1

∂λm−1∂xn
{ 1

e(λ, x)

∂e(λ, x)

∂λ
}.

(20)

Figure 7: Failure Cases of N2D3: Our method struggles to handle various other types of degradation.

C Limitations and Failure Case413

Despite the superior performance of N2D3 in Night2Day, it still exhibits certain limitations. On the414

one hand, this work focuses solely on addressing light degradation, while nighttime environments415

encompass various other types of degradation, including blur caused by rain, motion, and other416
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Figure 8: More disentanglement results. The first and third rows display nighttime images, while
the second and fourth rows show the corresponding degradation disentanglement results. The color
progression from blue, light blue, green to yellow corresponds to the following regions: darkness,
well-lit, light effects, and high-light.

w/o N w/o reweighting N2D3 (ours)Real Night

Figure 9: Qualitative comparison abalation results.

factors. Our method currently struggles to handle these situations effectively. On the other hand, the417

limitations of visible imaging in night vision arise from the scarcity of photos captured in low-light418

conditions, as illustrated by the failure cases presented inFigure 7. Future advancements in night419

vision will likely incorporate additional modalities, such as infrared images, radar, and other sensor420

data, to overcome these challenges and improve performance.421

D Implementation Details422

Training Details. We adopt the resnet 9blocks, a ResNetbased model with nine residual blocks, as423

the backbone for generator G. Additionally, we utilize the patch-wise discriminator D following424

PatchGAN[10]. To conduct degradation-aware contrastive learning on multiple layers, we extract425

features from 5 layers of the generator G encoder, as done in [20]. These layers include RGB pixels,426

the first and second downsampling convolution, and the first and fifth residual block. For the features427

of each layer, we apply a 2-layer MLP to acquire final 256-dimensional features. These features are428

then utilized in our degradation-aware contrastive learning.429

All the comparison methods are reproduced using their released source code with default settings.430

Training procedures are consistent across all methods. All models are trained using the Adaptive431

Moment Estimation optimizer with an initial learning rate of 10−4, a momentum of 0.9, and weight432

decay of 10−4. For the BDD100K dataset, training consists of 10 epochs with the initial learning433

rate, followed by another 10 epochs with a decreased learning rate using the polynomial annealing434

procedure with a power of 0.9. On the Alderley dataset, given the limited training data compared435

to BDD100K, we extend the training to 20 epochs with the initial learning rate and an additional436
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Figure 10: More qualitative comparison results on the Alderley dataset.
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20 epochs with the decayed learning rate. All the experiments are run on a single A100 GPU with437

80GB of memory. Training our method with a smaller patch size and batch size on a device with less438

memory is feasible.439

Evaluation Details. In the evaluation, we compute the Fréchet Inception Distance (FID) [7],440

Structural Similarity Index (SSIM) [25], and Learned Perceptual Image Patch Similarity (LPIPS)441

[32] scores on 256× 512 images. Partial FID scores are provided by ForkGAN [33], and all SSIM442

and LPIPS scores are reproduced by us.443

Semantic segmentation evaluation are conducted as follows. First, we use Deeplabv3 pretrained444

on the Cityscapes dataset as the semantic segmentation model [2]. The model is provided by445

https://github.com/open-mmlab/mmsegmentation with an R-18-D8 backbone and trained at446

a resolution of 512 × 1024. Second, we perform 512 × 1024 Night2Day translation to obtain the447

generation results. Finally, we infer the semantic segmentation on the generated daytime images.448

E More Visualization Results449

More Ablation Visualization Results. We provide ablation visualization results on both Alderley450

and BDD100K in Figure 9. The complete method is presented along with ablation studies on the451

invariant N and without degradation-aware reweighting. All the modules contribute to improving the452

ability to maintain semantic consistency.453

More Disentanglement Results. We provide additional disentanglement results in Figure 8. Our454

disentanglement methods offer a comprehensive representation of different illumination degradation455

types in various nighttime scenes.456

More Qualitative Comparison. We present more qualitative comparisons in Figure 10 and Figure 11457

alongside other methods.Our method demonstrates visually pleasing results under various nighttime458

conditions.459
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Figure 11: More qualitative comparison results on the BDD100K dataset.
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NeurIPS Paper Checklist460

1. Claims461

Question: Do the main claims made in the abstract and introduction accurately reflect the462

paper’s contributions and scope?463

Answer: [Yes]464

Justification: We claim our main contribution as N2D3, which achieves SOTA performance465

by bridging the domain gap between nighttime and daytime in a degradation-aware manner.466

Guidelines:467

• The answer NA means that the abstract and introduction do not include the claims468

made in the paper.469

• The abstract and/or introduction should clearly state the claims made, including the470

contributions made in the paper and important assumptions and limitations. A No or471

NA answer to this question will not be perceived well by the reviewers.472

• The claims made should match theoretical and experimental results, and reflect how473

much the results can be expected to generalize to other settings.474

• It is fine to include aspirational goals as motivation as long as it is clear that these goals475

are not attained by the paper.476

2. Limitations477

Question: Does the paper discuss the limitations of the work performed by the authors?478

Answer: [Yes]479

Justification: We discuss our limitation in degradations beyond light and low-light image480

scarcity in the appendix.481

Guidelines:482

• The answer NA means that the paper has no limitation while the answer No means that483

the paper has limitations, but those are not discussed in the paper.484

• The authors are encouraged to create a separate "Limitations" section in their paper.485

• The paper should point out any strong assumptions and how robust the results are to486

violations of these assumptions (e.g., independence assumptions, noiseless settings,487

model well-specification, asymptotic approximations only holding locally). The authors488

should reflect on how these assumptions might be violated in practice and what the489

implications would be.490

• The authors should reflect on the scope of the claims made, e.g., if the approach was491

only tested on a few datasets or with a few runs. In general, empirical results often492

depend on implicit assumptions, which should be articulated.493

• The authors should reflect on the factors that influence the performance of the approach.494

For example, a facial recognition algorithm may perform poorly when image resolution495

is low or images are taken in low lighting. Or a speech-to-text system might not be496

used reliably to provide closed captions for online lectures because it fails to handle497

technical jargon.498

• The authors should discuss the computational efficiency of the proposed algorithms499

and how they scale with dataset size.500

• If applicable, the authors should discuss possible limitations of their approach to501

address problems of privacy and fairness.502

• While the authors might fear that complete honesty about limitations might be used by503

reviewers as grounds for rejection, a worse outcome might be that reviewers discover504

limitations that aren’t acknowledged in the paper. The authors should use their best505

judgment and recognize that individual actions in favor of transparency play an impor-506

tant role in developing norms that preserve the integrity of the community. Reviewers507

will be specifically instructed to not penalize honesty concerning limitations.508

3. Theory Assumptions and Proofs509

Question: For each theoretical result, does the paper provide the full set of assumptions and510

a complete (and correct) proof?511
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Answer: [Yes]512

Justification: We provide the full set of assumptions and complete proofs in both Section 3.1513

and Appendix B .514

Guidelines:515

• The answer NA means that the paper does not include theoretical results.516

• All the theorems, formulas, and proofs in the paper should be numbered and cross-517

referenced.518

• All assumptions should be clearly stated or referenced in the statement of any theorems.519

• The proofs can either appear in the main paper or the supplemental material, but if520

they appear in the supplemental material, the authors are encouraged to provide a short521

proof sketch to provide intuition.522

• Inversely, any informal proof provided in the core of the paper should be complemented523

by formal proofs provided in appendix or supplemental material.524

• Theorems and Lemmas that the proof relies upon should be properly referenced.525

4. Experimental Result Reproducibility526

Question: Does the paper fully disclose all the information needed to reproduce the main ex-527

perimental results of the paper to the extent that it affects the main claims and/or conclusions528

of the paper (regardless of whether the code and data are provided or not)?529

Answer: [Yes]530

Justification: All the information needed to reproduce the main experimental results is531

included in the Section 3 and Appendix D.532

Guidelines:533

• The answer NA means that the paper does not include experiments.534

• If the paper includes experiments, a No answer to this question will not be perceived535

well by the reviewers: Making the paper reproducible is important, regardless of536

whether the code and data are provided or not.537

• If the contribution is a dataset and/or model, the authors should describe the steps taken538

to make their results reproducible or verifiable.539

• Depending on the contribution, reproducibility can be accomplished in various ways.540

For example, if the contribution is a novel architecture, describing the architecture fully541

might suffice, or if the contribution is a specific model and empirical evaluation, it may542

be necessary to either make it possible for others to replicate the model with the same543

dataset, or provide access to the model. In general. releasing code and data is often544

one good way to accomplish this, but reproducibility can also be provided via detailed545

instructions for how to replicate the results, access to a hosted model (e.g., in the case546

of a large language model), releasing of a model checkpoint, or other means that are547

appropriate to the research performed.548

• While NeurIPS does not require releasing code, the conference does require all submis-549

sions to provide some reasonable avenue for reproducibility, which may depend on the550

nature of the contribution. For example551

(a) If the contribution is primarily a new algorithm, the paper should make it clear how552

to reproduce that algorithm.553

(b) If the contribution is primarily a new model architecture, the paper should describe554

the architecture clearly and fully.555

(c) If the contribution is a new model (e.g., a large language model), then there should556

either be a way to access this model for reproducing the results or a way to reproduce557

the model (e.g., with an open-source dataset or instructions for how to construct558

the dataset).559

(d) We recognize that reproducibility may be tricky in some cases, in which case560

authors are welcome to describe the particular way they provide for reproducibility.561

In the case of closed-source models, it may be that access to the model is limited in562

some way (e.g., to registered users), but it should be possible for other researchers563

to have some path to reproducing or verifying the results.564

5. Open access to data and code565
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Question: Does the paper provide open access to the data and code, with sufficient instruc-566

tions to faithfully reproduce the main experimental results, as described in supplemental567

material?568

Answer: [No]569

Justification: Code will be released latter.570

Guidelines:571

• The answer NA means that paper does not include experiments requiring code.572

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/573

public/guides/CodeSubmissionPolicy) for more details.574

• While we encourage the release of code and data, we understand that this might not be575

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not576

including code, unless this is central to the contribution (e.g., for a new open-source577

benchmark).578

• The instructions should contain the exact command and environment needed to run to579

reproduce the results. See the NeurIPS code and data submission guidelines (https:580

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.581

• The authors should provide instructions on data access and preparation, including how582

to access the raw data, preprocessed data, intermediate data, and generated data, etc.583

• The authors should provide scripts to reproduce all experimental results for the new584

proposed method and baselines. If only a subset of experiments are reproducible, they585

should state which ones are omitted from the script and why.586

• At submission time, to preserve anonymity, the authors should release anonymized587

versions (if applicable).588

• Providing as much information as possible in supplemental material (appended to the589

paper) is recommended, but including URLs to data and code is permitted.590

6. Experimental Setting/Details591

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-592

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the593

results?594

Answer: [Yes]595

Justification: The training details and dataset information are provided in Section 4.596

Guidelines:597

• The answer NA means that the paper does not include experiments.598

• The experimental setting should be presented in the core of the paper to a level of detail599

that is necessary to appreciate the results and make sense of them.600

• The full details can be provided either with the code, in appendix, or as supplemental601

material.602

7. Experiment Statistical Significance603

Question: Does the paper report error bars suitably and correctly defined or other appropriate604

information about the statistical significance of the experiments?605

Answer: [No]606

Justification: Error bars are not reported because it would be too computationally expensive.607

We report our results using a fixed random seed.608
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• The answer NA means that the paper does not include experiments.610

• The authors should answer "Yes" if the results are accompanied by error bars, confi-611

dence intervals, or statistical significance tests, at least for the experiments that support612

the main claims of the paper.613

• The factors of variability that the error bars are capturing should be clearly stated (for614

example, train/test split, initialization, random drawing of some parameter, or overall615

run with given experimental conditions).616
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• The method for calculating the error bars should be explained (closed form formula,617
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• The assumptions made should be given (e.g., Normally distributed errors).619
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of the mean.621
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error rates).627

• If error bars are reported in tables or plots, The authors should explain in the text how628

they were calculated and reference the corresponding figures or tables in the text.629

8. Experiments Compute Resources630
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puter resources (type of compute workers, memory, time of execution) needed to reproduce632

the experiments?633

Answer: [Yes]634

Justification: We report the compute resources in Appendix D.635
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• The answer NA means that the paper does not include experiments.637

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,638

or cloud provider, including relevant memory and storage.639

• The paper should provide the amount of compute required for each of the individual640

experimental runs as well as estimate the total compute.641

• The paper should disclose whether the full research project required more compute642

than the experiments reported in the paper (e.g., preliminary or failed experiments that643

didn’t make it into the paper).644

9. Code Of Ethics645

Question: Does the research conducted in the paper conform, in every respect, with the646

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?647

Answer: [Yes]648

Justification: The research conducted in this paper conforms, in every respect, with the649

NeurIPS Code of Ethics.650
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.652
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eration due to laws or regulations in their jurisdiction).656
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societal impacts of the work performed?659

Answer: [Yes]660

Justification: The societal impacts are discussed in the manuscript and appendix.661

Guidelines:662

• The answer NA means that there is no societal impact of the work performed.663
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• Examples of negative societal impacts include potential malicious or unintended uses666
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11. Safeguards685

Question: Does the paper describe safeguards that have been put in place for responsible686

release of data or models that have a high risk for misuse (e.g., pretrained language models,687

image generators, or scraped datasets)?688

Answer: [NA]689
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Justification: The code and data are properly credited, and the license and terms of use are708

explicitly mentioned and properly documented.709
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• The answer NA means that the paper does not use existing assets.711
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13. New Assets726
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Answer: [Yes]729

Justification: The code introduced in the paper is well-documented, and the documentation730
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create an anonymized URL or include an anonymized zip file.740

14. Crowdsourcing and Research with Human Subjects741

Question: For crowdsourcing experiments and research with human subjects, does the paper742

include the full text of instructions given to participants and screenshots, if applicable, as743

well as details about compensation (if any)?744

Answer: [NA]745

Justification: The paper does not involve crowdsourcing nor research with human subjects.746

Guidelines:747

• The answer NA means that the paper does not involve crowdsourcing nor research with748

human subjects.749

• Including this information in the supplemental material is fine, but if the main contribu-750

tion of the paper involves human subjects, then as much detail as possible should be751
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human756
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)759

approvals (or an equivalent approval/review based on the requirements of your country or760
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Answer: [NA]762

Justification: The paper does not involve crowdsourcing nor research with human subjects.763
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• The answer NA means that the paper does not involve crowdsourcing nor research with765
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• Depending on the country in which research is conducted, IRB approval (or equivalent)767
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• We recognize that the procedures for this may vary significantly between institutions770

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the771

guidelines for their institution.772

• For initial submissions, do not include any information that would break anonymity (if773

applicable), such as the institution conducting the review.774
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