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Abstract

Predicting the effects of mutations in proteins is critical to many applications, from
understanding genetic disease to designing novel proteins that can address our
most pressing challenges in climate, agriculture and healthcare. Despite a surge in
machine learning-based protein models to tackle these questions, an assessment of
their respective benefits is challenging due to the use of distinct, often contrived,
experimental datasets, and the variable performance of models across different
protein families. Addressing these challenges requires scale. To that end we
introduce ProteinGym, a large-scale and holistic set of benchmarks specifically
designed for protein fitness prediction and design. It encompasses both a broad
collection of over 250 standardized deep mutational scanning assays, spanning
millions of mutated sequences, as well as curated clinical datasets providing high-
quality expert annotations about mutation effects. We devise a robust evaluation
framework that combines metrics for both fitness prediction and design, factors
in known limitations of the underlying experimental methods, and covers both
zero-shot and supervised settings. We report the performance of a diverse set
of over 70 high-performing models from various subfields (eg., alignment-based,
inverse folding) into a unified benchmark suite. We open source the corresponding
codebase, datasets, MSAs, structures, model predictions and develop a user-friendly
website that facilitates data access and analysis.
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1 Introduction

Proteins carry out a wide range of functions in nature, facilitating chemical reactions, transporting
molecules, signaling between cells, and providing structural support to cells and organisms. This
astonishing functional diversity is uniquely encoded in their amino acid sequence. For instance, the
number of possible arrangements for a 64-residue peptide chain (2064) is already larger than the
estimated number of atoms in the universe. Despite substantial progress in sequencing over the past
two decades, we have observed a relatively small, biased portion of that massive sequence space.
Consequently, the ability to manipulate and optimize known sequences and structures represents
tremendous opportunities to address pressing issues in climate, agriculture and healthcare.

The design of novel, functionally optimized proteins presents several challenges. It begins with
learning a mapping between protein sequences or structures and their resulting properties. This
mapping is often conceptualized as a “fitness landscape”, a multivariate function that character-
izes the relationship between genetic variants and their adaptive fitness. The more accurately and
comprehensively we can define these landscapes, the better our chances of predicting the effects
of mutations and designing proteins with desirable and diverse properties. Machine learning, by
modeling complex, high-dimensional relationships, has emerged as a powerful tool for learning these
fitness landscapes. In recent years, a plethora of machine learning methods have been proposed for
protein modeling, each promising to offer new insights into protein function and design. However,
assessing the effectiveness of these methods has proven challenging. A key issue is their evaluation
on distinct and relatively sparse benchmark datasets, while relative model performance fluctuates
importantly across experimental assays, as was shown in several prior analyses [Riesselman et al.,
2018, Laine et al., 2019, Meier et al., 2021]. This situation underscores the importance of scale in
the benchmarks used. Larger, more diverse datasets would offer a more robust and comprehensive
evaluation of model performance.

To address these limitations, we introduce ProteinGym, a large-scale set of benchmarks specifically
tailored to protein design and fitness prediction. It comprises a broad collection of over 250 standard-
ized Deep Mutational Scanning (DMS) assays which include over 2.7 million mutated sequences
across more than 200 protein families, spanning different functions, taxa and depth of homologous
sequences. It also encompasses clinical benchmarks providing high-quality annotations from domain
experts about the effects of ∼65k substitution and indel mutations in human genes (§ 3).

We have designed ProteinGym to be an effective, holistic, robust, and user-friendly tool. It provides a
structured evaluation framework that factors in known limitations of the underlying experimental
methods and includes metrics that are tailored to protein design and mutation effect prediction (§ 4).
We report the performance in a unified benchmark of over 70 diverse high-performing models that
come from various subfields of computational biology (eg., mutation effects prediction, sequence-
based models for de novo design, inverse folding), thereby supporting novel comparisons across.
Unlike prior benchmarks, ProteinGym integrates both the zero-shot and supervised settings, leading
to new insights (§ 5). All models are codified with a common interface in the same open-source
codebase, promoting consistency and ease of use. Lastly, a dedicated website offers an interactive
platform to facilitate comparisons across datasets and performance settings.

2 Related Work and Background

Multi-task protein benchmarks In recent years, several benchmarks have been introduced to
provide initial means to assess protein model performance across a multitude of tasks of interests,
e.g., predicting contacts, structure, thermostability, and fitness. These benchmarks are generally
geared towards assessing the quality of learned protein representations, and the extent to which these
representations can be broadly leveraged for various tasks. However, for fitness prediction, they all
rely on a very limited set of proteins (e.g., 1-3 assays). In comparison, the ProteinGym benchmarks
focus on a single task – fitness prediction – and encompass two orders of magnitude more point
mutations assessed and vast diversity of protein families included.

TAPE (Tasks Assessing Protein Embeddings) [Rao et al., 2019] covers five protein prediction tasks,
each designed to test a different aspect of protein function and structure prediction (secondary
structure, contact, remote homology, fluorescence and stability), and focuses on assessments in the
semi-supervised regime via carefully curated train-validation-test splits. ProteinGLUE [Capel et al.,
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Figure 1: ProteinGym benchmarks ProteinGym is comprised of three layers. The data layer
encompasses two complementary ground truth labels from DMS assays and clinical annotations from
experts. For both, we analyze two types of mutations: substitutions and indels. The model layer is
comprised of a diverse set of baselines, tailored to both zero-shot and supervised training regimes.
Lastly, the analytics layer includes several performance metrics geared towards fitness prediction or
protein design evaluation. Different segmentation variables (e.g., MSA depth, assayed phenotype,
taxa) facilitate the comparisons of models across diverse settings

2022] also focuses on assessing the usefulness of learned protein representations on supervised
downstream tasks. It is comprised of five different tasks, none directly related to protein fitness:
secondary structure, solvent accessibility, protein-protein interactions, epitope region and hydrophobic
patch prediction. PEER [Xu et al., 2022] also focuses on multi-task benchmarking, grouped in five
categories: protein property, localization, structure, protein-protein interactions and protein-ligand
interactions. It contains a richer set of evaluations compared with the prior two benchmarks, and
also investigates the multi-task learning setting, but is not designed for thorough fitness prediction
benchmarking (3 fitness related assays). The handful of fitness DMS assays from these various
benchmarks are all subsumed in ProteinGym.

Single task, non-fitness datasets & benchmarks Efforts to create fair, large-scale, and comprehen-
sive benchmarks have been a significant focus of computational biologists for certain tasks. Among
these, the biennial Critical Assessment of protein Structure Prediction (CASP) [Kryshtafovych et al.,
2021] is the most renowned. CASP concentrates on protein structure prediction and has set the gold
standard in this domain. In parallel to CASP, the Critical Assessment of Functional Annotation
(CAFA) [Zhou et al., 2019] challenge provides a platform for evaluating protein function classifica-
tion. The SKEMPI [Moal and Fernández-Recio, 2012] database is specifically designed to aid the
evaluation of computational methods predicting the effect of mutations on protein-protein binding
affinity. Several datasets have been curated for specific properties of interest across a diverse set of
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proteins, for instance thermostability [Tsuboyama et al., 2023, Stourac et al., 2020, Chen et al., 2022]
or solubility [Hon et al., 2020].

Protein fitness benchmarks Closest to our work are the collections of DMS assays that were
curated in Hopf et al. [2017] (28 substitution assays), and then further expanded upon in Riesselman
et al. [2018] (42 substitution assays) and Shin et al. [2021] (4 indel assays). We include all assays
related to fitness prediction from these prior works in ProteinGym. FLIP [Dallago et al., 2021]
focused on comparing fitness predictors in the semi-supervised setting, developing a robust evaluation
framework and curating cross-validation schemes for three assays. MaveDB [Rubin et al., 2021] is a
repository rather than a benchmark, but it compiles a large collection of datasets from multiple variant
effect mapping experiments that can be used for benchmarking purposes. An initial prototype of the
ProteinGym benchmarks (referred to as ‘ProteinGym v0.1’) was introduced in Notin et al. [2022a].
We have since then significantly expanded the benchmarks in terms of number and diversity of
underlying datasets, baselines, evaluation framework and model training regimes (Table A1). This not
only enables performance evaluation at an unprecedented scale, but also builds connections between
different subfields that are often perceived as separate, as we discuss in the following paragraph.

Clinical Benchmarks Designing an unbiased, non-circular and broadly applicable benchmark to
evaluate the performance of human variant effect predictors at predicting clinical significance is still
an open-problem for the clinical community. Combining DMS with clinical annotations has been a
fruitful direction to avoid biases [Frazer et al., 2021, Livesey and Marsh, 2023]. ClinGen curated a
clinical dataset specifically designed to compare a subset of models [Pejaver et al., 2022].

Relationship between protein fitness, mutation effect prediction and design The protein fitness
landscape refers to the mapping between genotype (e.g., the amino acid sequence) and phenotype
(e.g., protein function). While it is a fairly broad concept, it should always be thought about in practice
within a particular context (e.g., stability at a given temperature in a specific organism). Models
that learn the protein fitness landscape have been shown to be effective at predicting the effects of
mutations [Frazer et al., 2021, Jagota et al., 2022, Brandes et al., 2023, Notin et al., 2022b]. But
the ability to tell apart the sequences that are functional or not is also critical to protein engineering
efforts [Romero et al., 2012, Yang et al., 2018, Wu et al., 2019, Alley et al., 2019b]. Although
typically introduced in the context of de novo protein design [Huang et al., 2016], inverse folding
methods [Ingraham et al., 2019, Jing et al., 2020, Dauparas et al., 2022, Gao et al., 2022] can also
be used for mutation effects prediction (Appendix A.4.1). There is thus a very tight connection
between protein fitness, mutation effect prediction and protein engineering, and the same models
can be used for either task depending on context. We seek to illustrate this connection through this
work, comparing baselines introduced in different fields (e.g., protein representation learning, inverse
folding models, co-evolution models) on the same benchmarks, and including different metrics that
are geared more to mutation effect prediction (e.g., Spearman) or design tasks (e.g., NDCG).

3 ProteinGym benchmarks

ProteinGym is a collection of benchmarks (Fig. 1) that cover different types of mutation (ie., sub-
stitutions vs. indels), ground-truth labels (ie., experimental measurement from DMS vs. clinical
annotations), and model training regime (ie., zero-shot vs. supervised).

3.1 Mutation types

We curate benchmarks for two types of protein mutations – substitutions and indels (insertions or
deletions), each with unique implications for the structure, function, and modeling of proteins.

Substitutions Substitution mutations refer to a change in which one amino acid in a protein
sequence is replaced by another. Depending on the properties of the substituted amino acid, this can
have varied impacts on the protein’s structure and function, which can range from minimal to drastic.
The influence of a substitution largely depends on whether it is conservative (i.e., the new amino acid
shares similar properties to the original) or non-conservative. In terms of computational modeling,
substitutions are the most commonly addressed mutation type, and the majority of mutation effect
predictors support substitutions.
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Indels Indel mutations correspond to insertions or deletions of amino acids in protein sequences.
While indels can affect protein fitness in similar ways to substitutions, they can also have profound
impacts on protein structure by altering the protein backbone, causing structural modifications
inaccessible through substitutions alone [Shortle and Sondek, 1995, Tóth-Petróczy and Tawfik, 2013].
From a computational perspective, indels present a unique challenge because they alter the length of
the protein sequence, requiring additional considerations in model design and making it more difficult
to align sequences. For instance, the majority of models trained on Multiple Sequence Alignments
are typically unable to score indels due to the fixed coordinate system they operate within (see § 4).
Furthermore, when dealing with probabilistic models, comparing relative likelihoods of sequences
with different lengths results in additional complexities and considerations.

3.2 Dataset types

The fitness of a protein is a measure of how well a protein can perform its function within an organism.
Factors that influence protein fitness are diverse and include stability, folding efficiency, catalytic
activity (for enzymes), binding specificity and affinity. To properly capture this diversity, we curated
a broad set of experimental assays that map a given sequence to phenotypic measurements that are
known or hypothesized to be related to its fitness. We focused on two potential sources of ground
truth: Deep Mutational Scanning (DMS) assays and Clinical datasets.

Deep Mutational Scanning assays Modeling protein fitness landscapes presents a challenge
due to the complex relationship between experimentally measured protein fitness, the distribution
of natural sequences, and the underlying fitness landscape. It is challenging to isolate a singular,
measurable molecular property that reflects the key aspects of fitness for a given protein. In developing
ProteinGym, we prioritized assays where the experimentally measured property for each mutant
protein is likely to represent the role of the protein in organismal fitness. The resulting compilation
of over 250 DMS assays extends over a wide array of functional properties, including ligand
binding, aggregation, thermostability, viral replication, and drug resistance. It encompasses diverse
protein families, such as kinases, ion channel proteins, G-protein coupled receptors, polymerases,
transcription factors, and tumor suppressors. In contrast to most DMS assay collections that focus
exclusively on single amino acid substitutions, ProteinGym includes several assays with multiple
amino acid variants. Moreover, it spans different taxa (i.e., humans, other eukaryotes, prokaryotes,
and viruses), alignment depths, and mutation types (substitutions vs indels). All details about the
curation and pre-processing of these DMS assays are provided in Appendix A.3.

Clinical datasets ClinVar [Landrum and Kattman, 2018] is an extensive, public database developed
by the National Center for Biotechnology Information (NCBI). It serves as an archival repository
that collects and annotates reports detailing the relationships among human genetic variations and
associated phenotypes with relevant supporting evidence, thereby providing robust, clinically an-
notated datasets that are invaluable for understanding the functional impact of mutations. From
the standpoint of benchmarking mutation effects predictors, ClinVar permits the direct comparison
of predictive models in terms of their accuracy in estimating the functional impact of mutations
on human health. Annotations are also available for an order of magnitude more distinct proteins
compared with our DMS-based benchmarks, albeit much sparser per protein (see table 1). In the case
of indels, we focused on short (≤3 amino acids) variants. In ClinVar, 84% of indel annotations are
pathogenic, so we added to our clinical dataset common indels from gnomAD (allele frequency >5%)
as pseudocontrols [Karczewski et al., 2020].

3.3 Model training regime

Lastly, we discriminate in our benchmarks between zero-shot and supervised settings. In the
supervised regime we are allowed to leverage a subset of labels to train a predictive model, while
in the zero-shot setting we seek to predict the effects of mutations on fitness without relying on the
ground-truth labels for the protein of interest. These two settings offer complementary viewpoints
of practical importance. For instance, in settings where labels are subject to several biases or
scarcely available (e.g., labels for rare genetic pathologies), we need methods with robust zero-shot
performance performance. In cases where we seek to design new proteins that simultaneously
optimize several properties of interest (e.g., binding affinity, thermostability) and we have collected a
sufficiently large number of labels for each target, supervised methods are more appropriate. The
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Dataset Description Mutation type # Proteins # Mutants

DMS High-throughput assays evaluating the functional
impact of a wide range of protein mutations

Substitutions 217 2.4M
Indels 66 0.3M

Clinical Expert-curated clinical annotations across a wide
range of human genes

Substitutions 2,525 63k
Indels 1,555 3k

Total 3,422 2.7M

Table 1: ProteinGym datasets summary ProteinGym includes a large collection of DMS assays and
clinical datasets that offer complementary viewpoints when assessing protein fitness. The table reports
the number of mutants and unique proteins per dataset (the total being deduped across datasets).

need to rely on labels is even more pronounced when we seek to optimize several anti-correlated
properties or when evolution is a poor proxy for the property of interest. Predictions obtained in
the zero-shot settings may also be used to augment supervised models [Hsu et al., 2022a]. The two
settings require substantially different evaluation frameworks, which we detail in § 4.

4 Evaluation framework

4.1 Zero-shot benchmarks

DMS assays In the zero-shot setting we predict experimental phenotypical measurements from
a given assay, without having access to the labels at training time. Due to the often non-linear
relationship between protein function and organism fitness [Boucher et al., 2016], the Spearman’s
rank correlation coefficient is the most generally appropriate metric for model performance on
experimental measurements. We use this metric similarly to previous studies [Hopf et al., 2017,
Riesselman et al., 2018, Meier et al., 2021]. However, in situations where DMS measurements exhibit
a bimodal profile, rank correlations may not be the optimal choice. Consequently, for these instances,
we supplement our performance assessment with additional metrics, namely the Area Under the ROC
Curve (AUC), and the Matthews Correlation Coefficient (MCC), which compare model scores with
binarized experimental measurements. Furthermore, for certain goals (e.g., optimizing functional
properties of designed proteins), it is more important that a model is able to correctly identify the
most functional protein variants, rather than properly capture the overall distribution of all assayed
variants. Thus, we also calculate the Normalized Discounted Cumulative Gains (NDCG), which
up-weights a model if it gives its highest scores to sequences with the highest DMS value. We also
calculate Top K Recall, where we select K to be the top 10% of DMS values. To avoid placing too
much weight on properties where we have many assays (e.g., thermostability), we first compute each
of these metrics within groups of assays that measure similar functions. The final value of the metric
is then the average of these averages, giving each functional group equal weight. We refer to the
corresponding value as ‘corrected average’.

Clinical datasets For the clinical data, with pathogenic and benign categories, we calculate the
areas under the ROC and precision-recall curves. In the substitution dataset, 50% of the labels are
in approximately 10% of the proteins. Since clinical labels across genes correspond to underlying
pathologies that are very distinct to one another, it is preferable to assess performance on a gene-
by-gene basis. We thus compute the average per-gene performance on the substitution benchmark.
However, in the case of indels, only about half of the proteins has a pathogenic label (and only 10%
have a both pathogenic and benign or pseudocontrol labels), so we compute the total AUC for the
full dataset. The problem of calibrating model scores in a principled way across different genes is an
open problem; we leave this to future work.

Baselines We implement a diverse set of 50+ zero-shot baselines that may be grouped into
alignment-based models, protein language models, inverse folding models and ‘hybrid’ models.
Alignment-based models, such as site-independent and EVmutation models [Hopf et al., 2017],
DeepSequence [Riesselman et al., 2018], WaveNet [Shin et al., 2021], EVE [Frazer et al., 2021]
and GEMME [Laine et al., 2019], are trained on Multiple Sequence Alignments (MSAs). Protein
language models are trained on large quantities of unaligned sequences across protein families. They
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include UniRep [Alley et al., 2019a], the RITA suite [Hesslow et al., 2022], the ESM1 and ESM2
suite [Rives et al., 2021, Meier et al., 2021, Lin et al., 2023], VESPA [Marquet et al., 2022], the CARP
suite [Yang et al., 2023a] and the ProGen2 suite [Nijkamp et al., 2022]. Inverse Folding models learn
sequence distributions conditional on an input structure [Ingraham et al., 2019]. We include here
ProteinMPNN [Dauparas et al., 2022] which is trained on structures in the PDB, MIF [Yang et al.,
2023b] trained on CATH4.2 [Dawson et al., 2016], and ESM-IF1 [Hsu et al., 2022b] which is trained
on the PDB and a dataset of AlphaFold2 folded structures. Hybrid models combine the respective
strengths of family-specific alignment-based and family-agnostic language models, such as the MSA
Transformer [Rao et al., 2021], evotuned UniRep [Alley et al., 2019a], Tranception [Notin et al.,
2022a] and TranceptEVE [Notin et al., 2022b].

Because of the variable length of sequences subject to insertion or deletion mutations, alignment-based
methods with fixed matrix representations of sequences are unable to score indels. However, profile
Hidden Markov Model (HMM) and autoregressive models include explicit or implicit probabilities
of indels at each position. Both are trained on homologous sequences recovered with an MSA and
expanded to include insertions. The masked-marginals heuristic Meier et al. [2021] used to predict
protein fitness with protein language models trained with a masked-language modeling objective
(e.g., ESM-1v, MSA Transformer) does not support indels (see Appendix A.4). We thus only report
the performance of the following baselines: Tranception [Notin et al., 2022a], TranceptEVE [Notin
et al., 2022b], WaveNet [Shin et al., 2021], HMM [Eddy, 2011], ProGen2 [Madani et al., 2020],
UniRep [Alley et al., 2019a], RITA [Hesslow et al., 2022] and ProtGPT2 [Ferruz et al., 2022].

For comparisons on clinical benchmarks, we also include unsupervised baselines developed for
variant effect prediction in humans, such as SIFT [Ng and Henikoff, 2002], MutPred [Li et al., 2009],
LRT [Chun and Fay, 2009], MutationAssessor [Reva et al., 2011], PROVEAN [Choi et al., 2012],
PrimateAI [Sundaram et al., 2018] and LIST-S2 [Malhis et al., 2020].

4.2 Supervised benchmarks

DMS assays We leverage the same set of 250+ substitutions and indels DMS assays as for the
zero-shot setting. In the supervised setting, greater care should be dedicated to mitigating overfitting
risks, as the observations in biological datasets may not be fully independent. For instance, two
mutations involving amino acids with similar biochemical properties at the same position will tend
to produce similar effects. If we train on one of these mutations and test on the other, we will
tend to overestimate our ability to predict the effects of mutants at unseen positions. In order to
quantify the ability of each model to extrapolate to unseen positions at training time, we leverage 3
types of cross-validation schemes introduced in Notin et al. [2023]. In the Random scheme, each
mutation is randomly assigned to one of five different folds. In the Contiguous scheme, we split the
sequence contiguously along its length, in order to obtain 5 segments of contiguous positions, and
assign mutations to each segment based on the position at which it occurs. Lastly, in the Modulo
scheme, we assign positions to each fold using the modulo operator to obtain 5 folds overall. In all
supervised settings, we report both the Spearman’s rank correlation and Mean Squared Error (MSE)
between predictions and experimental measurements. A more challenging generalization task would
involve learning the relationship between protein representation (sequence, structure, or both) and
function using only a handful of proteins, and then extrapolating at inference time to protein families
not encountered during training. This setting may be seen as a hybrid between the zero-shot and
supervised regimes – closer to zero-shot if we seek to predict different properties across families, and
closer to the supervised setting if the properties are similar (eg., predicting the thermostability of
proteins with low sequence similarity with the ones in the training set). While this study does not
delve into these hybrid scenarios, the DMS assays in ProteinGym can facilitate such analyses.

Clinical datasets Given the restrictions on the number of labels available per gene and the dis-
crepancies between train-validation-test splits across the different supervised baselines, we report
test performance on the full set of all available ClinVar labels. We note that this may result in
overestimating the performance of supervised methods for which the training data would substantially
overlap with the labels considered in our ClinVar set. Further data leakage occurs for models trained
on population frequencies, as most ClinVar benign labels are established based on observed frequen-
cies in humans (situation especially evident for our indel dataset where we use frequent variants as
pseudocontrols). Interestingly, despite this overfitting risk and as first observed in Frazer et al. [2021],
we find that most supervised methods are outperformed by the best unsupervised methods (Fig. 2).
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Baselines For the supervised DMS benchmark, we report two suites of baselines. The first suite is
comprised of models that take as inputs One-Hot-Encoded (OHE) features. Following the protocol
described in Hsu et al. [2022a], we augment the model inputs with predictions from several state-of-
the-art zero-shot baselines: DeepSequence [Riesselman et al., 2018], ESM-1v [Meier et al., 2021],
MSA Transformer [Rao et al., 2019], Tranception [Notin et al., 2022a] and TranceptEVE [Notin et al.,
2022b]. Following prior works from the semi-supervised protein modeling literature [Heinzinger
et al., 2019, Dallago et al., 2021], the second suite is formed with baselines that leverage mean-pooled
embeddings from several protein language models (ESM-1v, MSA Transformer and Tranception) in
lieu of OHE features. We also augment these baselines with zero-shot predictions obtained with the
same model used to extract the protein sequence embeddings. Lastly, we include ProteinNPT [Notin
et al., 2023], a semi-supervised pseudo-generative architecture which jointly models sequences
and labels by performing axial attention [Ho et al., 2019b, Kossen et al., 2022] on input labeled
batches. Additional details for the corresponding model architectures are reported in Appendix A.4.2.
On the various clinical benchmarks, the above baselines are challenging to train given the low
number of labels available per gene. We instead include several supervised baselines that have been
specifically developed for variant effects predictions in humans, such as ClinPred [Alirezaie et al.,
2018], MetaRNN [Li et al., 2022], BayesDel [Feng, 2017], REVEL [Ioannidis et al., 2016] and
PolyPhen-2 [Adzhubei et al., 2010] (full list in A.4.3).

5 Results

5.1 Substitution benchmarks

We follow the experimental protocol described in § 4.1 and report our main results on the zero-shot
DMS benchmarks in Table 2, supervised DMS benchmark in Table 3, and combined supervised
and unsupervised clinical benchmarks in Fig. 2A. TranceptEVE emerges as the best overall method
across the various settings. One of the key objectives of ProteinGym benchmarks is to analyze
performance across a wide range of regimes to guide model selection depending on the objectives
of the practitioners. To that end we also provide a performance breakdown across MSA depth,
mutational depth and taxa where relevant (see Appendix A.5 and supplements). While TranceptEVE
tops the ranking across the majority of metrics and settings, GEMME achieves the best performance
in several categories, such as assays of viral or non-human eukaryotic proteins, and low and medium
depth MSAs. While we report average performance per metric in Table 2, the distribution of scores
across assays is also insightful. For instance, certain models are heavily penalized in aggregate
rankings due to very poor performance on a handful of assays (e.g., ESM-1v), such that looking a
the median performance in lieu of the average provides a complementary viewpoint. Furthermore,
although most models rank similarly under Spearman and NDCG, some have comparatively better
performance in one over the other (Fig. 2B). Superior ranking under NDCG may suggest a model
is better at predicting the top end of a score distribution, which may be a desirable feature when
using models for design and optimization. Many of the alignment-based methods (e.g. EVmutation,
WaveNet) exhibit this behavior (Fig. A1). Models with higher relative Spearman (e.g., ESM-1v and
ESM-2) may be more effective for cases where the model needs to learn the full property distribution
well, such as with mutation effect prediction. Lastly, in the zero-shot setting, autoregressive protein
language models (e.g., Tranception, ProGen2) tend to outperform their masked language modeling
counterparts (e.g., ESM models). However, in supervised settings, both types of models provide
valuable embeddings for learning. The optimal method depends on the specific situation, as observed
in Table 3 and Table A16. The best performance is achieved with the ProteinNPT architecture,
demonstrating the value from performing self-attention alternatively across columns (i.e., amino acid
tokens and labels) and rows (i.e., protein sequences) to learn a rich representation of the data.

5.2 Indel benchmarks

The zero-shot results for an indel-compatible subset of the models in ProteinGym is shown in Table 4.
The Spearman rank correlations are separated by the method used to generate test sequences: unbiased
libraries, or model-designed sequences biased towards natural sequences. Model performance exhibits
higher variance across assay types, with ProGen2 achieving the highest performance on Library assays
(albeit with low performance on designed assays), WaveNet topping the ranking on designed assays
(but with low performance on library assays), and TranceptEVE reaching high performance across
both. We provide additional indel results in the supervised and clinical settings in Appendix A.5.
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Model type Model name Spearman AUC MCC NDCG Recall
Alignment-
based

Site-Independent 0.359 0.696 0.286 0.747 0.201
WaveNet 0.373 0.707 0.294 0.761 0.203
EVmutation 0.395 0.716 0.305 0.777 0.222
DeepSequence (ensemble) 0.419 0.729 0.328 0.776 0.226
EVE (ensemble) 0.439 0.741 0.342 0.783 0.230
GEMME 0.455 0.749 0.352 0.777 0.211

Protein
language

UniRep 0.190 0.605 0.147 0.647 0.139
CARP (640M) 0.368 0.701 0.285 0.748 0.208
ESM-1b 0.394 0.719 0.311 0.747 0.203
ESM-2 (15B) 0.401 0.720 0.314 0.759 0.208
RITA XL 0.372 0.707 0.293 0.751 0.193
ESM-1v (ensemble) 0.407 0.723 0.320 0.749 0.211
ProGen2 XL 0.391 0.717 0.306 0.767 0.199
VESPA 0.436 0.742 0.346 0.775 0.201

Hybrid UniRep evotuned 0.347 0.693 0.274 0.739 0.181
MSA Transformer (ensemble) 0.434 0.738 0.340 0.779 0.224
Tranception L 0.434 0.739 0.341 0.779 0.220
TranceptEVE L 0.456 0.751 0.356 0.786 0.230

Inverse
Folding

ESM-IF1 0.422 0.730 0.331 0.748 0.223
MIF-ST 0.401 0.718 0.311 0.766 0.226
ProteinMPNN 0.258 0.639 0.196 0.713 0.186

Table 2: Zero-shot substitution DMS benchmark Corrected average of Spearman’s rank correlation,
AUC, MCC, NDCG@10%, and top 10% recall between model scores and experimental measurements
on the ProteinGym substitution benchmark.

Model Model name Spearman (↑) MSE (↓)
type Contig. Mod. Rand. Avg. Contig. Mod. Rand. Avg.

OHE None 0.064 0.027 0.579 0.224 1.158 1.125 0.898 1.061
DeepSequence 0.400 0.400 0.521 0.440 0.967 0.940 0.767 0.891
ESM-1v 0.367 0.368 0.514 0.417 0.977 0.949 0.764 0.897
MSAT 0.410 0.412 0.536 0.453 0.963 0.934 0.749 0.882
Tranception 0.419 0.419 0.535 0.458 0.985 0.934 0.766 0.895
TranceptEVE 0.441 0.440 0.550 0.477 0.953 0.914 0.743 0.870

Embed. ESM-1v 0.481 0.506 0.639 0.542 0.937 0.861 0.563 0.787
MSAT 0.525 0.538 0.642 0.568 0.836 0.795 0.573 0.735
Tranception 0.490 0.526 0.696 0.571 0.972 0.833 0.503 0.769

NPT ProteinNPT 0.547 0.564 0.730 0.613 0.820 0.771 0.459 0.683

Table 3: Supervised substitution DMS benchmark. Corrected average of Spearman’s rank correla-
tion and MSE between model predictions and experimental measurements. MSAT is a shorthand for
MSA Transformer.

6 Resources

Codebase A key contribution of our work is the consolidation of the numerous baselines discussed
in § 4 in a single open-source GitHub repository. While the main code for the majority of these
baselines is publicly available, it often does not support fitness prediction out-of-the-box or, when
it does, the codebase does not necessarily provide all the required data processing logic (e.g., pre-
processing of MSAs in MSA Transformer) or handle all possible edge cases that may be encountered
(e.g., scoring of sequences longer than context size in the ESM suite). Our GitHub repository
addresses all of these gaps and provides a consistent interface that will aid in the seamless integration
of new baselines as they become available.
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A B

Figure 2: Comparing baselines across datasets and across performance metrics (A) Performance
estimated against known clinical labels (avg. AUC over genes in ClinVar (x axis)), and DMS assays
assessing the clinical effect of variants in humans (avg. Spearman (y axis)). (B) The zero-shot models’
median NDCG@10% (x-axis) against median Spearman (y-axis) on the DMS substitutions.

Model type Model name Spearman by DMS type (↑) AUC (↑)
Library Designed/Natural All All

Alignment
models

HMM 0.373 0.518 0.389 0.744
WaveNet 0.323 0.597 0.368 0.720
PROVEAN 0.306 0.585 0.347 0.725

Protein
language
models

RITA L 0.443 0.519 0.457 0.773
ProtGPT2 0.185 0.128 0.191 0.620
ProGen2 M 0.472 0.205 0.465 0.776

Hybrid
models

Tranception M 0.395 0.544 0.394 0.733
Tranception L 0.387 0.563 0.395 0.741
TranceptEVE M 0.426 0.587 0.424 0.754

Table 4: Zero-shot indel DMS benchmark Spearman’s rank correlations and AUC between model
scores and experimental measurements.

Processed datasets We also make publicly available all processed datasets used in our various
benchmarks in a consistent format, including all DMS assays, model scores, ClinVar/gnomAD
datasets, predicted 3D structures and Multiple Sequence Alignments required for training and scoring
(see Section A.3.3 for more details).

Website Lastly, we developed a user-friendly website in which all benchmarks are accessible, with
functionalities to support drill analyses across various dimensions (e.g., mutational depth, taxa) and
exporting capabilities.

7 Conclusion

ProteinGym addresses the lack of large-scale benchmarks for the robust assessment of models
developed for protein design and fitness prediction. It facilitates the direct comparison of methods
across several dimensions of interest (e.g., MSA depth, mutational depth, taxa), based on different
ground truth datasets (e.g., DMS assays vs Clinical annotations), and in different regimes (e.g., zero-
shot vs supervised). We expect the ProteinGym benchmarks and the various data assets we publicly
release along with them, to be valuable resources for the Machine Learning and Computational
Biology communities, and we plan to continue updating the benchmarks as new assays and baselines
become available.
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A Appendix

A.1 Social Impact

Protein design holds considerable promise for various fields, ranging from medicine to agriculture, and is likely
to have a profound social impact. However, the development of such technology introduces several concerns,
particularly relating to the dual use of protein fitness and design models. For instance, while beneficial for areas
like drug design, these models can also be potentially utilized for harmful purposes such as bio-weapon design.
Consider a generative model developed for therapeutic purposes: it typically penalizes predicted toxicity. Yet,
the logic of this model could be inverted to instead reward for toxicity [Urbina et al., 2022]. Indeed, any tool or
benchmark developed to improve protein design can be manipulated for nefarious objectives. Lastly, protein
fitness models will significantly influence the way experiments are conducted. With increased adoption and
development of protein design, substantial portions of experimental work can be accelerated, leading to quicker
iterations and improved results. Nonetheless, the need for wet lab experimentation remains. These technological
advancements will serve to augment, rather than completely supplant, traditional experimental procedures.

Additionally, the American College of Medical Genetics (ACMG) disregards computational prediction of variant
effects due to insufficient validation. Consequently, it is essential to create benchmarks using clinical data in
order to promote the acceptance of these machine learning methods in medical practice.

A.2 Limitations

Deep mutational scans While significant efforts have been dedicated to curating and preprocessing a
diverse set of deep mutational scans (DMS), the very nature of these scans imposes biases and limitations to this
benchmark:

1. Measurement noise Experiments do not have a perfect dynamic range, often imposing a restrictive
ceiling and/or floor to the measured response of mutation effects that is not meaningful for protein
function and mutation effect prediction. Furthermore, noise is a perennial issue in high-throughput
assays, and some assays have poor experimental replicate correlation. Taken together, this means
that one cannot expect perfect correlation between experiment and model. Since these considerations
affect different proteins to different extents, computing average Spearman correlations across proteins
can be misleading.

2. Bias There is additional bias in the types of proteins chosen for deep mutational scans. This can
be due both to experimental limitations on which proteins’ functions can be assayed (for example,
disordered proteins are challenging), and to protein prioritisation considerations (for example, viral
and cancer-related proteins are over-represented).

3. Representativeness No assay is fully representative of the impacts of protein changes on the
evolutionary fitness of an organism, which typically involves a convolution of molecular functions
across changing environments. In fact, many assays target only a single feature such as expression,
binding, or enzymatic activity.

4. Inconsistent processing The reported fitness effects from DMS are themselves the result of modeling
and analysis of the raw data. The treatment of data is extremely heterogeneous across the community
and different analyses can lead to different conclusions on the effect of mutations. For a perfect
standardised curation of experimental results one should treat all data with the same approach. We
leave this type of analysis for future work.

Human mutation databases ClinVar data has the advantage of covering more proteins than DMS, even if
only human proteins involved in disease. But it has several limitations:

1. Noise This dataset, by the very community-based nature of it, is very noisy. Filtering to more
stringently curated ClinVar labels, or to more recent labels, improves correlation with predictions from
sequence models [Frazer et al., 2021]. Here we decided to keep a reasonable number of clinical labels
– a trade-off between quantity and quality.

2. Bias Clinical labels are biased towards classes of proteins that are heavily studied, such as well-
known cancer genes, as well as towards European ancestry.

3. Circularity Grimm et al. [2015] details two types of circularity that hinder the evaluation of human
variant effect predictors. In a supervised benchmark, there is the potential for data leakage from training
to testing, even for different variants in the same protein. Even for our unsupervised benchmark,
where models have not trained on clinical labels, there is the potential for another type of circularity:
evolutionary conservation is one of the criteria used to classify a variant as benign or pathogenic in
ClinVar.
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Finally, the current benchmarks are limited to mutations in coding regions. But there are both DMS datasets and
clinical labels (although fewer of them) in regulatory regions – for example in UTRs, introns, promoters. This
could be an interesting direction of growth for these benchmarks.

A.3 Datasets

A.3.1 DMS assays

Evolution of protein fitness benchmarks based on DMS assays As discussed in § 2, our DMS
benchmarks build on several prior works that had compiled a growing library of such assays. We summarize
their content in Table A1.

Category Mut.
Type

Metric or
Setting

EVmutation Deep
Sequence

ProteinGym
v0.1

ProteinGym
v1.0

DMS Sub. Assays (mut.) 26 (0.1M) 38 (0.7M) 87 (1.6M) 217 (2.4M)
Ind. Assays (mut.) 0 (0k) 0 (0k) 7 (270k) 66 (289k)

Clinical Sub. Genes (mut.) 0 0 0 2,525 (63k)
Ind. Genes (mut.) 0 0 0 1,555 (3k)

Training
regime

Sub. Zero-shot ✓ ✓ ✓ ✓
Ind. Zero-shot - - ✓ ✓
Sub. Supervised - - - ✓
Ind. Supervised - - - ✓

Baselines Sub. Zero-shot 5 3 9 42
Ind. Zero-shot 0 0 3 20
Sub. Supervised 0 0 0 9
Ind. Supervised 0 0 0 3

Metrics - Zero-shot 2 3 3 5
- Supervised 0 0 0 2

Table A1: Evolution of protein fitness benchmarks ProteinGym v0.1 corresponds to benchmarks
in Notin et al. [2022a], while ProteinGym v1.0 corresponds to benchmarks in this paper. The
EVmutation benchmark was introduced in Hopf et al. [2017], while the DeepSequence benchmark
was developed in Riesselman et al. [2018]. Sub., Ind. and mut. are shorthands for substitutions,
indels and mutants respectively.

Selection and processing We focused on several different criteria when determining which DMS assays to
include in ProteinGym. These are:

1. The public availability of data

2. The experimental throughput (how many mutations were assayed)

3. The level of noise between experiment replicates

4. The dynamic range of the assay

5. The assay type (selection, enrichment, etc) and whether or not it captures evolutionary constraints.

6. If the assay used amino-acid substitution or indel mutations (no UTR, tRNA, promoter, etc. variants
were included).

Final list of assays In-depth metadata about the assays, including the assay type, UniProt ID, MSA start and
end positions, mutated positions, and target sequence, is provided under the reference_files directory in the
codebase. A complete list of included assays is presented at the end of the appendix (See Tables A19 and A20)

Processing of large thermostability dataset A large dataset of thermostability assays of 331 natural
domains [Tsuboyama et al., 2023] contributed 65 assays to our list. We processed these assays as follows:

We used the set of non-redundant natural domains (referred to as Dataset #5 in the original paper). After mapping
to UniProt IDs for our DMS id naming convention and removing datasets where none of the tested evolutionary
models had a Spearman correlation above 0.2 (suggesting that there is inadequate evolutionary fitness signal in
the stability assay, preventing meaningful comparisons between models), we were left with 65 thermostability
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Function type # Assays Description

Subs Indels

Activity 43 3 Assays that directly or indirectly measure a protein’s catalytic (or
otherwise biochemical) activity

Binding 14 0 Assays that measure the affinity or the degree to which a protein
binds its target

Expression 17 2 Assays that measure how much the protein is expressed in a cell
Organismal fitness 77 6 Assays that measure how much changes in the protein affect an

organism’s growth rate
Stability 66 55 Assays that measure how thermostable a protein is

Table A2: DMS assay function types. The number of substitution and indel assays in each of the 5
function type categories and a general description used to categorize the assays.

assays of short domains (40-72 residues long). For substitutions, there was 99+% coverage of each position with
14-19 mutations per position (and 52 of those datasets with multiples), and for indels there was a deletion, Gly
and Ala insertion at every position.

Classification of DMS assays We grouped the substitution DMS assays into five function types: activity,
binding, expression, organismal fitness, and stability, assigning each to a primary class such that the classes are
non-overlapping. We provide a brief description of each class in Table A2. We took into account multiple factors
to delineate the groups as cleanly as possible, most importantly the type of experiment used (e.g., cell growth,
cell sorting, biochemical, stability, etc.). Some assay types presented ambiguities that were resolved as follows:

• Cell growth Growth-based assays link the function of their target protein to cellular survival and
growth. These assays generally fall under “Organismal fitness”, particularly for complementation
assays where mutants are tested for their ability to replace the natural function of the wild-type target
and allow cell growth. However, in some cases, cell growth is artificially linked to readouts such as
enzymatic activity (e.g., SRC_HUMAN [Ahler et al., 2019], MET_HUMAN [Estevam et al., 2023],
Q837P4_ENTFA [Meier et al., 2023]), expression (HXK4_HUMAN [Gersing et al., 2023]), or binding
(RASK_HUMAN [Weng et al., 2022]). We recategorized assays that were deemed sufficiently distinct
from the protein’s natural function in the cell.

• Cell sorting Cell sorting, most commonly fluorescence-activated cell sorting (FACS), artificially
selects cells that have been fluorescently labeled according to their function. This class of experiments
generally falls into “Activity", “Binding”, or “Expression”, depending on the choice of labeling target.
“Expression” assays label the target protein itself, quantifying its expression levels inside the cell or on
the cell surface (e.g., NUD15_HUMAN [Suiter et al., 2020], OPSD_HUMAN [Wan et al., 2019]).
Since protein abundance and cell surface presentation are dependent on protein stability, these assays
are often characterized elsewhere as stability assays (e.g., PRKN_HUMAN [Clausen et al., 2023],
PTEN_HUMAN [Matreyek et al., 2021]). “Activity” assays quantify levels of an enzyme’s product or
reporters of enzymatic activity (e.g., OXDA_RHOTO [Vanella et al., 2023], A0A247D711_LISMN
[Stadelmann et al., 2021], PPARG_HUMAN [UK Monogenic Diabetes Consortium et al., 2016]).
“Binding” assays quantify levels of a binding partner or another reporter of protein binding (e.g.,
ACE2_HUMAN [Chan et al., 2020], GCN4_YEAST [Staller et al., 2018]).

Cross-validation schemes As described in § 4.2, we leverage the 3 types of cross-validation schemes
(Random, Contiguous and Modulo) introduced in Notin et al. [2023] for the different analyses in the supervised
regime. For the Random split, we randomly assigned each mutant to one of 5 folds. The Contiguous scheme is
obtained by splitting the sequence in contiguous segments along its length, ensuring the segments are comprised
of the same number of positions. We only consider positions mutated, which may not span the entire length
of the protein sequence. The Modulo scheme is obtained by assigning positions to each fold using the modulo
of the position number by the total number of folds. Therefore, for a 5-fold cross-validation, position 1 is
assigned to fold 1, position 2 to fold 2, ..., position 6 to fold 1, etc. Once again, we make sure to only consider
mutated positions. We operate a five fold cross-validation for all assays except for assays F7YBW8_MESOW
[Aakre et al., 2015] and SPG1_STRSG [Wu et al., 2016], as these contain only 4 mutated positions. Note that
multiple mutants generally involve several positions that may not be easily separated into the independent folds
as discussed in the Contiguous and Modulo schemes above. Similarly, indels do not lend themselves well to
these two cross-validation schemes. Thus, we only keep single mutants for all supervised analyses related to
substitutions, and only focus on the Random cross-validation scheme for all indels analyses.
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High-level statistics Table A3 describes the size and mutation depth of the indel datasets.

Dataset #Datapoints
(Benign/Path.)

Mutation Depth
(Min/Mean/Max)

Mutation Source

DMS Assays

AAV 24,909 1 / 3.57 / 11 randomization
β-Lac 4,751 1 / 1 / 1 library
Kir2.1 10,502 1 / 1.2 / 3 library
MtrA 331 8 / 8 / 8 library
PTEN 314 1 / 1 / 1 library
TP53 341 1 / 1.5 / 2 library
amyloid β 2,354 1 / 14 / 39 library
OCT1 543 1 / 1 / 1 library
Tsuboyama 14,280 1 / 2.7 / 3 library

Assays of Natural and Designed Sequences

AAV 225,998 3 / 13.9 / 37 model-designed
CM 3,074 1 / 68.9 / 82 model-designed
HIS3 6,102 1 / 8.4 / 29 interpolations between

natural sequences

Human Variants

ClinVar 3k
(1,760 / 839)

1 / 1.37 / 3 population variation

Table A3: Summary of indel datasets.

A.3.2 Clinical datasets

We collect 65k variants from the ClinVar and gnomAD databases (Table A4).

Dataset #Proteins #Variants #Variants per Protein
(Median)

Substitutions 2,525 63k 6
Indels 1,555 3k 1

Table A4: Summary of ClinVar human variant datasets.

For our indel benchmark, detailed in Section 4.1, we focus on short indels, less than or equal to three amino
acids, which make up over 80% of in-frame indels in our data. There were insufficient benign annotations for
indel clinical variants, so gnomAD common variants (allele frequency > 0.5%) were used as a pseudocontrols.

ClinVar processing The clinical substitutions dataset was obtained following the procedure from EVE
[Frazer et al., 2021], detailed in Supplementary Methods Section 3 of that paper (which dataset is downloadable
from https://evemodel.org/download/bulk), but correcting for mapping errors to GRCh38, which yielded
2,525 proteins and 63k variants, with Pathogenic/Likely Pathogenic/Benign/Likely Benign annotations and at
least 1 star of clinical evidence - where assertion criteria is provided by a submitter. As a result, our dataset
contains significantly more mutants than the dataset from [Frazer et al., 2021] (42k vs. 63k).

The raw set of inframe indels was obtained from ClinVar on February 6th, 2023, by using the following query:

("inframe deletion"[Molecular consequence] OR "inframe indel"[Molecular consequence]
OR "inframe insertion"[Molecular consequence])

This query yielded 18407 variants. After filtering out invalid/uncertain amino acids, repeats, remaining frameshift
variants, and synonymous/stop codons, 17039 (92.5%) remained.

When filtering for Benign/Pathogenic/Likely Benign/Likely Pathogenic annotations (80%+ of annotations are
uncertain significance), and selecting variants in genes with at least one P/LP annotation, and filtering indels up
to 3 amino acids, 2090 / 18407 = 11.35% of the original variants remained, 330 benign and 1760 pathogenic.
When using gnomAD as the benign pseudocontrols, we only keep the 1760 pathogenic variants from ClinVar.

All the preprocessing code from raw ClinVar data is available in the companion codebase.
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gnomAD processing The Genome Aggregation Database (gnomAD) [Karczewski et al., 2020] seeks to
aggregate genome and exome sequencing data from multiple large-scale sequencing projects, and publishes
summary data such as variant allele frequencies in a consistent format. The gnomAD v2.1.1 GRCh38 liftover
was downloaded on February 8th 2023 and contains 125,748 exomes and 15,708 genomes. v2 was originally
based on the GRCh37 reference sequence and v2.1.1 was lifted over to the GRCh38 reference sequence.

The inframe indels were similarly preprocessed to the ClinVar indels (the preprocessing code from raw data is
also available in the repository), yielding 839 common indels up to 3 amino acids in length.

A.3.3 Access

The following provides more details on the code and data Resources (§ 6) accompanying this paper.

The open-source codebase containing a framework for scoring all the benchmarks is available via our GitHub
repository at: https://github.com/OATML-Markslab/ProteinGym. Modifications of certain baselines (e.g.
scoring of long sequences beyond the context size in the ESM suite, or pre-processing of MSAs in MSA
Transformer) are also released, and all of the model predictions can be reproduced using this repository. We also
include preprocessing code for the clinical data (ClinVar/gnomAD) and DMS assays for reproducibility.

We developed a user-friendly website, https://www.proteingym.org containing a leaderboard, detailed
results per assay, as well as drill analyses across various dimensions (e.g mutational depth, taxa).

The DMS assays, model scores, Multiple Sequence Alignments, predicted 3D structures, processed Clin-
Var/gnomAD datasets, and raw files before preprocessing can all be downloaded from our servers (see download
instructions on our GitHub repository). Some model checkpoints and other files necessary for scoring (for
baselines such as profileHMM, PROVEAN) are also available via our servers, although most model checkpoints
such as ESM-1v are available from their respective repositories.

A.3.4 License

The codebase is open source under the MIT license.

A.4 Baselines

Unless otherwise specified, model scores are calculated by taking the log-ratio of the sequence probabilities
between the mutant and wild-type sequences log p(xmut)

p(xwt)
, following the convention in Hopf et al. [2017].

A.4.1 Zero-shot baselines

Alignment-based models

• Site-independent Model We use a site-wise maximum entropy model to infer the contribution of
site-specific amino acid constraints without considering explicit epistatic constraints. This model is
implemented as referred to in Hopf et al. [2017].

• HMM We use the profile hidden Markov model (HMM) implementation in HMMER [Eddy, 2011].
Profile HMMs are frequently used to generate multiple sequence alignments, but also produce log
probabilities of sequences that can be used as estimates of fitness for both substitutions and indels
[Durbin et al., 1998].

• EVMutation EVMutation [Hopf et al., 2017] models pairwise evolutionary couplings between
protein sequences using a Potts model (otherwise known as a Markov Random Field).

• DeepSequence DeepSequence [Riesselman et al., 2018] uses a VAE architecture to learn higher-
order non-linear evolutionary constraints within each protein family. Mutation effect scores are
calculated similarly as EVMutation, as the log-ratio between the mutant and wild-type sequence
probabilities log p(xmut|θ)

p(xwt|θ) , but using the VAE evidence lower bound (ELBO) as a proxy for p(x|θ).

• WaveNet We use a previously published dilated convolutional neural network (dilCNN) based on
the WaveNet architecture [Shin et al., 2021] as an example of a family-specific sequence decoder
capable of handling indels. Due to the expense of training a separate model for each protein, we only
evaluate this model against the DMS datasets. Sequence scores are calculated as the difference in
(length-normalized) log-likelihoods between the mutant and wild-type sequences.

• EVE EVE [Frazer et al., 2021] is a Bayesian VAE model architecture for predicting clinical variant
effects. The model includes a Gaussian Mixture Model fitted to the background distribution of
mutations, in order to provide interpretable protein-specific pathogenicity scores. We use the ClinVar
preprocessing pipeline from EVE, and EVE is also used in TranceptEVE [Notin et al., 2022b].
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• GEMME GEMME is the Global Epistatic Model for predicting Mutational Effects. It infers the
conservation of combinations of mutations across the entire sequence according to an evolutionary
tree [Engelen et al., 2009] and combines it with site-wise frequencies to calculate a combined epistatic
sequence score for mutations [Laine et al., 2019]. GEMME intakes multiple sequence alignments of
protein families as well as specific mutations to generate scores. To obtain scores, we used the GEMME
web-tool hosted at http://www.lcqb.upmc.fr/GEMME/submit.html with default parameters.

Protein language models Protein language models are so called because they all use variants of the
Transformer [Vaswani et al., 2017] architecture popularised in natural language processing.

• UniRep UniRep [Alley et al., 2019b] trains a Long Short-Term Memory (LSTM) model on
UniRef50 [Suzek et al., 2015] sequences. It learns how to internally represent proteins by being trained
on next amino acid prediction through minimizing cross-entropy loss. While the core model is trained
on unaligned sequences, UniRep can also be fine-tuned on sets of homologous sequences from a given
family, retrieved with a MSA. This process is called ‘evotuning’ and typically leads to stronger fitness
prediction performance.

• ESM ESM-1b [Rives et al., 2021] and ESM-1v [Meier et al., 2021] are protein language models
with a Transformer encoder architecture similar to BERT [Devlin et al., 2019] and trained with a
Masked-Language Modeling (MLM) objective on UniRef50 and UniRef90 respectively. We extend the
original ESM codebase for these two models to handle sequences that are longer than the model context
window (ie., 1023 amino acids), with the approach described in Brandes et al. [2023] for ESM-1b and
in Notin et al. [2022a] for ESM-1v. We predict fitness for ESM models with the masked-marginal
approach introduced in Meier et al. [2021], which provides optimal performance on substitutions, but
does not support indels.

• CARP CARP [Yang et al., 2023a] is a protein language model trained with a MLM objective on
Uniref50. The architecture leverages convolutions instead of self-attention, leading to computational
speedups while maitenaning high downstream task performance.

• RITA RITA [Hesslow et al., 2022] is an autoregressive language model akin to GPT2 [Radford
et al., 2019], trained on UniRef100 [Suzek et al., 2015]. Four model sizes are available, ranging from
85 million to 1.2 billion parameters. RITA takes unaligned sequences as input, and can score both
substitution and indel mutations.

• ProGen2 ProGen2 [Nijkamp et al., 2022] is an autoregressive protein language model trained on a
mixture of UniRef90 [Suzek et al., 2014] and BFD30 [Steinegger and Söding, 2018]. It follows the
standard transformer decoder architecture, and five models of different sizes are available, ranging
from 151 million to 6.4 billion parameters. ProGen2 takes unaligned sequences as input, and can score
both indel and substitution mutations.

• VESPA VESPA [Marquet et al., 2022] is as Single Amino acid Variant (SAV) effect predictor based
on a combination the embeddings from the protein language model ProtT5 [Elnaggar et al., 2021], as
well as per-residue conservation predictions.

Inverse Folding models Inverse folding models learn the conditional distribution of sequences that are
likely to fold to an input protein structure [Ingraham et al., 2019]. Given that there may not be experimentally
solved structures for the target sequence of all DMS assays in ProteinGym, we generate input structures using
Alphafold2 (AF2) [Jumper et al., 2021]. The inverse folding model in combination with AF2 encompasses an
end-to-end scoring pipeline that only requires a protein sequence to score variants. As the sequence representation
size is defined by the size of the input structure, the models we benchmark here can only score substitutions.

• ProteinMPNN ProteinMPNN [Dauparas et al., 2022] takes in a protein backbone structure and
featurizes it as a graph where backbone (N,C,Cα) atoms are nodes and edges are determined via
euclidian distance cut-offs. The model uses a message passing neural network (MPNN) [Ingraham
et al., 2019] to encode the structure into a latent graph representation. The model then decodes the
representation and samples sequences autoregressively.

• MIF The Masked Inverse Folding (MIF) and Masked Inverse Folding with Sequence Transfer
(MIF-ST) models [Yang et al., 2023b] are structured-conditioned protein language models trained with
a MLM objective. MIF is trained on CATH4.2 [Dawson et al., 2016], and MIF-ST further augments
the MIF model with embeddings from CARP (640M).

• ESM-IF1 ESM-IF1 [Hsu et al., 2022b] functions similarly to ProteinMPNN but leverages a Geomet-
ric Vector Perceptron [Jing et al., 2020] (an equivariant message passing module ideal for coordinate
data) as the architecture for the structure encoder and sequence decoder.

Hybrid models
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• MSA Transformer The MSA Transformer [Rao et al., 2021] learns a representation of Multiple
Sequence Alignments (MSAs) by training an Axial transformer-based transformer [Ho et al., 2019a]
with a MLM objective across a diverse set of 26 million MSAs.

• Tranception Tranception [Notin et al., 2022a] combines an autoregressive protein language model
with inference-time retrieval from a MSA. We evaluate Tranception Small (85M), Tranception Medium
(300M parameters) and Tranception Large (700M parameters) both with and without MSA retrieval.
Tranception can score both indel and substitution mutations.

• TranceptEVE TranceptEVE augments Tranception with priors for the amino acid distribution at
each position based on an ensemble of EVE models for the protein family of interest. The final output
log probability is thus a weighted sum of that EVE log prior, the log probability from the autoregressive
transformer model in Tranception, as well as site-specific log probabilities obtained from a retrieved
MSA (as in the inference-time retrieval procedure described in Tranception). TranceptEVE can score
both indels and substitutions.

A.4.2 Supervised baselines

We leverage the various supervised baselines defined in Notin et al. [2023]:

• One-hot encoding (OHE) models OHE baselines take as input a one-hot encoding representation
of the amino acid sequence, together with zero-shot fitness predictions obtained with several of the
baselines discussed above in Appendix A.4.1. Both are input into a L2-penalized regression, following
the approach discussed in [Hsu et al., 2022a];

• Embeddings models Embeddings models are based on mean-pooled embeddings from various
protein language models introduced above (e.g., Tranception, ESM-1v, MSA Transformer), augmented
with zero-shot fitness predictions from the same model. We refer to Notin et al. [2023] for all
implementation details;

• ProteinNPT ProteinNPT [Notin et al., 2023] is a semi-supervised non-parametric trans-
former [Kossen et al., 2022] which learns a joint representation of full batches of labeled sequences. It
is trained with a hybrid objective consisting of fitness prediction and masked amino acids reconstruc-
tion. The model can be used to predict mutation effects for single or multiple properties simultaneously,
and sample novel sequences conditioned on label values of interest.

A.4.3 Clinical baselines

We leverage a set of clinical variant effect predictors from dbNSFP v4.4a [Liu et al., 2011, 2020], which is a
database of functional predictions for all possible non-synonymous single-nucleotide variants (nsSNVs) in the
human genome.

These models were developed primarily to assess the effects of mutations in humans and are included in clinical
benchmarks only:

• Supervised The following assays used ClinVar label annotations in their training (or are meta-
predictors that contain one or more supervised models): ClinPred [Alirezaie et al., 2018], MetaRNN [Li
et al., 2022], BayesDel [Feng, 2017], VEST4 (variant effect scoring tool 4.0) [Carter et al.,
2013], REVEL [Ioannidis et al., 2016], VARITY [Wu et al., 2021], gMVP [Zhang et al., 2022],
CADD [Rentzsch et al., 2019], PolyPhen2 [Adzhubei et al., 2010], DEOGEN2 [Raimondi et al., 2017],
MPC [Samocha et al., 2017], MutationTaster [Schwarz et al., 2010], DANN [Quang et al., 2015],
FATHMM[Shihab et al., 2013]

• Unsupervised In addition to TranceptEVE, GEMME, EVE and ESM-1b (zero-shot baselines
mentioned above), the following unsupervised clinical variant effect predictors were used as baselines:
PROVEAN [Choi et al., 2012], SIFT [Ng and Henikoff, 2002], MutationAssessor [Reva et al., 2011],
MutPred [Li et al., 2009], PrimateAI [Sundaram et al., 2018], LIST-S2 [Malhis et al., 2020], and
LRT [Chun and Fay, 2009].

For ESM-1b, we downloaded precomputed scores from [Brandes and Ntranos, 2023] from a recent study that
extended ESM-1b to predict all possible missense variant effects in the human genome [Brandes et al., 2023].
TranceptEVE and EVE models were trained for the subset of 2,525 proteins in the clinical benchmark, and
the model weights/scores are provided online for further analysis (See Section A.3.3). GEMME scores were
obtained as detailed above. We provide an analysis of performance on clinical datasets vs the subset of assays on
human proteins in Fig. 2.
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A.5 Detailed performance results

A.5.1 DMS substitution benchmarks

Zero-shot Table A5 shows the results for our zero-shot DMS substitutions benchmark. We report Spearman’s
rank correlations and bootstrapped standard error estimates for forty baseline models. Table A6 breaks down our
substitution DMS by MSA depth, , Table A7 by function type, Table A8 by taxa, and Table A9 by mutational
depth. To compute the final Spearman’s rank correlation reported in Table A5, we first average all the assays for
a particular function type together, resulting in five average values (one each for Activity, Binding, Expression,
Organismal Fitness, and Stability). The average of these five numbers is the final reported value.

Clustering zero-shot substitution models We clustered the zero-shot models using hierarchical clustering
on the vector of NDCG metrics for each dataset in the DMS substitutions (Fig. A1). We find that models with
the same architecture tend to cluster together (e.g., RITA models), however, there are exceptions (e.g., ESM-2
models). We also observe that the alignment-based models tend to cluster together, suggesting that training on
the same MSA may promote similar scoring behavior.

Supervised Table A10 shows the results for our supervised DMS substitutions benchmark. We report
Spearman’s rank correlations for 10 baseline models.
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Figure A1: Hierarchical clustering of zero-shot models by NDCG performance Heatmap colored
by the Pearson correlation of the NDCG@10% values for each DMS assay for each pair of zero-shot
models. Lighter color corresponds to higher correlation. The ordering and dendogram were produced
by hierarchical clustering of the correlation values.

35



A.5.2 DMS indel benchmarks

Zero-shot Table A14 shows the results for our zero-shot DMS indels benchmark, and Table A15 shows
Spearman’s rank correlations for each indel DMS dataset and model. Figure A2 compares each model’s
aggregate performance between the Library and Designed DMS sets (numbers provided in Table 4). More
detailed performance files are available in the repository.
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Figure A2: Performance comparison of indel baselines on different types of assays Spearman’s
rank correlation over unbiased libraries vs model-designed sequences biased towards natural se-
quences.

Supervised Table A16 ranks the performance of each model on the supervised indel DMS benchmark.

A.5.3 Clinical substitution benchmarks

As discussed in § 4, since the performance of zero-shot models is on par – or higher – than their supervised
counterparts we subsume the Clinical zero-shot and supervised rankings into a combined rankings, available
in Table. A17. Although supervised models trained on ClinVar labels (such as ClinPred) perform well on the
clinical benchmark, unsupervised models (such as TranceptEVE) provide better performance on the subset of
DMS assays assessing the clinical effect of variants in humans, and competitive performance on the clinical
benchmark without being subject to the same label biases (see Fig. 2).

A.5.4 Clinical indel benchmarks

Table A18 shows model performance on the ClinVar datasets, and Figure A3 shows the combined performance
on the DMS and ClinVar indel benchmarks.
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Figure A3: Performance comparison of indel baselines on the indel benchmarks. AUC over
ClinVar with gnomAD controls (x axis) and Spearman’s rank correlation over functional assay
benchmarks (y axis).
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Ranking Model Type Spearman Std. error
1* TranceptEVE L Hybrid model 0.456 0.000
1* TranceptEVE M Hybrid model 0.455 0.004
1* GEMME Alignment-based model 0.455 0.007
4 TranceptEVE S Hybrid model 0.452 0.004
5 EVE (ensemble) Alignment-based model 0.439 0.006
6 VESPA Protein language model 0.436 0.006
7* Tranception L Hybrid model 0.434 0.004
7* MSA Transformer (ensemble) Hybrid model 0.434 0.009
9 EVE (single) Alignment-based model 0.433 0.005
10 Tranception M Hybrid model 0.427 0.005
11 ESM-IF1 Inverse folding model 0.422 0.011
12 MSA Transformer (single) Hybrid model 0.421 0.009
13 DeepSequence (ensemble) Alignment-based model 0.419 0.008
14 Tranception S Hybrid model 0.418 0.006
15 ESM2 (650M) Protein language model 0.414 0.012
16* DeepSequence (single) Alignment-based model 0.407 0.008
16* ESM-1v (ensemble) Protein language model 0.407 0.012
18 ESM2 (3B) Protein language model 0.406 0.011
19* MIF-ST Inverse folding model 0.401 0.010
19* ESM2 (15B) Protein language model 0.401 0.010
21 EVmutation Alignment-based model 0.395 0.006
22* ESM-1b Protein language model 0.394 0.010
22* VESPAl Protein language model 0.394 0.007
24 ProGen2 XL Protein language model 0.391 0.008
25 ESM2 (150M) Protein language model 0.387 0.013
26 MIF Inverse folding model 0.382 0.011
27 ProGen2 L Protein language model 0.380 0.008
28 ProGen2 M Protein language model 0.379 0.008
29 ProGen2 Base Protein language model 0.378 0.009
30* Tranception L no retrieval Protein language model 0.374 0.008
30* ESM-1v (single) Protein language model 0.374 0.013
32 WaveNet Alignment-based model 0.373 0.012
33 RITA XL Protein language model 0.372 0.009
34 CARP (640M) Protein language model 0.368 0.011
35 RITA L Protein language model 0.365 0.009
36 Site-Independent Alignment-based model 0.359 0.010
37 RITA M Protein language model 0.350 0.010
38 Tranception M no retrieval Protein language model 0.348 0.009
39 Unirep evotuned Hybrid model 0.347 0.009
40 ProGen2 S Protein language model 0.336 0.011
41 CARP (76M) Protein language model 0.328 0.012
42 ESM2 (35M) Protein language model 0.321 0.015
43 RITA S Protein language model 0.304 0.011
44 Tranception S no retrieval Protein language model 0.303 0.012
45 CARP (38M) Protein language model 0.279 0.014
46 ProteinMPNN Inverse folding model 0.258 0.011
47 ESM2 (8M) Protein language model 0.226 0.015
48 UniRep Protein language model 0.190 0.016
49 ProtGPT2 Protein language model 0.188 0.011
50 CARP (600K) Protein language model 0.106 0.016

Table A5: ProteinGym - Zero-shot substitution DMS benchmark Ranking based on corrected
average of Spearman’s rank correlation between experimental assay measurement and model predic-
tion. The standard error reported corresponds to the non-parametric bootstrap standard error of the
difference between the Spearman performance of a given model and that of the best overall model
(i.e., TranceptEVE), computed over 10k bootstrap samples from the set of proteins in the ProteinGym
DMS substitution benchmark.
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Model type Model name Spearman by MSA depth (↑)
Low Medium High All

Alignment-
based

Site-Independent 0.426 0.373 0.320 0.373
WaveNet 0.299 0.389 0.452 0.380
EVmutation 0.403 0.423 0.410 0.412
DeepSequence (ens.) 0.383 0.428 0.473 0.428
EVE (ens.) 0.425 0.453 0.481 0.453
GEMME 0.455 0.470 0.497 0.474

Protein
language

UniRep 0.181 0.161 0.209 0.184
CARP (640M) 0.314 0.375 0.428 0.372
ESM-1b 0.350 0.398 0.482 0.410
ESM-2 (15B) 0.357 0.414 0.473 0.415
RITA XL 0.315 0.382 0.412 0.370
ESM-1v (ens.) 0.326 0.418 0.502 0.415
ProGen2 XL 0.354 0.405 0.444 0.401
VESPA 0.427 0.455 0.484 0.455

Hybrid UniRep evotuned 0.330 0.344 0.372 0.349
MSA Transformer (ens.) 0.404 0.450 0.488 0.447
Tranception L 0.432 0.438 0.473 0.448
TranceptEVE L 0.451 0.467 0.492 0.470

Inverse
Folding

ESM-IF1 0.300 0.431 0.544 0.425
MIF-ST 0.376 0.403 0.456 0.412
ProteinMPNN 0.173 0.280 0.434 0.296

Table A6: ProteinGym - Zero-shot substitution DMS benchmark by MSA depth Average
Spearman’s rank correlation between model scores and experimental measurements by MSA depth
on the ProteinGym substitution benchmark. Alignment depth is measured by the ratio of the effective
number of sequences Neff in the MSA, following Hopf et al. [2017], by the length covered L (Low:
Neff/L <1; Medium: 1< Neff/L <100; High: Neff/L >100). The All column is the average across
the 3 depths.
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Model type Model name Spearman by Function Type (↑)
Activity Binding Expression Organismal Stability AllFitness

Alignment-
based

Site-Independent 0.369 0.345 0.351 0.382 0.358 0.361
WaveNet 0.379 0.325 0.350 0.365 0.449 0.374
EVmutation 0.440 0.322 0.382 0.411 0.430 0.397
DeepSequence (ens.) 0.455 0.368 0.396 0.413 0.476 0.422
EVE (ens.) 0.464 0.394 0.406 0.447 0.491 0.440
GEMME 0.482 0.387 0.443 0.452 0.519 0.457

Protein
language

UniRep 0.182 0.203 0.230 0.141 0.210 0.193
CARP (640M) 0.395 0.274 0.419 0.364 0.414 0.373
ESM-1b 0.428 0.289 0.427 0.351 0.500 0.399
ESM-2 (15B) 0.405 0.318 0.425 0.388 0.488 0.405
RITA XL 0.366 0.303 0.416 0.381 0.398 0.373
ESM-1v (ens.) 0.414 0.320 0.456 0.387 0.500 0.415
ProGen2 XL 0.402 0.302 0.423 0.387 0.445 0.392
VESPA 0.468 0.365 0.410 0.440 0.500 0.437

Hybrid UniRep evotuned 0.355 0.304 0.366 0.346 0.366 0.347
MSA Transformer (ens.) 0.469 0.343 0.439 0.421 0.495 0.433
Tranception L 0.465 0.351 0.455 0.436 0.471 0.436
TranceptEVE L 0.487 0.381 0.456 0.460 0.500 0.457

Inverse
Folding

ESM-IF1 0.368 0.392 0.403 0.324 0.624 0.422
MIF-ST 0.390 0.323 0.432 0.373 0.486 0.401
ProteinMPNN 0.197 0.165 0.198 0.165 0.566 0.258

Table A7: ProteinGym - Zero-shot substitution DMS benchmark by function type Corrected
average of Spearman’s rank correlation between model scores and experimental measurements on
the ProteinGym substitution benchmark, separated into five functional categories (Activity, Binding,
Organismal Fitness, Stability and Expression). ‘All’ is the average of all the categories.

Model type Model name Spearman by Taxa (↑)
Human Other Prokaryote Virus AllEukaryote

Alignment-
based

Site-Independent 0.379 0.385 0.316 0.383 0.366
WaveNet 0.391 0.410 0.427 0.328 0.389
EVmutation 0.409 0.444 0.422 0.388 0.416
DeepSequence (ens.) 0.442 0.469 0.460 0.344 0.429
EVE (ens.) 0.453 0.487 0.468 0.428 0.459
GEMME 0.468 0.510 0.473 0.469 0.480

Protein
language

UniRep 0.213 0.219 0.165 0.057 0.164
CARP (640M) 0.416 0.386 0.390 0.273 0.366
ESM-1b 0.434 0.475 0.455 0.241 0.401
ESM-2 (15B) 0.431 0.449 0.459 0.313 0.413
RITA XL 0.394 0.384 0.353 0.402 0.383
ESM-1v (ens.) 0.458 0.446 0.454 0.289 0.412
ProGen2 XL 0.384 0.442 0.439 0.391 0.414
VESPA 0.438 0.492 0.490 0.432 0.463

Hybrid UniRep evotuned 0.355 0.363 0.346 0.349 0.353
MSA Transformer (ens.) 0.437 0.505 0.463 0.414 0.455
Tranception L 0.453 0.483 0.431 0.432 0.450
TranceptEVE L 0.471 0.498 0.473 0.453 0.474

Inverse
Folding

ESM-IF1 0.415 0.497 0.507 0.374 0.448
MIF-ST 0.404 0.415 0.463 0.396 0.420
ProteinMPNN 0.282 0.395 0.354 0.248 0.320

Table A8: ProteinGym - Zero-shot substitution DMS benchmark by taxa Average Spearman’s
rank correlation between model scores and experimental measurements on the ProteinGym substitu-
tion benchmark, separated by taxon. ‘All‘ is the average across the taxa.
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Model type Model name Spearman by Mutational Depth (↑)
1 2 3 4 5+ All

Alignment-
based

Site-Independent 0.336 0.235 0.226 0.267 0.350 0.283
WaveNet 0.357 0.204 0.250 0.217 0.293 0.264
EVmutation 0.376 0.274 0.324 0.301 0.394 0.334
DeepSequence (ens.) 0.405 0.264 0.313 0.309 0.378 0.334
EVE (ens.) 0.428 0.273 0.308 0.298 0.355 0.332
GEMME 0.447 0.274 0.321 0.324 0.414 0.356

Protein
language

UniRep 0.175 0.071 0.111 0.141 0.191 0.138
CARP (640M) 0.390 0.213 0.187 0.164 0.162 0.223
ESM-1b 0.384 0.227 0.187 0.149 0.270 0.243
ESM-2 (15B) 0.407 0.204 0.239 0.172 0.234 0.251
RITA XL 0.356 0.139 0.136 0.154 0.233 0.204
ESM-1v (ens.) 0.403 0.221 0.186 0.151 0.203 0.233
ProGen2 XL 0.385 0.184 0.280 0.219 0.280 0.270
VESPA 0.434 0.183 0.357 0.302 0.328 0.321

Hybrid UniRep evotuned 0.319 0.154 0.250 0.226 0.294 0.249
MSA Transformer (ens.) 0.426 0.238 0.384 0.366 0.408 0.364
Tranception L 0.423 0.258 0.352 0.318 0.387 0.348
TranceptEVE L 0.446 0.280 0.350 0.320 0.382 0.356

Inverse
Folding

ESM-IF1 0.439 0.345 0.290 0.289 0.358 0.344
MIF-ST 0.430 0.265 0.334 0.298 0.298 0.325
ProteinMPNN 0.292 0.257 0.171 0.186 0.278 0.237

Table A9: ProteinGym - Zero-shot substitution DMS benchmark by mutational depth Spear-
man’s rank correlation between model scores and experimental measurements on the ProteinGym
substitution benchmark, separated by mutational depths of 1,2,3,4, and 5 or more. The All column is
the average across the 5 depths.

Ranking Model name Model type Spearman
1 ProteinNPT NPT 0.613
2 Tranception Embeddings 0.571
3 MSA Transformer Embeddings 0.568
4 ESM-1v Embeddings 0.542
5 TranceptEVE OHE 0.477
6 Tranception OHE 0.458
7 MSAT OHE 0.453
8 DeepSequence OHE 0.440
9 ESM-1v OHE 0.417
10 OHE w/o augmentation OHE 0.224

Table A10: ProteinGym - Supervised substitution DMS benchmark Ranking based on corrected
average of Spearman’s rank correlation between experimental assay measurement and model predic-
tion.
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Model type Model name Spearman by MSA depth (↑)
Low Medium High All

NPT ProteinNPT 0.701 0.587 0.608 0.632
Embeddings Tranception 0.621 0.556 0.561 0.579

MSAT 0.685 0.518 0.567 0.590
ESM-1v 0.653 0.465 0.541 0.553

One-hot
encoding

TranceptEVE 0.503 0.483 0.468 0.485
Tranception 0.490 0.455 0.445 0.463
MSAT 0.500 0.441 0.448 0.463
DeepSequence 0.482 0.422 0.426 0.443
ESM-1v 0.496 0.338 0.400 0.411
No Augmentation 0.246 0.204 0.227 0.226

Table A11: Supervised substitution DMS benchmark by MSA depth Average Spearman’s rank
correlation between model scores and experimental measurements by MSA depth on the ProteinGym
substitution benchmark. Alignment depth is measured by the ratio of the effective number of
sequences Neff in the MSA, following Hopf et al. [2017], by the length covered L (Low: Neff/L <1;
Medium: 1< Neff/L <100; High: Neff/L >100)

Model type Model name Spearman by Function Type (↑)
Activity Binding Expression Organismal Stability AllFitness

NPT ProteinNPT 0.577 0.536 0.637 0.545 0.772 0.613
Embeddings Tranception 0.520 0.529 0.613 0.519 0.674 0.571

MSAT 0.547 0.470 0.584 0.493 0.749 0.569
ESM-1v 0.487 0.450 0.587 0.468 0.717 0.542

One-hot
encoding

TranceptEVE 0.502 0.444 0.476 0.470 0.493 0.477
Tranception 0.475 0.416 0.476 0.448 0.473 0.458
MSAT 0.480 0.393 0.463 0.437 0.491 0.453
DeepSequence 0.467 0.418 0.424 0.422 0.471 0.440
ESM-1v 0.421 0.363 0.452 0.383 0.463 0.416
No Augmentation 0.213 0.212 0.226 0.194 0.273 0.224

Table A12: Supervised substitution DMS benchmark by function type Average Spearman’s rank
correlation between supervised model scores and experimental measurements on the ProteinGym
substitution benchmark, separated into five functional categories. Assays are split into one of Activity,
Binding, Organismal Fitness, Stability and Expression. The All column is the average of all the
categories
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Model type Model name Spearman by Taxa (↑)
Human Other Eukaryote Prokaryote Virus All

NPT ProteinNPT 0.649 0.628 0.668 0.580 0.631
Embeddings Tranception 0.569 0.582 0.594 0.568 0.578

MSAT 0.634 0.579 0.648 0.521 0.596
ESM-1v 0.565 0.579 0.617 0.433 0.548

One-hot
encoding

TranceptEVE 0.481 0.490 0.475 0.478 0.481
Tranception 0.457 0.472 0.453 0.456 0.460
MSAT 0.482 0.459 0.468 0.448 0.464
DeepSequence 0.451 0.460 0.455 0.383 0.437
ESM-1v 0.426 0.444 0.452 0.292 0.404
No Augmentation 0.236 0.217 0.233 0.238 0.231

Table A13: Supervised substitution DMS benchmark by taxa Average Spearman’s rank correlation
between model scores and experimental measurements on the ProteinGym substitution benchmark,
separated into four taxon categories. Assays are split into one of Human, Prokaryote, Other Eukaryote,
or Virus. The All column is the average across the categories.

Ranking Model Type Spearman Std. error
1 ProGen2 M Protein language model 0.465 0.000
2 ProGen2 Base Protein language model 0.464 0.010
3 RITA L Protein language model 0.457 0.034
4 Tranception M no retrieval Protein language model 0.453 0.036
5* RITA XL Protein language model 0.449 0.037
5* ProGen2 L Protein language model 0.449 0.011
7 Tranception L no retrieval Protein language model 0.437 0.041
8 RITA M Protein language model 0.436 0.030
9 ProGen2 XL Protein language model 0.431 0.035
10* TranceptEVE M Hybrid model 0.424 0.045
10* ProGen2 S Protein language model 0.424 0.025
12 TranceptEVE L Hybrid model 0.412 0.046
13 Tranception S no retrieval Protein language model 0.410 0.036
14 RITA S Protein language model 0.397 0.032
15 Tranception L Hybrid model 0.395 0.043
16 Tranception M Hybrid model 0.394 0.047
17 HMM Alignment-based model 0.389 0.045
18 WaveNet Alignment-based model 0.368 0.067
19 TranceptEVE S Hybrid model 0.357 0.049
20 PROVEAN Alignment-based model 0.347 0.046
21 Tranception S Hybrid model 0.340 0.053
22 ProtGPT2 Protein language model 0.191 0.053
23 UniRep Protein language model 0.169 0.060

Table A14: ProteinGym - Zero-shot indel DMS benchmark Ranking based on corrected average
of Spearman’s rank correlation between experimental assay measurement and model prediction. The
standard error reported corresponds to the non-parametric bootstrap standard error of the difference
between the Spearman performance of a given model and that of the best overall model (ie., Tran-
ceptEVE), computed over 10k bootstrap samples from the set of proteins in the ProteinGym DMS
indel benchmark.
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Dataset Tranception TranceptEVE ProGen2 RITA WN. PRO. HMM

M L M+Ret L+Ret M L M XL L

DMS Assays

amyloid β 0.466 0.416 0.442 0.444 0.459 0.466 0.478 0.462 0.438 0.512 0.381 -0.207
β-Lac 0.365 0.344 0.379 0.296 0.401 0.342 0.619 0.409 0.334 0.437 0.385 0.347
AAV 0.371 0.338 0.126 0.210 0.419 0.416 -0.100 0.167 0.103 -0.007 0.177 0.057

Kir2.1 0.437 0.440 0.412 0.391 0.444 0.431 0.432 0.387 0.383 0.408 0.386 0.368
TP53 0.536 0.362 0.579 0.395 0.560 0.399 0.428 0.354 0.383 0.031 0.273 0.482
PTEN 0.678 0.546 0.700 0.563 0.708 0.602 0.552 0.402 0.504 0.697 0.237 0.668
MtrA 0.612 0.395 0.615 0.375 0.562 0.374 0.403 0.348 0.380 0.244 0.278 0.472
OCT1 0.379 0.458 0.447 0.466 0.442 0.453 0.546 0.383 0.542 0.087 0.301 0.280

Tsuboyama 0.169 0.234 0.434 0.463 0.198 0.265 0.511 0.533 0.489 0.475 0.333 0.364

Assays of Natural and Designed Sequences

AAV 0.677 0.709 0.362 0.691 0.726 0.736 -0.466 0.492 0.543 0.666 0.683 0.607
CM 0.344 0.326 0.219 0.223 0.357 0.340 0.380 0.379 0.337 0.438 0.372 0.398

HIS3 0.611 0.655 0.687 0.707 0.678 0.695 0.702 0.713 0.677 0.687 0.701 0.548

Table A15: Spearman’s rank correlation between model scores and individual deep mutational
scans of indels. WN and PRO are shorthands for the WaveNet and PROVEAN models respectively.

Ranking Model Type Spearman
1 ESM-1v Embeddings 0.752
2 Tranception Embeddings 0.735
3 MSAT Embeddings 0.689

Table A16: ProteinGym - Supervised indel DMS benchmark Ranking based on corrected average
of Spearman’s rank correlation between experimental assay measurement and model prediction.
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Ranking Model Type AUC
1 ClinPred Supervised 0.981
2 MetaRNN Supervised 0.977
3 BayesDel (addAF) Supervised 0.972
4 VEST4 Supervised 0.929
5 REVEL Supervised 0.928
6 BayesDel (noAF) Supervised 0.925
7 VARITY (R) Supervised 0.921
8 TranceptEVE Unsupervised 0.920
9 GEMME Unsupervised 0.919
10 VARITY (ER) Supervised 0.918
11 EVE Unsupervised 0.917
12 gMVP Supervised 0.914
13 CADD Supervised 0.905
14 PolyPhen2 (HVAR) Supervised 0.896
15 DEOGEN2 Supervised 0.894
16 ESM-1b Unsupervised 0.892
17 PROVEAN Unsupervised 0.886
18 MPC Supervised 0.881
19 PolyPhen2 (HDIV) Supervised 0.879
20 SIFT Unsupervised 0.878
21 SIFT4G Unsupervised 0.877
22 MutationAssessor Unsupervised 0.877
23 MutPred Unsupervised 0.875
24 PrimateAI Unsupervised 0.855
25 LIST-S2 Unsupervised 0.842
26 MutationTaster Supervised 0.816
27 DANN Supervised 0.812
28 LRT Unsupervised 0.805
29 FATHMM Supervised 0.723

Table A17: ProteinGym - Clinical substitution benchmark Ranking based on AUROC between
model prediction and ClinVar benign/pathogenic annotation.

Model Type Model Name AUROC(↑) AUPRC (↑)
Alignment-based
models

HMM 0.679 0.775
PROVEAN 0.926 0.947
WaveNet – –

Protein
language
models

UniRep 0.395 0.600
RITA XL 0.923 0.954
ProGen2 XL 0.846 0.889
Tranception L (no retrieval) 0.877 0.938
Tranception M (no retrieval) 0.858 0.929
ProtGPT2 0.655 0.779

Hybrid
models

Tranception L 0.857 0.920
Tranception M 0.844 0.909
TranceptEVE 0.857 0.916

Table A18: ProteinGym - Clinical indels benchmark Results for indel-compatible baselines on our
ClinVar/gnomAD indel benchmark. AUPRC is area under the precision recall curve, and AUROC is
area under the receiver-operating characteristic curve. Bold denotes best method, with the runner-up
underlined.
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Table A19: List of substitution datasets See the reference file in the GitHub repo
for other info (UniProt ID, taxon, DOI, and more assay details).

Dataset Reference

β-Lactamase Jacquier et al. [2013]
β-Lactamase Stiffler et al. [2015]
β-Lactamase Firnberg et al. [2014]
β-Lactamase Deng et al. [2012]
β-Lactamase VIM-2 Chen et al. [2020]
β-Glucosidase Romero et al. [2015]
AAV Sinai et al. [2021]
ACE2 Chan et al. [2020]
ADRB2 Jones et al. [2020]
APH(3’)II, neo Melnikov et al. [2014]
APP Seuma et al. [2021]
Activation-induced deaminase Gajula et al. [2014]
Aliphatic amidase Wrenbeck et al. [2017]
Alpha-synuclein Newberry et al. [2020]
Amyloid β Gray et al. [2019]
Amyloid β Seuma et al. [2022]
Ancestral spleen tyrosine kinase Hobbs et al. [2022]
Anti-CRISPR protein AcrIIA4 Stadelmann et al. [2021]
Antitoxin ParD3 Ding et al. [2023]
Antitoxin ParD3 Aakre et al. [2015]
Arrestin-1 Ostermaier et al. [2014]
BRCA1 Findlay et al. [2018]
BRCA2 Erwood et al. [2022]
CALM1 Weile et al. [2017]
CARD11 Meitlis et al. [2020]
CASP3 Roychowdhury and Romero [2022]
CASP7 Roychowdhury and Romero [2022]
CBS (cystathionine beta-synthase) Sun et al. [2020]
CCR5 Gill et al. [2023]
CD19 Klesmith et al. [2019]
CVB3 capsid Mattenberger et al. [2021]
CXCR4 Gill et al. [2023]
Chalcone synthase Wrenbeck et al. [2019]
Cytochrome P450 2C9 Amorosi et al. [2021]
Cytochrome P450 2C9 Amorosi et al. [2021]
D-amino acid oxidase Vanella et al. [2023]
DHFR reductase Nguyen et al. [2023a]
DHFR reductase Thompson et al. [2020]
DNA methylase HaeIII Rockah-Shmuel et al. [2015]
Dengue virus NS5 Suphatrakul et al. [2023]
Dlg4, (PSD95_PDZ3) McLaughlin et al. [2012]
EfrC Meier et al. [2023]
EfrD Meier et al. [2023]
EnvZ Ghose et al. [2023]
ErbB2 membrane domain Elazar et al. [2016]
EstA Nutschel et al. [2020]
GAL4 Kitzman et al. [2015]
GB1 Wu et al. [2016]
GB1 Olson et al. [2014]
GDI1 Silverstein et al. [2021]
GFP Sarkisyan et al. [2016]
GMR (aacC1) Dandage et al. [2018]
GRB2-SH3 Faure et al. [2022]
Gcn4 Staller et al. [2018]
Glucokinase regulatory protein Gersing et al. [2023]
Glucokinase regulatory protein Gersing et al. [2022]
Glycophorin A membrane domain Elazar et al. [2016]
Green fluorescent protein amacGFP Gonzalez Somermeyer et al. [2022]
Green fluorescent protein cgreGFP Gonzalez Somermeyer et al. [2022]
Green fluorescent protein ppluGFP2 Gonzalez Somermeyer et al. [2022]
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Table A19: (continued)

Dataset Reference

HIV env Duenas-Decamp et al. [2016]
HIV env Haddox et al. [2018]
HIV env (BF520) Haddox et al. [2018]
HIV env (BG505) Haddox et al. [2018]
HIV rev Fernandes et al. [2016]
HIV tat Fernandes et al. [2016]
HMG-CoA reductase Jiang [2019]
HRAS Bandaru et al. [2017]
HSP82 Flynn et al. [2020]
HSP82 Mishra et al. [2016]
Hsp90 Hietpas et al. [2011]
Hydroxymethylbilane synthase van Loggerenberg et al. [2023]
IGP dehydratase (HIS3) Pokusaeva et al. [2019]
InfA Kelsic et al. [2016]
Influenza H3N2 neuraminidase Lei et al. [2023]
Influenza M1 matrix protein Hom et al. [2019]
Influenza RNA polymerase PB1 Li et al. [2023]
Influenza hemagglutinin Thyagarajan and Bloom [2014]
Influenza hemagglutinin Doud and Bloom [2016]
Influenza hemagglutinin Wu et al. [2014]
Influenza hemagglutinin Lee et al. [2018]
Influenza neuraminidase Jiang et al. [2016]
Influenza nucleoprotein Bloom [2014]
Influenza nucleoprotein Doud et al. [2015]
Influenza nucleoprotein Doud and Bloom [2016]
Influenza polymerase acidic protein Wu et al. [2015]
Influenza polymerase basic protein 2 Soh et al. [2019]
KCNE1 Muhammad et al. [2023]
KCNH2 Kozek et al. [2020]
KCNJ2 Coyote-Maestas et al. [2022]
KRAS Weng et al. [2022]
KRAS Ursu et al. [2022]
L-selectin Elazar et al. [2016]
LGK (levoglucosan kinase) Wrenbeck et al. [2019]
LGK (levoglucosan kinase) Klesmith et al. [2015]
LamB Andrews and Fields [2020]
Leucine-rich repeat protein SHOC-2 Kwon et al. [2022]
MAPK1 Brenan et al. [2016]
MET kinase Estevam et al. [2023]
MPL Bridgford et al. [2020]
MSH2 Jia et al. [2021]
MTHFR reductase Weile et al. [2021]
MlaC MacRae et al. [2023]
NPC intracellular cholesterol transporter Erwood et al. [2022]
NPC intracellular cholesterol transporter Erwood et al. [2022]
NS5A Qi et al. [2014]
NUDT15 Suiter et al. [2020]
OCT1 (SLC22A1) Yee et al. [2023]
Ornithine transcarbamylase Lo et al. [2023]
p53 Giacomelli et al. [2018]
p53 Kotler et al. [2018]
PAB1 Melamed et al. [2013]
PPARG UK Monogenic Diabetes Consortium et al. [2016]
PSD95-PDZ3 Faure et al. [2022]
PTEN Matreyek et al. [2021]
PTEN Mighell et al. [2018]
Parkin Clausen et al. [2023]
Phosphoserine aminotransferase Xie et al. [2023]
Phototropin Chen et al. [2023]
Pilin (PilE) Kennouche et al. [2019]
Plasminogen activator inhibitor-1 Huttinger et al. [2021]

47



Table A19: (continued)

Dataset Reference

Protein phosphatase 1D Miller et al. [2022]
RAF oncogene Zinkus-Boltz et al. [2019]
RNAse III (rnc) Weeks and Ostermeier [2023]
Rhodopsin Wan et al. [2019]
SARS-CoV-2 Mpro Flynn et al. [2022]
SARS-CoV-2 Spike RBD Tan et al. [2023]
SARS-CoV2 Spike RBD Starr et al. [2020]
SCN5A Glazer et al. [2020]
SOX17 Veerapandian et al. [2018]
SOX2 Veerapandian et al. [2018]
SRC Ahler et al. [2019]
SUMO-conjugating enzyme UBC9 Weile et al. [2017]
Small ubiquitin-related modifier 1 Weile et al. [2017]
Sodium-dependent serotonin transporter Young et al. [2021]
Src Chakraborty et al. [2021]
Src Nguyen et al. [2023b]
Streptococcus pyogenes Cas9 Spencer and Zhang [2017]
TARDBP Bolognesi et al. [2019]
TIM Barrel (S. solfataricus) Chan et al. [2017]
TIM Barrel (T. maritima) Chan et al. [2017]
TIM Barrel (T. thermophilus) Chan et al. [2017]
Thiamin pyrophosphokinase 1 Weile et al. [2017]
Thiopurine S-methyltransferase (TPMT) Matreyek et al. [2018]
Toxin CcdB Tripathi et al. [2016]
Toxin CcdB Adkar et al. [2012]
Tsuboyama multi-DMS Tsuboyama et al. [2023]
Ube4b Starita et al. [2013]
Ubiquitin Roscoe et al. [2013]
Ubiquitin Roscoe and Bolon [2014]
Ubiquitin Mavor et al. [2016]
VKORC1 Chiasson et al. [2020]
VKORC1 Chiasson et al. [2020]
YAP1 Araya et al. [2012]
Zika virus env Sourisseau et al. [2019]
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Dataset Reference

β-Lactamase Gonzalez et al. [2019]
AAV Sinai et al. [2021]
Chorismate mutase (CM) Russ et al. [2020]
IGP dehydratase (HIS3) Pokusaeva et al. [2019]
Kir2.1 Macdonald et al. [2023]
MtrA Campbell et al. [2022]
p53 Kotler et al. [2018]
PTEN phosphatase Mighell et al. [2018]
amyloid β Seuma et al. [2022]
OCT1 (SLC22A1) Yee et al. [2023]
Tsuboyama multi-DMS Tsuboyama et al. [2023]

Table A20: List of indel datasets.
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