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Abstract

Recent work on reasoning-oriented language mod-
els, exemplified by o1-like systems, suggests that
reinforcement-learning (RL) finetuning does not
create new capabilities but instead strengthens
reasoning patterns already latent in the pretrained
network. We test this claim by training steering
vectors: layer-wise biases that additively amplify
selected hidden features while leaving all original
weights unchanged. Experiments on four base
models across the GSM8K and MATH bench-
marks show that steering vectors recover, and in
several cases exceed, the accuracy of fully-tuned
counterparts. This result supports the view that
the required reasoning skills pre-exist in the base
model. Further, logit-lens analysis reveals that the
trained vectors consistently boost token groups
linked to structured languages and logical con-
nectors, providing an interpretable account that
aligns with the demands of quantitative reasoning
tasks.

1. Introduction
Large language models (LLMs) such as GPT-4 (Achiam
et al., 2023), Qwen (Yang et al., 2025), and Llama
(AI@Meta, 2024) demonstrate that scaling up data, model
size, and compute can create a general-purpose engine for
language understanding and generation. Trained on trillions
of tokens from books, code, scientific articles, and social
media, these models can summarize long documents, write
executable code, solve domain-specific exams, and generate
persuasive prose - all without task-specific tuning. Their
success has shifted the research focus from whether large-
scale pretraining works to how to elicit the rich behaviours
embedded within, ranging from chain-of-thought reasoning
to tool use and self-correction.
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Recent systems such as openai-o1 and R1 (Guo et al., 2025)
fine-tune these base models with reinforcement learning
(RL) to create ”reasoning” models. The authors of these
systems argue that RL training imparts new abilities (such as
self-reflection and sudden ”aha” moments) that purportedly
emerge only after RL.

However, growing evidence (Liu et al., 2025; Shah et al.,
2025) points to the contrary. The studies indicate that the
necessary skills are already present in the pretrained net-
work, with RL serving primarily to amplify, not invent, them.
We directly test this claim by training steering vectors: sim-
ple, trainable vectors that are added to the model’s hidden
state at each layer, leaving all original weights untouched.
If reasoning ability is already latent in the model, steering in
the right direction should suffice to unlock it (see Section 2
for further details).

We train steering vectors on four base models
(Qwen-2.5-1.5B, Qwen-2.5-Math-1.5B,
Llama-3.1-8B, and Llama-3.1-8B-Instruct)
using two mathematical reasoning datasets (GSM8K and
MATH) (Cobbe et al., 2021; Hendrycks et al., 2021). Across
these eight model-task pairs, we find that steering alone
often matches the accuracy of fully RL-tuned models, and
in all cases performs competitively. These findings support
the hypothesis that LLMs already possess the knowledge
necessary for step-by-step reasoning, which can be elicited
via targeted amplification.

2. Related Work
The use of steering vectors, a technique within activation
engineering, provides a direct way to probe and manipulate
model behavior with minimal changes to the underlying
weights. Traditionally, such vectors are constructed from
activation differences on contrastive prompts (e.g., posi-
tive vs. negative sentiment) and are typically interpreted as
feature amplifiers rather than creators of novel behaviors
(Turner et al., 2023; Panickssery et al., 2023). More recent
work demonstrates that these vectors can also be trained,
not merely computed, allowing for more targeted control.
For example, Cao et al. (2024) optimized steering directions
using preference data, while Mack & Turner (2024) and En-
gels et al. (2025) (building on Betley et al. (2025)) showed
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Table 1. mean@8 accuracy for each combination of training dataset, evaluation dataset, model, and tuning setup. Rows are grouped by
Train / Test dataset pairs, and each column corresponds to a specific model variant. For Steering and LoRA rows, the colored value
in parentheses indicates the difference compared to Full-Tune for that model - green if better, red if worse. This highlights how close
lightweight methods can get to full fine-tuning performance, and where gaps remain.

Train / Test Setup Qwen2.5-1.5B Qwen2.5-Math-1.5B Llama3.1-8B Llama3.1-8B-It

GSM8K / GSM8K

Base 0.63 29.26 1.08 66.03
Full-Tune 78.91 86.49 76.49 87.22
Steering 73.84 (-5.07) 79.89 (-6.60) 70.36 (-6.13) 87.22 (0.00)

LoRA 76.49 (-2.42) 85.41 (-1.08) 74.24 (-2.25) 85.41 (-1.81)

GSM8K / MATH

Base 1.51 28.73 0.76 32.51
Full-Tune 40.78 65.95 16.86 46.65
Steering 48.69 (+7.91) 61.79 (-4.16) 22.81 (+5.95) 48.51 (+1.86)

LoRA 49.32 (+8.54) 64.31 (-1.64) 19.28 (+2.42) 49.04 (+2.39)

MATH / MATH

Base 1.51 28.73 0.76 32.51
Full-Tune 44.48 70.44 27.39 52.39
Steering 51.39 (+6.91) 65.27 (-5.17) 22.05 (-5.34) 50.81 (-1.58)

LoRA 53.68 (+9.20) 69.35 (-1.09) 24.32 (-3.07) 50.40 (-1.99)

MATH / GSM8K

Base 0.63 29.26 1.08 66.03
Full-Tune 68.57 82.56 52.12 85.03
Steering 69.56 (+0.99) 76.41 (-6.15) 45.24 (-6.88) 84.02 (-1.01)

LoRA 72.53 (+3.96) 81.88 (-0.68) 52.52 (+0.40) 85.06 (+0.03)

that training simple additive vectors can elicit complex latent
behaviors, such as reasoning and self-awareness.

Our method follows this trend, training only layer-wise
additive biases while keeping all other model parameters
frozen. This approach is philosophically aligned with BitFit
(Zaken et al., 2021), which tunes only bias terms and has
been shown to effectively expose existing knowledge, often
matching the performance of full fine-tuning on language
tasks. Notably, BitFit and similar minimal-adaptation meth-
ods sometimes underperform on tasks requiring substantial
generalization (Hu et al., 2022); it remains unclear whether
they suffice for complex reasoning.

These minimal interventions stand in contrast to parameter-
efficient finetuning methods such as prompt tuning and
LoRA (Hu et al., 2022), or full RL-based adaptation (Guo
et al., 2025), which actively adjust model parameters. In our
work, we focus on whether steering vectors alone can unlock
reasoning capabilities already present in LLMs, without the
need for extensive weight updates.

3. Methodology
3.1. Online Training

We adopt an online reinforcement learning procedure
loosely modeled on DeepSeek-R1 (Ahmadian et al., 2024;
Guo et al., 2025). For each prompt x, we sample N candi-
date solutions y1, . . . , yN from the current policy πθ. Each

rollout yi receives a binary reward r(x, yi) based on the
presence of a correct answer enclosed in a \boxed{...}
template. Other details are in Appendix B.

Depending on the experiment, either all model weights (full
fine-tuning), only the steering vectors, or only the LoRA
adapters are trainable. In the latter two cases, all other
weights remain frozen. Updates are applied online after
each batch of rollouts.

3.2. Steering Vector

We insert a learnable steering vector sℓ ∈ Rd at the end of
every transformer layer ℓ (there are L layers in total). The
vector is added directly to the residual stream, so its dimen-
sionality matches the model’s hidden size d. All original
weights remain frozen; only these L steering vectors are
trained. Appendix A contains our code implementation for
clarity.

3.3. Training and Evaluation Setup

We conduct experiments on four pretrained trans-
former checkpoints: Qwen-2.5-1.5B (Team,
2024), Qwen-2.5-Math-1.5B (Yang et al., 2024),
Llama-3.1-8B, and Llama-3.1-8B-Instruct
(Grattafiori et al., 2024). For each model, we evaluate
three training regimes: (i) full fine-tuning, (ii) training only
steering vectors, and (iii) training only LoRA (Hu et al.,
2022) adapters which may be viewed as adaptive steering
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Table 2. Clusters of tokens most aligned with the learned steering vectors, as measured by cosine similarity.

Layer
idx

Top-Cluster Representative tokens Unifying idea

2 Source-code
& test-harness
vocabulary

tostring,
ComponentFixture,
.SQL, standalone,
-independent, fault,
203, @a, \Context

These are the words you meet in programming
projects - Angular’s ComponentFixture, SQL file ex-
tensions, ”fault” flags, HTTP status 203, context ob-
jects, and helper functions like toString().

2 Named entities
(people & places)

Antonio, Pelosi, Baldwin,
Cumberland, Switzerland,
Peg, Salv-

Proper names of individuals and locations that com-
monly co-occur in news articles or knowledge-graph
dumps.

17 Accuracy, valida-
tion & logical ne-
cessity

correctness, correct,
precision, necessity,
possibility,
confirmation, answer,
goal, directly, derive /
deriving

These words belong to discourse about getting things
right - arguments, proofs, validations, QA reports, or
formal specifications.

30 Causal & con-
trastive connec-
tors

Because / because / 因
为, Therefore / donc,
However / однако/
jedoch, Given / Here,
step

Words that introduce reasons, consequences, or con-
trasts - typical of argumentative writing, technical
explanations, or test-case descriptions.

vectors (Appendix C, Mack & Turner (2024)). For LoRAs
we use rank 4. In the latter two cases, all other parameters
are kept frozen.

We use two mathematical datasets for training and eval-
uation. The gsm8k training split contains 8,790 prob-
lems (Cobbe et al., 2021); for evaluation, we randomly
subsample 500 items from its original split to shorten it-
eration time. The MATH corpus (Hendrycks et al., 2021)
provides 12,000 training examples, and its evaluation split
consists of 500 items, which we use as is. We report
mean@8 = Ex[E8

i=0 r(x, y)] win rates on each dataset.

All experiments are implemented using the
transformers library (Wolf et al., 2019) and the
vllm inference engine (Kwon et al., 2023). Additional
hyperparameter details are provided in Appendix D.

4. Results
4.1. Steering Vectors are Effective for Inducing

Reasoning Capabilities

Table 1 summarizes accuracy for the pretrained model,
fully-tuned models, steering vectors, and LoRA adapters.
As expected, RL training yields large gains on math-
ematical benchmarks on all setups. Steering vectors
achieve similar improvements across nearly all model-
dataset pairs and even exceed full fine-tuning in some cases

(e.g., Qwen2.5-1.5B when evaluated on MATH-500 and
llama3.1-8b when trained on gsm8k and evaluated on
MATH-500, both being base models that did not undergo
instruction tuning), which we attribute to the implicit regu-
larization of updating far fewer parameters.

If we accept the working assumption that a steering vector
can only amplify features that the original network already
contains and cannot create new ones, the table gives direct
evidence for that view: when the base model ”knows” how
to solve the task, steering is usually enough to reach the
same quality as full fine-tuning.

There are, however, a few setups where the steering train-
ing stays noticeably below the full training - for example,
the Qwen2.5-Math-1.5B and llama3.1-8b evalu-
ated on gsm8k. In most cases the LoRA closes the gap
completely. Because LoRA modifies a small, learned set
of rank-decomposed weight matrices rather than a single
global vector, it provides finer control over what is added
to the residual stream. The fact that LoRA always bridges
the remaining gap shows that a more targeted, low-rank
adjustment is the reason why single steering vector cannot
reach the performance of a fully-trained model.

4.2. Interpretation

To understand what the learned steering vectors are doing
inside the network, we apply the logit-lens technique (nos-
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talgebraist, 2020). The key idea is to ”peek” into a residual
stream after a specific transformer layer by converting it
into a full vocabulary distribution and then reading the most
likely tokens.

Let the row uv ∈ Rd of WU correspond to token v. For
every token we compute the cosine similarity

cl(v) =
⟨sl, uv⟩
∥sl∥ ∥uv∥

∈ [−1, 1].

A large positive cl(v) means the steering vector pushes the
hidden state toward token v; a large negative value indicates
suppression.

We collect top-50 tokens for each steering vector and ask
GPT-o3 to translate all non-english tokens and group the
subsets of tokens into explainable topics (see the prompt in
Appendix E).

Table 2 shows the representative token groups from different
layers of llama3.1-8b-instruct model trained on
gsm8k dataset. At layer 2, the steering vector aligns with
programming-style terms rather than math tokens, which is
surprising given the math-oriented task. While not being
from the math domain, this use of coding tokens suggests the
model leverages structural parallels between programming
and formal math notation. It also picks up named entities
because many gsm8k problems use character names and
places to set up word problems.

At layer 17, the vector shifts to words about checking steps
and validating results. This suggests the model uses the mid-
dle stage to verify each reasoning step before proceeding.

At layer 30, it focuses on linking words such as ”because”,
”therefore”, and ”however”. This indicates the final stage
ties statements together to guide the answer’s flow.

Overall, the learned steering vectors appear to be highly in-
terpretable and relevant to the reasoning task on the gsm8k
domain.

5. Conclusion
In this paper, we have demonstrated that training lightweight
steering vectors alone can recover the reasoning perfor-
mance of fully RL-fine-tuned models on standard math-
ematical benchmarks. This result carries two important
implications. First, steering vector training offers a highly
parameter-efficient and cost-effective alternative: only a
small set of layer-wise bias terms must be learned, dras-
tically reducing both compute and storage requirements.
Second, our findings support the view that reinforcement-
learning fine-tuning in large language models does not cre-
ate fundamentally new abilities but rather amplifies reason-
ing skills already latent in the pretrained network.

6. Limitations
First, our experiments cover only a narrow range of online-
training hyperparameters. A more extensive sweep varying
learning rates, batch sizes, rollout counts, and baseline es-
timators would strengthen the generality of our findings
and might reveal scenarios in which steering vectors fail to
match full-model fine-tuning. This also applies to a wider
range of tasks and model sizes as different tasks may require
a certain model capacity not available to steering vectors.

Second, while the logit-lens provides a convenient way to
inspect how steering vectors influence token logits at each
layer, it does not capture the downstream transformations
applied by subsequent layers. As a result, later computa-
tions may modify the initial steering signal, leading to in-
terpretations of logit-lens itself that conflict with layer-wise
observations. Applying more comprehensive interpretation
techniques, such as probing classifiers, causal interventions,
or circuit-level analysis, could yield deeper insights into
how steering vectors shape the model’s behavior.
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A. Steering Vector Implementation

Steering Vector Implementation

1 class SteeringVector(nn.Module):
2 def __init__(self, hidden_size: int):
3 super().__init__()
4

5 self.hidden_size = hidden_size
6

7 self.steering_vector = nn.Parameter(
8 torch.zeros(self.hidden_size).unsqueeze(0).unsqueeze(0)
9 )

10

11 def forward(self, x):
12 return x + self.steering_vector
13

14 class TransformersQwen2DecoderLayerWithSteering(TransformersQwen2DecoderLayer):
15 def __init__(self, config: Qwen2Config, layer_idx: int):
16 super().__init__(config=config, layer_idx=layer_idx)
17

18 self.steering_vector = SteeringVector(hidden_size=config.hidden_size)
19

20 self.layer_idx = layer_idx
21

22 def forward(self, *args, **kwargs):
23 hidden_states, *rest = super().forward(*args, **kwargs)
24

25 hidden_states = self.steering_vector(hidden_states)
26

27 return (hidden_states, *rest)
28

B. Training Objective
To reduce variance, we compute a baseline b as the mean reward for all rollouts associated with x:

b =
1

N

N∑
i=1

ri, ai = ri − b.

The parameters are updated via a policy-gradient step:

∇θJ = Ex∼D,y∼πθ(x)

[
a(x, y)∇θ log πθ(y | x)

]
.

C. LoRA
A limitation of steering vectors is that the same vector is added to every token position. We hypothesize that this token-
independence may cap performance and partly account for the gap between the full-model baseline and steering-only
training.

To let the offset be token-specific, we replace the fixed steering vector with a low-rank adaptor (LoRA) (Hu et al., 2022)
applied to the MLP down-projection in every transformer layer:
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(fixed steering) h′ = h+ s,

(LoRA steering) h′ = h+B ·A · hMLP,

where h ∈ Rd is the residual stream, s ∈ Rd is a learned constant, hMLP ∈ RdMLP is the intermediate representation of MLP
layer, and A and B are LoRA rank-r matrices which are the only trainable components in this setup.

All experiments use LoRA rank r = 4, scaling factor α = 4, and no dropout following Engels et al. (2025).

D. Hyperparameters

Table 3. Hyperparameter settings for each model and training setup.

lr num generations

Qwen-2.5-1.5B GSM8K Full-Tune 2× 10−5 64
Steering 5× 10−4 64
LoRA-1 5× 10−4 64
LoRA-4 5× 10−4 64

MATH Full-Tune 2× 10−5 64
Steering 5× 10−4 64
LoRA-1 5× 10−4 64
LoRA-4 5× 10−4 64

Qwen-2.5-Math-1.5B GSM8K Full-Tune 2× 10−5 16
Steering 1× 10−3 16
LoRA-1 5× 10−4 16
LoRA-4 5× 10−4 16

MATH Full-Tune 2× 10−5 16
Steering 1× 10−3 16
LoRA-1 5× 10−4 16
LoRA-4 5× 10−4 16

Llama-3.1-8B GSM8K Full-Tune 5× 10−6 64
Steering 5× 10−4 64
LoRA-1 1× 10−4 64
LoRA-4 1× 10−4 64

MATH Full-Tune 5× 10−6 64
Steering 5× 10−4 64
LoRA-1 1× 10−4 64
LoRA-4 1× 10−4 64

Llama-3.1-8B-Instruct GSM8K Full-Tune 1× 10−6 16
Steering 2× 10−4 16
LoRA-1 6× 10−4 16
LoRA-4 1× 10−4 16

MATH Full-Tune 1× 10−6 16
Steering 2× 10−4 16
LoRA-1 3× 10−4 16
LoRA-4 3× 10−4 16

For all the setups we use temperature τ = 1.0 and a global batch size 128. Setup-specific hyperparameters are listed in
Table 4.
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Table 4. Hyperparameter settings for each model and training setup.

Model Setup lr num generations

Qwen-2.5-1.5B Full-Model 2× 10−5 64
Steering vectors 1× 10−4 64
LoRA adapters 1× 10−4 64

Qwen-2.5-Math-1.5B Full-Model 2× 10−5 16
Steering vectors 5× 10−4 16
LoRA adapters 5× 10−4 16

Llama-3.1-8B Full-Model 9× 10−6 128
Steering vectors 5× 10−4 128
LoRA adapters 5× 10−4 128

Llama-3.1-8B-Instruct Full-Model 5× 10−7 16
Steering vectors 5× 10−4 16
LoRA adapters 1× 10−4 16

E. Logit Lens. GPT Prompt

GPT Prompt for Token Clustering

1 You will be given a list of tokens together with a score.
2 You should translate all non-english tokens and suggest the main topics
3 that unite the biggest subsets of tokens in the list.
4

5 <list>

F. Computational Resources
All models were trained on 16 H100 GPUs. Qwen2.5-1.5B models were trained for approx. 9
hours, Qwen2.5-Math-1.5B for approx. 2.5 hours, llama3.1-8b-instruct for approx. 9 hours,
llama3.1-8b-instruct for approx. 120 hours.
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