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ABSTRACT

The Variational Autoencoder (VAE) is a seminal approach in deep generative
modeling with latent variables. It performs posterior inference by parameterizing
a distribution of latent variables in the stochastic encoder (while penalizing the dis-
parity to an assumed standard normal prior), and achieves sample reconstruction
via a deterministic decoder. In our work, we start from a simple interpretation of
the reconstruction process: a nonlinear transformation of the stochastic encoder.
We apply the Unscented Transform (UT) from the field of filtering and control
– a well-known distribution approximation used in the Unscented Kalman Fil-
ter (UKF). A finite set of statistics called sigma points that are sampled determin-
istically provides a more informative and lower-variance posterior representation
than the ubiquitous noise-scaling of the reparameterization trick. Inspired by the
unscented transform, we derive a novel deterministic flavor of the VAE, the Un-
scented Autoencoder (UAE), trained purely with regularization-like terms on the
per-sample, full-covariance posterior. A key ingredient for the good performance
is the Wasserstein distribution metric in place of the Kullback-Leibler (KL) diver-
gence, effectively performing covariance matrix regularization while allowing for
a sharper posterior, which especially benefits reconstruction. Nevertheless, our
results are consistent with recent findings showing that deterministic models can
ensure good sample quality and smooth interpolation in the latent space. We em-
pirically show superior performance in Fréchet Inception Distance (FID) scores
over closely-related models, in addition to a lower training variance than the VAE.

1 INTRODUCTION

VAEs (Kingma et al., 2015; Rezende et al., 2014) are a seminal method for learning deep latent vari-
able models via maximization of the data likelihood using a reparametrized version of the Evidence
Lower Bound (ELBO). Deep latent variable models are used as generative models in a variety of
application domains such as image (Vahdat & Kautz, 2020), language (Kusner et al., 2017; Bow-
man et al., 2015), and dynamics modeling (Karl et al., 2016). A good generative model requires the
VAE to produce high quality samples from the prior latent variable distribution and a disentangled
latent representation is desired to control the generation process (Higgins et al., 2017). Another
important application of deep latent variable models is representation learning, where the goal is to
induce a latent representation facilitating downstream tasks (Bengio et al., 2013; Tripp et al., 2020;
Townsend et al., 2019; Rombach et al., 2022). In many of these tasks a good sample quality, as well
as a ’well-behaved’ latent representation with a high reconstruction accuracy is desired.

Since their introduction, VAEs have been one of the methods of choice in generative modeling due to
their comparatively easy training and the ability to map data to a lower dimensional representation
as opposed to generative adversarial networks (Goodfellow et al., 2014). However, despite their
popularity there are still open challenges in VAE training addressed by recent works. A major
problem of VAEs is their tendency to have a trade-off between the quality of samples from the prior
and the reconstruction quality. This trade-off can be attributed to overly simplistic priors (Bauer
& Mnih, 2019), encoder/decoder variance (Dai & Wipf, 2019), weighting of the KL divergence
regularization (Higgins et al., 2017; Tolstikhin et al., 2018), or the aggregated posterior not matching
the prior (Tolstikhin et al., 2018; Ghosh et al., 2019). Furthermore, the VAE objective can be prone
to spurious local maxima leading to posterior collapse (Dai et al., 2020; Chen et al., 2017; Lucas
et al., 2019), which is characterized by the latent posterior (partially) reducing to an uninformative
prior. Finally, the variational objective requires approximations of expectations by sampling, which
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causes increased gradient variance (Burda et al., 2016) and makes the training sensitive to several
hyperparameters (Bowman et al., 2015; Higgins et al., 2017).

Our main technical contributions are several modifications to the original VAE objective result-
ing in an improved sample and reconstruction quality. We propose to use a well-known algorithm
from the filtering and control literature, the Unscented Transform (UT) (Uhlmann, 1995), to obtain
lower-variance, albeit potentially biased, gradient estimates for the optimization of the variational
objective. A lower variance is achieved by only sampling at the sigma points of the variational pos-
terior and transforming these points with a deterministic decoder function. To account for sampling
only at the sigma points, we add a regularizer for decoder smoothness around these points, similar
to Ghosh et al. (2019). The unscented transform naturally supports using a non-diagonal posterior
distribution, which is very common in the filtering literature. While a non-diagonal posterior can
have negative effects on the structure of the latent space (Zietlow et al., 2021; Rolinek et al., 2019),
it can have a positive effect on the optimization of the variational objective (Dai et al., 2018) and the
reconstruction quality. Finally, we observe that the regularization toward a standard normal prior us-
ing a KL-divergence often harshly penalizes low variance along some components even though the
low variance is usually beneficial for reconstruction. Thus, we use a different regularization based
on the Wasserstein metric (Patrini et al., 2020). We conduct rigorous experiments on several stan-
dard image datasets to compare our modifications against the closely-related model from (Ghosh
et al., 2019) as well as the VAE as baselines.

2 RELATED WORK

Many recent works on VAEs focus on understanding and addressing still existing problems like
undesired posterior collapse (Dai et al., 2020), trade-off between sample and reconstruction qual-
ity (Tolstikhin et al., 2018; Bauer & Mnih, 2019), or non-interpretable latent representations (Ro-
linek et al., 2019; Higgins et al., 2017). Other recent works suggest to move from the probabilistic
VAE models to deterministic models, such as the Regularized Autoencoder (RAE) in Ghosh et al.
(2019); our model can be considered as part of this class. As previously mentioned, we employ
multiple modifications to the VAE, namely the Wasserstein metric, full-covariance representation,
decoder regularization, and the Unscented Transform; we outline the section accordingly.

The Wasserstein distance is used in Tolstikhin et al. (2018); Patrini et al. (2020) to regularize the
aggregated posterior qagg(z) = Ep(x) [q(z|x)] toward the standard normal prior. The authors also
show that such an objective is an upper bound to the Wasserstein distance between the sampling
distribution of the generative model and the data distribution if the regularization is scaled by the
Lipschitz constant of the generator. In contrast, we do not regularize the aggregated posterior, but
use the Wasserstein distance to weakly regularize the mean and variance of the encoder, such that
neither explodes and we can do post-hoc density estimation. From a theoretical point of view, we
do not fix the prior but learn the manifold; the distribution is learned by ex-post density estimation.

The full-covariance representation is seldom in VAEs – one of the key ingredients of the standard
VAE model is its diagonal Gaussian posterior approximation. The induced orthogonality can im-
plicitly have positive effects on the structure of the latent space and the decoder (Zietlow et al., 2021;
Rolinek et al., 2019), but such effects highly depend on implicit biases present in the dataset (Ziet-
low et al., 2021). Furthermore, the diagonal posterior together with the KL regularization allows for
pruning unnecessary latent dimensions, also known as desired posterior collapse (Dai et al., 2020).
A full covariance posterior does not have such implicit biases and pruning properties, but it can
have a positive effect on the optimization of the variational objective, as it connects otherwise dis-
connected global optima (Dai et al., 2018). Furthermore, it allows for modeling correlations in the
posterior. In this context, the UT is an efficient way to train models with full covariance posteriors.
We are not aware of a work successfully employing a full covariance posterior.

Our work incorporates several ideas from the recently published RAE (Ghosh et al., 2019). We
also incorporate a decoder regularization term in our loss, which promotes smoothness of the
latent space. It is based on the decoder Jacobian and accounts for sampling only at specific sigma
points. In contrast to the RAE however, we do not assume a deterministic encoder as not every data-
point might be encoded with the same fidelity. Furthermore, we employ post density estimation
as we do not explicitly regularize the aggregated posterior toward a prior. Conceptually, the UAE
can be placed between the VAE, characterized by significant sampling variance, and the purely
deterministic RAE.
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Finally, we employ the Unscented Transform (Uhlmann, 1995) from the field of nonlinear filtering
within signal processing. In this context, the signal state estimate is often assumed to be Gaussian
in order to maintain tractability. However, nonlinear prediction and measurement models always
invalidate this assumption at each time step so that a re-approximation becomes necessary. A com-
monly used approach is the Extended Kalman Filter (EKF), where a linearization of the models is
employed so that the Gaussian state remains Gaussian during filtering. In contrast, alternative ap-
proaches that represent the Gaussian state with samples for propagation and update have emerged.
These approaches can be clustered according to the employed sampling method – random as in par-
ticle filters (Doucet & Johansen, 2011) or deterministic, e.g. in the UKF (Julier et al., 2000). In the
UKF, the n-dimensional Gaussian is approximated with 2n + 1 deterministic samples, which can
be propagated through the nonlinearities and are sufficient for computing the statistics of a Gaussian
distribution, i.e. its mean and covariance. This procedure is referred to as the Unscented Trans-
form (UT). The use of deterministic sampling1 aims to achieve a good coverage of the distribution
approximated by the mean and covariance, which usually better reflects the nonlinearities of the
functions that are applied to the distribution. For a more comprehensive overview of the unscented
transform as well as the UKF, we refer the reader to Menegaz et al. (2015).

3 PROBLEM DESCRIPTION

Most generative models take a max-likelihood approach to model a real-world distribution p(x) via
the θ-parameterized probabilistic generator model pθ(x)

θ ← arg maxθ Ex∼p(x)[log pθ(x)] . (1)

In this setting, latent variable generative approaches assume an underlying structure in p(x) not
directly observable from the data and model this structure with a latent variable z, which is well-
motivated by de Finetti’s theorem (Accardi, 2001). As a result, the distribution p(x) can be
represented as a product of tractable distributions. However, directly incorporating z via an in-
tegral

∫
pθ(x|z)p(z)dz is intractable; thus, one introduces an amortized variational distribution

qφ(z|x) (Zhang et al., 2018) and obtains

log pθ(x) = logEz∼qφ(z|x)

[
pθ(x, z)

qφ(z|x)

]
. (2)

This model assumption is the basis of variational inference. Applying Jensen’s inequality one ob-
tains the well-known ELBO L

log pθ(x) ≥ L = Ez∼qφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z)) , (3)

which is maximized w.r.t. θ and φ. The first term accounts for the quality of reconstructed samples
and the KL-divergence term pushes the approximate posterior to mimic the prior, i.e. it enforces a
p(z)-like structure to the latent space.

Training on L in Eq. (3) requires computing gradients w.r.t. θ and φ. This is relatively straight-
forward for the generator parameters, however, requiring a high-variance policy gradient for the
posterior parameters. To avoid this issue in practice, the reparameterization trick (Kingma et al.,
2015) is used to simplify the sampling of the approximate posterior by means of an easy-to-sample
distribution. Assuming a Gaussian posterior N (µ,Σ), we can sample a multivariate normal and
obtain the latent feature vector via the deterministic transformation

z = µ+Lε, ε ∼ N (0, I), Σ = LLT . (4)

With the help of the reparameterization trick, the VAE (Kingma & Welling, 2013) provides a frame-
work for optimizing the loss function from the condition in Eq. (3) via an encoder–decoder gener-
ative latent variable model. The encoder Eφ(x) = {µφ(x),Σφ(x)} parameterizes a multivariate
Gaussian qφ(z|x) = N (z|µφ(x),Σφ(x)), where Σφ is usually a diagonal matrix, Σφ = diag(σφ).
The decoder Dθ(z) = µθ(z) is in practice rendered deterministic: pθ(x|z) = N (x|µθ(z),0), re-
ducing the reconstruction term in Eq. (3) to a simple mean-squared error under the expectation of the
posterior Ez∼qφ(z|x)‖x−µθ(z)‖22. The VAE uses the reparameterization trick for efficient sampling
from the posterior qφ, in practice providing only a single sample to the decoder, which enables a
lower-variance gradient backpropagation through the encoder.

1Sampling from a set of points at fixed locations in the domain.
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The deterministic decoder and the reparameterization trick allow for a slightly different interpreta-
tion of the reconstruction/generation process: a (highly) nonlinear transformation of an input distri-
bution, represented (usually) only by a single stochastic sample. The sample is white noise2, scaled
and shifted by the posterior moments. This interpretation serves as the basis for our work, where the
unscented transform of the input distribution serves as an alternative to the single-stochastic-sample
representation. In the next section, we outline the unscented transform representation of the input to
the decoder via a set of deterministically computed and sampled sigma points.

4 UNSCENTED TRANSFORM OF THE POSTERIOR

4.1 BACKGROUND

The unscented transform (Uhlmann (1995)) is a method to evaluate a nonlinear transformation of
a distribution characterized by its first two moments. Assume a known deterministic function f
applied to a distribution P (µ,Σ) with mean and covariance µ ∈ Rn and Σ ∈ Rn×n. If f is a
linear transformation, one can describe the distribution Q(µ̂, Σ̂) at the output via µ̂ = fµ and
Σ̂ = fΣfT . Similarly, for a nonlinear transformation f but a zero covariance matrix Σ = 0, the
mean of the transformed distribution is µ̂ = f(µ). However, in the general case it is not possible
to determine µ̂ and Σ̂ of the f -transformed distribution given µ and Σ since the result depends on
higher-order moments. Thus, the unscented transform is useful; it provides a mechanism to obtain
this result via an approximation of the input distribution while assuming full knowledge of f .

In computing the unscented transform, first a set of sigma points characterizing the input P (µ,Σ)
is chosen. The most common approach (Menegaz et al. (2015)) is to take a set {χi}2ni=0, χi ∈ Rn
of 2n+ 1 symmetric points centered around the mean (incl. the mean), e.g. for 1 ≤ i ≤ n,

χ0 = µ, χi = µ+
√

(κ+ n)Σ
∣∣
i
, χi+n = µ−

√
(κ+ n)Σ

∣∣
i
, (5)

where κ > −n is a real constant and
∣∣
i

denotes the i-th column. The approximation in Eq. (5) is
unbiased; the mean and covariance of the sigma points are µ and Σ. Thus, one can compute the
transformation χ̂i = f(χi) and estimate the mean and covariance of the f -transformed distribution

µ̂ =
∑2n
i=0 χ̂i, Σ̂ =

∑2n
i=0(χ̂i − µ̂)(χ̂i − µ̂)T . (6)

A visualization of the sigma points and their transformation is depicted in Fig. 1a. The procedure
in Eq. (5) and (6) effectively applies the fully-known function f to an approximating set of points
whose mean and covariance equal the original distribution’s. Therefore, the mean and covariance
of the transformed sigma points will be closer to the true transformed mean and covariance than the
ones computed by propagating the same number of random samples from the original distribution.

4.2 UNSCENTED TRANSFORM IN THE VAE

In an ELBO maximization setting from Eq. (3), the nonlinear transformation of the posterior in
the decoder lends itself straightforwardly to the unscented transform approximation. Given any
posterior defined by µ and Σ, we can compute the sigma points (for example according to Eq. (5))
and provide them to the decoder. In a VAE, the sigma points provide a deterministic-sampling
alternative to the reparameterization-trick-computed random samples of the latent space.

The choice of the number of sigma points provided to the decoder is similar to the sampling in
Eq. (4), where one can realize a single latent vector with a single sample from N (0, I) or multiple
latents, resulting in a trade-off between reconstruction quality and computation demands (Ghosh
et al. (2019)). However, taking a single or few random samples in the VAE setting can produce
instances very far from the mean, especially in high dimensional spaces. In contrast, sampling
sigma points produces a more controlled overall estimate of the posterior since the samples lie on
the border of a hyperellipsoid induced by the covariance matrix Σ (example in Fig. 1b). Thus, while
computing the gradients of the loss function (which is a function of the samples), the sigma-sampling
has the potential to bring a more accurate and lower-variance estimate when all the sigma points are
considered. This is illustrated in Fig 1c. Further analytical and empirical arguments validating the
lower gradient variance claim are provided in Appendix B.

2The white-noise interpretation is also used in Ghosh et al. (2019) to justify regularization as an alternative
to the noise sampling.
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(a) (b) (c)

Figure 1: (a) (transforming 2D sigma points) (best viewed in color) Left: a Gaussian with its
Monte Carlo approximation (blue), sigma points computed according to Eq. (5) (red), and five ran-
dom samples (black points). Right: nonlinear RReLU activation (Xu et al. (2015)) applied to the
distribution, sigma points, and the random samples. It is clear that the five sigma points provide a
better approximation of the transformed distribution than the five random samples.
(b) (3D sigma points) Sigma points (red) on an ellipsoid spanned by a 3 × 3 covariance matrix,
consisting of a central sigma point and a pair of sigma points on each axis.
(c) (gradient variance) Left: loss function (blue) at a sample (gray) corresponding to the standard
normal (yellow) mean. The gradient of the loss function (red) at the mean is not representative of
the true gradient. Middle: a high-variance gradient computed from three random samples drawn
from the standard normal, potentially far away from the true gradient. Right: gradient of the loss
function at the three sigma points; although the estimate is potentially biased, it has lower variance
than if computed from the random points. The three provided examples can be interpreted as the
RAE-(Ghosh et al., 2019), VAE-, and UAE-like sampling procedures.

The sigma-sampling of the unscented transform can be applied to any learned posterior described by
its first two moments (as common in generative models), not only the VAE standard normal. With
this description, the sigma points cannot be the uniquely optimal representation of the distribution
since there is an infinite number of distributions that share the first two moments. However, the un-
scented transform has shown superior empirical performance over other representations in extensive
experiments in Julier et al. (2000) and Zhang et al. (2009), under various distributions and nonlinear
functions, and especially for the case of differentiable functions. This has led to the UKF, built on
this paradigm, being one of the major models in filtering and control. Guided by the success of the
method, we hypothesize that applying the unscented transform in the VAE setting has the potential
to provide the best-possible approximation of any given learned posterior. With these insights, we
develop the novel UAE model presented in the next section.

5 UNSCENTED AUTO-ENCODER (UAE)

The UAE is a deterministic autoencoder model maximizing the ELBO. It addresses the max-
imum likelihood optimization problem from Sec. 3, namely the L maximization from Eq. (3),
by computing the unscented transform of the posterior qφ(z|x) parameterized by the encoder
Eφ(x) = {µφ(x),Σφ(x)}. The latent features z can be obtained by deterministically sampling
a single or multiple sigma points, resulting in a lower variance sampling than of the reparameteriza-
tion trick in Eq. (4). The key ingredient enabling the good performance of the overall model as well
as the unscented transform in this context is replacing the vanilla KL divergence with the Wasser-
stein distribution metric, which effectively performs a regularization of the posterior moments. It is
employed in conjunction with a full covariance posterior commonly used in filtering applications.
The decoder regularization further applies a smoothing effect on the latent space – it is formally
derived in Sec. 5.2. The full training objective consists of optimizing φ, θ ← arg minφ,θ LUAE,

LUAE = Ex∼pdataLREC + βLKL + γLDθREG , (7)
where β (from the β-VAE Higgins et al. (2017)) and γ are weights.

Due to a deterministic decoder, the reconstruction term LREC is a straightforward L2 loss
LREC = ‖x−Dθ(z)‖22 , z ∼ {χi(µφ,Σφ)}2ni=0 , (8)

with a caveat that the n-dimensional vector z is sampled uniformly from the set of sigma points. For
simplicity, we sample a single sigma point but explore multiple sigma point sampling in Appendix D.
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Loss function Posterior sampling

LVAE ‖x−Dθ(z)‖22+‖µφ‖
2
2−n+

∑
i σ

2
φ,i−2 log σφ,i z=µφ+σφ�ε, ε∼N (0,I)

LRAE-GP ‖x−Dθ(z)‖22+‖z‖
2
2+‖∇zDθ(z)‖22 None, z=µφ

LVAE* ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖diag(σ2

φ)−I‖2F z=µφ+σφ�ε, ε∼N (0,I)

LUT-VAE* ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖diag(σ2

φ)−I‖2F z∼{χi(µφ,diag(σ2
φ))}

2n
i=0

LUT-VAE*-fullΣφ
‖x−Dθ(z)‖22+‖µφ‖

2
2+‖Lφ−I‖2F z∼{χi(µφ,Σφ)}2ni=0

LUAE ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖Lφ−I‖2F+λmax(Σφ)‖∇zDθ(z)‖22 z∼{χi(µφ,Σφ)}2ni=0

Table 1: A comparison of the VAE, RAE-GP (employing a Gradient Penalty (GP) on the decoder),
and UAE loss functions, including the intermediate models VAE*, UT-VAE*, UT-VAE*-full-Σφ

(weights omitted for clarity). The posterior terms z, µφ, σφ, and Σφ are realized given the sample x.

The KL divergence term LKL of the posterior against the multivariate normal prior comes from its
definition for two multivariate Gaussians3

LKL = ‖µφ‖22 + tr(Σφ)− n− log det Σφ = ‖µφ‖22 + tr(Σφ)− n− 2tr(logLφ) (9)

and allows for a full covariance matrix. However, due to favorable optimization properties and
higher-quality reconstruction, we use the Wasserstein metric between distributions in place of the KL
divergence. This metric effectively replaces the covariance part of the KL term, tr(Σφ)−2tr(logLφ),
with the Frobenius norm of the mismatch between the lower triangular matrix and the identity

‖Lφ − I‖2F = tr(Σφ)− 2tr(Lφ) . (10)

It differs from the original objective in Eq. (9) only in the lack of a logarithm while sharing the same
global minimum. Further details are provided in Sec. 5.3. Such a loss function allows the variance to
approach zero (which is harshly penalized by the logarithm in Eq. (9)), yielding a sharper posterior.
Furthermore, it favors a diagonal Σφ, but importantly, does not assert such shape as in the case of
the VAE and implicitly RAE.

The decoder regularization term LDθREG is a generalization of the regularization term in Ghosh
et al. (2019), accounting for a fully probabilistic formulation. It can be realized as a penalty on the
input–output gradient, weighted by the largest eigenvalue of the covariance matrix

LDθREG = λmax(Σφ)‖∇zDθ(z)‖22 . (11)

We approximate the λmax(Σφ) by the largest diagonal, which is correct for the diagonal Σφ. Fur-
thermore, Eq. (10) anyway pushes the Σφ to be diagonal.

We provide an overview of the VAE, RAE, and UAE loss functions in Tab. 1, together with the
models that are conceptually between the VAE and UAE. These are the VAE*, using the Wasserstein
metric from Eq. (10) on a standard diagonal VAE posterior, UT-VAE*, with the unscented transform
in place of the reparameterization trick, and full covariance UT-VAE*-fullΣφ, differing from the
given UAE only in the lack of a decoder regularization term. Additional models employing different
combinations of the loss function components are provided in Appendix E, Tab. 5.

5.1 SAMPLING FROM THE DETERMINISTIC UAE

Since the UAE model doesn’t regularize the aggregated posterior toward the prior using the KL
divergence (Hoffman & Johnson, 2016) or the Wasserstein metric (Patrini et al., 2020), it is not
equipped with an easy-to-use sampling procedure as the VAE. To remedy this, we use the straight-
forward ex-post density estimation procedure described in Ghosh et al. (2019) for the deterministic
RAE model. We fit the latent feature vectors z (a single sigma point for each training example)
sampled in Eq. (8) to a 10-component Gaussian Mixture Model (GMM) (which has shown good
performance and generalization ability in the experiments of Ghosh et al. (2019) even for VAE mod-
els) and use the mixture to generate new samples. For a fair comparison, we utilize this procedure
when sampling all the models.

3DKL(N0,N1) =
1
2
(tr(Σ−1

1 Σ0)− n+ (µ1 − µ0)
TΣ−1

1 (µ1 − µ0) + log(detΣ1
detΣ0

))
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5.2 ELBO DERIVATION

In the following, we analytically derive the UAE model from Eq. (7). The derivation is largely
inspired from Ghosh et al. (2019), with a few crucial differences allowing for greater generalizabil-
ity and less restrictive assumptions. We start with the general ELBO minimization formulation in
Eq. (3), augmented with a constraint

arg min
φ,θ

Ex∼pdataLREC + LKL (12)

s.t. ‖Dθ(z1)−Dθ(z2)‖p < ε, z1, z2 ∼ qφ(z|x), ∀x ∼ pdata. (13)

Here, the decoder outputs given any two latent vectors z1 and z2 (any two draws from the posterior
qφ(z|x)) are bounded via their p-norm difference, for a deterministic decoder Dθ.

Ghosh et al. (2019) showed that the constraint in Eq. (13) can be reformulated as

sup{‖∇zDθ(z)‖p} · sup{‖z1 − z2‖p} < ε . (14)

We provide the full derivation in Appendix C. In Eq. (14),∇zDθ(z) is the derivative of the decoder
output w.r.t. its input (not the parameterization θ). The second term in the product depends on the
parameterization of the posterior qφ(z|x). For a Gaussian, sup{‖z1−z2‖p} becomes a functional r
of the posterior entropy, r(H(qφ(z|x))). At this point, the RAE derivation from Ghosh et al. (2019)
takes a strong simplifying assumption of constant entropy for all samples x, effectively asserting
constant variance in the posterior. This allows to incorporate a simplified version of Eq. (14) into
Eq. (12) via the Lagrange multiplier γ, obtaining the following RAE loss function4

LRAE = ‖x−Dθ(z)‖22 + β‖z‖22 + γ‖∇zDθ(z)‖22 . (15)

Here, the KL-term from Eq. (12) is approximated by ‖z‖22 due to the constant variance assumption.

In the UAE formulation, the samples z1 and z2 in Eq. (14) simply correspond to the sigma points
of qφ(z|x) parameterized by Eφ(x) = {µφ(x),Σφ(x)}. Therefore, the term sup{‖z1 − z2‖p} can
be computed analytically as the largest eigenvalue λmax of the covariance matrix Σφ. Furthermore,
the UAE does not require the constant variance assumption; the KL-term can be provided for a full
covariance. Thus, we arrive at the following analytical UAE loss function from Eq. (7)

LUAE = ‖x−Dθ(z)‖22 + ‖µφ‖22 − n+ tr(Σφ)− log det Σφ +

+ γλmax(Σφ)‖∇zDθ(z)‖22 , z ∼ {χi(µφ,Σφ)}2ni=0 .
(16)

In practice, we replace the logarithm of the KL-term with a linear term, see Eq. (10). This completes
the derivation of the UAE loss function in Eq. (7) from the ELBO condition in Eq. (12).

It follows from the derivation that the major difference between the RAE on the one hand and VAE
and UAE on the other is that the RAE assumes constant variance in fitting the training data distribu-
tion into the latent space, thus not including any variance-compensating terms in the loss function.
In effect, the RAE considers all the dimensions equally and cannot take into account that the encoder
might have different uncertainty per dimension and data point. Additionally, the difference between
VAE and UAE is that the VAE incorporates a sampling procedure with higher-variance than the
deterministic sigma-point sampling used in the unscented transform. Therefore, loss function-wise,
the UAE can be regarded as a middle-ground between the VAE and RAE – deterministic and lower-
variance in training than the VAE, but with greater generalization capabilities than the RAE due to
the probabilistic formulation.

5.3 POSTERIOR REGULARIZATION VIA THE WASSERSTEIN METRIC

In practice, the training of VAEs can be sensitive to the weighting of the KL term, which can lead to
posterior collapse (Dai et al., 2020). The main factor is the strong variance regularization of the KL
with its log term, which can be written as

LKL = ‖µφ‖22 + tr(Σφ)− n− log det Σφ = ‖µφ‖22 + tr(Σφ)− n− 2
∑
i logLφ,ii (17)

If the posterior gets more peaked, which might be necessary for good reconstructions, the diver-
gence quickly grows toward infinity. We observed such problems in particular with full covariance

4In Ghosh et al. (2019), the decoder gradient penalty from Eq. (15) is the analytically derived regularization;
alternatives such as weight decay and spectral norm are offered as well and can also be used in the UAE.
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Fashion-MNIST CIFAR10 CelebA

Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

VAE 47.38 51.74 66.04 160.05 173.45 170.33 65.86 67.66 68.08

RAE-no reg. 34.60 41.61 57.0 140.70 158.08 154.33 40.35 47.62 50.10
RAE-L2 33.80 41.46 60.97 142.08 159.68 154.97 39.03 46.37 50.65
RAE-GP 32.40 39.01 56.28 139.83 158.17 153.83 39.87 46.38 46.46
VAE* 33.72 40.39 59.76 136.90 156.83 151.41 45.15 50.29 53.23
UT-VAE* 33.57 40.31 57.21 134.21 153.09 147.32 48.29 56.14 54.14
UT-VAE*-fullΣφ 35.78 42.97 66.75 126.00 149.52 141.67 43.00 53.39 51.22

UAE 33.30 40.81 60.13 120.95 147.07 137.39 37.93 44.59 46.46

Table 2: Comparison of the architectures from Tab. 1: VAE, RAE, intermediate models, and the
UAE. VAE* employs the Wasserstein metric in place of the KL divergence. The UT variants use
the unscented transform and sample a single sigma point given µφ and (diagonal or full) Σφ. Three
RAE variants are provided: RAE-no reg. without decoder regularization, RAE-GP with the Gradient
Penalty (GP) from Eq. (15), and RAE-L2 with decoder weight decay.

posteriors (results in Appendix E). Despite these problems the KL divergence is theoretically sound.
Hoffman & Johnson (2016) showed that DKL(qφ(z|x)‖p(z)) can be reformulated into two terms,
one that weakly pushes toward overlapping posterior distributions and a KL divergence between the
aggregated posterior and the prior. The latter is required if samples are drawn from the prior and the
former prevents the latent encoding from becoming a lookup table (Mathieu et al., 2019).

Replacing the KL-divergence with the Wasserstein-2 metric preserves the tendency toward overlap-
ping posteriors, but does not match the aggregated posterior to a predefined prior. However, this
matching is not required in our setup due to the ex-post density estimation. Furthermore, successful
practical approaches like Stable Diffusion (Rombach et al., 2022) only require correctly learning the
manifold and therefore also do not require a certain aggregated posterior to sample from.

The Wasserstein-2 metric for Gaussians N1 = N (µφ,Σφ) and N2 = N (0, I) can be written as

W2(N1,N2) = ‖µφ‖22 + tr(Σφ) + n− 2tr(Σ1/2
φ ) = ‖µφ‖22 + tr(Σφ) + n− 2tr(Lφ) . (18)

The last three terms can be reformulated into the term used in Eq. (10)

tr(Σφ) + n− 2tr(Lφ) = tr(LTφLφ − 2Lφ + I) = tr((Lφ − I)T (Lφ − I)) = ‖Lφ − I‖2F . (19)

Disregarding the constant terms, it is clear that Eq. (17) and Eq. (18) differ in the lack of the log term
that infinitely penalizes zero-variance latents. In contrast, the Wasserstein metric even allows the
posterior variance to approach zero if it helps to significantly reduce the reconstruction loss. This is
evidenced in the aggregated posterior analysis provided in Appendix F. Overall, our empirical anal-
ysis shows that replacing DKL(qφ(z|x)‖p(z)) with the Wasserstein-2 distance W2(qφ(z|x), p(z))
results in better performance.

6 RESULTS

In the following, we present quantitative and qualitative results of the UAE model and its
precursors compared to the VAE and RAE baselines on Fashion-MNIST Xiao et al. (2017),
CIFAR10 (Krizhevsky et al., 2009), and CelebA (Liu et al., 2015) datasets. We aim to delineate
the effects of the Wasserstein metric, the unscented transform compared to the reparameterization
trick (in the diagonal and full-covariance context), and the decoder regularization of the latent space.
Furthermore, we investigate whether sampling multiple sigma points is beneficial, similarly to draw-
ing many samples from the prior in the VAE. These results are provided in Appendix D. In addition
to evaluating the reconstruction and random sample quality (using a fitted mixture for all models, see
Sec. 5.1), we investigate if sampling only at the sigma points in training preserves the latent space
structure, e.g. does not create ”holes”. Here, we evaluate the quality of interpolated samples. The
metric for evaluating reconstruction, sampling, and interpolation quality is the popular FID (Heusel
et al., 2017), which quantifies the distance between two distributions by their samples. Detailed
information about the network architecture, training procedure, and the choice of FID computation
datasets is given in Appendix A.
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Figure 2: Qualitative results on the CelebA dataset of the VAE, RAE, and UAE models. The VAE
and UAE models use 8 samples or sigma points, which in the case of the UAE corresponds to an
approximately 10% improvement in FID scores (Appendix D, Tab. 4) over the closest RAE baseline.

The main results are provided in Tab. 2. The table can be interpreted as an ablation study, where,
starting from the basic VAE model, we successively apply the four components of the UAE model:
the Wasserstein metric from Eq. (10) in place of the KL divergence, unscented transform sampling,
full covariance matrix in the posterior, and the decoder regularization based on the maximum eigen-
value of Σφ. An ablation study of additional model combinations is provided in Appendix E.

Among the results in Tab. 2, the deterministic RAE baseline sets the context with a significantly
higher performance over the vanilla VAE. Likewise, the Wasserstein-metric VAE* preserves the
latent space regularization (in spirit of the RAE) but extends it to a probabilistic, non-constant vari-
ance setting. The model can be considered on-par with the non-regularized RAE: outperforms it on
CIFAR10, is on-par on Fashion-MNIST, but behind on CelebA. More importantly, it can be seen
that the VAE* model achieves a large improvement over the classical VAE in all metrics and on
all datasets, achieved effectively only by replacing the logarithm term with a linear term. This is
an important result indicating that the rigidity of the KL divergence w.r.t. the posterior variance
potentially harms the quality of decoded samples, particularly on the richer CIFAR10 and CelebA.

Observing the UT-VAE* row in Tab. 2, it can be seen that the unscented transform (UT) sampling ap-
plied on a diagonal covariance in the VAE* context brings mixed results: minor improvements over
VAE* on Fashion-MNIST and CIFAR10, and a minor regression on CelebA. Nevertheless, the UT-
VAE*-full Σφ row shows that allowing a full covariance representation (as common in unscented
transform applications) enables the UT sampling to boost all metrics on CIFAR10 and CelebA. How-
ever, Fashion-MNIST appears to not benefit from modeling correlations in the posterior; we posit
that it is due to the lower dimensionality of the input space. Finally, the eigenvalue-weighted decoder
regularization in the UAE row (essentially UT-VAE*-full Σφ-GP) further applies a strong smooth-
ing effect to compensate for sampling at fixed points. It is especially helpful on CelebA, where the
UAE model brings a major gain of more than 40% over the VAE baseline in reconstruction. Overall,
compared to the RAE, the UAE achieves large improvements on CIFAR10 and a minor improve-
ment on CelebA, while being slightly behind on Fashion-MNIST. However, compared to the vanilla
VAE, the UAE achieves very large improvements on all datasets in all metrics.

The given UAE model in Tab. 2 samples only a single sigma point. Therefore, additional perfor-
mance gains can be reached simply by using multiple sigmas in training. Tab. 4 in Appendix D
shows such results, where metrics further improve at the expense of an observed approximately lin-
ear scaling of the training time. Qualitative results on CelebA are shown in Fig. 2 and confirm the
superior FID scores: the UAE samples appear sharper than the RAE and significantly more realistic
than the VAE. Qualitative results on Fashion-MNIST and CIFAR10 are provided in Appendix G.

7 CONCLUSION

In this paper, we introduced a novel VAE architecture employing the Unscented Transform – a
lower-variance alternative to the reparameterization trick. Through the Wasserstein metric, we es-
tablished a framework enabling the good performance of the UT. By breaking the rigidity of the
KL divergence w.r.t. posterior variance, we unlocked performance improvements brought on by
sharper, full-covariance posteriors that still preserve a smooth latent space. Our work contributes an
important step toward establishing competitive deterministic generative models.
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Austin Tripp, Erik A. Daxberger, and José Miguel Hernández-Lobato. Sample-efficient op-
timization in the latent space of deep generative models via weighted retraining. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
81e3225c6ad49623167a4309eb4b2e75-Abstract.html.

Jeffrey Uhlmann. Dynamic map building and localization: new theoretical foundations. PhD thesis,
University of Oxford, 1995.

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.
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