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ABSTRACT

Despite achieving significant progress in 2D image understanding, large multi-
modal models (LMMs) struggle in the physical world due to the lack of spatial
representation. Typically, existing 3D LMMs mainly embed 3D positions as fixed
spatial prompts within visual features to represent the scene. However, these
methods are limited to understanding the static background and fail to capture tem-
porally varying dynamic objects. In this paper, we propose LLaVA-4D, a general
LMM framework with a novel spatiotemporal prompt for visual representation in
4D scene understanding. The spatiotemporal prompt is generated by encoding 3D
position and 1D time into a dynamic-aware 4D coordinate embedding. Moreover,
we demonstrate that spatial and temporal components disentangled from visual
features are more effective in distinguishing the background from objects. This
motivates embedding the 4D spatiotemporal prompt into these features to enhance
the dynamic scene representation. By aligning visual spatiotemporal embeddings
with language embeddings, LMMs gain the ability to understand both spatial and
temporal characteristics of static background and dynamic objects in the physical
world. Additionally, we construct a 4D vision-language dataset with spatiotemporal
coordinate annotations for instruction fine-tuning LMMs. Extensive experiments
have been conducted to demonstrate the superiority of our method on various tasks
of 4D scene understanding. Our code will be open-sourced on paper acceptance.

1 INTRODUCTION

Large multimodal models (LMMs) (Alayrac et al., 2022; Liu et al., 2023) aim to learn the repre-
sentation alignment between language and other modalities such as vision and audio. They have
been widely applied in multiple scene understanding tasks such as dense caption (Wang et al., 2022),
visual QA (Li et al., 2022a; 2023), scene grounding (Kamath et al., 2021), etc. Although recent
language-vision LMMs including LLaVA (Liu et al., 2023) and PaLI (Chen et al., 2023b) have
achieved great success in 2D image understanding, they still face challenges in the 3D physical
world. This is because these LMMs trained solely on 2D images lack the representation of 3D
spatial characteristics to interact with the physical world. In this work, our purpose is to improve the
characteristic representation and scene understanding of LMMs for the physical world.

As shown in Fig. 1(a), existing 3D language-vision LMM methods (Hong et al., 2023; Zhu et al.,
2024a;a; Zheng et al., 2024; Chen et al., 2024a) use 3D positions as spatial prompts which are
then embedded into visual features to represent the whole scene. For example, Hong et al. (2023)
extract 2D visual features from multi-view images and use 3D positions to transform these features
into corresponding 3D inputs for LMMs. However, these 3D LMM methods can only handle the
static background with limited ability to understand dynamic objects in the scene. Unlike static
backgrounds, dynamic objects exhibit temporally varying spatial characteristics such as position
shifts and deformations. Unfortunately, existing 3D LMM frameworks neglect temporal aspects in
using a unified spatial representation for the entire scene. As shown in Fig. 1(c-d), 3D LMMs perform
poorly on dynamic understanding tasks. This highlights the need to capture both spatial and temporal
information to improve scene understanding in dynamic physical environments.

As shown in Fig. 1, we propose a novel spatiotemporal prompt embedded with the visual repre-
sentation to model the spatiotemporal characteristics of the scene. We design the spatiotemporal
prompt based on the observation that dynamic objects and static backgrounds share similar 3D
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Figure 1: Illustration of 3D and 4D LMM paradigms for physical world understanding. (a) Existing
3D-LMMs encode 3D positions as spatial prompts but overlook dynamic objects. (b) Our 4D
LMM framework embeds 4D coordinates: position and time as spatiotemporal prompts to capture
both background and dynamic objects. (c) Performance comparison of LMMs on benchmarks. (d)
Comparison on 4D understanding tasks.

positional encoding but differ significantly in motion patterns. This motivates the extension of 3D
positional encoding into a dynamic-aware 4D coordinate encoding to better differentiate objects
from the background. Additionally, we observe that visual features of a scene can be disentangled
into spatial and temporal components, which effectively distinguish objects from the background.
This inspires the design of a spatiotemporal-disentangled vision embedding for scene representation.
The 4D spatiotemporal prompt and visual spatiotemporal features jointly model the fine-grained
spatiotemporal characteristics of dynamic objects and static backgrounds, thereby enhancing the 4D
scene understanding of the physical world by LMMs.

In this paper, we propose LLaVA-4D, a general language-vision large multimodal model for 4D scene
understanding. As illustrated in Fig. 2, our LLaVA-4D includes a dynamic-aware 4D coordinate
encoding and a spatiotemporal-disentangled vision embedding. The 4D coordinate encoding module
constructs 4D coordinates for multi-view videos and incorporates optical flow to enhance spatiotem-
poral encoding. The vision embedding module disentangles visual features from multi-view videos
into spatial and temporal components, and enriches these spatiotemporal features with dynamic-aware
4D coordinate embeddings through cross-attention fusion. We further perform spatiotemporal encod-
ing on textual 4D coordinates within language embeddings, which are then aligned with the fused
visual spatiotemporal embeddings. In this unified framework, 4D coordinate encoding and visual
spatiotemporal embedding collaboratively enhance the modeling of dynamic and static elements to
improve 4D scene understanding in LMMs. Additionally, we present Chat4D, a 4D vision-language
dataset with spatiotemporal coordinate annotations designed to instruction-tune our model for more
effective 4D scene understanding. Our main contributions are summarized as follows:

• We are the first to propose a general vision-language large multimodal model for 4D scene
understanding. Our model embeds a 4D spatiotemporal prompt into visual representation to enable
LMMs to comprehend both dynamic objects and static backgrounds.

• We observe that backgrounds and objects share similar 3D spatial position encoding but exhibit
distinct motion patterns in the temporal dimension. This motivates the design of a dynamic-aware
4D coordinate encoding as a spatiotemporal prompt to distinguish objects from backgrounds.

• We discover that spatial and temporal components disentangled from visual features are more
discriminative for background and objects. This inspires the spatiotemporal-disentangled vision
embedding for scene representation.

• We build a 4D vision-language dataset with coordinate annotations for instruction fine-tuning and
conduct extensive experiments to verify the effectiveness of our method in 4D scene understanding.
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2 RELATED WORK

2D Vision-Language LMMs. Leveraging the strong reasoning capabilities of large language models
(Brown et al., 2020; Touvron et al., 2023a;b), numerous vision-language LMMs (Alayrac et al., 2022;
Chen et al., 2023a; Li et al., 2023; Lin et al., 2024; Liu et al., 2023; 2024; Li et al., 2025a) have been
developed to learn the correspondence between image-based visual and linguistic representations
with broad applications in 2D scene understanding tasks. However, these vision-language LMM
methods cannot work well when applied to the 3D physical world. This is because these LMMs
lack the representation of 3D spatial characteristics and can only learn visual knowledge within the
camera plane from 2D images, leading to underperformance of LMMs on 3D scene understanding.
We thus aim to enhance the visual representation and improve LMMs on 3D scene understanding.

3D Vision-Language LMMs. The main challenge in understanding the physical world is representing
3D spatial characteristics. Some researchers (Hong et al., 2023; Wang et al., 2023b; Chen et al.,
2024a; Zhu et al., 2024a; Deng et al., 2025; Zhi et al., 2024; Zheng et al., 2024) address this by
embedding 3D positions as spatial prompts within visual features, using point-based or image-based
approaches. Point-based methods (Wang et al., 2023b; Chen et al., 2024a; Zhi et al., 2024; Deng
et al., 2025) reconstruct point clouds from 3D positions and use a 3D vision encoder to extract
features for LMMs. To reduce reliance on reconstruction precision (Kerbl et al., 2023), image-based
methods (Zhu et al., 2024a; Hong et al., 2023; Zheng et al., 2024) encode multi-view images into 2D
visual features concatenated with embeddings of 3D positions. However, these methods use unified
spatial representations that limit their ability to capture dynamic objects with temporal variations.
We thus propose a novel spatiotemporal prompt for dynamic scene representation, and embed it into
multi-view visual features to enable 4D scene understanding in LMMs.

4D Vision & Language. A related line of research is 4D vision and language (Li et al., 2025b; Deng
et al., 2024; Sun et al., 2024), which focuses on modeling spatiotemporal characteristics. Li et al.
(2025b) use 4D Gaussians (Wu et al., 2024) to represent dynamic scenes for semantic caption queries
of different targets. Deng et al. (2024) introduce a 4D encoder to directly extract scene visual features
for alignment with object recognition texts. However, these 4D models have two limitations. First,
they are usually task-specific and can only handle similar cases within the same data distribution
of training set. Second, they adopt the same representation strategy for dynamic objects and static
background, which has the potential risk of misalignment of heterogeneous features. In this work, we
present the first general LMM for different tasks of 4D scene understanding by disentangling visual
features and embedding 4D spatiotemporal prompts to differentiate objects and background.

3 OUR LLAVA-4D

Overview. Fig. 2 shows the architecture of our LLaVA-4D. Given a multi-view video input sequence
I , our LLaVA-4D achieves 4D scene understanding progressively through the following three stages:

1) Dynamic-Aware 4D Coordinate Encoding (cf. Sec. 3.1). This is the 4D prompt construction
stage where we construct 4D coordinate tensors [x, y, z, t] from multi-view videos using visual
geometry, and perform spatiotemporal encoding PE(·), TE(·) on the coordinates. The encoded
position and time are concatenated as a spatiotemporal prompt to guide visual fusion, i.e.:

p4D = wp · [PE(x, y, z) ∥ TE(t) · β], (1)

where wp is MLP-based learnable parameter and β is optical flow for temporal dynamic awareness.

2) Spatiotemporal-Disentangled Vision Embedding (cf. Sec. 3.2). This is the visual representation
stage where we extract visual features f from multi-view videos using a vision encoder, and
disentangle these visual features into spatiotemporal components:

fs, ft = STD(f), (2)
where fs is spatial feature and ft is temporal feature. We further embed encoded 4D coordinate
features into these spatiotemporal features via cross-attention fusion:

fst = CAtt([fs, ft], p4D), (3)
where fst denotes the output visual spatiotemporal feature with 4D awareness.

3) Coordinate-Aligned Language Embedding (cf. Sec. 3.3). This is the linguistic representation
stage where visual spatiotemporal features are projected into the language embedding space
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Figure 2: Our LLaVA-4D consists of three stages: 1) 4D coordinate encoding. Encode 3D position
and 1D time with optical flow. 2) Vision embedding. Disentangle visual features into spatiotemporal
features and embed the encoded 4D coordinates via cross-attention fusion. 3) Language embedding.
Align textual position and time with the fused vision embedding for 4D scene understanding.

using multi-layer perception: τstv = MLP(fst), where τstv denotes visual spatiotemporal to-
kens. Input instructions are tokenized into language space, where textual position and time are
spatiotemporally encoded into corresponding linguistic tokens τstl .

Remarks. The output τstv and τstl denote the visual and linguistic representation with 4D coordinate
prompt, respectively. Subsequently, the LLM utilizes these enhanced visual and linguistic tokens to
improve 4D scene understanding. Our unified framework embeds 4D coordinates as spatiotemporal
prompts into visual representations to enable spatiotemporal understanding of dynamic objects and
static background in LMMs. The following sections detail the design of each stage.

3.1 DYNAMIC-AWARE 4D COORDINATE ENCODING

2D LMMs can capture spatial relationship between targets in images by using a vision encoder to
implicitly or explicitly incorporate 2D position encoding. Similarly, 4D scene understanding can be
enabled by the integration of 3D positon and 1D time into LMMs.

4D Coordinate Definition. Given an image from a certain view at timestamp t, we use SfM
(Schonberger & Frahm, 2016) for camera pose P = [R | T ] and MVS (Seitz et al., 2006) for depth
D. Combined with intrinsic parameter K, we transform 2D pixel coordinate x2D to world coordinate
system via geometric projection (Zou et al., 2018; Zhou et al., 2017):

x3D = R−1(D(x2D) ·K−1x2D − T ), (4)

where x3D = [x, y, z]⊤ denotes 3D position. After traversing all videos, we concatenate time and
corresponding 3D position to form the 4D coordinate tensor [x, y, z, t].

Spatiotemporal Encoding. We perform spatiotemporal encoding to convert the 4D coordinates into
learnable feature patterns. It is challenging to directly distinguish objects from the background solely
based on spatial dimensions such as multi-view images captured at a specific time. We circumvent
this challenge by adopting the same spatial position encoding strategy for objects and background via
learnable Fourier feature (Li et al., 2021):

pxyz = PE(x, y, z) = 1/
√
d [cos([x, y, z]W⊤

r ∥ sin([x, y, z]W⊤
r ))], (5)

where d denotes the dimension and Wr is the learnable parameter of the Fourier feature. From the
temporal dimension such as continuous video sequence at a certain view, objects and background
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Figure 3: Feature distribution of static background and dynamic object in a 4D dynamic scene.
Visual features of dynamic objects appear scattered while static backgrounds are clustered. In contrast,
spatiotemporal features show clear discrimination between objects and background.

have different motion patterns and thus we add motion information into the temporal encoding:
pt = TE(t) · β = 1/

√
d [cos(tW⊤

r ∥ sin(tW⊤
r ))] · (1 + Φ(β)), (6)

where β is an estimated optical flow, and Φ(·) is softmax function. Note that the optical flow is used
as an auxiliary motion cue for temporal encoding instead of as the sole source of temporal information
for dynamic scene understanding. We further concatenate the spatial and temporal encoding outputs
to obtain dynamic-aware 4D coordinate embeddings as the spatiotemporal prompt for subsequent
visual fusion. Moreover, this spatiotemporal prompt is extensible, where we can further add some
other spatiotemporal attributes such as semantic and action to guide the alignment between visual
and linguistic representations (cf. Sec. 5.2 for details).

3.2 SPATIOTEMPORAL-DISENTANGLED VISION EMBEDDING

Unlike 2D image and 3D scene, 4D scene consists of spatial such as color and temporal such as
motion components. A unified visual representation for 4D scene usually suffers from misaligned het-
erogeneous features, which inspires us to disentangle visual features into spatiotemporal components.

Spatiotemporal Disentanglement. Spatial features mainly reflect the appearance of the entire
scene, while temporal features focus more on continuous varying in motion patterns. After obtaining
multi-view visual features fv,t, where v is the view and t is the time, we get the correlation of visual
features between different views at the same time as spatial features:

fs = Aggregate({f⊤
v=i,tfv=j,t | i ̸= j}). (7)

Next, we further calculate the correlation of visual features between adjacent images of continuous
time at the same view as temporal features:

ft = Aggregate({f⊤
v,t=ifv,t=i+1}). (8)

To illustrate the importance of spatiotemporal features, we encode the selected object and background
regions of multi-view videos into visual, spatial and temporal features, and cluster these features for
visualization in Fig. 3. The visual features of the object region appear scattered, but the spatiotemporal
features of both the object and background regions are clustered. This indicates that spatiotemporal
features are highly discriminative for the entire scene. Consequently, disentangling visual features
into spatiotemporal components is essential for effective 4D scene representation.

Cross-Attention Fusion. Single disentangled spatiotemporal features cannot be localized to world
coordinate system. We need to further embed 4D coordinates into the spatiotemporal features for
localization. We first introduce an MLP to make the dimension of the 4D coordinate embeddings the
same as the dimension of the spatiotemporal features: p4D = MLP([pxyz ∥ pt]). Next, we fuse the
4D coordinate embeddings with the spatiotemporal features via a cross-attention mechanism:

q =wqp4D, k = wk [fs, ft], v = wv [fs, ft], a = softmax(qk⊤/
√
d),

o = a · v, α = σ(MLPobj(p4D)), fst = α · o+ (1− α) · fs,
(9)

where w is a learnable weight. As a result, we can obtain the 4D-aware visual spatiotemporal feature.

3.3 COORDINATE-ALIGNED LANGUAGE EMBEDDING

Although vision embeddings can represent scene knowledge, LMMs understanding scenes require
the alignment between visual and linguistic representations. Since the input of large language model
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Figure 4: Overview of our dataset and training pipeline. (a) Chat4D dataset includes 2D, 3D, and
4D vision-language training sets for dense captioning, QA, and visual grounding. (b) Three-stage
training: stages 1-2 use 2D/3D data for initialization; stage 3 uses 4D data for instruction fine-tuning.
(c) Spatiotemporal characteristics are extracted as local descriptions to generate 4D instructions.

requires text-like tokens, we first build a multi-layer perception to project the fused spatiotemporal
features into language embedding space for preliminary alignment with linguistic representations.
This projected fused spatiotemporal features is the visual tokens denoted as τstv . Subsequently, we
tokenize the input instruction into the language space with word tokens τl, and apply the same
spatiotemporal encodings PE(·) and TE(·) to textual position tp and time tt:

τs = PE(tp), τt = TE(tt). (10)
We further fuse the encoded position and time with corresponding word token: τstl = τl+wsτs+wtτt,
where ws and wt denote the learnable weights. We concatenate 4D-aware visual tokens with
coordinate-aligned linguistic tokens for the LLM to reason. Particularly, 4D coordinate encoding
ensures spatiotemporal localization of the scene within our unified framework. Additionally, dis-
entangled vision embedding models spatiotemporal knowledge of the scene, and vision-language
alignment further enable the LMM to achieve interactive understanding of 4D scenes.

4 DATASET AND TRAINING PIPELINE

4.1 OUR CHAT4D DATASET

Many vision-language datasets have been proposed to evaluate 2D/3D scene understanding of
LMMs. However, there is currently no vision-language dataset specifically designed for 4D scene
understanding in LMMs. To address this gap, we introduce the Chat4D dataset. As illustrated in Fig.
4(a-b), our dataset includes 2D, 3D and 4D vision-language data types, where 2D/3D data are used to
initialize multimodal spatiotemporal understanding and 4D data is used for instruction fine-tuning.

2D&3D Vision-Language Data. To develop multimodal spatiotemporal understanding, our model
requires image-format inputs and a large number of vision-language pairs. We thus integrate existing
standard 2D/3D spatiotemporal datasets (Chen et al., 2024b; Wang et al., 2023a; Luo et al., 2023;
Azuma et al., 2022; Lyu et al., 2024; Chen et al., 2021; Zhang et al., 2023) and adapt specific text
instructions (e.g., 2D/3D position and time) to align with our spatiotemporal encoding strategy. This
approach effectively trains the LMM for spatial and temporal understanding. These datasets cover
dense captioning (DC), visual QA and visual grounding (VG) tasks with a total of 654.5K samples.

4D Vision-Language Data. We merge existing 4D dynamic scene reconstruction datasets to train
the LMM for 4D spatiotemporal understanding: iPhone (Gao et al., 2022), HyperNeRF (Park et al.,
2021), N3DV (Li et al., 2022b), PanopticSports (Luiten et al., 2024), DAVIS (Perazzi et al., 2016),
and Immersive (Broxton et al., 2020)). Note that most videos in these datasets last 6-12 seconds.
Additionally, we develop a data generation approach to produce paired 4D vision-language data for
instruction fine-tuning. As shown in Fig. 4(c), we utilize the 3D object detection method (Rukhovich
et al., 2022) and GPT-4V (Yang et al., 2023) to extract local spatiotemporal information such
as category, position, time from multi-view videos. These extracted features are then processed
by text-only GPT to generate global 4D descriptions in instruction-following formats for typical
understanding tasks to produce a dataset of 224.6K samples. To further improve label quality, we
apply two rounds of data cleaning, such as automatic filtering and manual inspection. For the
automatic filtering, we enforce temporal consistency and spatial overlap constraints to remove 4.7%
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Table 1: Quantitative results of LMMs for scene understanding tasks on different 3D and 4D datasets.

Methods
3D Benchmark 4D Benchmark

Scan2Cap ScanQA Multi3DRefer ScanRef Chat4D (Ours)
C@0.5↑ B-4@0.5↑ M@0.5↑ C↑ B-4↑ M↑ F1@0.5↑ SAcc@0.5↑ C↑ B-4↑ SAcc@0.5↑ TAcc↑

3D

3D-LLM – – – 69.4 12.0 14.5 – – 61.6 11.5 31.4 –
Chat-3D v2 63.9 31.8 – 87.6 14.0 – 41.6 38.4 81.8 13.7 39.5 –

LL3DA 65.2 36.8 26.0 76.8 13.5 15.9 – – 72.3 11.9 46.2 –
3D-LLaVA 78.8 36.9 27.1 92.6 17.1 18.4 – – 85.1 16.0 52.0 –

Grounded 3D-LLM 70.6 35.5 – 72.7 13.4 – 40.6 44.1 66.3 12.2 43.7 –
PQ3D 80.3 36.0 29.1 87.8 – 17.8 50.1 51.2 84.7 14.3 51.5 –

LLaVA-3D 79.2 41.1 30.2 91.7 14.5 20.7 – 42.2 87.4 14.8 45.6 –
Video-3D LLM 83.8 42.4 28.9 102.1 16.2 19.8 52.7 51.7 89.4 16.1 52.8 –
Spatial-MLLM – – – 91.8 14.8 18.4 – – – – – –

3UR-LLM – – – 87.7 15.5 18.4 – – – – – –
GPT-4o w/ Co. Corr. – – – 87.0 – 18.0 – – – – – –

4D LLaVA-4D (Ours) 85.3 45.7 31.3 97.8 17.9 21.2 54.3 53.2 93.5 17.2 58.9 54.6

Table 2: Quantitative results of LMMs for scene understanding tasks on VSI-Bench.

Methods Average
Numerical Answer Multiple-Choice Answer

Obj. Count Abs. Dist. Obj. Size Room Size Rel. Dist. Rel. Dir. Route Plan Appr. Order
LLaVA-Video-7B 35.6 48.5 14.0 47.8 24.2 43.5 42.4 34.0 30.6

LLaVA-OneVision-7B 32.4 47.7 20.2 47.4 12.3 42.5 35.2 29.4 24.4
LongVA-7B 29.2 38.0 16.6 38.9 22.2 33.1 43.3 25.4 15.7

VILA-1.5-8B 28.9 17.4 21.8 50.3 18.8 32.1 34.8 31.0 24.8
InternVL2-8B 37.5 31.3 29.0 48.9 44.2 38.0 33.4 28.9 46.4

LLaVA-4D (Ours) 48.6 68.2 35.3 64.8 49.6 44.5 45.2 33.8 47.5

of the samples with inconsistent motion, impossible object trajectories, or mismatched spatial regions.
For the manual inspection, we manually discard 0.8% of the remaining samples with abnormal
labels, including timestamp misalignment, large coordinate deviations, and incorrect color or attribute
descriptions. The two steps substantially increase the reliability of the final annotations.

4.2 TRAINING PIPELINE

To ensure the stability of the training process and improve the performance of the model, we divide
the entire training into three stages in Fig. 4 (b) as follows:

Stage 1: Content Alignment. The training sets of the DC and QA tasks in the 2D&3D vision-
language data of our Chat4D are used to initially align the content between visual and linguistic
representations. This provides a foundational spatiotemporal understanding for the proposed model.
At this stage, only parameters of the cross-attention fusion and the projector are updated. The 4D
spatiotemporal coordinate features p4D are temporarily set as zero padding.

Stage 2: Spatiotemporal Coordinate Alignment. In order to further improve the fine-grained
understanding capability of our model under the spatiotemporal coordinate prompt, we use the
training data of the VG task in the 2D&3D vision-language subset of our Chat4D to refine the
spatiotemporal coordinate alignment between visual and linguistic representations. At this stage, we
update all trainable parameters of 4D coordinate encoding and cross-attention fusion modules while
keeping all other modules frozen.

Stage 3: 4D Task Instruction Fine-Tuning. To further improve our model for 4D scene under-
standing, we use 4D vision-language data of Chat4D to enhance the generalization of our model
for fine-grained spatiotemporal understanding with 4D coordinates through a multi-task instruction
fine-tuning strategy. All trainable parameters are updated while the vision encoder remains frozen.

5 EXPERIMENTS

Implements Details. Our LLaVA-4D utilizes the pre-trained weights of LLaVA-1.5-7B (Liu et al.,
2024) and the vision encoder of CLIP-ViT-L-336px (Radford et al., 2021). Cross-attention fusion
module is a transformer-based architecture. The whole model is trained on 8 RTX 4090 GPUs over
86 hours using AdamW as the optimizer. In training stages 1-2, we set the learning rate to 1.0e− 4
with a batch size of 48. We use a learning rate of 1.0e− 5 with a batch size of 16 in training stage 3.
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This person is riding a brown horse in a sandy arena, approaching the hurdle, jumping high, clearing it 

mid-air, landing smoothly, and continuing toward the next obstacle. At 1.5s, it is at [11.15, 2.08, -7.32, 

12.45, 0.30, -7.15]. At ..., it is at [...]. At 2.3s, it is at [12.80, 1.84, -6.80, 14.26, 0.12, -6.51].

1.5s 1.7s 1.9s 2.1s 2.3s

User 

Video-3D LLM

LLaVA-4D

What does the person do? Please provide its coordinates.

LLaVA-3D A person is riding a horse, jumping over an obstacle in an outdoor equestrian arena. It is at [11.26, 2.10, 

-7.35, 12.48, 0.36, -7.10].

The person is horseback riding in a sandy arena, jumping over a high obstacle during a show jumping com-

petition, surrounded by fences and other jump setups. It is at [11.04, 2.05, -7.30, 12.39, 0.31, -7.05].
V
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w
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View 1 View 2
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t=1.5s
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Figure 5: Visual comparison of LMMs on 4D scene understanding.

Comparison Methods. Since there are currently no public 4D LMMs for comparison, we compare
our model with 3D LMMs: 3D-LLM (Hong et al., 2023), Chat-3D v2 (Huang et al., 2023), LL3DA
(Chen et al., 2024a), 3D-LLaVA (Deng et al., 2025), Grounded 3D-LLM (Chen et al., 2024c), PQ3D
(Zhu et al., 2024b), LLaVA-3D (Zhu et al., 2024a), Video-3D LLM (Zheng et al., 2024), Spatial-
MLLM (Wu et al., 2025), 3UR-LLM (Xiong et al., 2025), and GPT-4o with Coarse Correspondences
(Liu et al., 2025). For a fair comparison, all methods are fine-tuned on the same evaluation benchmark.

Evaluation Metric. We compare all competing methods on multiple 3D datasets: Scan2Cap (Chen
et al., 2021), ScanQA (Azuma et al., 2022), ScanRef (Chen et al., 2020) and Multi3DRefer (Zhang
et al., 2023) and our Chat4D dataset. We evaluate the quality of generated text response for Scan2Cap
and ScanQA in terms of CiDEr (C), BLEU-4 (B-4), METEOR (M). We choose the F1 metric of object
prediction precision for Multi3DRefer, and the accuracy of intersection over unions for grounding
task from ScanRef. The metrics are also applicable to the evaluation on our Chat4D, where grounding
accuracy is divided into spatial and temporal components: S/TAcc.

5.1 COMPARISON WITH STATE-OF-THE-ART MODELS

Quantitative Results. In Table 1, we compare the competing methods on 3D and 4D datasets. For
3D understanding comparison, our method performs better than other methods. This shows that
spatial features disentangled from multi-view images have stronger representation than ordinary
visual features for 3D scene. For 4D understanding comparison, our method achieve a significant
strength due to dynamic-aware 4D coordinate as spatiotemporal prompt.

Comparison on VSI-Bench. In Table 2, we introduce VSI-Bench (Yang et al., 2025) and compare
our model with several representative LLMs: LLaVA-Video-7B (Zhang et al., 2024c), LLaVA-
OneVision-7B (Li et al., 2024), LongVA-7B (Zhang et al., 2024b), VILA-1.5-8B (Lin et al., 2024),
InternVL2-8B (Chen et al., 2024e), and LongVILA-8B (Chen et al., 2024d). The results show that
our LLaVA-4D achieves the best performance on most metrics, with only a few metrics slightly lower
than competing methods. This verifies the superiority of our model in multimodal spatial reasoning.

Qualitative Results. In Fig. 5, we select a typical 4D scene from our Chat4D dataset to visualize the
comparison between our model and 3D LMMs. The results show that 3D LMMs cannot respond to
timestamp and corresponding temporal information, while our method can understand the temporal
content. This is because 3D LMMs lack the representation of temporal characteristic. In contrast, our
method introduces the spatiotemporal prompt to enhance the dynamic representation of 4D scenes.

Table 3: Comparison on temporal understanding.
Method SAcc@0.5↑ TAcc↑ tIoU@0.5↑

Grounded-VideoLLM 9.4 5.1 47.0
LLaVA-ST 15.2 7.3 58.7

LLaVA-4D (Ours) 58.9 54.6 61.5

Comparison on Temporal Understanding. In
Table 3, we select a subset of video clips contain-
ing typical actions and obtain the corresponding
time intervals for these actions to compare our
model with several video-based LMMs: LLaVA-
ST (Li et al., 2025a) and Grounded-VideoLLM (Wang et al., 2024). The results show that our tIoU
scores are comparable to those of the baseline models, but our spatiotemporal understanding metrics,
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Figure 6: Feature visualization at different stages. Spatiotemporal disentanglement improves the
discriminability of background and objects, which are further separated by 4D coordinate embedding.

such as SAcc and TAcc, are significantly higher. This is because tIoU mainly depends on video-level
timestamp annotations, whereas SAcc and TAcc rely on 4D spatiotemporal coordinate understanding.
Therefore, these results further demonstrate that our LLaVA-4D represents a promising paradigm with
fine-grained multimodal spatiotemporal reasoning capabilities for 4D dynamic scene understanding.

5.2 ABLATION STUDY AND DISCUSSION

Table 4: Effect of visual representation modules.
Coor. embed Feat. disent. Feat. fusion C↑ B-4↑ SAcc@0.5↑ TAcc↑

× × × 62.3 11.7 34.8 12.7√
× × 85.4 15.1 51.5 47.5√ √

× 89.0 16.5 54.3 51.2√ √ √
93.5 17.2 58.9 54.6

Effect of Visual Representation Modules. In
Table 4, we verify the effectiveness of coordi-
nate embedding, feature disentanglement and
feature fusion modules in visual representation.
Coordinate embedding is the key to improving
the overall performance of 4D understanding
tasks by a large margin. Feature disentanglement improves the upper limit of 4D scene understanding
to a certain extent by strengthening the representation of spatial and temporal characteristics. Feature
fusion further enhances the spatiotemporal understanding ability of the LMM.

Table 5: Role of coordinate encoding.
Encoding target C↑ B-4↑ SAcc@0.5↑ TAcc↑
w/o Encoding 75.0 12.1 47.2 46.8
w/ 3D position 88.6 15.3 53.4 47.0

w/ 1D time 82.7 14.0 48.5 52.7
w/ 4D coordinate 93.5 17.2 58.9 54.6

Role of 4D Coordinate Encoding. In Table 5,
we analyze the impact of 3D position encoding
and 1D time encoding on the performance of
4D understanding. When 4D coordinates are
not encoded, the spatiotemporal understanding
performance of the LMM is negatively affected
to a certain extent. 3D position encoding mainly contributes to the spatial understanding ability of the
LMM, and 1D time encoding can further improve the performance of temporal understanding.

How Spatiotemporal Features Work? We study how spatiotemporal features work within our
model in Fig. 6. Initially, the visual features of objects and backgrounds appear relatively scattered.
After spatiotemporal disentanglement, object features are distinctly divided into spatial and temporal
components with background features remain clustered. Incorporating coordinate embedding further
organizes object features into two distinct sets: spatial and temporal where background features
consolidate into a unified spatial set. This demonstrates the strong spatiotemporal representation
capability of our method for dynamic objects and static backgrounds.

Table 6: Discussion on spatiotemporal fusion.
Fusion strategy C↑ B-4↑ SAcc@0.5↑ TAcc↑

w/ Concatenation 89.0 16.5 54.3 51.2
w/ Weighting 89.5 16.5 55.1 51.4
w/ Attention 93.5 17.2 58.9 54.6

Choice of Spatiotemporal Fusion Strategy.
Table 6 shows attention-based fusion outper-
forms concatenation and weighting fusion strate-
gies. This is because concatenation and weight-
ing rely on global unified fusion with fixed
weights. In contrast, attention-based fusion can dynamically adjust the fusion weights of spa-
tiotemporal features according to 4D coordinate embedding. This allows the LMM to effectively
focus more on meaningful spatiotemporal features for 4D understanding.

Extensibility of Spatiotemporal Prompt. To verify that the spatiotemporal prompt in our model is
an extensible feature, we introduce additional spatial semantic and temporal action masks as prompts
based on the encoded 4D coordinates to train our model. As shown in Fig. 7, our model can reason
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At 1.4s, [SEG]. At 1.9s, [SEG]. At 2.4s, [SEG].

1.4s 1.9s 2.4s

User 

LLaVA-4D

LLaVA-4D

What is the person doing in this scene?

User Please segment this dance move.

This person is performing a dance move on a street, spinning on one 

hand, and switching leg positions mid-air.

Temporal Action

Sure, [SEG].

User 

LLaVA-4D

LLaVA-4D

How many persons in the scene?

User Please segment these persons.

Four.

Spatial Semantic

Figure 7: Visualization of spatiotemporal prompt extended to other spatiotemporal vision tasks.

about the visual features of semantic and action based on specific text instructions. Incorporating
spatiotemporal prompts thus enhances the generality of our model for various vision tasks.

Table 7: Impact of textual coordinate encoding.
Text instruction C↑ B-4↑ SAcc@0.5↑ TAcc↑
w/o Coordinate 83.5 13.2 43.2 25.8

w/ Coordinate
w/o Encoding 90.1 16.7 56.3 53.0
w/ Encoding 93.5 17.2 58.9 54.6

Impact of Textual Coordinate Encoding. Ta-
ble 7 ablates the impact of textual coordinate
encoding on scene understanding by the LMM.
We deduce: 1) Textual coordinates as instruc-

tions improve the fine-grained spatiotemporal
understanding of the LMM. 2) Textual coordi-
nate encoding further improves the upper limit of 4D spatiotemporal understanding. This is because
coordinate encoding helps minimize the risk of LLM misinterpreting coordinate values.

Table 8: Discussion on impact of annotation errors.
Fine-tuning strategy C↑ B-4↑ SAcc@0.5↑ TAcc↑
Our base LLaVA-4D 93.5 17.2 58.9 54.6

+ Fine-tuned on
perturbed Chat4D

93.0
(0.5↓)

17.0
(0.2↓)

58.1
(0.8↓)

53.9
(0.7↓)

Robustness to Annotation Errors. In Table
8, we discuss the impact of annotation errors,
where we inject small random perturbations into
the 3D coordinates and timestamps using mild
Gaussian noise, and fine-tune our model on the
perturbed version of Chat4D. The results show
that the drops across all metrics are within 1 point, which is small relative to the absolute performance
level. This suggests that our LLaVA-4D is robust to minor spatiotemporal noise in the annotations.

Table 9: Effect of temporal encoding strategy.
Temporal encoding strategy C↑ B-4↑ SAcc@0.5↑ TAcc↑
Frame rate-based encoding 91.0 16.7 57.3 49.5

Motion speed-based encoding 93.5 17.2 58.9 54.6

Effect of Temporal Encoding Strategy. In Ta-
ble 9, we analyze the effect of different temporal
encoding strategies. We can observe that frame
rate-based encoding performs worse than the
motion speed-based encoding, especially in fine-
grained temporal understanding. The underlying reason is that the frame rate-based approach uses a
globally fixed-step encoding, which struggles to explicitly capture the temporal characteristics of
independently moving objects in dynamic scenes. In contrast, our motion speed-based approach is a
locally adaptive encoding scheme that is capable of directly representing the magnitude of motion,
and thus reflecting the true physical dynamics of the scene.

Limitation. Our model has achieved success in end-to-end inference for scene understanding, but
the preprocessing stage related to 4D coordinate construction relies on external modules, e.g. SfM.
This slightly reduces the overall efficiency. Since the preprocessing stage is replaceable, we plan to
adopt end-to-end geometric models, e.g. MonST3R (Zhang et al., 2024a) to improve practicality.

6 CONCLUSION

In this work, we propose LLaVA-4D, a first general vision-language LMM for 4D scene understanding.
We introduce a dynamic-aware 4D coordinate encoding as a spatiotemporal prompt for scene content
localization. Additionally, we propose a spatiotemporal-disentangled vision embedding method
that integrates 4D spatiotemporal prompts into disentangled spatiotemporal features for effective
scene representation. By aligning visual spatiotemporal embeddings with language embeddings, our
approach allows LMMs to comprehend the 4D physical world. To support training, we construct
Chat4D, a comprehensive dataset covering 2D, 3D and 4D vision-language data for multimodal
spatiotemporal understanding. Extensive experiments validate the effectiveness of our method.
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