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ABSTRACT
Recommender systems (RS) are pivotal in managing information
overload in modern digital services. A key challenge in RS is effi-
ciently processing vast item pools to deliver highly personalized
recommendations under strict latency constraints. Multi-stage cas-
cade ranking addresses this by employing computationally efficient
retrieval methods to cover diverse user interests, followed by more
precise ranking models to refine the results. In the retrieval stage,
multi-channel retrieval is often used to generate distinct item sub-
sets from different candidate generators, leveraging the complemen-
tary strengths of these methods to maximize coverage. However,
forwarding all retrieved items overwhelms downstream rankers,
necessitating truncation. Despite advancements in individual re-
trieval methods, multi-channel fusion, the process of efficiently
merging multi-channel retrieval results, remains underexplored.
We are the first to identify and systematically investigate
multi-channel fusion in the retrieval stage. Current industry
practices often rely on heuristic approaches and manual designs,
which often lead to suboptimal performance. Moreover, traditional
gradient-based methods like SGD are unsuitable for this task due to
the non-differentiable nature of the selection process. In this paper,
we explore advanced channel fusion strategies by assigning system-
atically optimized weights to each channel. We utilize black-box
optimization techniques, including the Cross Entropy Method and
Bayesian Optimization for global weight optimization, alongside
policy gradient-based approaches for personalized merging. Our
methods enhance both personalization and flexibility, achieving
significant performance improvements across multiple datasets and
yielding substantial gains in real-world deployments, offering a
scalable solution for optimizing multi-channel fusion in retrieval.

1 INTRODUCTION
In the era of information overload, recommender systems (RS) have
become indispensable in modern web services, ranging from video
streaming platforms to online shopping services. One of the main
technical challenges in RS is to efficiently process billions of items
to provide personalized experiences to millions of users under strict
latency restrictions [25, 34]. As shown in Figure 1, a widely used
solution is multi-stage cascade ranking systems [11, 14, 60]. In the
first stage of the cascade system, known as the retrieval stage (also
called matching or recall stage [43, 70]), a group of computation-
ally efficient candidate generators selects a small set of candidates.
These candidates are then further filtered, ranked, and ultimately
presented to the user by slower but more accurate rankers. In this
process, the retrieval stage acts as both the cornerstone and bottle-
neck of the RS. Without effective retrieval, even the most advanced
ranking algorithms cannot perform optimally.

Typically, multi-channel retrieval [37] is essential for efficiently
and effectively retrieving items from large-scale item pools, as
shown in Figure 1. Top-𝐾 items from each channel are merged

Item Pool

Retrieval Stage

Item Pool

Collaborative
Filtering Popularity Neural

Methods
Other

Channel

Top

Multi-Channel
Retrieval

Pre-Ranking

Ranking

User
Candidate Item

Set

Re-Ranking

Subsequent Ranking Stage
Top Top Top

Figure 1: Up: Illustration of multi-stage cascade ranking and
multi-channel retrieval in recommender systems. Bottom:
Performance variations with different weight combinations
on Gowalla (left) and Amazon_Books (right).

and passed to the next stage, with 𝐾 varying across channels. The
underlying reason is that forwarding all retrieved items from each
channel would overwhelm downstream rankers, necessitating trun-
cation. Therefore, the primary challenge in multi-channel retrieval
lies in effectively merging the diverse items retrieved by each candi-
date generator. This process involves determining the appropriate
𝐾 for each channel’s top-𝐾 selection or assigning optimal weights
to each channel during the merging process. For more details on
why multi-channel retrieval is favored over single-channel and the
rationale behind weight assignment, refer to Sections 2 and 3.2.

Despite advancements in individual retrieval methods [11, 23,
36], the task of efficiently merging multi-channel retrieval results,
which we define asmulti-channel fusion, has received limited
attention. We identify three key challenges in multi-channel fusion:
• (C1)Current industry practices often rely on heuristic approaches

and manual designs, such as snake-merge or simple quota mech-
anisms [37], guided by business needs. These methods lack sys-
tematic analysis, leading to suboptimal performance and a poorer
user experience. Additionally, existing simple quota mechanisms
are inflexible and fail to accommodate personalization, where
different users may benefit from varying weight assignments.

• (C2) The performance of multi-channel fusion is highly sensitive
to weight combinations. Figure 1 demonstrates the performance
variations across different weight combinations on two public
datasets: Gowalla and Amazon_Books. We implement nine re-
trieval channels and observe significant fluctuations in precision
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and recall by adjusting weight combinations, while keeping the
retrieved items from each channel constant. On Gowalla and
Amazon_Books, random selection of eight weight combinations
results in Recall@200 variations of up to 79.7% and 86.7%, respec-
tively. This underscores the critical need for better optimized
weights, which we will discuss further in Section 3.

• (C3) Traditional gradient-based methods are unsuitable for this
task due to the non-differentiable selection process in multi-
channel fusion, complicating weight optimization strategies.
In this paper, we formulate the task of multi-channel fusion

in retrieval, laying a cornerstone for future research. We conduct
comprehensive analysis and validation, introducing methods for ef-
fective multi-channel fusion, unlocking its potential in the retrieval
stage to enhance personalized recommendations. Our approach
consists of two parts. First, we explore assigning globally unified
weights, where weight combinations remain consistent for all users,
reflecting current industry practices. We model this problem as a
black-box optimization task, where the input consists of weight
combinations, and the output is the corresponding retrieval per-
formance. We adopt a two-stage exploration method. In the first
stage, the Cross Entropy Method [48] iteratively refines the weight
distribution to converge on near-optimal solutions. In the second
stage, Bayesian Optimization [15] refines this solution by building a
probabilistic model to predict retrieval performance, allowing more
efficient exploration of the local search space.

In the second part, we shift from assigning globally unified
weights to personalized weights, as users exhibit diverse prefer-
ences and behaviors. To optimize this personalized merging process
and tackle the non-differentiable selection process of multi-channel
fusion, we utilize a policy gradient approach from Reinforcement
Learning [62, 65]. These methods go beyond conventional heuris-
tics, paving the way for more intelligent, scalable, and adaptive RS,
advancing the frontier of personalized recommendations.

In summary, the contributions of this paper are as follows:
• We are the first to define the challenge of multi-channel fusion in

retrieval and demonstrate that systematically optimized weight
assignments greatly improve personalized recommendations.

• Wepropose a two-stage optimization strategy using black-box op-
timization techniques for non-personalized weight assignment,
achieving state-of-the-art (SOTA) performance.

• We introduce a policy gradient-based method for personalized
merging, enabling more dynamic and tailored recommendations.

• Extensive experiments on three large-scale, real-world datasets
validate the superiority of our approach over current baselines.
Moreover, we successfully deploy our method in the recom-
mender system at Company X, resulting in a significant im-
provement in performance and user experience.

2 BACKGROUND

Multi-Stage Cascade Ranking System. In modern information
retrieval systems, multi-stage cascade ranking is commonly em-
ployed [60] to balance efficiency and effectiveness, as illustrated
in Figure 1. While complex models [41, 42] often deliver higher
accuracy, their inefficiency makes online deployment challenging
due to latency constraints [40]. In contrast, simpler models [28, 44]
are less powerful but can efficiently process a large number of items

because of their low time complexity. Typically, the system consists
of a set of candidate generators and various rankers, structured
like a funnel that narrows from bottom to top. Each stage selects
the top-𝐾 items and passes them to the next. On the left side of
Figure 1, we show the approximate output size for each stage.

Retrieval Strategy.Retrieval strategies operate as high-level frame-
works and can be classified into (1) non-personalized and (2) person-
alized retrieval. A common non-personalized strategy is promoting
popular items, following the ’wisdom of the crowd’ [57]. Personal-
ized strategies include U2I and I2I, where U2I links the target user
with items they might like directly, while I2I finds items similar to
those the user has interacted with. Each strategy provides a distinct
approach to discovering items of interest for users.

Multi-ChannelRetrieval.Multi-channel retrieval [27, 37] is widely
adopted in RS, employing independent candidate generators to re-
trieve distinct item subsets separately [11, 19]. These candidate
generators are diverse, utilizing techniques such as associative
rules and neural networks, with common methods including matrix
factorization [30] and two-tower architectures [64]. As illustrated
in Figure 1, the retrieved item subsets are combined to create a com-
prehensive candidate pool for subsequent ranking stage. The main
objective is to expand coverage of users’ diverse interests and im-
prove recall rates through various retrieval methods [66], capturing
a broad range of user preferences and enhancing performance.

3 PRELIMINARIES
3.1 Problem Formulation
In this section, we formulate the problem and introduce key nota-
tions. Given multiple ranked lists generated by different retrieval
channels for each user, the goal is to merge these lists into a unified
recommendation set. LetU andI denote the sets of users and items,
and 𝐾 represent the total number of retrieval channels. Each chan-
nel 𝑘 provides a ranked list L𝑢𝑘 for user 𝑢 ∈ U, where L𝑢𝑘 ⊆ I.
The objective is to construct the final recommendation set R𝑢 for
each user by selecting top-ranked items from these lists based on
a set of weights, with |R𝑢 | = 𝐿, representing a fixed number of
items delivered to the subsequent ranking stage. We summarize the
notations in Table 4 in Appendix A. We will now detail the merging
strategies, constraints, and optimization objectives.

Merging Strategies:Merging can be either non-personalized
(globally unified) or personalized, depending onwhether theweights
assigned to each retrieval channel are the same for all users or indi-
vidualized for each user. In the non-personalized case, each retrieval
channel 𝑘 is assigned a global weight 𝑤𝑘 . For each channel, we
select the top nearest_int(𝑤𝑘 ×𝐿) items from L𝑢𝑘 , forming subsets
L (𝑤𝑘 )
𝑢𝑘

. The final recommendation set R𝑢 for user 𝑢 is the union of
these selected subsets from all 𝐾 channels, ensuring no duplicate
items, as shown in Equation (1.1).

R𝑢 =

𝐾⋃
𝑘=1

L (𝑤𝑘 )
𝑢𝑘

(1.1); R𝑢 =

𝐾⋃
𝑘=1

L (𝑤𝑢𝑘 )
𝑢𝑘

(1.2) (1)

In the personalized case, weights𝑤𝑢𝑘 vary by user, allowing for a
more customized retrieval process. The top nearest_int(𝑤𝑢𝑘 × 𝐿)
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items from each list L𝑢𝑘 are selected to form L (𝑤𝑢𝑘 )
𝑢𝑘

, and the final
recommendation set R𝑢 is given by Equation (1.2).

Constraints: (1) Weight Normalization: Weights𝑤𝑘 for each
channel must satisfy Equation (2.1) in the non-personalized case;
weights 𝑤𝑢𝑘 for each user 𝑢 must satisfy Equation (2.2) in the
personalized case. (2) Weight Bounds: Weights also have bounds
as shown in Equation (3), ensuring no channel is over- or under-
represented, reflecting practical requirements in specific scenarios.

𝐾∑︁
𝑘=1

𝑤𝑘 = 1 (2.1);
𝐾∑︁
𝑘=1

𝑤𝑢𝑘 = 1, ∀𝑢 ∈ U (2.2) (2)

0 ≤ 𝑤min ≤ 𝑤𝑘 ≤ 𝑤max ≤ 1 (3)
Optimization Objectives: To optimize the weights𝑤𝑘 or𝑤𝑢𝑘 ,

the goal is to maximize the average evaluation metric across all
users, where T𝑢 is the ground truth set of relevant items for user 𝑢,
and Eval(R𝑢 ,T𝑢 ) represents the evaluation metric.

max
w

1
𝑁

∑︁
𝑢∈U

Eval(R𝑢 ,T𝑢 ) (4)

3.2 Rationale Behind Weight Assignment
Figure 1 illustrates how different weight combinations can signifi-
cantly impact performance ofmulti-channel fusion.We now explore
the rationale for assigning varying weights to the retrieved subsets
from different candidate generators. Figure 2 shows our findings
on the diversity of candidate generators from multiple perspec-
tives. We implement nine retrieval channels on the Amazon_Books
dataset, including associative rule-based methods such as Pop,
ItemKNN [51], UserKNN [46], and neural network-based meth-
ods like BPR [45], NeuMF [24], SimpleX [36], and LightGCN [23]
(detailed in Appendix C). U2I and I2I retrieval strategies are ap-
plied for both SimpleX and LightGCN. Each candidate generator
retrieves 200 items per user. For items, we measure the pairwise
Jaccard similarity [38] between channels, averaged across users:

Jaccard(𝑘1, 𝑘2) =
1
𝑁

∑︁
𝑢∈U

|L𝑢𝑘1 ∩ L𝑢𝑘2 |
|L𝑢𝑘1 ∪ L𝑢𝑘2 |

, (5)

where |L𝑢𝑘1 ∩ L𝑢𝑘2 | is the number of common items, and |L𝑢𝑘1 ∪
L𝑢𝑘2 | represents the total unique items. A lower Jaccard score
indicates higher diversity across channels. For users, we rank them
for each channel based on recall scores, forming a user ranking list
U𝑘 . Rank-Biased Overlap (RBO) similarity [61] between the user
rankings from two retrieval channels 𝑘1 and 𝑘2 is formulated as:

RBO(𝑘1, 𝑘2, 𝑝) = (1 − 𝑝)
𝐿∑︁
𝑑=1

𝑝𝑑−1
|U (𝑑 )
𝑘1

∩U (𝑑 )
𝑘2

|
𝑑

, (6)

where 𝑝 is the persistence parameter (𝑝=0.9), controlling emphasis
on top-ranked users, and |U (𝑑 )

𝑘1
∩U (𝑑 )

𝑘2
| represents the overlap of

users at depth 𝑑 . RBO ranges from 0 (no overlap) to 1 (identical
rankings). By computing RBO for all channel pairs, we can evaluate
how similarly each channel ranks users. Figure 2 visualizes Jaccard
and RBO similarity matrices, where most channels exhibit low
overlap, indicating (1) effective multi-channel fusion is crucial
as no single channel covers all user interests, and (2) personalized
weight assignment is necessary since different channels perform
well for different users, supporting argument in Section 1.
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Figure 2: Diversity among various candidate generators from
both item and user perspectives on Amazon_Books.

4 METHODOLOGY
In this section, we explore effective multi-channel fusion strategies
in retrieval, starting with globally unified methods, followed by
personalized approaches. We present our main idea in Figure 3.

4.1 Globally Unified Weight Assignment
In the non-personalized case, the challenge lies in determining
the optimal weights for each retrieval channel to maximize the
overall performance. Since the objective function, such as over-
all recall, lacks an explicit mathematical form describing how the
weights influence the results, this makes it well-suited for black-box
optimization, where the objective is evaluated based on sampled
weights without requiring gradient information or predefined prob-
lem structure. We adopt a two-phase optimization strategy, which
ensures both a broad exploration of the solution space and a more
targeted fine-tuning of the best-performing weights. We provide a
detailed pseudocode of the training process in Appendix B.

4.1.1 Cross Entropy Method. In the first phase, we apply the Cross
Entropy Method (CEM), a stochastic optimization technique, to
explore the global weight space. Originally introduced by Rubin-
stein [49] for rare-event probability estimation, CEM uses Kullback-
Leibler divergence to update the sampling distribution. It was later
adapted for optimization [48, 50], with the search for optimal so-
lutions treated as a rare-event estimation task. CEM iteratively
refines the distribution to increase the likelihood of generating near-
optimal solutions. Since the weights of various retrieval channels
must sum to one, we model the weight vector using the Dirichlet
distribution [1]. CEM operates in iterative steps, as outlined below:

Initialization and Sampling: We initialize the Dirichlet distri-
bution with parameters 𝜶 (0) = [𝛼1, 𝛼2, . . . , 𝛼𝐾 ]⊤, where each 𝛼𝑘
represents the concentration of weight for retrieval channel 𝑘 . The
Dirichlet distribution enforces the constraint that weights sum to
one. In each iteration, we sample 𝑄 weight vectors w1,w2, . . . ,w𝑄
from the current Dirichlet distribution:

w1,w2, . . . ,w𝑄 ∼ Dirichlet(𝜶 (𝑡 ) ) (7)

The probability density function (PDF) of the Dirichlet distribu-
tion for a vector w = [𝑤1,𝑤2, . . . ,𝑤𝐾 ]⊤, with the concentration
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Figure 3: An illustration of our non-personalized and person-
alized multi-channel fusion strategies in the retrieval stage.

parameter 𝜶 = [𝛼1, 𝛼2, . . . , 𝛼𝐾 ]⊤, is defined as:

𝑓 (w;𝜶 ) =
Γ

(∑𝐾
𝑖=1 𝛼𝑖

)
∏𝐾
𝑖=1 Γ(𝛼𝑖 )

𝐾∏
𝑖=1

𝑤
𝛼𝑖−1
𝑖

(8)

where Γ(·) is the Gamma function. These samples represent differ-
ent possible weight combinations across the retrieval channels.

Performance Evaluation: For each sampled weight vector
w𝑖 , we compute the retrieval performance 𝑆 (w𝑖 ) using a metric
like expected recall. This metric acts as a proxy for how well the
weights enhance retrieval results. The performance is evaluated for
all samples without requiring an explicit objective function.

Selecting Elite Samples: After evaluating all 𝑄 samples, we
rank them in descending order and select the top 𝑞-percentile as the
elite set. The performance threshold 𝛾𝑡 is the score of the lowest-
ranked sample in the elite set, where 𝑄𝑒 = ⌈𝑞𝑄⌉ is the number of
elite samples. All samples with 𝑆 (wi) ≥ 𝛾𝑡 are retained.

𝛾𝑡 = 𝑆 (𝑄−𝑄𝑒+1) (9)

ParameterUpdate (Cross-Entropy Step):We iteratively refine
the weight distribution to focus on better-performing solutions by
updating 𝜶 at each iteration. In Equation (10), the new parameters
𝜶 ∗ maximize the likelihood of generating these elite samples, where
I(𝑆 (w𝑖 ) ≥ 𝛾𝑡 ) is an indicator function that selects the elite samples.

𝜶 ∗ = argmax
𝜶

1
𝑄

𝑄∑︁
𝑗=1

I(𝑆 (w𝑗 ) ≥ 𝛾𝑡 ) log 𝑓 (w𝑗 ;𝜶 ) (10)

Once 𝜶 ∗ is found, the parameters are smoothly updated using a
learning rate 𝜂1. This weighted average gradually shifts the distri-
bution toward elite samples while maintaining stability.

𝜶 (𝑡+1) = (1 − 𝜂1) · 𝜶 (𝑡 ) + 𝜂1 · 𝜶 ∗ (11)

4.1.2 Bayesian Optimization. After the global exploration with
CEM,we refine the solution using BayesianOptimization (BayesOpt),
which fine-tunes the Dirichlet distribution’s parameters in a con-
strained search space. Specifically, the search space for parameter 𝜷
is set to the range [0.5𝜶 (𝑡 ) , 1.5𝜶 (𝑡 ) ], where 𝜶 (𝑡 ) is the result from

the CEM stage, ensuring that the optimization remains focused on
promising regions. BayesOpt has two key components [15, 52]:

SurrogateModel:AGaussian Process (GP) models the objective
function 𝑆 (·), such as the expected recall. The GP provides both
predictions and uncertainty estimates for unexplored regions:

𝑆 (𝜷) ∼ GP(𝜇 (𝜷), 𝑘 (𝜷, 𝜷 ′)) (12)

where 𝜇 (· is the predicted mean, and 𝑘 (·) is the covariance function.
Acquisition Function: This function selects the next sample by

balancing exploration and exploitation. The next Dirichlet parame-
ters are chosen to maximize expected improvement (EI) in retrieval
performance, with 𝑆best representing the best performance so far.

argmax
𝜷

E[max(𝑆 (𝜷) − 𝑆best, 0)] (13)

The process iteratively refines 𝜷 to converge toward optimal param-
eters. Once 𝜷 is determined, the final step is to derive the optimal
weight vectorw. Since 𝜷 parameterizes a Dirichlet distribution, the
optimal weights are the expected value of the distribution.

E[w] = 𝜷∑
𝑖 𝛽𝑖

(14)

4.2 Personalized Weight Assignment
Globally unified weights provide a general solution but overlook
individual user preferences. Personalized fusion are essential, as
users benefit from different retrieval combinations based on their
unique behaviors and preferences. Due to the non-differentiable
nature of the selection process in multi-channel fusion, traditional
gradient-basedmethods like SGD are unsuitable. To address this, we
employ a policy gradient approach (PG) from Reinforcement Learn-
ing [62, 65] to optimize the merging strategy. We model the weight
assignment as a policy that generates a probability distribution
over possible weights for each user. This policy, parameterized by a
neural network, takes as input the user representation 𝒖, the recall
scores from each retrieval channel 𝒓𝑢 = [𝑟𝑢1, 𝑟𝑢2, . . . , 𝑟𝑢𝐾 ]⊤, and
the retrieval channel representations {𝒄𝑢𝑘 }𝐾𝑘=1. These components
together constitute the state 𝑠𝑢 for user 𝑢:

𝑠𝑢 =

(
𝒖, 𝒓𝑢 , {𝒄𝑢𝑘 }𝐾𝑘=1

)
(15)

Our policy outputs the parameters 𝜶𝑢 of a Dirichlet distribution
for each user 𝑢, which determines the weight distribution w𝑢 .

4.2.1 Model Architecture. During forward propagation, we com-
pute Dirichlet parameters 𝜶𝑢 for each user, which are then used
to sample weights w𝑢 for merging retrieval results. Let 𝒖 ∈ R𝑑 ,
𝒄𝑢𝑘 ∈ R𝑑 , 𝑟𝑢 ∈ R𝐾 , and ℎ represent the hidden dimension size. Af-
ter training the single-channel models, 𝑟𝑢 remains a fixed constant.
In our method, 𝒖 is the user representation generated from one of
the pre-trained retrieval models, and 𝒄𝑢𝑘 is obtained by pooling the
top-𝑚 item representations from channel 𝑘 of the samemodel. Since
the retrieval results vary for each user, the channel representations
𝒄𝑢𝑘 are user-dependent. First, we apply linear transformations fol-
lowed by ReLU activations to both the user representations and
each channel’s representations, where 𝒉𝑢 ∈ Rℎ , 𝒉𝑐𝑢𝑘 ∈ Rℎ .

𝒉𝑢 = ReLU (W𝑢𝒖 + 𝒃𝑢 ) , 𝒉𝑐𝑢𝑘 = ReLU (W𝑐 𝒄𝑢𝑘 + 𝒃𝑐 ) (16)
4
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Here,W𝑢 ∈ Rℎ×𝑑 , 𝒃𝑢 ∈ Rℎ ,W𝑐 ∈ Rℎ×𝑑 and 𝒃𝑐 ∈ Rℎ , are learnable
parameters. Next, we compute the dot product between the trans-
formed user and channel representations to model user preference
toward each channel 𝑣𝑢𝑘 ∈ R:

𝑣𝑢𝑘 = 𝒉⊤𝑢 𝒉𝑐𝑢𝑘 , 𝒗𝑢 = [𝑣𝑢1, 𝑣𝑢2, . . . , 𝑣𝑢𝐾 ]⊤ ∈ R𝐾 (17)

We combine attention scores with user recall scores from each chan-
nel to generate combined scores 𝒆𝑢 ∈ R𝐾 . 𝜶𝑢 ∈ R𝐾 are computed
using a scaled hyperbolic tangent activation, with 𝛿max controlling
the maximum adjustment. To ensure 𝜶𝑢 remains positive, we apply
a ReLU activation and add a small constant 𝜖 to avoid zero values.
This entire process of generating 𝜶𝑢 from state 𝑠𝑢 in Equation (15)
is referred to as AlphaGenerator, as shown in Figure 3.

𝒆𝑢 = 𝒗𝑢 + 𝒓𝑢 , 𝜶𝑢 = 𝛿max · tanh(𝒆𝑢 ), 𝜶𝑢 = ReLU(𝜶𝑢 ) +𝜖 (18)

After computing 𝜶𝑢 , we sample the weight vector w𝑢 ∈ R𝐾 from
the Dirichlet distribution. These weights merge the retrieval results
across channels for user 𝑢, and the reward 𝑅(𝑠𝑢 ,w𝑢 ) is calculated
based on a performance metric of the merged results. During eval-
uation, we use Equation (14) to compute the expected value of the
distribution, which serves as the final optimal weights w𝑢 .

4.2.2 Objective Function. Our objective is to maximize the ex-
pected reward 𝐽 (𝜃 ), where 𝜃 represents the parameters of the neural
network and 𝑅(𝑠𝑢 ,w𝑢 ) is the reward obtained by applying weights
w𝑢 in state 𝑠𝑢 . The policy 𝜋𝜃 (w𝑢 |𝑠𝑢 ) is defined as a Dirichlet dis-
tribution parameterized by 𝜶𝑢 , where 𝜶𝑢 is computed from the
neural network named AlphaGenerator based on the state 𝑠𝑢 .

𝐽 (𝜃 ) = 1
𝑁

∑︁
𝑢∈U

Ew𝑢∼𝜋𝜃 (w𝑢 |𝑠𝑢 ) [𝑅(𝑠𝑢 ,w𝑢 )] (19)

𝜋𝜃 (w𝑢 |𝑠𝑢 ) = Dirichlet(𝜶𝑢 ) (20)

𝜶𝑢 = 𝑓𝜃 (𝑠𝑢 ) = 𝑓𝜃
(
𝒖, 𝒓𝑢 , {𝒄𝑢𝑘 }𝐾𝑘=1

)
(21)

To maximize 𝐽 (𝜃 ), we compute the gradient with respect to 𝜃 , as
in Equation (22), using Monte Carlo sampling. For each user 𝑢, we
sample 𝑆 weight vectors {w𝑢,𝑖 }𝑆𝑖=1 from the policy 𝜋𝜃 (w𝑢 |𝑠𝑢 ) and
compute the corresponding rewards {𝑅𝑢,𝑖 }𝑆𝑖=1.

∇𝜃 𝐽 (𝜃 ) = ∇𝜃

(
1
𝑁

∑︁
𝑢∈U

Ew𝑢∼𝜋𝜃 (w𝑢 |𝑠𝑢 ) [𝑅(𝑠𝑢 ,w𝑢 )]
)

=
1
𝑁

∑︁
𝑢∈U

∇𝜃Ew𝑢∼𝜋𝜃 (w𝑢 |𝑠𝑢 ) [𝑅(𝑠𝑢 ,w𝑢 )] (22)

=
1
𝑁

∑︁
𝑢∈U

Ew𝑢∼𝜋𝜃 (w𝑢 |𝑠𝑢 ) [𝑅(𝑠𝑢 ,w𝑢 )∇𝜃 log𝜋𝜃 (w𝑢 |𝑠𝑢 )]

≈ 1
𝑁

∑︁
𝑢∈U

(
1
𝑆

𝑆∑︁
𝑖=1

𝑅𝑢,𝑖∇𝜃 log𝜋𝜃 (w𝑢,𝑖 |𝑠𝑢 )
)

We define the loss function as the negative expected reward over
all users to perform gradient ascent on 𝐽 (𝜃 ):

𝐿(𝜃 ) = −𝐽 (𝜃 ) (23)

To prevent overfitting and encourage the learned weights to stay
close to the global weights wglobal from Section 4.1, we add a regu-
larization term that penalizes large deviations, with 𝜆 controlling

Table 1: Statistics of the experimental datasets.

Dataset # Users # Items # Interactions Sparsity
Gowalla 68,709 1,247,158 3,831,386 99.99%

Amazon_Books 294,739 1,477,922 8,654,619 99.99%
Tmall 385,359 2,184,385 34,255,087 99.99%

the penalty strength. The total loss function is a combination of the
policy loss and the regularization term.

𝐿reg (𝜃 ) = 𝜆
1
𝑁

∑︁
𝑢∈U

(
1
𝑆

𝑆∑︁
𝑖=1



w𝑢,𝑖 −wglobal


2
2

)
(24)

𝐿total (𝜃 ) = 𝐿(𝜃 ) + 𝐿reg (𝜃 ) (25)

5 EXPERIMENTS
In this section, we detail our experimental settings and results
on three large-scale public datasets. We evaluate our methods, in-
cluding the Cross Entropy Method (CEM), Bayesian Optimization
(BayesOpt), and the policy gradient approach (PG), against strong
baseline models, demonstrating state-of-the-art performance.

5.1 Dataset and Experimental Flow
We use three real-world datasets: Gowalla1, Amazon_Books2, and
Tmall3. Dataset statistics are shown in Table 1. Only users with at
least 10 recorded behaviors are included [69]. We split the datasets
into training, validation, and test sets in a 5:2:3 ratio based on
timestamps. For each implicit feedback instance, we randomly select
100 negative samples for Gowalla and Amazon_Books, and 200
negative samples for Tmall. Further details on the datasets and
implementation details can be found in Appendix C.1 and C.3.

5.2 Baselines and Evaluation Metrics
For each dataset, we implement nine retrieval channels, includ-
ing associative rule-based methods such as Pop, ItemKNN [51],
UserKNN [46], and neural network-based methods like BPR [45],
NeuMF [24], SimpleX [36], and LightGCN [23]. For SimpleX and
LightGCN, we apply both U2I and I2I retrieval strategies to retrieve
distinct item subsets, enhancing diversity (see Appendix C.2 for
details). Additionally, we implement two basic merging methods:
the first is equal-weight merging, where all retrieval channels are
assigned the same weight; the second is statistical merging, where
weights are normalized based on the proportion of retrieved items
clicked by users. In statistical merging, channels with higher perfor-
mance are usually assigned greater weights. It simulates heuristic
weighting methods commonly used in industry practices.

To evaluate the effectiveness of different methods, we use Preci-
sion@L (P@L), Recall@L (R@L), and F-Measure@L (F1@L) met-
rics [32], as our focus is on the number of relevant items returned
rather than specific ranking order. Using the notations in Table 4,
we present the formulas for these metrics in Appendix C.5.

1https://snap.stanford.edu/data/loc-gowalla.html.
2https://jmcauley.ucsd.edu/data/amazon/amazonbooks.
3https://tianchi.aliyun.com/dataset/53.
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Table 2: Overall performance of various methods on three public datasets. The top two results in each column are highlighted
to indicate SOTA performance. The strongest baseline is underlined, and relative improvement (RelImp) is reported.

Model
Gowalla Amazon_Books Tmall

P@200 R@200 F1@200 P@200 R@200 F1@200 P@200 R@200 F1@200

Candidate Generators
Pop 0.25% 3.48% 0.42% 0.08% 2.44% 0.14% 0.18% 3.29% 0.31%

ItemKNN [51] 0.24% 3.39% 0.43% 0.10% 2.70% 0.18% 0.24% 2.91% 0.38%
UserKNN [46] 0.64% 9.18% 1.08% 0.10% 2.01% 0.18% 0.22% 4.63% 0.38%

BPR [45] 0.56% 7.28% 0.95% 0.16% 4.89% 0.30% 0.32% 5.66% 0.55%
NeuMF [24] 0.68% 9.32% 1.16% 0.17% 4.74% 0.31% 0.38% 6.63% 0.64%

SimpleX (U2I) [36] 0.74% 11.54% 1.30% 0.25% 7.94% 0.46% 0.50% 8.72% 0.85%
SimpleX (I2I) [36] 0.62% 10.22% 1.09% 0.19% 6.47% 0.36% 0.30% 5.98% 0.51%

LightGCN (U2I) [23] 0.74% 11.82% 1.32% 0.27% 8.29% 0.50% 0.40% 6.84% 0.68%
LightGCN (I2I) [23] 0.65% 11.58% 1.16% 0.18% 6.00% 0.33% 0.31% 6.32% 0.53%

Basic Merging Methods
Equal-Weight Merging 0.71% 11.26% 1.24% 0.23% 7.75% 0.44% 0.49% 9.17% 0.84%
Statistical Merging 0.79% 12.45% 1.38% 0.25% 8.34% 0.47% 0.51% 9.43% 0.88%

Our Methods
CEM (non-personalized) 0.82% 13.08% 1.43% 0.27% 8.77% 0.50% 0.53% 9.65% 0.90%

BayesOpt (non-personalized) 0.82%(2) 13.22%(2) 1.44%(2) 0.27%(2) 8.85%(2) 0.51%(2) 0.53%(2) 9.68%(2) 0.90%(2)
PG (personalized) 0.85%(1) 13.58%(1) 1.49%(1) 0.29%(1) 9.21%(1) 0.53%(1) 0.55%(1) 10.02%(1) 0.93%(1)

RelImp (non-personalized) 3.79%↑ 6.18%↑ 4.35%↑ 0.00%↑ 6.12%↑ 2.00%↑ 3.92%↑ 2.65%↑ 2.27%↑
RelImp (personalized) 7.59%↑ 9.08%↑ 7.97%↑ 7.41%↑ 10.43%↑ 6.00%↑ 7.84%↑ 6.26%↑ 5.68%↑

5.3 Performance Comparison
Table 2 presents the recommendation performance of different
models in terms of precision, recall, and F-measure across three
datasets, from which we have the following observations:

• All three methods we propose significantly outperform exist-
ing baselines. Specifically, BayesOpt (non-personalized) and PG
(personalized) improve upon the strongest baseline by 6.18%
and 9.08% in R@200 on Gowalla and 6.12% and 10.43% on Ama-
zon_Books. These results underscore two key contributions: (1)
our method offers a more effective merging strategy, and (2) per-
sonalized multi-channel fusion further enhances performance
over the industry-standard globally unified weighting approach,
emphasizing the importance of personalization.

• Compared to rule-based methods like Pop, neural network-based
approaches, particularly state-of-the-art models such as Sim-
pleX [36] and LightGCN [23], demonstrate superior performance.

• Even simple multi-channel merging methods, such as statistical
merging with heuristic-based weight assignments, easily surpass
the performance of the best single-channel retrieval models,
demonstrating the effectiveness of multi-channel retrieval.

5.4 In Depth Analysis
5.4.1 Context Dependency. Figure 4 presents the global weights w
optimized through BayesOpt. As shown, SimpleX (U2I), SimpleX

5.3%
5.8%

7.8%

4.8%

31.3%

24.1%

11.2%

8.4%

(a) Optimal Weights on Amazon Books

4.9%
7.1%

4.1%
4.9%

5.1%

40.7%

5.8%

5.3%

22.1%

(b) Optimal Weights on Tmall

Pop
ItemKNN
UserKNN

BPR
NeuMF
SimpleX (U2I)

LightGCN (U2I)
SimpleX (I2I)
LightGCN (I2I)

Figure 4: Optimal weights for various retrieval channels
generated by Bayesian Optimization on Amazon Books and
Tmall. Proportions below 2% are omitted for clarity.

(I2I), LightGCN (U2I), and LightGCN (I2I) account for the largest
proportions, while the remaining five models contribute relatively
less. Furthermore, we observe that even with the same nine retrieval
models, the optimal weights vary across different datasets and
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scenarios. This highlights that the distribution of weights in multi-
channel retrieval is highly context-dependent, with no fixed rule
dictating how much weight each model should carry.

0.00.10.20.30.40.50.60.70.80.91.00.60

0.65

0.70

0.75

0.80

0.85

0.90

P@
20

0 
(%

)

(a) Effect of  on Gowalla

CEM P@200
Bayes P@200

0.00.10.20.30.40.50.60.70.80.91.00.20

0.22

0.24

0.26

0.28

0.30

P@
20

0 
(%

)

(b) Effect of  on Amazon_Books

CEM P@200
Bayes P@200

11.5

12.0

12.5

13.0

13.5

R@
20

0 
(%

)

CEM R@200
Bayes R@200

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

R@
20

0 
(%

)

CEM R@200
Bayes R@200

Figure 5: Effect of 𝜉 on Gowalla and Amazon_Books.

5.4.2 Globally Unified Weight Assignment. To further investigate
the distribution parameters 𝜶 optimized by CEM and BayesOpt,
we introduce the following adjustment in Equation (26):

𝜶 = 𝜉 · 𝜶 (0) + (1 − 𝜉) · 𝜶 (𝑡 ) , (26)

where𝜶 (𝑡 ) represents the optimal distribution parameters obtained
from CEM or BayesOpt, and 𝜉 varies from 0 to 1 with intervals of
0.1. Figure 5 illustrates how retrieval performance changes as 𝜉
increases. We observe a steady improvement in performance as 𝜉
grows, indicating that the global weights optimized by our methods
are well-founded and not a result of random chance.

5.4.3 Personalized Weight Assignment. We now provide a detailed
analysis of our personalized merging strategy PG.

Hyperparameter Study. Regularization weight 𝜆 in Equation (24)
is a key hyperparameter in the PG method. Figure 6 shows the
impact of different 𝜆 values on PG performance.When 𝜆 is too small,
the constraint between personalized and global weights is too weak,
resulting in suboptimal performance. Increasing 𝜆 initially improves
results, but when it becomes too large, performance declines as the
tight constraint limits the potential of personalization.
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Figure 6: Effect of regularization weight 𝜆 on Amazon_Books
and Tmall.

Visualization. We randomly select 2,000 users on Amazon_Books
and Tmall to visualize the personalized weight distributions gener-
ated by PG in Figure 7, which reveal several key insights:
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Figure 7: Visualization of personalized weights across Ama-
zon_Books and Tmall. (a) (b) Channel weight distribution
and patterns onAmazon_Books (violin plot and parallel coor-
dinate plot). (c) (d) Channel weight distribution and patterns
on Tmall (violin plot and parallel coordinate plot).

• Weight Distribution Consistency: SimpleX and LightGCN
have the largest weights across both datasets, which is consistent
with the global weight assignment results.

• User-Specific Diversity: The parallel coordinate plots highlight
diverse weight distributions across users, with multiple peaks
indicating varying user preferences for different channels.

• Performance-Weight Relationship: The weight assigned to
a retrieval channel is not strictly tied to its performance. For
instance, despite ItemKNN’s lower retrieval performance, its
weight remains notable, suggesting that factors such as item
overlap between channels also play a role in weight optimization.
See Appendix D for further discussion of the experiments.

6 REAL WORLD DEPLOYMENT
To validate the effectiveness of our multi-channel fusion strate-
gies in real-world scenarios, we deploy our method in one main
recommendation scenario (called ‘Smart Living’) at Company X,
a main-stream bank company. This application serves millions of
daily active users, generating billions of user logs through implicit
feedback, such as click behavior. For further details on the deploy-
ment process, please refer to the discussion in Appendix E.

6.1 Offline Evaluation
For the offline experiment, we use a daily updated dataset collected
from July 2024 to August 2024 in the ‘Smart Living’ recommenda-
tion scenario for training and evaluation. The scenario involves
11 retrieval channels. Under real-world conditions, the number of
items retrieved by each channel may vary; for instance, cold-start
users with no interaction history may yield insufficient results from
the I2I retrieval method. To address this, we pad the shorter retrieval
channels to match the longest one, aligning with our problem for-
mulation in Section 3. The dataset includes true exposure data,
capturing items where users paused briefly instead of scrolling past.
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Since users typically engage with only a few to a few dozen items
during a recommendation session, we evaluate the top 10 items
using P@10, R@10, and F1@10. As shown in Table 3, CEM out-
performs the current production strategy significantly, delivering
approximately a 28.6% improvement in offline metrics.

Table 3: Comparison of different merging strategies on real-
world recommendation scenarios.

Strategy P@10 R@10 F1@10 CTR
Equal-Weight Merging 4.81% 17.20% 7.52% /

Current Production Strategy 8.09% 28.95% 12.65% 1.77%
CEM (globally unified) 10.41% 37.22% 16.27% 2.07%

6.2 Online Evaluation
Besides offline experiments, we conduct a five-day online A/B test
in October 2024, deploying our method in the ‘Smart Living’ recom-
mendation scenario of Company X. As mentioned earlier, industry
recommender systems typically enforce bounds on multi-channel
weight assignments to ensure balanced representation across chan-
nels, as shown in Equation 3. This makes equal-weight merging
infeasible in real-world deployments. Additionally, due to the cur-
rent pipeline and engineering limitations, we could not implement
personalized multi-channel fusion methods like our PG approach.
Instead, we deploy our globally unified weight assignment strategy
CEM, which aligns with common industry practice.

The control group uses the heuristic-based merging strategy
from the current production system, while the test group imple-
ments our globally unified CEM strategy at the retrieval stage. Both
groups use the same ranking strategy to ensure a fair compari-
son. We evaluate performance using Click-Through Rate (CTR),
defined as: CTR = #clicks

#impressions where #clicks and #impressions are
the number of clicks and impressions. We report the average results
in Table 3, and Figure 8 presents the daily and hourly improve-
ments of CEM over the current strategy. It is evident that CEM
significantly outperforms the baseline with a CTR increase of 12%
to 20% (average 17%), highlighting the critical role of our optimized
multi-channel fusion in recommendation performance.

Day1 Day2 Day3 Day4 Day51.50
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Figure 8: Daily and hourly CTR results from online A/B test
in the ‘Smart Living’ scenario.

7 RELATEDWORK

Retrieval Methods in Recommendation. Retrieval is the pro-
cess of efficiently selecting relevant item candidates that match

user interests, also referred to as candidate generation or match-
ing [11, 26]. Retrieval methods vary widely, which can be broadly
categorized into two types: (1) non-personalized and (2) personal-
ized retrieval [27]. Non-personalized retrieval highlights popular
items or trending content, which, while not tailored to individual
preferences, often attract user clicks due to their widespread appeal.
In contrast, personalized retrieval customizes recommendations
to align with specific user preferences, significantly boosting en-
gagement and retention. Common examples include user-to-item
(U2I) [30] and item-to-item (I2I) [51] retrieval. Diving deeper into
model structures, there are shallow structures like neighborhood-
based collaborative filtering (CF) approaches such as ItemKNN [51]
and UserKNN [46], as well as matrix factorization (MF)-based CF
approaches [30]. With the advancement of deep learning, there
has been a shift toward more sophisticated architectures, including
two-tower retrieval models [11, 19, 28, 36], autoencoder-based mod-
els [33, 35, 53, 63], graph embedding-based models [4, 20, 39, 59],
graph neural network-based models [5, 23, 56], tree-based mod-
els [68, 69, 71], and multi-interest retrieval models [9, 31, 58]. These
diverse retrieval channels improve both relevance and diversity of
recommendation results. In our experiments, we select models from
different categories to minimize overlap and enhance diversity.

Multi-Channel Retrieval. Multi-channel retrieval is widely used
in modern industry practices for cascade recommender systems.
MIC [37] effectively aligns users and items based on semantic simi-
larity across channels (U2U, I2I, U2I), leveraging rich cross-channel
information. Hron et al. [25] empirically and theoretically explore
the differences between single- and two-stage recommenders, show-
ing that when each candidate generator specializes in a different
subset of the item pool, performance improves significantly. Similar
concepts include recommender ensembling [7], such as weighted
hybrid, cross-harmonic, and meta-model mixed recommendation
algorithms [6]. However, none of these approaches offer a scien-
tific or systematic solution for multi-channel fusion in the retrieval
stage, which is a critical aspect in real-world implementations.

Combinatorial Optimization. In addition to the Cross Entropy
Method [50] and Bayesian Optimization [15] we use, other well-
known approaches for combinatorial optimization include simu-
lated annealing [2, 10, 12, 47], later extended in [22] and [29], as
well as tabu search [17] and genetic algorithms [18]. More recent
methods include nested partitioning [54], stochastic comparison [3],
and ant colony optimization [13, 21].

8 CONCLUSION
In this paper, we address the challenge of multi-channel fusion in
retrieval. Moving beyond the heuristic and manual methods com-
monly used in industry, we demonstrate that our optimized weight
combinations significantly enhance personalized recommendations.
By leveraging black-box optimization and a policy gradient-based
method, we provide a user-tailored approach that advances beyond
simple quota mechanisms. Extensive experiments across multiple
datasets show our approach consistently outperforms existing base-
lines, and its successful deployment in real-world systems results
in notable improvements in both performance and user satisfaction,
offering a scalable solution for multi-channel fusion.
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A NOTATIONS
We summarize the key notations and their corresponding descrip-
tions used in this paper in Table 4.

Table 4: Notations and descriptions.

Notation Description.
U,I Sets of all users and items, respectively.
𝑁,𝑀 Total number of users and items, respectively.
𝐾 Total number of retrieval channels (candidate generators).
𝐿 Fixed number of items sent to the subsequent ranking stage.

L𝑢𝑘 Ranked list of items from retrieval channel 𝑘 for user 𝑢.
𝑤𝑘 ,𝑤𝑢𝑘 Weight assigned to retrieval channel 𝑘 (for user 𝑢).

L (𝑤𝑘 )
𝑢𝑘

,L (𝑤𝑢𝑘 )
𝑢𝑘

Subset of top-ranked items selected from L𝑢𝑘 .
R𝑢 Final set of recommended items for user 𝑢.
T𝑢 Ground truth set of relevant items for user 𝑢.
U𝑘 Ranked list of users based on their recall score from retrieval channel 𝑘 .
U (𝑑 )
𝑘

Top-𝑑 ranked users in channel 𝑘 .
𝜶 , 𝜷 Parameters of the Dirichlet distribution.
𝑄,𝑞 Number of samples per iteration in CEM, and the elite fraction selected.

𝒖, 𝒓𝑢 , 𝒄𝑘 User representation, recall scores from each channel, and channel 𝑘 representation.
𝜂1, 𝜂2 Learning rate in CEM and PG, respectively.
𝜆, 𝜉 Regularization weight in PG, and tuning parameter in Equation (26).

𝛿max, 𝜖 Maximum adjustment magnitude, and a small positive constant in Equation (18).
𝑆 Number of sampled weights for each user in Equation (22).

B PSEUDOCODE FOR TRAINING PROCEDURE
OF GLOBALLY UNIFIED MERGING

Algorithm 1 Globally Unified Weight Assignment
Require: Elite fraction 𝑞, number of samples per iteration 𝑄 , per-

formance evaluation function S(·), acquisition function 𝑎EI (·),
number of BayesOpt iterations 𝑇

1: Stage 1: Cross Entropy Method (CEM)
2: Initialize concentration parameter vector 𝜶 (0) , 𝑡 = 0
3: repeat
4: Sample 𝑄 weight vectors from Dirichlet(𝜶 (𝑡 ) )
5: Evaluate retrieval performance for each sampled weight:

S(w𝑖 ) for 𝑖 = 1, 2, . . . , 𝑄

6: Select the elite samples based on performance
7: Update 𝛼 (𝑡+1) using elite samples
8: Increment 𝑡
9: until convergence
10: Set 𝛽 (0) = 𝛼 (𝑡 ) // Initialize BayesOpt with final CEM parameters
11: Stage 2: Bayesian Optimization (BayesOpt)
12: Constrained Search Space: [0.5𝜷 (0) , 1.5𝜷 (0) ]
13: Initialize Gaussian Process (GP) model GP with 𝜷 (0)

14: for 𝑡 = 1, 2, . . . ,𝑇 do
15: Fit GP model to observed data
16: Predict objective function 𝑆 (𝜷) for unexplored regions
17: Compute acquisition function 𝑎EI (𝜷)
18: Find next sample 𝜷 (𝑡+1) = argmax

𝜷
𝑎EI (𝜷)

19: Evaluate objective function 𝑆 (𝜷 (𝑡+1) )
20: Update GP with new data (𝜷 (𝑡+1) , 𝑆 (𝜷 (𝑡+1) ))
21: end for
22: return Optimal weight vector w using Equation (14)

C EXPERIMENTAL CONFIGURATION
C.1 Dataset Description
We conduct experiments on three real-world, large-scale datasets.

Gowalla4 dataset is collected from the Gowalla social network,
a location-based platform where users could check in at physical
locations and share their activities with friends.

Amazon_Books5 dataset is a subset of the Amazon review
dataset, which contains millions of reviews written by Amazon cus-
tomers for various products on the Amazon e-commerce platform.

Tmall6 dataset is provided by Ant Financial Services, containing
users’ online and on-site behavior from July to November 2015.

C.2 Baseline Description
In our experiment, we implement nine retrieval channels on each of
the three datasets. Brief descriptions of these channels are provided:
• Pop is a basic model that consistently recommends the most

popular items.
• ItemKNN [51] is a simple model that calculates item similarity

using the interaction matrix.
• UserKNN [46] is a simple model that calculates user similarity

using the interaction matrix.
• BPR [45] is a basic matrix factorization model trained using a

pairwise learning approach.
• NeuMF [24] enhances matrix factorization with a neural net-

work by replacing the dot product with an MLP, offering a more
precise model of user-item interactions.

• SimpleX [36] is a straightforward two-tower retrieval model
that stands out for its loss function. It incorporates a larger pool
of negative samples and filters out uninformative ones using a
threshold. Additionally, it balances the loss between positive and
negative samples by applying relative weights.

• LightGCN [23] focuses solely on the core aspect of GCN, neigh-
borhood aggregation, for collaborative filtering. It learns user
and item embeddings through linear propagation on the user-
item interaction graph, and combines the embeddings from all
layers using a weighted sum to produce the final embedding.

For SimpleX (I2I) and LightGCN (I2I), we take the user’s three most
recent interactions from the training set and retrieve the 80 most
similar items for each. After merging and removing duplicates, if
fewer than 200 items remain, we continue adding more until we
reach 200 items. If the final set exceeds 200 items, we truncate it to
ensure the retrieved item set contains exactly 200 items.

C.3 Implementation Details
We implement all methods with PyTorch using Recbole [67], a
comprehensive framework for recommendation models. The hy-
perparameters for the nine retrieval channels are provided in Ap-
pendix C.4, with each channel retrieving 200 items. For globally
unified weight assignment, we initialize the Dirichlet distribution
with 𝜶 (0) = [1, 1, . . . , 1]⊤. The learning rate 𝜂1 in Equation (11)
is set to 0.1 with a decay factor of 0.95 applied if no performance
improvement is observed. In each round, 60 samples are drawn,
4https://snap.stanford.edu/data/loc-gowalla.html.
5https://jmcauley.ucsd.edu/data/amazon/amazonbooks.
6https://tianchi.aliyun.com/dataset/53.
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and the top 10% are selected as elite samples. Early stopping occurs
after five iterations without improvement. Bayesian Optimization
(BayesOpt) refines the CEM results by performing 10 calls (T=10 in
Algorithm 1) to optimize global weights. For personalized weight as-
signment, optimal hyperparameters are found via grid search, with
learning rates 𝜂2 in {1e-5, 5e-5, 1e-4} and regularization weights 𝜆
in {0.5, 1, 5}. The number of sampled weight vectors for each user
𝑆 in Equation (22) is set to 1. In Equation (18), 𝛿max = 10.0 and
𝜖 = 10−6 are used. Pre-trained user and item representations from
SimpleX are used for initialization. The top 10 items retrieved by
each channel are pooled to represent the channel, denoted as 𝒄𝑢𝑘 .
The best models are selected based on R@200 on the validation set,
and final metrics are reported on the test set.

C.4 Hyperparameters of Baselines
We now present the hyperparameters used for the baselines across
the three datasets. For ItemKNN and UserKNN, we set 𝑘 = 10 due to
the large number of both users and items. The remaining models are
configured as follows: BPR: {learning rate: 5e-4}, NeuMF: {learning
rate: 1e-4, MLP hidden sizes: [64, 32, 16]}, SimpleX: {learning rate:
1e-4, margin: 0.3, negative weight: 150}, and LightGCN: {learning
rate: 1e-3, regularization weight: 1e-2, n layers: 3}.

C.5 Evaluation Metrics
The metrics used in the experiments, denoted as P@L, R@L, and
F1@L, are presented in the following equations:

Precision@L =
1
𝑁

∑︁
𝑢∈U

|R𝑢 ∩ T𝑢 |
|R𝑢 |

(27)

Recall@L =
1
𝑁

∑︁
𝑢∈U

|R𝑢 ∩ T𝑢 |
|T𝑢 |

(28)

F-Measure@L =
1
𝑁

∑︁
𝑢∈U

2 × Precision@L𝑢 × Recall@L𝑢
Precision@L𝑢 + Recall@L𝑢

(29)

D EXTENDED ANALYSIS AND RESULTS
D.1 Retrieval Performance and Diversity

Table 5: Evaluation of the trade-off between retrieval accu-
racy and diversity on Amazon_Books and Tmall.

Model
Amazon_Books Tmall

R@200 Diversity R@200 Diversity
NeuMF 4.74% 3.40% 6.63% 7.62%
SimpleX 7.94% 91.53% 8.72% 76.10%
LightGCN 8.29% 53.24% 6.84% 19.21%

Equal-Weight Merging 7.75% 77.24% 9.17% 80.74%
BayesOpt (non-personalized) 8.85% 83.13% 9.68% 80.97%

PG (personalized) 9.21% 82.12% 10.02% 80.81%

There is often a trade-off between retrieval performance and
diversity, yet diversity in recommendation results is crucial for user
experience [37]. Various approaches [8] have been proposed to
measure the diversity of the recommended list of items. We use
item coverage [16, 55], which calculates the proportion of items
recommended across all users, as defined in Equation (30):

ItemCoverage =
|⋃𝑢∈𝑈 𝑅𝑢 |

|𝐼 | (30)

Table 5 presents the retrieval performance and diversity of sev-
eral methods. Our scientifically optimized multi-channel retrieval
merging strategies achieve better retrieval performance while main-
taining high diversity, effectively striking a balance.

E DEPLOYMENT DISCUSSION
In this section, we share our hands-on experience implementing our
multi-channel fusion strategy in Company X’s recommendation
scenario. As discussed in Section 6, the number of items retrieved
from each channel varies. Given this variability, the current produc-
tion system sets an upper limit on the number of items retrieved
from each channel. This limitation prevents the direct application of
our globally optimized weights from experimental results. Instead,
we calculate adjustable ratios based on the results from CEM, ensur-
ing they meet business requirements by truncating channels that
exceed their limits and adjusting toward the optimized weights. As
a result, the deployed version is an approximation of CEM, adapted
to fit practical constraints.
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