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Abstract
We present Gradient Boosting Reinforcement
Learning (GBRL), a framework that adapts the
strengths of gradient boosting trees (GBT) to re-
inforcement learning (RL) tasks. While neural
networks (NNs) have become the de facto choice
for RL, they face significant challenges with struc-
tured and categorical features and tend to general-
ize poorly to out-of-distribution samples. These
are challenges for which GBTs have traditionally
excelled in supervised learning. However, GBT’s
application in RL has been limited. The design
of traditional GBT libraries is optimized for static
datasets with fixed labels, making them incompat-
ible with RL’s dynamic nature, where both state
distributions and reward signals evolve during
training. GBRL overcomes this limitation by con-
tinuously interleaving tree construction with en-
vironment interaction. Through extensive experi-
ments, we demonstrate that GBRL outperforms
NNs in domains with structured observations and
categorical features while maintaining competi-
tive performance on standard continuous control
benchmarks. Like its supervised learning coun-
terpart, GBRL demonstrates superior robustness
to out-of-distribution samples and better handles
irregular state-action relationships.

1. Introduction
Many real-world decision-making tasks involve structured
observations, where data can be organized in a tabular for-
mat and follow predefined organizational patterns. Unlike
unstructured data (such as images or raw sensor data), struc-
tured observations often include heterogeneous features,
both numerical and categorical. These features carry direct
semantic meaning that can be used for prediction without
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complex feature extraction. Such structured observations
closely resemble tabular datasets commonly encountered
in supervised learning. Notable examples where structured
observations are crucial include recommendation systems,
healthcare diagnostics, digital advertising, fraud detection,
weather prediction, and financial trading.

In these domains, a key challenge lies in handling structured
observations, where the importance of different components
varies dynamically with the agent’s state and task. Neu-
ral network (NN)-based solutions struggle with such data,
requiring sophisticated architectures and preprocessing tech-
niques to capture structural relationships (Zabërgja et al.,
2024; Kadra et al., 2021; Arik & Pfister, 2021; Gorishniy
et al., 2021; Hollmann et al., 2023). This often results in
complex models that sacrifice sample efficiency and gener-
alization capability.

Gradient boosting trees (GBT) offer a promising alternative
through their natural handling of structured data. Their suc-
cess in supervised learning stems from an iterative ensemble-
building process, in which each decision tree refines pre-
dictions by partitioning the input space along individual
features. This approach has made GBT frameworks such as
XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), and CatBoost (Prokhorenkova et al., 2018) integral
in domains such as finance (Tian et al., 2020), healthcare
(Wassan et al., 2022; Ma et al., 2022; Seto et al., 2022), and
competitive data science (Chen, 2023).

This approach creates an ensemble of piecewise constant
functions that excel at capturing non-smooth patterns and
abrupt transitions in data (Jeffares et al., 2024; Beyazit et al.,
2023; Grinsztajn et al., 2022). These properties are par-
ticularly valuable in RL, where state-action relationships
often exhibit sudden changes, for instance, when transi-
tioning between different phases of a task or when certain
state variables cross critical thresholds. Such discontinuous
relationships are common in structured RL tasks, from in-
ventory management where actions change discretely with
stock levels, to game scenarios where strategic decisions
shift abruptly based on state conditions.

Despite these potential benefits, adapting GBT to RL
presents significant challenges. Traditional GBT frame-
works are designed for static datasets with stable feature
distributions and predefined loss functions, where the focus
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is on optimizing batch training efficiency. This contrasts
sharply with RL’s dynamic nature, where state distributions
evolve during training, data is collected iteratively, and re-
wards are often delayed. While traditional GBT libraries can
technically be adapted to RL using custom loss functions
and incremental learning, our experiments with CatBoost
and XGBoost (Section 4.3) show that this approach fails to
scale due to their supervised learning-oriented design.

We address these challenges through Gradient Boosting Re-
inforcement Learning (GBRL), a framework that bridges the
gap between GBT’s strengths and RL’s unique requirements.
Our contributions are:

1. New framework for GBT in RL: We establish GBT as
a viable function approximator for RL by devising popular
algorithms—PPO, A2C, and AWR—with GBT backends.
In popular environments, our framework demonstrates com-
petitive performance against NNs while showing particular
strengths on structured tasks.

2. Improved robustness: We demonstrate that GBT’s in-
herent strengths translate effectively to RL tasks. Through
extensive dedicated experiments, we show superior robust-
ness to out-of-distribution scenarios, resilience to spurious
correlations, and better handling of state-space perturbations
– critical advantages over NNs for real-world applications.

3. Practical implementation: We provide a CUDA-
accelerated (NVIDIA, 2025) implementation that seam-
lessly integrates with existing RL libraries like Stable-
baselines3 (Raffin et al., 2021)1 2 Our shared Actor-Critic
design achieves state-of-the-art performance while signif-
icantly reducing both memory and computational require-
ments on modern hardware.

2. Related Work
GBT Beyond Supervised Learning. Recent advances
have extended the capabilities of GBT beyond traditional
regression and classification. In ranking problems, GBT has
been used to directly optimize ranking metrics (Lyzhin et al.,
2023), as demonstrated by frameworks such as Stochasti-
cRank (Ustimenko & Prokhorenkova, 2020). Furthermore,
GBT offers probabilistic predictions through frameworks
such as NGBoost (Duan et al., 2020), allowing uncertainty
quantification (Malinin et al., 2021). The connection be-
tween GBT and Gaussian processes (Ustimenko et al., 2023;
Sigrist, 2022) offers further possibilities for uncertainty-
aware modeling. Recently, Ivanov & Prokhorenkova (2021)
modeled graph-structured data by combining GBT with

1The GBRL core library is available at https://
github.com/NVlabs/gbrl.

2Actor-Critic implementations integrated within Stable-
baselines3, are available at https://github.com/NVlabs/
gbrl sb3.

graph NNs.

Despite their versatility, applying GBT in RL remains a rela-
tively less explored area. Several works have employed GBT
as a function approximator within off-policy RL methods,
including its use in Q-learning (Abel et al., 2016) and in ban-
dit settings to learn inverse propensity scores (London et al.,
2023). Recently, Brukhim et al. (2022) proposed a boosting
framework for RL where a base policy class is incrementally
enhanced using linear combinations and nonlinear transfor-
mations, forming a 2-layer NN. However, these previous
works have not demonstrated scalability and effectiveness
in complex, high-dimensional RL environments that require
extensive interactions. In this work, we show how to adapt
the framework of GBT to successfully solve large-scale RL
problems for the first time.

Tabular Data. Previous work in RL has focused predom-
inantly on the use of NNs due to their ability to capture
complex patterns in high-dimensional data. Techniques
such as Q-learning and Actor-Critic methods have advanced
significantly, demonstrating success in tasks involving raw
sensory inputs like images, text, and audio. However, NNs
that perform well on tabular data typically have very special-
ized architectures (Katzir et al., 2021; Somepalli et al., 2021;
Gorishniy et al., 2021; Arik & Pfister, 2021) and are differ-
ent from the standard multi-layer perceptrons that are often
used in RL tasks and algorithms (Ota et al., 2024). Even
with specialized architectures, GBT often performs equally
or better on tabular datasets (Borisov et al., 2021; McElfresh
et al., 2023; Grinsztajn et al., 2022; Shwartz-Ziv & Armon,
2022). GBT’s success can be attributed to a key difference
in inductive biases compared to NNs. Jeffares et al. (2024)
have shown that the kernel representations induced by GBTs
are bounded and often behave more predictably on irregular
or out-of-distribution inputs. In contrast, NN-tangent ker-
nels can be unbounded and vary significantly on test points
far from the training distribution.

Policy Optimization through Functional Gradient As-
cent. Kersting & Driessens (2008) introduced Non-
Parametric Policy Gradients (NPPG). By combining the
policy gradient theorem (Sutton et al., 1999) with func-
tional gradient ascent, NPPG directly optimizes the policy.
Although NPPG sets the foundation for combining GBT
with RL, it is limited to discrete action spaces and policies
represented by the Gibbs distribution. GBRL extends the
ideas laid in NPPG to general Actor-Critic algorithms and
generalizes to any policy representation and objective.

3. RL Preliminaries
A fully observable infinite-horizon MDP is characterized
by the tuple (S,A, P,R). At each step, the agent observes
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Figure 1. The GBRL framework. The actor’s policy and critic’s value function are parameterized by the tree ensemble Fk. For example,
Fk(s) = [µ(s), σ(s), V (s)] for a Gaussian policy. Starting from F0, at each training iteration, k, GBRL collects a rollout and computes
the gradient ∇πFk

J(πFk ) with respect to the current ensemble. This gradient is then used to fit the next tree. Adding the tree to the
ensemble updates it to Fk(s) = Fk−1(s) + ϵhk(s), where ϵ is the learning rate.

a state s ∈ S and samples an action a ∈ A from its policy
π(s, a). The action causes the system to transition to a
new state s′ based on the transition probabilities P (s′ | s, a),
and produce a reward r ∼ R(s, a). The agent’s objective
is to maximize the expected discounted reward J(π) =
E[
∑∞

t=0 γ
t rt], with a discount factor γ ∈ [0, 1).

The state-action value function Qπ(s, a) :=
Eπ[

∑∞
t=0 γ

t rt | s0 = s, a0 = a] estimates the ex-
pected returns of performing action a in state s and then
acting according to π. Additionally, the value function
Vπ(s) := Eπ[

∑∞
t=0 γ

t rt | s0 = s], predicts the expected
return starting from state s and acting according to π. Fi-
nally, the advantage function Aπ(s, a) := Qπ(s, a)−Vπ(s),
indicates the expected relative benefit of performing action
a over acting according to π.

Actor-Critic methods are a common approach in RL. They
simultaneously learn a policy and a value function to im-
prove the efficiency and stability of training. For concise-
ness, in the body of the paper we focus on Proximal Policy
Optimization (PPO) (Schulman et al., 2017) which jointly
trains an actor and critic. In the supplementary material,
we also showcase the implementation and results for A2C
(Mnih et al., 2016) and AWR (Peng et al., 2019).

4. Gradient Boosting Reinforcement Learning
Deep RL with NNs faces significant challenges when deal-
ing with structured observations containing both numerical
and categorical features. Similarly to tabular datasets in
supervised learning, these observations consist of heteroge-
neous features representing fundamentally different types
of information, such as numerical measurements alongside
categorical attributes describing system states or task con-
ditions. These features create highly irregular patterns, as
they may independently affect the environment based on

their context, scale, or statistical properties. NNs struggle
to model such patterns effectively (Beyazit et al., 2023; Jef-
fares et al., 2024), and their performance heavily depends
on preprocessing methods (Hancock & Khoshgoftaar, 2020;
Gorishniy et al., 2022). In contrast, GBT naturally handles
irregular patterns and structured feature spaces efficiently.
To leverage this strength, we present GBRL, an adaptation
of GBT to RL tasks with such representations that frequently
arise in real-world problems.

4.1. GBT as Functional Gradient Descent

GBT (Friedman, 2001) combines decision tree ensembles
with functional gradient descent to learn complex nonlinear
functions (Mason et al., 1999). Given a loss function L and a
dataset, D = {(xi,yi)}Ni=1, where xi ∈ RM and yi ∈ RD,
GBT aims to learn a function F , mapping inputs x to outputs
y. Through functional gradient descent, GBT minimizes the
expected loss Ex,y[L(y, F (x))] with respect to the learned
function F . Unlike parametric gradient descent, which
updates parameters, functional gradient descent updates a
learned function directly.

Starting with an initial function F0. At each iteration k,
GBT refines Fk, by taking a step in the negative direction of
the gradient gk := ∇Fk

L(y, Fk(x)). The negative gradient
is projected onto the space of possible trees h ∈ H by
constructing a new binary decision tree that minimizes the
following objective:

hk = argmin
h∈H

∥ − gk − h(x)∥22 . (1)

Through this process, GBT minimizes the expected loss,
resulting in the additive model:

FK(x) = F0 +

K−1∑
k=1

ϵhk(x) , (2)
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Library Incremental Learning (sec) Standard Learning (sec)

CatBoost 36.17± 2.77 1.15± 0.03
XGBoost 67.11± 0.70 2.26± 3.70
GBRL 5.47± 1.19 N/A

Table 1. Incremental Learning Speed in GBT Libraries. Train-
ing times (seconds) for 1000 boosting iterations on random batches
of 128 samples with 20 input features and 3 targets. While Cat-
Boost and XGBoost train efficiently in standard mode using the
same batch for all iterations, their training time increases signif-
icantly in incremental learning, where each batch receives only
one boosting iteration. GBRL, designed explicitly for incremental
updates, remains much faster.

where, ϵ is the learning rate controlling the step size in each
iteration.

While standard GBT frameworks excel at handling struc-
tured data in supervised tasks, they require a tailored solu-
tion for RL’s iterative, dynamic, and multi-objective nature.

4.2. The GBRL Framework

In the GBRL framework (Figure 1) we adapt GBTs to handle
the challenges of RL. To do so we reinterpret FK(s) as the
parameterization of the policy and value function, where the
observed state s ∈ S is the input to the ensemble.

Specifically, at each iteration k, we compute the policy
gradient (Sutton et al., 1999). As opposed to the original
formulation, where the gradient is calculated with respect
to parameter space, here we calculate it in function space.
Consequently, we express the policy gradient as:

∇Fk
J(πFk

) = EπFk
[∇Fk

log πFk
(a | s)A(s, a)], (3)

where Fk is the current ensemble-based parametrization.

Then, the policy gradient is projected onto a new tree and
added to the ensemble:

hk = argmin
h∈H

∥∇Fk
J(πFk

)− h(s)∥22 . (4)

The result is an application of GBT as a functional gradient
optimizer, updating both actor and critic incrementally:

FK(s) = F0+

K−1∑
k=1

ϵhk(s) ≈ F0+

K−1∑
k=1

ϵ∇Fk
J(πFk

). (5)

Gradient-based Approach. As seen in Equation (5),
GBRL is an online learning gradient-based optimizer. In
each step, a new tree is constructed to minimize the sam-
pled loss. This learning scheme is identical to the common
policy gradient methods (Mnih et al., 2016). By leveraging
optimization frameworks for gradient computation, such
as PyTorch (Paszke et al., 2019), GBRL can be integrated
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Figure 2. GBT library comparison, Cartpole. CatBoost and
XGBoost are intractable in RL. CatBoost’s lack of GPU support
for custom losses leads to low FPS and early termination.
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Figure 3. Shared Actor-Critic, MiniGrid. The shared tree struc-
ture significantly increases efficiency, without impacting the score.
Aggregated results over three tasks are shown here, full per-task
curves are available in Appendix (Figure 20)

with most Actor-Critic algorithms and implemented within
existing RL libraries. In contrast, traditional GBT frame-
works are designed for offline, static datasets and require
significant customizations and workarounds to function in
RL.

Shared Actor-Critic Architecture. Many RL algorithms
operate with a shared Actor-Critic structure. This structure
helps avoid overfitting and improves overall convergence
speeds (Henderson et al., 2018; Andrychowicz et al., 2020).
We adopt this approach in GBRL such that each leaf pro-
duces two predictions. GBRL predicts both the policy (dis-
tribution over actions) and the value estimate. The internal
structure of the tree is shared, providing a single feature
representation for both objectives and significantly reduces
memory and computational bottlenecks. Similar to the stan-
dard practice, we support and use separate learning rates for
the policy and value. This approach enables solving two
distinct objectives within a single shared structure.

4.3. Comparison to Traditional GBT Libraries

Before diving into the comparisons with NNs, Section 5,
we first evaluated our design choices against traditional
GBT libraries. While these libraries can be adapted for
RL using custom loss functions and incremental learning,
experiments with CatBoost and XGBoost reveal scalability
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issues inherent to their supervised learning design. Table 1
shows these frameworks are significantly slower than GBRL,
when used for incremental learning. Incremental learning is
a fundamental property of RL, as the policy is continually
changing. Moreover, when training on CartPole (Figure 2),
larger ensemble sizes lead to significant drops in training
throughput. In contrast, our shared Actor-Critic architecture
halves memory usage and doubles throughput without com-
promising policy quality (Figure 3). Overall, GBRL offers
a purpose-built solution that maintains GBT’s advantages
while efficiently handling RL-specific needs.

5. Experiments and Results
Our experiments aim to answer two core questions:

1. GBT as an RL function approximator: Can GBT-based
AC algorithms effectively solve complex high-dimensional
RL tasks? And how do they compare with NNs?

2. Advantages of GBT: Building on the GBT’s success
in irregular and tabular data, does its inductive bias offer
similar robustness benefits in RL – specifically for out-of-
distribution states, noisy inputs, and spurious correlations?

For our experiments, we implemented a GBT-based version
of PPO within Stable Baselines3 (Raffin et al., 2021). Where
available, we use standard hyperparameters, environment-
specific, and normalization wrappers according to RL Base-
lines3 Zoo (Raffin, 2020); otherwise, we optimize the hyper-
parameters for specific environments. For each experiment,
we report the aggregated performance across five random
seeds. Our training setup consists of a single NVIDIA V100
GPU. We refer the reader to the supplementary material
for additional technical details, such as hyperparameters,
implementation, and environment details (Appendix C), full
results (Appendix D) and full learning curves (Appendix E)
for all evaluated algorithms.

5.1. Standard Environments

Experimental Setup. We evaluated GBRL against NNs
across three categories of RL benchmarks. First, we tested
classic RL tasks using Classic-Control and Box2D envi-
ronments from Gymnasium (Towers et al., 2024). These
provided a baseline for comparison on standard benchmarks.
We then evaluated both methods on more complex envi-
ronments with high-dimensional vectorized representations:
the Football domain (Kurach et al., 2020), where we em-
ployed the built-in ’Checkpoints’ shaped reward, and the
Atari RAM domain (Bellemare et al., 2013). Finally, we
assessed performance on categorical environments, specif-
ically targeting the MiniGrid domain (Chevalier-Boisvert
et al., 2023) – a setting where GBTs have traditionally ex-
celled in supervised learning. MiniGrid provides an ideal
test environment through its 2D grid-world structure featur-

ing goal-oriented tasks with discrete object interactions.

Results. We report the cumulative non-discounted reward,
averaged across the last 100 episodes in Figure 4. For a sim-
ple visual comparison between GBRL and NNs, we report
the normalized score: rnorm = rGBRL − rNN

rmax{NN,GBRL} − rmin{NN,GBRL}
.
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Figure 4. GBRL vs NN in standard environments (PPO). Ag-
gregated mean and standard deviation of the normalized average
reward for the final 100 episodes.

Decision trees, at their core, are if-else structures that excel
in handling numerical and categorical data. In MiniGrid,
which provides such environments, GBRL significantly out-
performed NN. For example, in tasks like PutNear, Four-
Rooms, and Fetch, GBRL consistently achieved higher re-
wards, highlighting its ability to exploit the structured nature
of the environment effectively. This performance demon-
strates that GBRL is particularly well-suited for problems
where data can be neatly partitioned, aligning with GBT’s
inherent design strengths. This suggests that structured en-
vironments represent an ideal use case for GBRL.

An additional domain characterized by structured representa-
tions is the Football domain, where we used a shaped reward.
Here, features such as player positions and ball locations
were designed to represent identifiable, interpretable infor-
mation. In this domain, GBRL outperformed NN across
most scenarios and exhibited equivalent performance in the
rest. The structured nature of the Football domain aligns
well with the strengths of GBT, effectively partitioning
the feature space. Interestingly, while both Football and
MiniGrid are structured, the Football domain is not sparse.
Hence, GBRL’s strong performance in Football underscores
its robustness and capacity to generalize well in structured,
high-dimensional environments.

Unlike Football, the Atari RAM domain offers unstructured,
high-dimensional representations by exposing raw system
memory states. These flattened views lack explicit seman-
tic structure, making them challenging for GBRL, which
relies on single-feature splits. As a result, GBRL underper-
formed compared to NN in most Atari RAM tasks. This
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result highlights an important limitation of decision-tree-
based approaches. They struggle to model implicit feature
interactions, an inherent characteristic of unstructured data.

Finally, classic control tasks are simpler environments that
rely on low-dimensional state spaces. In these tasks, GBRL
demonstrated performance comparable to that of the NN
counterpart. This suggests that decision tree-based models
can match NNs in solving tasks where feature interactions
are limited and the optimization landscape is smooth.

Overall, these comparisons indicate that GBT can serve as a
strong function approximator in RL, matching or surpassing
NN’s performance in certain environments.

5.2. Challenge Environments

Having established GBRL’s general capabilities, we now
examine scenarios designed to test inherent properties of
decision trees. These experiments focus on challenging
conditions—sparse rewards, misleading correlations, and
input perturbations—where NNs typically struggle.

5.2.1. SIGNAL DILUTION

Signal dilution occurs when rare events, such as sparse
rewards, are statistically overwhelmed by more common
non-event data during training (Shyalika et al., 2024; Zhao
et al., 2018; He & Cheng, 2021; Tessler et al., 2017). In NNs
with fixed architectures, shared weights inherently prioritize
patterns from dominant classes or frequent signals, causing
rare events to be ”averaged out” or under-represented in
learned representations. This phenomenon is particularly
problematic in RL and classification tasks with imbalanced
datasets, where the model fails to retain or react to critical
but infrequent signals.

Experimental Setup. We compare GBRL with NNs in a
linear equation variable isolation environment with sparse re-
wards, inspired by (Poesia et al., 2021). The agent observes
the coefficients (a, b, c) of a linear equation ax+ b = c, and
needs to isolate x, receiving a large reward only upon com-
pletion. Actions are multi-discrete, involving the selection
of an operation, a digit ∈ [0, 9], and its sign. The optimal
policy solves the simple task in 2 steps. We also evaluate
two more complex variations with an additional variable y,
where the optimal policy requires 3–4 steps. For these, we
introduce intermediate goals with small rewards to guide
the agent.

Results. While simple for humans, these tasks remain
challenging for NNs due to signal dilution (Figure 5). Al-
though they can make some progress in the simple task
(ax + b = c), they fail when the equation complexity in-
creases, even when given intermediate rewards. In contrast,
GBRL converges to and retains a stable (and optimal) pol-

0.00
0.25
0.50
0.75
1.00

R
ew

ar
d

ax + b = c

0.00
0.25
0.50
0.75
1.00

ax + by + c = d

0.00
0.25
0.50
0.75
1.00

ax + b = cy + d

0 5 10 15 20 25 30
Timesteps [M]

0
10
20
30
40
50

L
en

gt
h

0 5 10 15 20 25 30
Timesteps [M]

0
10
20
30
40
50

0 5 10 15 20 25 30
Timesteps [M]

0
10
20
30
40
50

GBRL NN

Figure 5. Signal dilution, variable isolation task. Mean and
standard deviation of the average episodic reward during train-
ing. GBRL was trained for 15M training steps and NN for 30M.
Episodes are terminated after 50 steps if not solved.

icy throughout the process. GBTs naturally segment the
decision space into explicit rule-based splits, preventing sig-
nal dilution while correctly preserving the rare but crucial
reward signals. Consequently, we see that GBRL can pre-
serve and exploit rare but critical reward signals—evidence
that GBT-based methods are inherently less prone to signal
dilution.

5.2.2. SPURIOUS CORRELATIONS

Experimental Setup. The agent is placed in a grid envi-
ronment with three balls (red, green, and blue), and a red
box. The ball locations are randomized. The agent observes
an objective specifying which ball to pick up. We exper-
iment with three box-placement configurations: adjacent
to the target ball, adjacent to one of the non-target balls,
and without a box in the room. This task tests whether
the policy overfits spuriously correlated features. We then
analyze the results using SHAP (Lundberg & Lee, 2017),
a method based on Shapley values (ARROW et al., 1953)
that measures the contribution of each feature to the final
prediction of a model.

Results. GBRL consistently outperforms NNs in all sce-
narios (Figure 6), demonstrating its ability to ignore irrel-
evant distractions, such as the box, and reliably reach the
target regardless of its placement.

To understand GBRL’s performance, we analyzed the SHAP
values for the agent’s surroundings and the mission feature
when predicting the logit for picking up the target object
(Figure 7). GBRL assigns the strongest positive SHAP
value to the target object, followed by the mission string,
aligning perfectly with the goal. Non-target objects receive
the most negative SHAP values, suppressing distractions
and reinforcing goal-directed behavior. In contrast, NNs
assign negative SHAP values to the mission feature and
rely heavily on the grid surrounding the target object. This
indicates a reliance on spurious correlations and a lack of
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Figure 6. Spurious correlations, MiniGrid. Mean and standard
deviation of the episodic reward. Plots outlined in green are in-
distribution, while plots outlined in red are out-of-distribution.

goal-oriented strategies.

These findings underscore GBRL’s ability to focus on task-
relevant features and ignore deceptive cues, reinforcing our
hypothesis that GBT’s inductive bias provides robustness
against spurious correlations. Next, we consider how this
robustness extends to other forms of state perturbations.

5.2.3. ROBUSTNESS TO STATE PERTURBATIONS

When encountering an out-of-distribution (OOD) state, a
GBT model will always output a result within the same
range seen in training. In contrast, NNs may extrapolate
and exhibit unexpected behavior (Xu et al., 2021; Meinke
& Hein, 2020; Ulmer & Cinà, 2021). We consider three
tasks. First, robustness to irrelevant information. Second,
robustness to random noise. And finally, robustness to miss-
ing features. These experiments aim to test the inherent
robustness properties of GBTs when encountering different
types of noise during training.

Irrelevant Information. We consider a similar fetch ex-
periment as before (Section 5.2.2). Now, a new object is
placed in the room at a random location. This object is
not part of the mission and only interferes with navigation.
The interfering object differs from the task objects in shape,
color, or both.

Figure 8 illustrates how introducing a distractor impacts
policy performance. When the environment is free of dis-
tracting objects, NNs are able to solve the task, converging
to a stable and ideal solution. Surprisingly, although the
purple-box object shares no features with the task objects
(blue, green, and red balls), NNs exhibit a drop in perfor-
mance but are able to solve the task in a subset of seeds.
This performance degradation increases when the confusing
object shares more features with the goal objects, such as
purple-ball and red-box. In contrast, GBRL successfully
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Mission
−1.0

−0.5

0.0

0.5

1.0

S
H

A
P

V
al

u
e

−1.0

−0.5

0.0

0.5

1.0

Mission: get a red ball
Action: pickup object

(b) NN SHAP.

Figure 7. Spurious correlations revealed by feature importance
in MiniGrid. The visualization shows normalized SHAP values
for the concluding action in a successful evaluation run, revealing
the magnitude and direction of each feature’s impact on model
predictions. In this scenario, a red box was positioned next to the
target (red ball), and both models converged to a successful policy.
GBRL prioritizes the mission, ignores the red box, and contrasts
the blue ball. In contrast, the NN focuses on the cells surrounding
the target, while ignoring the blue ball and contrasting the box and
the mission.

and efficiently solves the task, regardless of the additional
irrelevant object placed in the scene.

Random Noise. In the classic-control environments (Sec-
tion 5.1), we train agents in a noiseless setting. Then, to
evaluate the robustness of the resulting policies, we add
random zero-centered Gaussian noise to the input states as
defined by: st = st +ϵ| st |.
The results show that these characteristics translate to practi-
cal outcomes (Figure 9). In classic-control environments, a
trained GBT-based policy is much more robust to small vari-
ations in the state space compared to NNs. We attribute this
performance to how GBTs partition the input space. This
partitioning occurs on hard thresholds that are split accord-
ing to single features. Although small perturbations may
be sufficient to completely change decision outcomes in
NNs (Lütjens et al., 2020; Carlini & Wagner, 2017), GBRL
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Figure 8. Robustness to irrelevant objects, MiniGrid. Mean and
standard deviation of the average episodic reward during training.
GBRL was trained for 5M training steps, and NN for 20M.
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Figure 9. Robustness to input perturbations, classic-control.
Models were trained without perturbations and then evaluated
on noisy observations. At each timestep, the observation was per-
turbed following st = st +ϵ| st |, where ϵ ∼ N (0, var). We report
the mean and standard deviation of episodic reward across 100
evaluation episodes for each Variance ∈ [0, 0.2].

exhibits robustness to random additive noise.

Missing Features. We modify scenarios in the football
domain (Section 5.1) to support the random drop of a player
from the opposing team. Policies are trained on both the
original task and a modified variant. We then evaluate model
robustness by testing how a policy trained against N random
players performs when faced with N + 1, or how a policy
trained against a full team behaves when a random opponent
is removed.

The results show that GBRL outperforms NNs in OOD
tasks (Figure 10), particularly in the 11 vs 11 academy
scenario. Notably, GBRL maintains performance when
evaluated against 10 opponents and can solve 11 vs. 11 even
when trained on 10. In contrast, NNs struggle in all OOD
cases. This suggests GBRL better isolates features that are
essential to solving the task.

6. Ablation Study
In this section, we examine the sensitivity of GBRL to key
hyperparameters. We systematically changed one hyper-
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Figure 10. Out-of-distribution evaluation, football. Mean and
standard deviation of episodic reward across 100 evaluation
episodes. Plots outlined in green are in-distribution, while plots
outlined in red are out-of-distribution.
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Figure 11. Ablation: Learning rate variation across policy (left)
and value function (right) components. Mean and standard devi-
ation of the average episodic reward during training. Each subplot
shows the effect of varying the learning rate for one component
(policy or value function) while keeping the other fixed.

parameter at a time while keeping the others fixed. For
each experiment, we trained an agent in the CartPole-v1
environment for 1M timesteps using GBT-based PPO.

Learning Rate Variation Across Policy and Value Func-
tion Components. We investigated the impact of the learn-
ing rate for both the policy and value function components.
In these experiments, we held one learning rate constant
while varying the other. Consistent with observations in
NN training, we found that excessively high learning rates
destabilized the learning process, whereas overly low rates
led to significantly slower convergence (as illustrated in
Figure 11).

Limitations of Tree Depth. We varied the maximum
depth of the decision trees built at each training iteration
and evaluated their impact on learning dynamics. Figure 12
demonstrates that deeper trees yield more accurate gradi-
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Figure 13. Ablation: Batch size impact on convergence. Mean
and standard deviation of the average episodic reward during train-
ing. We fix the rollout length to 2048 and vary the batch size.
Smaller batches improve early learning but suffer from instability,
while larger batches stabilize training at the cost of slower conver-
gence.

ent approximations, leading to faster convergence, but also
incur a higher computational cost per training step. In the
paper, we selected a maximum tree depth of 4, balancing
convergence speed and wall-clock time.

Batch Size Impact on Convergence. We analyzed the
impact of the batch size on performance. In Figure 13, we
observe that batch size significantly impacts convergence.
Specifically, smaller batches result in GBRL building more
trees per rollout, improving adaptability. However, smaller
batches also lead to noisier gradient estimates as a result
of limited samples per constructed tree. Conversely, larger
batches stabilize training by reducing variance through av-
eraging within leaves, as more samples are utilized to con-
struct each tree but build fewer trees per rollout. Hence, both
excessively small and large batch sizes negatively impact
performance.

Overall, these ablations highlight that GBRL’s performance
is sensitive to training frequency, tree depth, and batch
size—each of which governs the trade-off between con-
vergence speed and stability. While this section focused on
general hyperparameters, we further investigate how these
trade-offs manifest across different RL algorithms in Ap-
pendix B.

7. Limitations and Future Directions
GBRL exhibits competitive performance and surprising ro-
bustness capabilities. However, despite these benefits, we
highlight two important limitations. (i) Continuous gener-
ation of trees. As the policy improves through numerous
updates, the size of the ensemble increases. This unbounded
growth has implications for memory usage, computational
efficiency, and the feasibility of online real-time adaptation.
Future work may leverage tree redundancy to produce a
more efficient and compact policy. For example, strategies
for tree pruning, ensemble compression, or dynamically
managing ensemble size. (ii) Off-policy continuous con-
trol. Methods like DDPG (Lillicrap et al., 2019) and SAC
(Haarnoja et al., 2018) update the policy by differentiating
the Q-estimator. As GBTs are not differentiable, new solu-
tions are needed to incorporate them into these algorithms.

8. Conclusion
Historically, RL practitioners have relied on tabular, linear,
and NN-based function approximators. While GBT evolved
as a widely successful tool in supervised learning, it has
been absent from this toolbox. In this work, we introduced a
method for effectively integrating GBT into RL. We demon-
strated domains where GBT excels compared to NNs, in
addition to analyzing its various inherent characteristics.

We observe that the ideal method depends on the task char-
acteristics. Tabular and linear approaches are suitable for
small state spaces or simple mappings, while NNs excel
when tackling complex relationships in unstructured data.
In comparison, GBT thrives in complex, yet structured envi-
ronments. In such cases, GBRL’s advantage is highlighted,
reflecting GBTs known benefits from supervised learning.

A crucial component of GBRL is our efficient adaptation of
GBT for Actor-Critic methods, which allows the simultane-
ous optimization of distinct objectives. We optimized this
approach for large-scale ensembles using GPU acceleration
(CUDA). Furthermore, GBRL integrates seamlessly with
existing RL libraries, promoting ease of use and adoption.

GBRL is a step toward well-suited solutions for real-world
tasks with structured data.
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L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library, 2019. URL
https://arxiv.org/abs/1912.01703.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning, 2019. URL https:
//arxiv.org/abs/1910.00177.

Poesia, G., Dong, W., and Goodman, N. Contrastive
reinforcement learning of symbolic reasoning do-
mains. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W. (eds.), Advances in
Neural Information Processing Systems, volume 34,
pp. 15946–15956. Curran Associates, Inc., 2021.
URL https://proceedings.neurips.cc/
paper files/paper/2021/file/
859555c74e9afd45ab771c615c1e49a6-
Paper.pdf.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. Catboost: unbiased boosting with cat-
egorical features. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.
URL https://proceedings.neurips.cc/
paper files/paper/2018/file/
14491b756b3a51daac41c24863285549-
Paper.pdf.

Raffin, A. Rl baselines3 zoo. https://github.com/
DLR-RM/rl-baselines3-zoo, 2020.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-dimensional continuous control using
generalized advantage estimation. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/abs/
1707.06347.

Seto, H., Oyama, A., Kitora, S., Toki, H., Yamamoto, R.,
Kotoku, J., Haga, A., Shinzawa, M., Yamakawa, M.,
Fukui, S., and Moriyama, T. Gradient boosting decision
tree becomes more reliable than logistic regression in
predicting probability for diabetes with big data. Sci-
entific Reports, 12(1):15889, Oct 2022. ISSN 2045-
2322. doi: 10.1038/s41598-022-20149-z. URL https:
//doi.org/10.1038/s41598-022-20149-z.

Shwartz-Ziv, R. and Armon, A. Tabular data: Deep
learning is not all you need. Information Fu-
sion, 81:84–90, 2022. ISSN 1566-2535. doi:
https://doi.org/10.1016/j.inffus.2021.11.011. URL
https://www.sciencedirect.com/science/
article/pii/S1566253521002360.

Shyalika, C., Wickramarachchi, R., and Sheth, A. P. A
comprehensive survey on rare event prediction. ACM
Comput. Surv., 57(3), November 2024. ISSN 0360-0300.
doi: 10.1145/3699955. URL https://doi.org/
10.1145/3699955.

Sigrist, F. Gaussian process boosting. Journal of Machine
Learning Research, 23(232):1–46, 2022. URL http:
//jmlr.org/papers/v23/20-322.html.

Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss,
C. B., and Goldstein, T. Saint: Improved neural net-
works for tabular data via row attention and contrastive
pre-training, 2021. URL https://arxiv.org/abs/
2106.01342.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edi-
tion, 2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Sutton, R. S., McAllester, D., Singh, S., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Solla, S., Leen, T.,
and Müller, K. (eds.), Advances in Neural Information
Processing Systems, volume 12. MIT Press, 1999.
URL https://proceedings.neurips.cc/
paper files/paper/1999/file/

13

https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1007/s10994-024-06547-6
https://doi.org/10.1007/s10994-024-06547-6
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://proceedings.neurips.cc/paper_files/paper/2021/file/859555c74e9afd45ab771c615c1e49a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/859555c74e9afd45ab771c615c1e49a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/859555c74e9afd45ab771c615c1e49a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/859555c74e9afd45ab771c615c1e49a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/s41598-022-20149-z
https://doi.org/10.1038/s41598-022-20149-z
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://doi.org/10.1145/3699955
https://doi.org/10.1145/3699955
http://jmlr.org/papers/v23/20-322.html
http://jmlr.org/papers/v23/20-322.html
https://arxiv.org/abs/2106.01342
https://arxiv.org/abs/2106.01342
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf


Gradient Boosting Reinforcement Learning

464d828b85b0bed98e80ade0a5c43b0f-
Paper.pdf.

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D., and Man-
nor, S. A deep hierarchical approach to lifelong learning
in minecraft. Proceedings of the AAAI Conference on
Artificial Intelligence, 31(1), Feb. 2017. doi: 10.1609/
aaai.v31i1.10744. URL https://ojs.aaai.org/
index.php/AAAI/article/view/10744.

Tian, Z., Xiao, J., Feng, H., and Wei, Y. Credit risk assess-
ment based on gradient boosting decision tree. Procedia
Computer Science, 174:150–160, 2020. ISSN 1877-0509.
doi: https://doi.org/10.1016/j.procs.2020.06.070. URL
https://www.sciencedirect.com/science/
article/pii/S1877050920315842. 2019
International Conference on Identification, Information
and Knowledge in the Internet of Things.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., Cola,
G. D., Deleu, T., Goulão, M., Kallinteris, A., Krimmel,
M., KG, A., Perez-Vicente, R., Pierré, A., Schulhoff,
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Appendix
This appendix provides supplementary materials that support the findings and methodologies discussed in the main text. It is
organized into five sections to present the full experiment results, implementation details, hyperparameters used during the
experiments, training progression plots, and experimental plots, respectively. These materials offer detailed insights into the
research process and outcomes, facilitating a deeper understanding and replication of the study.

A. Multi-Objective Training With GBT
In GBRL, we compute gradients for both the actor and critic objectives per timestep. We then concatenate these gradients:
gt := [gt,actor, gt,critic] and use them to build a decision tree. At each candidate node split, we evaluate a score function to
decide the best split. However, since the actor and critic gradients can differ in magnitude, this score can become biased
toward one objective. To address this, we explored two strategies:

• Gradient normalization per output dimension with L2-based split scoring.

• Cosine similarity, which emphasizes gradient direction over magnitude.

Both approaches are supported in our codebase and produce good results, while the cosine similarity performed slightly
better (Figure 14).
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Figure 14. Multi-objective gradient split strategies in PPO-GBRL on CartPole-v1. We compare gradient normalization and cosine
similarity as methods for handling actor-critic gradient imbalance when building trees. Both strategies yield good performance, with
cosine similarity achieving slightly faster convergence. Curves show average episodic reward over 1M timesteps.

B. Why Do Certain Algorithms Perform Differently Than Others?
Apart from inherent algorithmic differences, the main difference for GBRL is the number of fitted trees per update. This
is analogous to the number of update steps in a neural network, since each tree represents a functional gradient step for
the actor or critic. To illustrate this effect, we trained agents in the CartPole-v1 environment for 1M timesteps and varied
the number of epochs while keeping the batch size and the rollout length fixed, thereby varying the number of updates
per rollout. We repeated this experiment for several batch sizes while keeping the rollout length fixed at 2048. As shown
in Figure 15, increasing the number of trees added per rollout improves performance, but increases computational cost.
Moreover, a larger batch size also increases computational time, due to a larger number of samples used to build each tree.
Hence, there is a clear trade-off between computational cost and performance.

This trade-off also explains the difference in performance of various algorithms when combined with GBRL, as their update
schemes inherently affect how many trees are fitted per rollout.
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• A2C - performs a single gradient step per rollout using the entire batch. In GBRL, this results in a single constructed
tree per rollout. Since GBTs update the value and policy functions directly, such large, coarse updates can destabilize
learning.

• PPO - in contrast, uses minibatches and multiple epochs per rollout to better control the trade-off. This allows GBRL
to fit several small trees per rollout, yielding more stable and incremental updates.

• AWR - is an off-policy algorithm. Therefore, GBRL could potentially build many trees without adding sample
complexity. However, we noticed that our best performing models had a huge computational cost to finish training. As
a result, we resorted to reducing the number of gradient steps per update at the expense of performance. Future work
could investigate methods for optimizing GBRL with a fixed tree budget (such as pruning and distillation), which may
enable the applicability of more demanding RL algorithms, such as AWR, using GBRL.

In general, as each tree approximates a gradient step, GBRL benefits from frequent updates to refine its ensemble gradually.
This makes it particularly well-suited to algorithms that support minibatching and multiple epochs per rollout.

C. Implementation Details and Hyperparameters
This section provides implementation details, information regarding compute resources, and tables containing the hyperpa-
rameters used in our experiments enabling the reproducibility of our results. Table 2 lists GBRL hyperparameters for all
experiments.

C.1. Algorithm Details

Our GBRL method is implemented within the Stable Baselines3 framework (Raffin et al., 2021), a widely used library for
standardized reinforcement learning algorithms. For comparisons, we use baseline NNs from RL Zoo3 (Raffin, 2020), which
provides tuned hyperparameters per environment. For all experiments, we used a standard MLP with two hidden layers, each
containing 64 units and tanh activations. The hidden layers are shared between the actor and the critic, and each component
has an additional separate linear layer. This architecture is the default in Stable Baselines3 for the environments we tested
and is widely used as a baseline in RL literature. We maintained this consistent architecture across all environments to
ensure fair comparison.

A2C (Mnih et al., 2016) is a synchronous, on-policy Actor-Critic algorithm designed to improve learning stability. The
critic learns a value function, V (s), used to estimate the advantage. This advantage is incorporated into the policy
gradient updates, reducing variance and leading to smoother learning. The policy is updated using the following gradient:
∇θJ(πθ) = E[∇θ log πθ(a | s)A(s, a)].

AWR (Peng et al., 2019) is an off-policy Actor-Critic algorithm. Provided a dataset D, AWR updates both the policy and
the value through supervised learning. This dataset can be pre-defined and fixed (offline), or continually updated using the
agent’s experience (replay buffer). At each training iteration k, AWR solves the following two regression problems:

Vk = argmin
V

Es,a∼D[∥G(s, a)− V (s)∥22] ,

πk+1 = argmax
π

Es,a∼D[log π(a | s) exp(
1

β
Ak(s, a))] ,

where G(s, a) represents the monte-carlo estimate or TD(λ) of the expected return (Sutton & Barto, 2018).

Advantage computation: We use Generalized Advantage Estimation (GAE) as proposed by Schulman et al. (2016) to
compute the advantage: At =

∑∞
l=0(γλ)

lδt+l , where δt = rt + γV (st+1) − V (st). The GAE parameters and for each
environment are provided in Table 2 of the appendix. Critic: We use on-policy actor-critic algorithms, where the critic
predicts the value function (not action-value Q). We use a standard L2 loss between the critic’s prediction and the target
return estimate: Lcritic(θ) = ||Vθ(st) − Gt||2, where Gt is either a Monte Carlo return estimate or a bootstrapped n-step
return, depending on the specific algorithm (PPO, A2C, or AWR).

C.2. Environments

Classic-Control & Box2D. We evaluate GBRL against NNs on all available classic-control tasks provided in Gymnasium
(Towers et al., 2024) and on LunarLander-v2. This includes three discrete action space environments: Acrobot-v1, CartPole-
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Figure 15. Effect of number of gradient updates per rollout on PPO-GBRL’s performance in CartPole-v1. We fix the batch size and
the number of samples collected per rollout, while varying the number of PPO epochs, thereby changing the number of gradient updates
per rollout. This improves sample efficiency, with more epochs leading to faster convergence. Results are shown over 1M timesteps. The
number of samples collected per rollout was fixed to 2048 for all experiments.

v1, MountainCar-v0, and two continuous action space environments: Pendulum-v1 and MountainCarContinuous-v0. We
trained on both environments for 1M steps (1.5M for LunarLander-v2). For NNs we used the hyperparameters provided in
RL Baselines3 Zoo (Raffin, 2020), except for AWR where we followed the hyperparameters described in the paper.
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Google Research Football & Atari ram. The Football domain (Kurach et al., 2020) consists of a vectorized 115-
dimensional observation space that summarizes the main aspects of the game and 19 discrete actions. We focus on its
academy scenarios, which present situational tasks involving scoring a single goal. A standard reward of +1 is granted for
scoring, and we employed the ”Checkpoints” shaped reward structure. This structure provides additional points as the agent
moves closer towards the goal, with a maximum reward of 2 per scenario. The Atari-ram domain consists of a vectorized
128-dimensional observational space representing the 128-byte RAM state and up to 18 discrete actions. We trained agents
in both domains for 10M timesteps.

MiniGrid. The MiniGrid environment (Chevalier-Boisvert et al., 2023) is a 2D grid world with goal-oriented tasks
requiring object interaction. The observation space consists of a 7x7 image representing the grid, a mission string, and
the agent’s direction. Each tile in the observed image contains a 3D tuple dictating an object’s color, type, and state. All
MiniGrid tasks emit a reward of +1 for successful completion and 0 otherwise. We trained our NN-based agents on a
flattened observation space using the built-in one-hot wrapper, as specified by RL Baselines3 Zoo. For GBRL agents, we
generated a 51-dimensional categorical observational space by encoding each unique tile tuple as a categorical string to
represent the observed image. Categorical features were added for the agent’s direction (up, left, right, down) and missions.
All agents were trained for 1M timesteps, except for PutNear, FourRooms, and Fetch tasks, which were trained for 10M
based on the reported values for PPO NN in RL Baselines3 Zoo.

Variable Isolation Environment. The goal of the variable isolation task is to separate a target variable within a linear
equation. In the basic task variation, the initial state is a linear equation of the form ax + b = c, where a, b, c are digits
within the range [1− 9] that can be either positive or negative. The action space is multi-discrete, where the agent chooses
an action type, the digit to use, and the sign of the digit. The action types are: addition, subtraction, multiplication, and
division. The agent receives a reward proportional to the number of steps taken in the episode if it successfully isolates x,
otherwise the reward is 0.

In the two-variable linear equation variation, the initial state is a linear equation of the form ax + by + c = d, and the
goal is to isolate y on the left side. The actions are equivalent to the basic task, with the addition or subtraction of a digit
multiplied by x. Finally, in the balanced two-variable linear equation variation, the initial state is a linear equation of the
form ax + b = cy + d, and the goal is to isolate y on the left side. The actions are equivalent to the two-variable linear
equation variation with the addition of the operations involving y. In all the environment variations, the agent observes
the coefficients as inputs. For the two variable variations, we add a small reward bonus if the agent successfully moves a
variable or a constant to the correct side. We trained GBRL for 15M steps and NNs for 30M steps.

C.3. Compute Resources

All experiments were done on the NVIDIA NGC platform on a single NVIDIA V100-32GB GPU per experiment. Training
time and compute requirements vary between algorithms and according to hyperparameters. The number of boosting
iterations has the largest impact on both runtime and memory. GBRL experimental runs required from 1GB to 24GB of
GPU memory. Moreover, runtime varied from 20 minutes for 1M timesteps training on classic environments and up to 5
days for 10M timesteps on Atari-ram. NN experimental runs required up to 3GB of GPU memory and runtime ranged from
10 minutes and up to 3 days. The total compute time for all experiments combined was approximately 1800 GPU hours.
Additionally, the research project involved preliminary experiments and hyperparameter tuning, which required an estimated
additional 168 GPU hours.

D. Detailed Result Tables
This section contains tables presenting the mean and standard deviation of the average episode reward for the final
100 episodes within each experiment. More specifically, Table 3 presents results for Continuous Control & Block2D
environments, Tables 4 and 5 present results for the high-dimensional vectorized environments, and Table 6 presents results
for the categorical environments.

E. Learning Curves
This section presents learning curves depicting model performance throughout the training phase. Figures 16 to 19 show
the training reward as a function of environment steps of the agents trained in the experiments. The column order is: A2C,
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batch size clip range ent coef gae lambda gamma num epochs num steps num envs policy lr value lr

Acrobot 512 0.2 0.0 0.94 0.99 20 128 16 0.16 0.034
CartPole 64 0.2 0.0 0.8 0.98 1 128 8 0.029 0.015

LunarLander 256 0.2 0.0033 0.98 0.999 20 512 16 0.031 0.003
MountainCar 256 0.2 0.033 0.98 0.999 20 512 16 0.031 0.003

MountainCar Continuous 256 0.2 0.033 0.98 0.999 20 512 16 0.031 0.003
Pendulum 512 0.2 0.0 0.93 0.91 20 256 16 0.031 0.013
Football 512 0.2 0.0 0.95 0.998 10 256 16 0.033 0.006

Atari-Ram 64 0.92 8e-5 0.95 0.99 4 512 16 0.05 0.002
MiniGrid 512 0.2 0.0 0.95 0.99 20 256 16 0.17 0.01

Variable Isolation 128 0.62 0.08 0.95 0.99 20 256 16 0.18 0.006

(a) PPO. For continuous action spaces, we used log std init = -2 and log std lr = lin 0.0017. We utilized gradient norm clipping for Gym
environments. Specifically, 10 for the value gradients and 150 for the policy gradients.

ent coef gae lambda gamma num steps num envs policy lr value lr log std init log std lr

Acrobot 0.0 1 0.99 8 4 0.79 0.031 - -
CartPole 0.0 1 0.99 8 16 0.13 0.047 - -

LunarLander 0.0 1 0.995 5 32 0.16 0.04 - -
MountainCar 0.0 1 0.99 8 16 0.64 0.032 - -

MountainCar Continuous 0.0 1 0.995 128 16 0.0008 2.8e-6 0 0.0004
Pendulum 0.0 0.9 0.9 10 32 0.003 0.056 -2 0.00018
Football 0.0004 0.95 0.998 128 8 0.87 0.017 - -

Atari-Ram 0.0009 0.95 0.993 128 8 0.17 0.013 - -
MiniGrid 0.0 0.95 0.99 10 128 0.34 0.039 - -

(b) A2C

batch size ent coef gae lambda gamma train freq gradient steps num envs policy lr value lr log std init log std lr

Acrobot 1024 0.0 0.95 0.99 2000 150 1 0.05 0.1 - -
CartPole 1024 0.0 0.95 0.99 2000 150 1 0.05 0.1 - -

LunarLander 1024 0.0 0.95 0.99 2000 150 1 0.05 0.1 - -
MountainCar 64 0.0 0.95 0.99 2000 150 1 0.64 0.032 - -

MountainCar Continuous 64 0.0 0.95 0.99 2000 150 1 0.089 0.083 -2 lin 0.0017
Pendulum 1024 0.0 0.9 0.9 1000 50 1 0.003 0.07 -2 0.0005
Football 512 0.03 0.95 0.99 750 10 1 0.09 0.00048 - -

Atari-Ram 1024 0.0 0.95 0.993 2000 50 1 0.0779 0.0048 - -
MiniGrid 1024 0.0 0.95 0.99 1500 25/100* 1 0.0075 0.005 - -

(c) AWR. For all envs, buffer size = 50,000, β = 0.05. *MiniGrid environments used 100 gradient steps for tasks trained for 1M steps, and
25 gradient steps for tasks trained for 10M steps, for a reduced tree size.

Table 2. GBRL hyperparameters - NN represented by an MLP with two hidden layers.

Table 3. Continuous-Control and Box2D environments: Reported values are the mean and standard deviation of the average episode
reward over the final 100 training episodes, aggregated across 5 random seeds.

Acrobot CartPole LunarLander MountainCar MountainCar Continuous Pendulum-v1

NN: A2C −82.27± 3.29 500.00± 0.0 −43.01± 106.26 −148.90± 24.10 92.66± 0.32 −183.64 ± 22.32
GBRL: A2C −90.73± 2.98 500.00± 0.0 47.93 ± 41.00 −124.42± 5.74 93.15± 1.19 −538.83± 66.25

NN: AWR −102.53± 57.25 500.00± 0.0 282.48 ± 1.96 −160.65± 53.97 18.93± 42.34 −159.64 ± 9.42
GBRL: AWR −118.12± 33.54 497.54± 3.11 76.03± 56.62 −146.68± 24.53 44.38± 45.94 −1257.61± 98.10

NN: PPO −74.83± 1.22 500.00± 0.0 261.73± 6.93 −115.53± 1.39 85.81± 7.51 −249.31± 60.00
GBRL: PPO −87.82± 2.16 500.00± 0.0 248.72± 59.10 −110.55± 15.60 89.42± 5.73 −246.89± 20.61

AWR, and PPO.
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Table 4. Football Academy environments: Reported values are the mean and standard deviation of the average episode reward over the
final 100 training episodes, aggregated across 5 random seeds.

3 vs 1 with keeper Corner Counterattack Easy Counterattack Hard Empty Goal Empty Goal Close

NN: A2C 1.78± 0.10 1.00± 0.17 1.58 ± 0.35 1.43 ± 0.17 1.93 ± 0.05 2.0± 0.0
GBRL: A2C 1.59± 0.17 1.01± 0.07 1.11± 0.14 1.00± 0.05 1.81± 0.03 2.00± 0.00

NN: AWR 1.50± 0.37 1.01± 0.04 1.59 ± 0.36 1.18± 0.21 1.90± 0.08 1.92± 0.17
GBRL: AWR 1.66± 0.34 0.92± 0.05 0.95± 0.05 0.92± 0.05 1.93± 0.07 2.0± 0.0

NN: PPO 1.61± 0.05 0.95± 0.02 1.43± 0.15 1.23± 0.18 1.98 ± 0.01 1.99± 0.00
GBRL: PPO 1.63± 0.19 1.05± 0.20 1.64± 0.09 1.23± 0.07 1.84± 0.06 2.0± 0.0

Pass & Shoot keeper Run Pass & Shoot keeper Run to Score Run to score w/ keeper Single Goal vs Lazy

NN: A2C 1.41± 0.37 1.77± 0.08 1.87± 0.12 1.25± 0.23 1.65 ± 0.04
GBRL: A2C 1.60± 0.21 1.60± 0.14 1.82± 0.10 1.15± 0.08 1.31± 0.11

NN: AWR 1.26± 0.46 1.15± 0.14 1.81± 0.14 1.25± 0.34 1.28± 0.27
GBRL: AWR 1.35± 0.37 1.53± 0.40 1.98 ± 0.01 0.99± 0.16 1.03± 0.12

NN: PPO 1.31± 0.13 1.64± 0.16 1.91± 0.09 1.13± 0.06 1.68± 0.09
GBRL: PPO 1.87 ± 0.09 1.85± 0.08 1.83± 0.04 1.95 ± 0.02 1.73± 0.06

Table 5. Atari-ramNoFrameskip-v4 environments: Reported values are the mean and standard deviation of the average episode reward
over the final 100 training episodes, aggregated across 5 random seeds.

Alien Amidar Asteroids Breakout Gopher

NN: A2C 1802.24 ± 323.12 304.62 ± 55.61 2770.46 ± 271.97 76.69 ± 30.08 3533.84 ± 118.50
GBRL: A2C 595.08± 43.51 48.71± 14.65 1402.66± 161.67 11.52± 2.34 502.20± 341.88

NN: AWR 739.82± 303.06 86.32± 40.16 2308.68 ± 257.72 26.57± 9.91 1471.93± 716.65
GBRL: AWR 829.99± 166.48 125.53± 25.25 1592.63± 109.96 17.32± 1.89 913.06± 79.95

NN: PPO 1555.32 ± 107.59 310.93 ± 80.13 2309.46 ± 145.66 32.88 ± 15.74 2507.84 ± 108.37
GBRL: PPO 1163.86± 76.54 186.32± 50.63 1514.34± 317.46 19.96± 1.93 1215.04± 81.01

Kangaroo Krull MsPacman Pong SpaceInvaders

NN: A2C 2137.6 ± 425.64 9325.38 ± 777.12 2007.64 ± 116.52 15.39 ± 4.26 462.30 ± 35.56
GBRL: A2C 948.8± 483.80 5291.4± 433.35 989.68± 100.02 −12.80± 11.10 265.36± 44.64

NN: AWR 1214.8± 313.42 4519.78± 522.11 892.31± 289.36 −10.25± 2.11 842.00± 130.51
GBRL: AWR 1809.26 ± 37.51 6419.26 ± 387.76 1641.84 ± 284.19 −11.68± 3.79 397.85± 566.38

NN: PPO 2487.4± 829.65 9167.3± 294.30 2069.22± 202.48 18.50± 1.60 479.77± 65.07
GBRL: PPO 2160.8± 826.92 6888.66± 756.18 2069.22± 538.62 15.40± 6.55 434.84± 31.83

20



Gradient Boosting Reinforcement Learning

Table 6. MiniGrid environments: Reported values are the mean and standard deviation of the average episode reward over the final 100
training episodes, aggregated across 5 random seeds.

DoorKey-5x5 Empty-Random-5x5 Fetch-5x5-N2 FourRooms GoToDoor-5x5

NN: A2C 0.96± 0.00 0.77± 0.42 0.43± 0.03 0.62± 0.19 0.05± 0.04
GBRL: A2C 0.96± 0.00 0.96± 0.00 0.62± 0.02 0.51± 0.07 0.78± 0.02

NN: AWR 0.57± 0.52 0.96± 0.00 0.90± 0.26 0.19± 0.12 0.95± 0.01
GBRL: AWR 0.96 ± 0.00 0.97± 0.00 0.95 ± 0.01 0.54 ± 0.05 0.94± 0.01

NN: PPO 0.78± 0.40 0.96± 0.00 0.89± 0.03 0.53± 0.03 0.60± 0.06
GBRL: PPO 0.96± 0.00 0.96± 0.00 0.96 ± 0.01 0.56± 0.04 0.96 ± 0.00

KeyCorridorS3R1 PutNear-6x6-N2 RedBlueDoors-6x6 Unlock

NN: A2C 0.75± 0.42 0.01± 0.00 0.30 ± 0.22 0.77± 0.43
GBRL: A2C 0.39± 0.48 0.18 ± 0.018 0.0± 0.0 0.90± 0.09

NN: AWR 0.93± 0.00 0.60 ± 0.13 0.83± 0.00 0.96± 0.00
GBRL: AWR 0.94± 0.00 0.36± 0.01 0.84± 0.03 0.95± 0.00

NN: PPO 0.76± 0.42 0.001± 0.00 0.17± 0.40 0.97± 0.00
GBRL: PPO 0.95 ± 0.00 0.44 ± 0.19 0.88 ± 0.02 0.97± 0.00
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Figure 16. Classic Control and Box2D environments: Training reward as a function of environment steps. Reported values are the mean
and standard deviation of the average episode reward over the final 100 training episodes, aggregated across 5 random seeds.
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Figure 17. Football Academy environments: Training reward as a function of environment step. Reported values are the mean and
standard deviation of the average episode reward over the final 100 training episodes, aggregated across 5 random seeds.
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Figure 18. Atari-ramNoFrameskip-v4 environments: Training reward as a function of environment step. Reported values are the mean
and standard deviation of the average episode reward over the final 100 training episodes, aggregated across 5 random seeds.
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Figure 19. MiniGrid environments: Training reward as a function of environment step. Reported values are the mean and standard
deviation of the average episode reward over the final 100 training episodes, aggregated across 5 random seeds.
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Figure 20. Sharing actor critic tree structure significantly increases efficiency while retraining similar performance. Training
reward, GPU memory usage, and FPS, are compared across 10M environment (5 seeds, 3 MiniGrid environments)
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